RU2618758C2 - Способ применения, связанный с устройством для обработки отработанного газа - Google Patents

Способ применения, связанный с устройством для обработки отработанного газа Download PDF

Info

Publication number
RU2618758C2
RU2618758C2 RU2013111503A RU2013111503A RU2618758C2 RU 2618758 C2 RU2618758 C2 RU 2618758C2 RU 2013111503 A RU2013111503 A RU 2013111503A RU 2013111503 A RU2013111503 A RU 2013111503A RU 2618758 C2 RU2618758 C2 RU 2618758C2
Authority
RU
Russia
Prior art keywords
catalyst
amount
untreated
exhaust gas
reducing agent
Prior art date
Application number
RU2013111503A
Other languages
English (en)
Other versions
RU2013111503A (ru
Inventor
Андреас ДЕРИНГ
Original Assignee
Ман Трак Унд Бас Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ман Трак Унд Бас Аг filed Critical Ман Трак Унд Бас Аг
Publication of RU2013111503A publication Critical patent/RU2013111503A/ru
Application granted granted Critical
Publication of RU2618758C2 publication Critical patent/RU2618758C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Способ очистки, при котором восстановление оксида азота происходит вследствие того, что в поток отработанного газа до катализатора, который заполнен материалом катализатора для селективного каталитического восстановления оксида азота, добавляют выделяющий аммиак восстановитель, отличающийся тем, что отношение количества NH3 к NOx (коэффициент загрузки α) периодически варьируется с помощью изменения выхода необработанных оксидов азота из двигателя внутреннего сгорания таким образом, что коэффициент загрузки α периодически колеблется около заданного значения. При использовании изобретения появляется возможность изменять количество находящегося в катализаторе аммиака, отказавшись при этом от повышения количества восстановителя. 2 н. и 9 з.п. ф-лы, 4 ил.

