RU2699422C1 - Деформируемый алюминиево-кальциевый сплав - Google Patents

Деформируемый алюминиево-кальциевый сплав Download PDF

Info

Publication number
RU2699422C1
RU2699422C1 RU2018146827A RU2018146827A RU2699422C1 RU 2699422 C1 RU2699422 C1 RU 2699422C1 RU 2018146827 A RU2018146827 A RU 2018146827A RU 2018146827 A RU2018146827 A RU 2018146827A RU 2699422 C1 RU2699422 C1 RU 2699422C1
Authority
RU
Russia
Prior art keywords
alloy
aluminum
scandium
finished products
parts
Prior art date
Application number
RU2018146827A
Other languages
English (en)
Inventor
Николай Александрович Белов
Евгения Александровна Наумова
Виталий Владимирович Дорошенко
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2018146827A priority Critical patent/RU2699422C1/ru
Application granted granted Critical
Publication of RU2699422C1 publication Critical patent/RU2699422C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С. Среди них: детали автомобильных двигателей, детали судостроения, водозаборной арматуры и др. Предложенный сплав на основе алюминия содержит, мас.%: 2,0-2,6 Са; 1,5-2,5 Mg; 0,4-0,6 Fe, 0,3-0,5 Si, 0,8-1,2 Mn, 0,10-0,15 Zr, 0,08-0,12 Sc, остальное - алюминий. Изобретение направлено на создание нового экономнолегированного термостойкого сплава, предназначенного для получения деформированных полуфабрикатов с высоким уровнем механических свойств при сохранении пластичности. Благодаря высокой термической стабильности структуры прочностные свойства сплава после нагрева при температурах до 350°С и выдержке до 10 часов не снижаются. 2 з.п. ф-лы, 2 ил., 2 табл., 2 пр.

