RU2615591C1 - Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi) - Google Patents

Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi) Download PDF

Info

Publication number
RU2615591C1
RU2615591C1 RU2015148923A RU2015148923A RU2615591C1 RU 2615591 C1 RU2615591 C1 RU 2615591C1 RU 2015148923 A RU2015148923 A RU 2015148923A RU 2015148923 A RU2015148923 A RU 2015148923A RU 2615591 C1 RU2615591 C1 RU 2615591C1
Authority
RU
Russia
Prior art keywords
inversion
wave field
shear
data
shift
Prior art date
Application number
RU2015148923A
Other languages
English (en)
Inventor
Кэ Ван
Спиридон К. ЛАЗАРАТОС
Original Assignee
Эксонмобил Апстрим Рисерч Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксонмобил Апстрим Рисерч Компани filed Critical Эксонмобил Апстрим Рисерч Компани
Application granted granted Critical
Publication of RU2615591C1 publication Critical patent/RU2615591C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/673Finite-element; Finite-difference

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области геофизики и может быть использовано при обработке сейсморазведочных данных. Заявлен способ для многопараметрической инверсии с использованием упругой инверсии. Этот способ разлагает данные на сдвиговые/угловые группы и выполняет инверсию на них в последовательном порядке. Этот способ может значительно ускорить сходимость итеративного процесса инверсии, и, следовательно, является наиболее выгодным при использовании для полноволновой инверсии (FWI). Настоящий изобретательный подход опирается на взаимосвязи между энергией отражения и углом отражения, или, что то же самое, зависимость от сдвига в упругой FWI. Изобретение использует признание того, что амплитуды отражения малого угла (ближний сдвиг) в значительной степени определяются одним акустическим сопротивлением, вне зависимости от большей части Vp/Vs. Отражения большого угла (средний и дальний сдвиг) зависят от Ip, Vp/Vs (2) и других земных параметров, таких как плотность (3) и анизотропия. Следовательно, настоящий изобретательский способ разлагает данные на угловые или сдвиговые группы в выполнении многопараметрической FWI, чтобы уменьшить перекрестные помехи между различными параметрами модели, которые определяются в инверсии. Технический результат – повышение точности и достоверности получаемых данных. 9 з.п. ф-лы, 6 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
[0001] Эта заявка испрашивает приоритет Предварительной Заявки 61827474 на выдачу патента США, поданной 24 мая 2013 года, озаглавленной "Многопараметрическая Инверсия через Зависящую от Сдвига Упругую Полноволновую Инверсию (FWI)", вся полнота которой включена в материалы настоящей заявки посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0002] Изобретение относится в целом к области геофизической разведки, включая разведку углеводородов и, более конкретно, к обработке сейсмических данных. В частности, изобретение представляет собой способ для эластичной полноволновой инверсии ("FWI") сейсмических данных, чтобы получить геологическую модель нескольких физических параметров.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
[0003] Процесс инверсии в обработке геофизических данных обычно, и в случае настоящего документа в том числе, относится к процессу преобразования данных сейсмического отражения в количественное описание свойств породы пласта в форме геологической модели толщи пород. Такая модель нуждается в трех параметрах, которыми являются плотность (ρ), скорость продольной волны (Vp) и скорость поперечной волны (Vs), чтобы описать ее, если предполагается, что модель будет изотропной. Дополнительные параметры необходимы в более общей геологической модели, которая включает в себя анизотропию и затухание. Существует множество методов, используемых в инверсии в сейсмическом разрешении, таких как инверсия AVO (amplitude variation with offset, зависимость амплитуды отражения от удаления) после суммирования или до суммирования, или Полноволновая Инверсия (FWI).
[0004] Хорошо известно, что отражение PP (продольная волна вниз/продольная волна вверх) при нормальном угле падения в значительной степени определяется акустическим сопротивлением Ip = ρVp. Чтобы оценить Ip из сейсмических данных, обычно достаточно учесть только распространение продольной волны в FWI, чтобы сократить время обработки. С этой целью моделирование распространения волны зависит только от ρ и Vp. Однако одно Ip не всегда является хорошим индикатором типов и пород пласта. Известно, что жидкие типы могут быть лучше извлечены из упругих параметров, таких как Vp/Vs. В результате, многопараметрическая инверсия как для акустических, так и для упругих параметров стала желательной, возможно, почти необходимой, в характеристике пласта.
[0005] Многопараметрическая инверсия через упругую FWI играет уникальную роль в разграничении характеристик пласта, поскольку она основана на точном моделировании распространения упругой волны. Упругая FWI представляет собой очень дорогой процесс по двум основным причинам. Во-первых, моделирование конечной разности становится намного более дорогим, чем под упругим (только продольная волна) предположением, вследствие более плотных вычислительных сеток, необходимых для компьютерного моделирования распространения поперечных волн. Во-вторых, многопараметрическая инверсия требует намного больше итераций, чем акустическая FWI, для достижения сходимости и уменьшения перекрестных помех между различными параметрами. В определении характеристик пласта наиболее важными параметрами для описания свойств породы являются акустическое сопротивление Ip и отношение Vp/Vs скоростей. Следовательно, есть необходимость в способе FWI, который может надежно инвертировать для Ip и Vp/Vs с малым количеством итераций (предпочтительно ~10), чтобы сделать его практичным в бизнес применениях, таких как определение характеристик пласта и скоростное построение модели.