Description

Согласно ограничительной части пункта 1 формулы изобретения изобретение относится к устройству для последующей обработки отработанного газа двигателей внутреннего сгорания, в частности, работающих на обедненных смесях двигателей внутреннего сгорания автомобилей.
В общем, известно применение SCR-катализаторов (катализаторов селективного восстановления) для восстановления оксида азота в потоке отработанного газа двигателя внутреннего сгорания. В рамках проводимого с помощью данного SCR-катализатора селективного каталитического восстановления (SCR) к потоку отработанного газа непосредственно добавляют вещество, имеющее восстанавливающее действие, такое как, например, аммиак или полуфабрикатный продукт, который высвобождает восстанавливающие вещества только в отработанном газе. В качестве полуфабрикатного продукта можно, например, применять водный раствор мочевины.
В эксплуатируемых в автомобилях двигателях внутреннего сгорания организация восстановления оксида азота с помощью SCR-процесса затруднена потому, что, с одной стороны, в данном случае преобладают изменяющиеся условия эксплуатации, что затрудняет количественное дозирование восстановителя, с другой стороны, из соображения безопасности нельзя непосредственно использовать крайне реакционноспособный восстановитель аммиак, а его необходимо получать посредством разложения предшественников аммиака, таких как мочевина, формиат гуанидина, карбонат аммония или других.
Кроме того, следует обращать внимание на то, что хотя, с одной стороны, необходимо достигать по возможности большей степени преобразования оксида азота, с другой стороны, необходимо избегать излишнего выхода в атмосферу неизрасходованного восстановителя, такого как, например, аммиак.
Относительно реакции разложения мочевины с образованием аммиака известно, что она в оптимальных условиях, то есть при температуре выше 350°C, происходит в две стадии. Согласно уравнению:
(NH2)2CO->NH3+HNCO
Figure 00000001
(1)
происходит термолиз, то есть термическое разложение мочевины. Затем согласно уравнению:
HNCO+H2O->NH3+CO2
Figure 00000001
(2)
происходит гидролиз, то есть каталитическое разложение изоциановой кислоты (HNCO) на аммиак (NH3) и диоксид углерода (CO2).
При этом, для преобразования одного моль монооксида азота необходим один моль аммиака.
4NO+4NH32->4N2+6H2O
Figure 00000001
(3)
Соотношение между NH3 и NOx обозначают как коэффициент загрузки α.
α=NH3/NOx
Figure 00000001
(4)
В случае идеального катализатора при коэффициенте загрузки более единицы все оксиды азота восстанавливаются, то есть достигают 100% преобразования NOx, так как для степени преобразования NOx XNOx считается:
Figure 00000002
Figure 00000001
(5)
где: CNOx,0: выход необработанного NOx [частей на миллион]
CNOx: выход NOx после катализатора [частей на миллион]
Если количество подводимого аммиака превосходит количество преобразуемых оксидов азота, то происходит выход в атмосферу неизрасходованного аммиака. По причине его токсичности этого необходимо избегать при любых обстоятельствах.
Для того чтобы понять процессы, происходящие в катализаторе, необходимо кратко ознакомиться с реакционными и техническими основами.
Рассмотрим реакцию
Figure 00000003
Figure 00000001
(6)
где: A1,A2: исходные вещества
A3,A4: продукты
νi: стехиометрические коэффициенты
νi<0 для исходных веществ
νi>0 для продуктов
Данная реакция протекает с определенной скоростью, так называемой скоростью реакции «r» (7). Скорость реакции определяется как изменение во времени компонента «i» по отношению к его стехиометрическому коэффициенту. Таким образом, скорость реакции относится к уравнению реакции и не имеет значения без его указания.
Figure 00000004
Figure 00000001
(7)
где: ni: число молей компонента i [моль]
t: время [сек]
Для постоянной по объему реакции можно изменение числа молей «dni» заменить изменением концентрации «dci»:
Figure 00000004
Figure 00000001
(8)
где: ci: концентрация компонента i [моль/м3]
Если важна не скорость определенной реакции, а изменения компонента, то говорят о скорости изменения количества вещества «R».
Figure 00000005
Figure 00000001
(9)
В случае N реакций получается следующее:
Figure 00000006
Figure 00000001
(10)
Для того чтобы можно было лучше сравнивать скорости реакций и скорости изменения количества вещества различных катализаторов друг с другом, их относят к репрезентативным величинам, таким как, например, масса катализатора, объем катализатора или поверхность раздела фаз.
Для того чтобы описать зависимость, которая определяет скорость реакции, существует несколько выражений, одно из которых, так называемое степенное выражение, к которому прибегают, если механизм реакции не известен.
Figure 00000007
Figure 00000001
(11)
где k: константа скорости реакции
mi: частичный порядок реакции относительно реагента Ai,
Figure 00000008
m:
Figure 00000009
: общий порядок реакции
Частичный порядок «mi» реагентов обычно определяют лабораторными измерениями.
Скорость реакции зависит не только от концентрации исходных продуктов и их порядка, а также, конечно, от температуры «T». Температура в приведенном выше выражении содержится в константе скорости «k».
Figure 00000010
Figure 00000001
(12)
где kO: частотный фактор или фактор частоты [моль1-m ·s-1]
EA: энергия активации [Дж/моль]
R: универсальная газовая постоянная: 8,31 Дж/моль K
Для скорости изменения количества вещества NO в SCR-катализаторе можно применять так называемое формальное кинетическое выражение (степенное выражение) формы:
Figure 00000011
Figure 00000001
(13)
при этом «m» обычно принимает значение «один», и «n» значение «ноль».
Практически это влечет за собой то, что скорость изменения количества вещества повышается с небольшим увеличением концентрации NO, в то время как увеличение концентрации NH3 не оказывает на нее влияния.
Если перед SCR-катализатором добавляют содержащий платину катализатор окисления NO для образования NO2
2NO+О2<->2NO2
Figure 00000001
(14)
то SCR-реакция может значительно ускориться, и низкотемпературная активность заметно увеличиться.
NO+2NH3+NO2->2N2+3H2O
Figure 00000001
(15)