Description

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде и допускающих нагревы до 350°С. Среди них: детали автомобильных двигателей, детали судостроения, водозаборной арматуры и др.
Деформируемые термически неупрочняемые алюминиевые сплавы типа АМг2, содержащие 2-3% Mg (здесь и далее масс. %, если иное не оговорено), обладают высокой технологичностью и коррозионной стойкостью, вследствие чего они нашли широкое применение в различных областях [Фазовый состав промышленных и перспективных алюминиевых сплавов. Н.А. Белов. М: Изд. дом МИСиС, 2010 - 511 с. ISBN 978-5-87623-375-2]. Эти сплавы предназначены преимущественно для получения листового проката. Основным недостатком сплавом типа АМг2 является невысокая прочность, особенно в отожженном состоянии (согласно ГОСТ 21631-76 требование к временному сопротивлению составляет менее 200 МПа). Это препятствует их использованию в нагруженных изделиях. Увеличение содержания магния до 5-6% (сплавы АМг5, АМг6) позволяет заметно повысить прочность, однако при этом снижается технологичность (в частности, сопротивление деформированию) и коррозионная стойкость (из-за образования по границам зерен вторичных выделений фазы Al3Mg2) [Фазовый состав промышленных и перспективных алюминиевых сплавов. Н.А. Белов. М: Изд. дом МИСиС, 2010 - 511 с. ISBN 978-5-87623-375-2]. Кроме того, слитки сплавов с высоким содержанием магния требуют гомогенизирующего отжига.
Для повышения прочностных свойств алюминиево-магниевых сплавов типа целесообразно дополнительно легировать их такими элементами, которые бы сохраняли высокий уровень технологичности и коррозионной стойкости. Среди них скандий и цирконий, которые нашли применение в сплавах типа 01570 [Резник, Павел Львович; Чикова, Ольга Анатольевна; Овсянников, Б.В. / Влияние режимов гомогенизации слитков на микроструктуру, фазовый состав и механические свойства сплава 01570 при повышенных температурах. В: Металловедение и термическая обработка металлов. 2016; №4 (730). стр. 18-22]. Последние в настоящее время рассматриваются как одни из наиболее перспективных материалов для авиастроения, поскольку они позволяют добиться существенно большей прочности по сравнению с классическими магналиями. Это упрочнение достигается за счет присутствия в структуре деформированных полуфабрикатов наночастиц фазы Al3(Sc,Zr)-Ll2, которые являются эффективными антирекристаллизаторами. Эти наночастицы образуются при отжиге (или технологическом нагреве) слитков в процессе распада пересыщенного алюминиевого твердого раствора (далее (Al)), который формируется при кристаллизации.
Известен сплав, раскрытый в патенте RU 2226565 (публ. 10.04.2004, бюл. №10). Данный сплав, предназначенный для изготовления деформированных полуфабрикатов, содержит 5-6 мас. % магния (Mg), 0,05-0,15 мас. % циркония (Zr), 0,05-0,12 мас. % марганца (Mn), 0,01-0,2 мас. % титана (Ti), 0,05-0,5 мас. % одного либо нескольких элементов группы, состоящей из скандия (Sc), тербия (Tb), церия (Се) и остальных лантанидов, при этом в его составе содержится, по меньшей мере, скандий (Sc), кроме того, 0,1-0,2 мас. % меди (Cu) и/или 0,1-0,4 мас. % цинка (Zn), а также алюминий (Al) и неизбежные включения кремния в количестве максимум 0,1 мас. %. В частном исполнении сплав содержит, по меньшей мере, 0,15 мас. % скандия (Sc).
Недостатком этого сплава является высокое содержание магния, что требует проведения операции гомогенизации в узком температурном диапазоне. Также недостатком этого сплава является строгое ограничение по содержанию железа и кремния, что исключает возможность его приготовления на основе первичного алюминия низких марок, а также использования вторичного сырья. Еще одним недостатком этого сплава является высокое содержание в его составе дорогостоящего скандия.
Наиболее близким к предложенному является коррозионностойкий алюминиево-магниевый сплав, раскрытый в патенте РФ №2478131 Этот сплав содержит 3-5 мас. % магния (Mg), 0,05-0,15 мас. % циркония (Zr), 0,05-0,12 мас. % марганца (Mn), 0,01-0,2 мас. % титана (Ti), 0,05-0,5 мас. % одного либо нескольких элементов из скандиевой группы и/или тербия (Tb), при этом в его составе содержится по меньшей мере скандий (Sc), а также алюминий (А1) и неизбежные включения кремния в количестве максимум 0,2 мас. %. В частном исполнении этот сплав содержит не менее 0,15 мас. % скандия (Sc). Сплав предназначен для изготовления методом сварки, прокатки, экструзии или ковки деталей для воздушного транспортного средства, прежде всего фюзеляжа самолета, для морского транспортного средства или для автотранспортного средства.
Недостатком данного сплава является строгое ограничение по содержанию железа и кремния, что исключает возможность его приготовления на основе первичного алюминия низких марок, а также использования вторичного сырья. Еще одним недостатком этого сплава является высокое содержание в его составе дорогостоящего скандия.
Техническим результатом является создание нового коррозионностойкого сплава на основе алюминия, предназначенного для получения деформированных полуфабрикатов и допускающего в своем состава не менее 0,4% железа, не менее 0,3% кремния, не более 2,5% магния и не более 0,12% скандия. Этот сплав должен допускать нагрев до 350°С включительно.
Технический результат достигается тем, что деформированный сплав на основе алюминия, содержащий магний, марганец, цирконий, скандий и кремний, отличается тем, что он дополнительно содержит кальций и железо при следующих концентрациях легирующих компонентов, масс. %:
Кальций 2,0-2,6
Магний 1,5-2,5
Железо 0,4-0,6
Кремний 0,3-0,5
Марганец 0,8-1,2
Цирконий 0,10-0,15
Скандий 0,08-0,12
Алюминий основа
Сплав данного состава может быть выполнен в виде листов со следующими свойствами на растяжение после 3 часового нагрева при 350°С: временное сопротивление (σв) не менее 300 МПа, относительное удлинение (δ) - не менее 5%. Сплав данного состава также может быть выполнен в виде прутков со следующими свойствами на растяжение после 3 часового нагрева при 350°С: временное сопротивление (σв) не менее 350 МПа, относительное удлинение (δ) - не менее 5%.
Изобретение поясняется чертежом, где на фиг. 1 показаны деформированные полуфабрикаты, изготовленные из заявляемого сплава состава №3 в виде листового проката, на фиг. 2 показаны деформированные полуфабрикаты, изготовленные из заявляемого сплава состава №3 в виде прутков.
Сущность изобретения состоит в следующем.
Кальций позволяет связать железо и кремний и тройные соединения, которые обладают благоприятной морфологией и не оказывает отрицательного влияния на механические свойства и коррозионную стойкость. Концентрации магния и марганца в заявленных пределах обеспечивает необходимый уровень прочностных свойств при сохранении достаточно высокой деформационной пластичности.
Концентрации циркония и скандия в заявленных пределах обеспечивают необходимый эффект дисперсионного твердения за счет образования при отжиге наночастиц фазы Al3(Zr,Sc) с решеткой Ll2, обладающих высокой термической стабильностью.
ПРИМЕР 1.
Были приготовлены 6 сплавов, составы которых указаны в табл. 1. Все сплавы готовили в электрической печи сопротивления в графитошамотных тиглях на основе первичного алюминия марки А5Е. Из этих сплавов готовили плоские слитки, из которых на прокатном стане получали листы толщиной 2 мм (Фиг. 1). Образцы листов подвергали стабилизирующему отжигу при 350°С в течение 3-х часов в муфельной электропечи.
Механические свойства (временное сопротивление - σв, условный предел текучести - σ0,2 и относительное удлинение - δ) определяли по результатам испытаний на одноосное растяжение на машине Zwick Z250. Испытания при комнатной температуре проводили по ГОСТ 1497-84. Коррозионную стойкость оценивали по потере массы (Δm) после выдержки в водном растворе 3%NaCl+0,3%H2O2 в течение суток.
Figure 00000001
1 потеря массы после коррозионных испытаний
Из табл. 1 видно, что только заявляемый сплав (составы 2-4) обеспечивает наилучшее сочетание временного сопротивления, предела текучести и относительного удлинения. В сплаве 1 прочность меньше требуемого уровня, что связано с недостаточным количеством выделений фаз Al6Mn и Al3(Zr,Sc). Сплав 5 имеет низкое значение δ, что связано с наличием первичных кристаллов интерметаллидов. Сплав, отличающийся от сплава 3 отсутствие кальция (состав 6), уступает сплавам 2-4 по механическим свойствам, что связыванием части магния в соединение Mg2Si. Кроме того, сплав 6 имеет более низкую коррозионную стойкость.
ПРИМЕР 2.
Из заявляемого сплава состава №3 были приготовлены цилиндрические слитки, из которого на стане радиально-сдвиговой прокатки получали прутки диаметром 14 мм и 9 мм (Фиг. 2). Эти прутки не содержали трещин и других видимых дефектов. Механические свойства, приведенные в табл. 2, показывают высокий уровень прочностных свойств.
Figure 00000002