Так как восстановитель, например, при применении в виде обозначаемой как AdBlue® жидкости для восстановления, находится в растворенной в воде форме, эта вода перед и во время непосредственно термолиза и гидролиза должна испаряться. Если температура при обеих приведенных выше реакциях находится ниже 350°C или если нагревание происходит медленно, образуются преимущественно твердая нерасплавляемая циануровая кислота при тримеризации изоциановой кислоты, что приводит к твердым отложениям или к полному засорению SCR-катализатора. С данным недостатком можно справиться, как описано в DE 4038054 A1, если содержащий восстановитель поток отработанного газа провести над катализатором гидролиза. Температуру отработанного газа, при которой становится возможным количественный гидролиз, можно снизить, таким образом, до 160°C, до тех пор пока добавленное количество мочевины не станет слишком большим. Однако такой дополнительный катализатор гидролиза дополнительно повышает стоимость устройства для обработки отработанного газа.
Несмотря на эти меры, часто не удается избежать образования циануровой кислоты, меламина или других нежелательных твердых продуктов реакций, в частности, когда вещество предшественник NH3, такое как мочевина или водный раствор мочевины, и отработанный газ неравномерно распределены во всем поперечном сечении потока, или добавляемое количество становится слишком большим. При этом особенно критично, когда локальные большие количества восстановителя сталкиваются со стенками труб или катализатором разложения мочевины, в то время как одновременно на этом месте находится локальный минимум скорости потока. Это приводит к тому, что отработанный газ не может предоставить достаточное количество тепла для того, чтобы обеспечить количественное разложение восстановителя в NH3. Более того, на данных местах образуются указанные отложения из нежелательных продуктов разложения восстановителя.
Этот эффект еще усиливает тот факт, что в транспортных средствах предоставляется только ограниченное пространство для подготовки восстановителя, что влечет за собой, в частности при проходе через катализатор, получение длины прохождения очень короткой, что в свою очередь влечет за собой очень плохую равномерность распределения в поперечном сечении катализатора по причине застойных зон потока, резких изменений поперечного сечения и/или разрывов потока.
Все это влечет за собой то, что степень преобразования NOx в большинстве случаев лимитируется не непосредственной SCR-реакцией, а высвобождением аммиака из его предшественников.
Из DE 3604045 C1, EP 362483 A1 известны способы, в которых вместо непрерывного, постоянного добавления аммиака применяют периодическое непостоянное добавление аммиака, для того, чтобы таким образом повысить преобразование NOx в SCR-катализаторе.
При этом кратковременно добавляют больше аммиака, чем необходимо в постоянных условиях, в частности, коэффициент загрузки в данном случае может превышать единицу, и затем количество аммиака снижают по сравнению с количеством, необходимым в постоянных условиях, или даже совсем прекращают подачу аммиака.
Причиной для наблюдаемого при данном способе повышения степени преобразования NOx является то, что можно снизить ингибирование исходных продуктов аммиаком благодаря кратковременному снижению количества NH3 в отработанном газе, а, следовательно, и на поверхности катализатора.
Однако данный способ, конечно, нельзя без затруднений применять в SCR-системах, которые работают не с чистым аммиаком, а с предшественниками аммиака, так как по причине периодической очень сильной передозировки в большинстве случаев происходит неполное разложение реакционной среды и, как следствие, отложение циануровой кислоты, меламина и других.
Задачей данного изобретения является предложить способ обработки отработанного газа в системе выпуска отработанного газа двигателей внутреннего сгорания, в частности, работающих на обедненных смесях двигателей внутреннего сгорания автомобилей, который делает возможным функциональное, в частности количественно улучшенное преобразование NOx в отработанном газе, простым и надежным в эксплуатации способом.
Данную задачу можно решить с помощью отличительных признаков пункта 1 формулы изобретения. Предпочтительные и особенно целесообразные усовершенствования данного изобретения являются объектами зависимых пунктов.
Для того чтобы снизить ингибирование исходных веществ реакции аммиаком, находящимся на поверхности катализатора, выход необработанных NOx периодически поднимают и снижают, без того приспосабливания подводимого количества восстановителя соответствующим образом, в частности пропорционально. Это влечет за собой то, что в фазе с высоким выходом необработанных NOx, количество NOx превосходит подводимое количество восстановителя, так что снижается коэффициент загрузки, что в свою очередь влечет за собой реакцию NOx с находящимся в катализаторе аммиаком, так что загрузка катализатора аммиаком прекращается, так как он теперь расходуется без того, чтобы он мог возмещаться достаточным количеством NH3 из газовой фазы. Дополнительно с помощью повышения выхода необработанных NOx, как описано выше, повышается скорость изменения количества вещества и вследствие этого количество преобразованного NOx.
В фазе с низким выходом необработанного NOx напротив, подводимое количество восстановителя превышает количество, необходимое для соответствующего преобразования NOx, так что имеется высокий коэффициент загрузки, вследствие чего катализатор снова загружается аммиаком.
Преимущество данного способа состоит в том, что возможно изменять количество находящегося в катализаторе NH3 даже в критических для разложения восстановителя условиях эксплуатации, таких как низкая температура отработанного газа и/или низкий массовый поток отработанного газа, отказавшись при этом от повышения количества восстановителя для повторной загрузки катализатора аммиаком. Дополнительно количество преобразованного NOx поднимается благодаря повышению скорости изменения количества вещества.
Кроме того, данный способ позволяет эксплуатировать двигатель внутреннего сгорания, по меньшей мере, во время отдельных фаз на более высоком уровне NOx, что влечет за собой, как правило, улучшение эффективности и вместе с этим снижение расхода топлива.
Для того чтобы ускорять «разгрузку» катализатора от аммиака можно в фазе с высоким выходом необработанных NOx подводимое количество восстановителя снижать или совсем прекращать подачу. Конечно, в фазе эксплуатации, в которой обеспечивается надежное разложение восстановителя, в фазе с низким выходом необработанных NOx также допустимо увеличивать подводимое количество восстановителя и, таким образом, ускорять накопление аммиака.
Выход необработанных NOx, как уже было объяснено, можно варьировать с помощью изменения параметров эксплуатации двигателя внутреннего сгорания. В качестве параметров эксплуатации, которые имеют непосредственное влияние на выход NOx, принимают во внимание, в том числе начало впрыскивания, соотношение воздуха и топлива (лямбда), давление впрыска, число впрыскиваний топлива отдельными форсунками на рабочий такт, температуру всасываемого воздуха и, при наличии рециркуляции отработанного газа, количество возвращаемого отработанного газа (доля EGR (рециркуляция отработанного газа)). При этом следующие изменения указанных эксплуатационных параметров влекут за собой увеличение выхода необработанных NOx:
- смещение начала впрыскивания на более раннее время,
- смещение отношения количества воздуха к количеству топлива в направлении более высоких значений лямбда,
- повышение давления впрыска,
- снижение числа впрыскиваний топлива отдельными форсунками на рабочий такт,
- повышение температуры всасываемого воздуха, например, с помощью обводного трубопровода охладителя наддувочного воздуха,
- снижение количества возвращаемого отработанного газа.
Конечно, меры по повышению или уменьшению выхода необработанных NOx в различных условиях эксплуатации двигателя внутреннего сгорания, в частности, когда двигатель эксплуатируется в автомобиле, должны быть приспособлены к прочим условиям эксплуатации, например, к максимально возможной мощности охлаждения системы охлаждения двигателя, мощности, задаваемой водителем и т.д.
Так как режимы накопления и разгрузки аммиака сильно зависят от условий проведения обработки отработанного газа, таких как температура катализатора, степень заполнения катализатора аммиаком, степень преобразования NOx, выход необработанных NOx, выход NO2 выше SCR-катализатора по патоку, выход NOx из системы, выход NH3 из системы и количество подводимого восстановителя, предпочтительно делать длину периода и/или размер повышения, и/или размер снижения, и/или длительность повышения, и/или длительность снижения выхода необработанных NOx и/или количества подводимого восстановителя зависимыми от данных величин. При этом следует обратить внимание на следующую зависимость:
длина периода и/или размер повышения, и/или размер снижения, и/или длительность повышения, и/или длительность снижения выхода необработанных NOx увеличиваются со снижением температуры катализатора и/или со снижением выхода NO2 выше SCR-катализатора по патоку, если соотношение NO2/NOx меньше единицы, и/или с повышением выхода NO2 выше SCR-катализатора по патоку, если соотношение NO2/NOx больше единицы, и/или со снижением выхода NH3 из системы, и/или со снижением количества подводимого восстановителя, и/или со снижением степени преобразования NOx и/или с повышением выхода NOx из системы.
Условия эксплуатации могут определяться с одной стороны непосредственно датчиками или с помощью моделей в виде математических функций, параметрических поверхностей и/или нейронных сетей. Подобные способы давно известны специалистам, так что подробное описание излишне.
Принцип действия предлагаемого способа рассмотрен ниже подробно с помощью нескольких примеров со ссылкой на фигуры, на которых:
на фиг.1 показано принципиальное изображение области, в пределах которой варьирует коэффициент загрузки;
на фиг.2 показан пример с первым вариантом периодического хода повышения NOx/снижения NOx с постоянным поступлением восстановителя;
на фиг.3 показана степень преобразования NOx в % при различных температурах катализатора и ходом повышения NOx/снижения NOx согласно фиг.2;
на фиг.4 показан второй пример периодического хода повышения NOx/снижения NOx с постоянным поступлением восстановителя.
На фиг.1 представлена в виде принципиальной схемы зависимость температуры катализатора от коэффициента загрузки в SCR-катализаторе двигателя внутреннего сгорания применительно к максимально достижимой степени преобразования оксида азота, при этом на ось абсцисс нанесена температура, и на ось ординат коэффициент загрузки α. Представленный сплошной линией ход кривой указывает теоретический коэффициент загрузки α, который следует выбирать при определенной температуре катализатора для того, чтобы для данной температуры катализатора получить максимальную степень преобразования для поступающего в катализатор оксида азота. Вместе с этим данная кривая представляет теоретическое установившееся состояние. Было обнаружено, что если коэффициент загрузки α варьирует в пределах определенных границ, которые можно установить только экспериментально для определенного типа катализатора в зависимости от температуры катализатора, с помощью соответственного изменения выхода необработанного NOx можно существенно повысить степень преобразования NOx. Указанные границы также нанесены на фиг.1, отнесенные к температуре для того, чтобы разъяснить принципиальную взаимосвязь. При этом, прерывистая линия представляет относящуюся к температуре верхнюю границу, и пунктирная линия представляет нижнюю границу для области вариации коэффициента загрузки α. На примере это означает то, что для температуры катализатора 250°C коэффициент загрузки α, например, периодически варьирует около теоретического значения 0,5 на короткие интервалы, а именно внутри границ 0,25 и 0,8. Данное варьирование, как было указано выше, осуществляется посредством того, что выход необработанного NOx двигателя внутреннего сгорания кратковременно поднимают, и затем снова снижают. Технические приемы в двигателе, которые вызывают указанные действия, в достаточной мере известны специалистам, на этом уже останавливались выше.