Claims (4)

1. Деформируемый сплав на основе алюминия, содержащий магний, марганец, цирконий, скандий и кремний, отличающийся тем, что он дополнительно содержит кальций и железо при следующих концентрациях легирующих компонентов, мас.%:
Кальций 2,0-2,6 Магний 1,5-2,5 Железо 0,4-0,6 Кремний 0,3-0,5 Марганец 0,8-1,2 Цирконий 0,15-0,25 Скандий 0,08-0,12 Алюминий Основа
2. Сплав по п. 1, отличающийся тем, что он выполнен в виде листов, имеющих после 3-часового нагрева при 350°С временное сопротивление (σв) не менее 300 МПа, относительное удлинение (δ) - не менее 5%.
3. Сплав по п. 1, отличающийся тем, что он выполнен в виде прутков, имеющих после 3-часового нагрева при 350°С временное сопротивление (σв) не менее 350 МПа, относительное удлинение (δ) - не менее 5%.
RU2018146827A 2018-12-27 2018-12-27 Деформируемый алюминиево-кальциевый сплав RU2699422C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146827A RU2699422C1 (ru) 2018-12-27 2018-12-27 Деформируемый алюминиево-кальциевый сплав

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146827A RU2699422C1 (ru) 2018-12-27 2018-12-27 Деформируемый алюминиево-кальциевый сплав

Publications (1)

Publication Number Publication Date
RU2699422C1 true RU2699422C1 (ru) 2019-09-05

Family

ID=67851369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146827A RU2699422C1 (ru) 2018-12-27 2018-12-27 Деформируемый алюминиево-кальциевый сплав