В ходе исследований было подтверждено, что предпочтительно варьировать выход необработанного NOx и/или коэффициент загрузки α, по меньшей мере, до 20%, более предпочтительно, по меньшей мере, до 40%, наиболее предпочтительно, по меньшей мере, до 60%.
Для того чтобы продемонстрировать влияние изменения выхода необработанного NOx на степень преобразования, проводили измерения в испытательном катализаторе, которые описаны ниже в примере в сочетании с фиг.2 и 3. При измерениях использовали двигатель внутреннего сгорания типа MAN-D2676 с внешней рециркуляцией охлажденного отработанного газа, в выпускном тракте был установлен SCR-катализатор со следующими данными:
- ячеистое строение: 300 cpsi (ячеек на квадратный дюйм)
- активный компонент: V2O5 на WO3-стабилизированном TiO2
- объем: 30,3 л.
Изменение выхода необработанных NOx осуществляли с помощью изменения количества отработанного газа, направляемого обратно со стороны поступления свежего воздуха (повышение доли EGR (рециркуляции отработанного газа).
Режимы работы двигателя были 1200 об/мин/800 Нм, 1200 об/мин/1200 Нм и 1200 об/мин/1700 Нм, температура катализатора, которая получалась вследствие этого, составляла 200°C, 300°C и 400°C.
Как можно видеть на фиг.2, концентрацию NOx (в частях на миллион) варьировали таким образом, чтобы получался периодический трапециевидный ход кривой, при этом концентрация NOx колебалась от предельных значений 500 частей на миллион до 1500 частей на миллион симметрично около концентрации NH3 1000 частей на миллион, длительность периода составляла 4 секунды. На фиг.3 показана степень преобразования NOx в % для температуры катализатора 200°C, 300°C и 400°C, которая достигалась в выбранных на фиг.2 условиях. Для сравнения, на фиг.3 дополнительно нанесены степени преобразования NOx в %, которые достигались при неизменяемом выходе необработанных NOx, то есть при длительности периода 0 секунд и иным образом неизменяемый в остальном таком же устройстве и принципе действия. Как нетрудно заметить, с помощью предлагаемого способа достигается значительное повышение степени преобразования NOx, даже при низких температурах катализатора.
Как показано на фиг.4 концентрация NOx (в частях на миллион), конечно, также может варьировать согласно другому ходу кривой. На данной фигуре показан периодический прямоугольный ход кривой, при этом концентрация NOx также колеблется от предельных значений 500 частей на миллион до 1500 частей на миллион симметрично вокруг концентрации NH3 1000 частей на миллион.
Также длительность периода, которая в примере согласно фиг.3 составляет две секунды, может применяться в качестве регулирующей переменной для оптимизации степени преобразования NOx. То же самое относится и к амплитуде колебаний. Коэффициент загрузки α не должен обязательно симметрично колебаться вокруг теоретического постоянного значения (сплошная линия на фиг.1), более того на практике может оказаться целесообразным выбирать асимметричные снижения и повышения выхода необработанных NOx (прерывистая и пунктирная линии на фиг.1). Как уже отмечалось выше, фактическое изменение коэффициента загрузки α может быть указано только таким образом, что значение α варьирует около предполагаемого теоретического значения в положительном и отрицательном направлении и данные изменения должны происходить с помощью кратковременных повышений и снижений выхода необработанных NOx. Соответственно, оптимальный размер повышения или снижения в значительной мере зависит от используемого материала катализатора и должен определяться эмпирически для катализатора определенного типа.
Главной идеей предлагаемого технологического процесса является то, что отношение количества NH3 к количеству NOx (коэффициент загрузки α) периодически варьируется с помощью изменения выхода необработанных оксидов азота таким образом, что коэффициент загрузки α периодически колеблется около теоретического постоянного значения.
Конечно, существует возможность изменять приведенный выше наглядно объясненный пример технологического процесса. Так, существует возможность оптимизировать действие способа таким образом, чтобы подводимое количество восстановителя приспосабливалось не в соответствии, в частности не пропорционально, к периодически колеблющемуся выходу необработанных NOx. При этом также допустимо снижение количества восстановителя, однако при этом должно быть обеспечено, например, с помощью учета температуры до и/или в SCR-катализаторе, чтобы заданный уровень температуры при повторном повышении количества восстановителя не был ниже нижней границы.
Далее, может быть выгодным выбирать длину периода, и/или размер повышения, и/или размер снижения, и/или длительность повышения, и/или длительность снижения выхода необработанных NOx в зависимости от условий эксплуатации устройства для обработки отработанного газа. При этом, в качестве условий эксплуатации можно учитывать температуру катализатора, и/или степень загрузки аммиака в катализаторе, и/или степень преобразования NOx, и/или выход необработанных NOx, и/или количество NO2 до фильтра твердых частиц, и/или выход NOx после устройства для обработки отработанного газа, и/или выход NH3 после устройства для обработки отработанного газа, и/или количество подводимого восстановителя, и/или количество накопленного NH3, и/или количество NH3, которое может быть накоплено. Данные условия эксплуатации можно определить с помощью датчиков и/или моделей, в виде математических функций, параметрических поверхностей и/или нейронных сетей. Подобные способы давно известны специалистам в данной области, так что подробное описание излишне.
Если, несмотря на предложенные меры, SCR-катализатор пропускает неизрасходованный NH3, то можно предусмотреть, чтобы он разлагался с помощью загрузки материала с окисляющим действием расположенного на стороне очищенного газа, и/или чтобы способность накопления аммиака поднималась в направлении стороны очищенного газа для того, чтобы амортизировать пики содержания аммиака с помощью накапливания.

Claims (11)

1. Способ применения, связанный с устройством для обработки отработанного газа, которое эксплуатируется с работающим при избытке воздуха двигателем внутреннего сгорания, при котором восстановление оксидов азота происходит вследствие того, что в поток отработанного газа до катализатора, который заполнен материалом катализатора для селективного каталитического восстановления оксида азота, добавляют выделяющий аммиак восстановитель, отличающийся тем, что отношение количества NH3 к NOx (коэффициент загрузки α) периодически варьируется с помощью изменения выхода необработанных оксидов азота из двигателя внутреннего сгорания таким образом, что коэффициент загрузки α периодически колеблется около заданного значения.
2. Способ по п.1, отличающийся тем, что количество подводимого восстановителя согласовывают не соответственно, в частности не пропорционально, периодически изменяющемуся выходу необработанных NOx.
3. Способ по п.1 или 2, отличающийся тем, что подводимое количество восстановителя, в частности в фазе с высоким выходом необработанных NOx, уменьшается или подача восстановителя полностью прекращается.
4. Способ по п.1 или 2, отличающийся тем, что подводимое количество восстановителя в фазе с низким выходом NOx поднимается.
5. Способ по п.1 или 2, отличающийся тем, что выход необработанных NOx поднимают с помощью изменения начала впрыскивания топлива, и/или соотношения воздуха и топлива, и/или давления впрыска топлива, и/или числа и очередности во времени отдельных впрыскиваний топлива во время рабочего хода, и/или количества возвращаемого отработанного газа, и/или температуры всасываемого воздуха.
6. Способ по п.1 или 2, отличающийся тем, что длину периода, и/или размер повышения, и/или размер снижения, и/или длительность повышения, и/или длительность снижения выхода необработанных NOx выбирают в зависимости от условий эксплуатации устройства для обработки отработанного газа.
7. Способ по п.6, отличающийся тем, что в качестве условий эксплуатации учитывают температуру катализатора, и/или степень загрузки аммиака в катализаторе, и/или степень преобразования NOx, и/или выход необработанных NOx, и/или количество NO2 до SCR катализатора, и/или выход NOx после устройства для обработки отработанного газа, и/или выход NH3 после устройства для обработки отработанного газа, и/или количество подводимого восстановителя, и/или количество накопленного NH3, и/или количество NH3, которое может быть накоплено.
8. Способ по п.6, отличающийся тем, что условия эксплуатации устройства для обработки отработанного газа определяют с помощью датчиков и/или моделей, в виде математических функций, параметрических поверхностей и/или нейронных сетей.
9. Способ по п.1 или 2, отличающийся тем, что проходящий SCR-катализатор неизрасходованный NH3 разлагается с помощью расположенного на стороне чистого газа SCR-катализатора материала с окисляющим действием.
10. Способ по п.1 или 2, отличающийся тем, что выход необработанных NOx и/или коэффициент загрузки α варьируют по меньшей мере до 20%, предпочтительно по меньшей мере до 40%, наиболее предпочтительно по меньшей мере до 60%.
11. Устройство для осуществления способа по любому из пп.1-10, отличающееся тем, что загрузка SCR-катализатора SCR-активным материалом производится таким образом, что способность накапливания аммиака в SCR-катализаторе повышается по направлению к стороне чистого газа.
RU2013111503A 2012-03-30 2013-03-14 Способ применения, связанный с устройством для обработки отработанного газа RU2618758C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012006449A DE102012006449A1 (de) 2012-03-30 2012-03-30 Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
DE102012006449.7 2012-03-30