Country Status (1)

Country Link
RU (1) RU2699422C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767091C1 (ru) * 2021-07-27 2022-03-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения термостойкой проволоки из алюминиево-кальциевого сплава
RU2795622C1 (ru) * 2022-12-14 2023-05-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Заэвтектический деформируемый алюминиевый сплав

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139400A (en) * 1974-06-27 1979-02-13 Comalco Aluminium (Bell Bay) Limited Superplastic aluminium base alloys
FR2717827A1 (fr) * 1994-03-28 1995-09-29 Collin Jean Pierre Alliage d'aluminium à hautes teneurs en Scandium et procédé de fabrication de cet alliage.
US6908516B2 (en) * 1994-08-01 2005-06-21 Franz Hehmann Selected processing for non-equilibrium light alloys and products
RU2478131C2 (ru) * 2010-10-29 2013-03-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Термостойкий литейный алюминиевый сплав
RU2672653C1 (ru) * 2017-11-16 2018-11-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Коррозионностойкий литейный алюминиевый сплав

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139400A (en) * 1974-06-27 1979-02-13 Comalco Aluminium (Bell Bay) Limited Superplastic aluminium base alloys
FR2717827A1 (fr) * 1994-03-28 1995-09-29 Collin Jean Pierre Alliage d'aluminium à hautes teneurs en Scandium et procédé de fabrication de cet alliage.
US6908516B2 (en) * 1994-08-01 2005-06-21 Franz Hehmann Selected processing for non-equilibrium light alloys and products
RU2478131C2 (ru) * 2010-10-29 2013-03-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Термостойкий литейный алюминиевый сплав
RU2672653C1 (ru) * 2017-11-16 2018-11-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Коррозионностойкий литейный алюминиевый сплав

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767091C1 (ru) * 2021-07-27 2022-03-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения термостойкой проволоки из алюминиево-кальциевого сплава
RU2795622C1 (ru) * 2022-12-14 2023-05-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Заэвтектический деформируемый алюминиевый сплав

Similar Documents

Publication Publication Date Title
JP5918158B2 (ja) 室温時効後の特性に優れたアルミニウム合金板
WO2018236241A1 (ru) Сплав на основе алюминия
JP5703881B2 (ja) 高強度マグネシウム合金およびその製造方法
EP2841611A1 (en) Ai-mg-si aluminium alloy with improved properties
RU2673593C1 (ru) Высокопрочный сплав на основе алюминия
US10315277B2 (en) Aluminium alloy laminated plate
RU2672653C1 (ru) Коррозионностойкий литейный алюминиевый сплав
JP2012001756A (ja) 高靭性Al合金鍛造材及びその製造方法
RU2313594C1 (ru) Сплав на основе алюминия
RU2699422C1 (ru) Деформируемый алюминиево-кальциевый сплав
EP3505648A1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
RU2735846C1 (ru) Сплав на основе алюминия
RU2716568C1 (ru) Деформируемый свариваемый алюминиево-кальциевый сплав
RU2634822C2 (ru) Алюминиевый сплав, устойчивый к межкристаллитной коррозии
US20120241051A1 (en) Precipitation hardened heat-resistant steel
RU2639903C2 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
JPH07242976A (ja) 耐熱性に優れた展伸用アルミニウム合金およびその製造方法
JP2013053361A (ja) 耐熱強度に優れた飛翔体用アルミニウム合金
RU2741874C1 (ru) Литейный алюминиево-кальциевый сплав на основе вторичного сырья
RU2749073C1 (ru) Жаропрочные литейные и деформируемые алюминиевые сплавы на основе систем Al-Cu-Y и Al-Cu-Er (варианты)
RU2385358C1 (ru) Литейный сплав на основе алюминия
RU2708729C1 (ru) Литейный алюминиевый сплав
RU2590403C1 (ru) Сплав на основе алюминия и способ получения из него деформированных полуфабрикатов
RU2672977C1 (ru) АЛЮМИНИЕВЫЙ СПЛАВ СИСТЕМЫ Al-Mg-Si
RU2790117C1 (ru) Алюминиево-кальциевый сплав