Publications (2)

Publication Number Publication Date
RU2013111503A RU2013111503A (ru) 2014-09-20
RU2618758C2 true RU2618758C2 (ru) 2017-05-11

Family

ID=47008249

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013111503A RU2618758C2 (ru) 2012-03-30 2013-03-14 Способ применения, связанный с устройством для обработки отработанного газа

Country Status (6)

Country Link
US (1) US8623306B2 (ru)
EP (2) EP3929414A1 (ru)
CN (1) CN103362612B (ru)
BR (1) BR102013007639B1 (ru)
DE (1) DE102012006449A1 (ru)
RU (1) RU2618758C2 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238807B2 (ja) * 2014-03-25 2017-11-29 日立オートモティブシステムズ株式会社 エンジン制御装置
JP6733652B2 (ja) * 2017-12-27 2020-08-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6733651B2 (ja) 2017-12-27 2020-08-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6729543B2 (ja) 2017-12-27 2020-07-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
AT521760B1 (de) * 2018-10-11 2021-03-15 Avl List Gmbh Frequenzbasiertes NH3-Schlupferkennungverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185305A (en) * 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine
EP2166203A1 (de) * 2008-09-23 2010-03-24 MAN Nutzfahrzeuge AG Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
DE102009038948A1 (de) * 2008-08-29 2010-04-15 GM Global Technology Operations, Inc., Detroit System und Verfahren zur Steuerung von Mager-Stickoxidemission
RU2423614C2 (ru) * 2006-06-14 2011-07-10 Вольво Ластвагнар Аб Способ и система регенерации устройства очистки отработавших газов
US20120017567A1 (en) * 2010-05-03 2012-01-26 Mert Geveci Transient compensation control of an scr aftertreatment system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604045C1 (de) 1986-02-08 1987-01-29 Steag Ag Verfahren zum Abscheiden von Stickstoffoxiden aus Rauchgasen
DE3825206A1 (de) 1988-07-25 1990-02-01 Degussa Verfahren zur katalytischen entstickung von abgasen mittels eines reduktionsmittels
DE4038054A1 (de) 1990-11-29 1992-06-04 Man Technologie Gmbh Verfahren und vorrichtung zur selektiven katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion in sauerstoffhaltigen abgasen
GB9802504D0 (en) * 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
JP3873904B2 (ja) * 2003-02-26 2007-01-31 日産自動車株式会社 内燃機関の排気浄化装置
DE102006021089B4 (de) * 2006-05-05 2009-11-12 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7707824B2 (en) * 2007-04-10 2010-05-04 Gm Global Technology Operations, Inc. Excess NH3 storage control for SCR catalysts
DE102009012093A1 (de) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Verfahren zur Einstellung der Dosierungen des Reduktionsmittels bei selektiver katalytischer Reduktion
JP5429286B2 (ja) * 2009-06-03 2014-02-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20110047970A1 (en) * 2009-09-01 2011-03-03 Cummins Intellectual Properties, Inc. HIGH EFFICIENCY NOx REDUCTION SYSTEM AND METHOD
US20110214417A1 (en) * 2009-11-12 2011-09-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US8991154B2 (en) * 2010-07-12 2015-03-31 Mack Trucks, Inc. Methods and systems for controlling reductant levels in an SCR catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185305A (en) * 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine
RU2423614C2 (ru) * 2006-06-14 2011-07-10 Вольво Ластвагнар Аб Способ и система регенерации устройства очистки отработавших газов
DE102009038948A1 (de) * 2008-08-29 2010-04-15 GM Global Technology Operations, Inc., Detroit System und Verfahren zur Steuerung von Mager-Stickoxidemission
EP2166203A1 (de) * 2008-09-23 2010-03-24 MAN Nutzfahrzeuge AG Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
US20120017567A1 (en) * 2010-05-03 2012-01-26 Mert Geveci Transient compensation control of an scr aftertreatment system

Also Published As

Publication number Publication date
US8623306B2 (en) 2014-01-07
CN103362612B (zh) 2017-05-31
US20130259778A1 (en) 2013-10-03
BR102013007639B1 (pt) 2024-03-05
CN103362612A (zh) 2013-10-23
BR102013007639A2 (pt) 2015-07-07
EP3929414A1 (de) 2021-12-29
EP2644859A3 (de) 2014-11-12
DE102012006449A1 (de) 2013-10-02
RU2013111503A (ru) 2014-09-20
EP2644859A2 (de) 2013-10-02
EP2644859B1 (de) 2021-09-15

Similar Documents

Publication Publication Date Title
RU2667852C2 (ru) Устройство и способ для воздействия на количество оксидов азота в выхлопных газах из двигателя внутреннего сгорания
KR102309224B1 (ko) 디젤엔진 배기가스의 정화 방법
RU2524165C2 (ru) Способ очистки выхлопного газа дизельного двигателя
KR101659788B1 (ko) 조건에 따라 이산화질소를 제공하기 위한 온도제어식 프리캐탈리스트를 사용하는 디젤기관 배기가스의 질소 산화물 제거
EP3581773A1 (en) Exhaust gas treatment system and method having improved low temperature performance
EP2543837B1 (en) Exhaust gas purification apparatus of an internal combustion engine
RU2618758C2 (ru) Способ применения, связанный с устройством для обработки отработанного газа
US9267408B2 (en) Method for use in conjunction with an exhaust-gas aftertreatment system
US20190368402A1 (en) Aftertreatment architecture for internal combustion engine
US20110289903A1 (en) Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine
US11008921B1 (en) Selective catalytic reduction device control
US10465589B2 (en) Selective catalytic reduction fault detection
US20190353071A1 (en) Selective catalytic reduction device control
CN107806358B (zh) 用于控制废气处理***的方法
KR101316856B1 (ko) 차량의 요소수 분사량 제어장치 및 방법
US20130047583A1 (en) Aftertreatment system
CN109469540B (zh) 正扰动下的选择性催化还原稳态氨泄漏检测
WO2016001034A1 (en) An exhaust aftertreatment system for a diesel engine
US20190063285A1 (en) Emissions control system of a combustion engine exhaust system
US10309278B2 (en) Method for desulfurization of selective catalytic reduction devices
US10502113B2 (en) Selective catalytic reduction ammonia storage control
US9850797B2 (en) Selective catalytic reduction device
CN105765186B (zh) 内燃机的排气净化装置
CN112368466B (zh) 氮氧化物储存催化转化器的脱硫方法
US20200131961A1 (en) Exhaust gas treatment systems and methods for diagnosing the same