[0006] Существует широкий спектр методов оценки свойств породы по сейсмическим данным. Процедура, предложенная Хэмпсоном и др. (2005), представляет типичный рабочий процесс в инверсии AVO перед суммированием. В их рабочем процессе Ip, Is и плотность оцениваются одновременно на основе AVO в угловых сейсмограммах и уравнениях Аки-Ричардса (Аки и Ричардс, 2002). Их подход основан на линеаризованном приближении для отражательной способности вместо итеративного процесса моделирования упругих волн и сопоставления форм волн. Вычислительная стоимость, следовательно, намного дешевле в инверсии до суммирования вследствие линеаризованного приближения. В противоположность этому, упругая FWI, хотя и является намного более дорогим процессом, имеет потенциал генерирования превосходных результатов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0007] Настоящее изобретение представляет собой надежный и эффективный реализуемый на компьютере способ для многопараметрической инверсии с использованием упругой FWI. Этот способ разлагает данные на сдвиговые или угловые группы и выполняет упругую FWI на них в последовательном порядке. Этот способ может значительно ускорить сходимость, с коэффициентом примерно 10 в некоторых примерах, по сравнению с упругой FWI, проводимой без улучшений настоящего изобретения. Настоящий изобретательный подход опирается на взаимосвязь между энергией отражения и углом отражения, или, что то же самое, зависимость от сдвига в упругой FWI. Из классической теории AVO Аки и Ричардса (1980) известно, что амплитуды отражений малого угла (близко к сдвигу) в значительной степени определяются одним акустическим сопротивлением, не зависимым по большей части от Vp/Vs. Отражения большого угла (средний и дальний сдвиг) зависят от Ip, Vp/Vs и других земных параметров, таких как плотность и анизотропия. Следовательно, настоящий изобретательный способ разлагает данные на угловые/сдвиговые группы в выполнении многопараметрической FWI, чтобы уменьшить перекрестные помехи между различными параметрами модели, т.е. между неизвестными инверсии. В целях настоящего раскрытия, включая прилагаемую формулу изобретения, нужно подразумевать, что разложение данных на угловые группы эквивалентно разложению данных на сдвиговые группы, и следует понимать, что один термин будет включать в себя другой.
[0008] В одном из вариантов осуществления изобретение представляет собой реализуемый на компьютере способ для инверсии сейсмических данных, чтобы вывести параметры подповерхностных физических свойств, включая скорость продольной волны, скорость поперечной волны, и плотность, состоящий в том, что извлекают только режим PP из сейсмических данных, и инвертируют данные режима PP последовательно в два или более различных диапазона сдвига, при этом каждая инверсия диапазона сдвига определяет по меньшей мере один параметр физического свойства, где во второй и последующих инверсиях параметры, определенные в предыдущей инверсии, фиксированы.
[0009] В другом варианте осуществления изобретение представляет собой способ для инверсии сейсмических данных, чтобы вывести по меньшей мере скорость продольной волны, скорость поперечной волны и плотность, состоящий в том, что: (a) принимают только данные PP-режима из сейсмических данных, и разделяют сейсмические данные на диапазон ближнего сдвига, диапазон среднего сдвига и диапазон дальнего сдвига, при этом диапазоны могут перекрываться или могут не перекрываться; (b) инвертируют диапазон ближнего сдвига для акустического сопротивления Ip продольной волны с использованием компьютера, запрограммированного с помощью алгоритма акустической инверсии; (c) инвертируют диапазон среднего сдвига для акустического сопротивления Is поперечной волны или для скорости Vp продольной волны, деленной на скорость Vs поперечной волны, с Ip, зафиксированным на своем значении из (b), с использованием алгоритма упругой инверсии; (d) инвертируют диапазон дальнего сдвига для плотности, используя алгоритм упругой инверсии, с Ip, зафиксированным на своем значении из (b), и Vp/Vs, зафиксированным на значении, определенном из значения Is из (c); и (e) вычисляют Vp и Vs из Ip и Is, используя определение акустического сопротивления и плотности, как определено в (d).
[0010] В типичном примере диапазон ближнего сдвига мог бы быть <500 м, при этом диапазон дальнего сдвига составляет >2 км, а диапазон среднего сдвига находится между ними.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0011] Преимущества настоящего изобретения более понятны со ссылкой на последующее подробное описание и прилагаемые чертежи, на которых:
Фигура 1 представляет собой блок-схему, показывающую основные шаги в одном варианте осуществления способа обработки сейсмических данных настоящего изобретения;
Фигура 2 показывает профили истинных Vp, Vs и плотности, используемые для генерирования синтетической сейсмограммы и одной из сейсмограмм общей точки взрыва;
Фигура 3 показывает инверсию Ip с использованием ближнего сдвига и несоответствия данных по сравнению с истинным Ip и синтетическими данными;
Фигура 4 показывает Ip одно без знания о Vp/Vs, не в состоянии объяснить данные среднего сдвига;
Фигура 5 показывает инверсию Vp/Vs с зафиксированным Ip из Фигуры 2, объясняет сейсмические данные до средних сдвигов; и
Фигура 6 показывает результаты инверсии плотности от данных дальнего сдвига, с Ip и Vp/Vs зафиксированными из Фигуры 2 и Фигуры 4.
[0012] Многие из чертежей представляют собой цветные оригиналы, преобразованные в оттенки серого из-за ограничений патентного права на использование цвета.
[0013] Изобретение будет описано в связи с примерными вариантами осуществления. Однако в той степени, в которой последующее подробное описание является специфичным для конкретного варианта осуществления или конкретного использования изобретения, оно предназначено только для иллюстрации, и не должно быть истолковано в качестве ограничивающего объем изобретения. Напротив, оно предназначено для охвата всех альтернативных вариантов, модификаций и эквивалентов, которые могут быть включены в объем изобретения, как определено прилагаемой формулой изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРИМЕРНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0014] Способ упругой FWI, представленный ("SSB" для краткости) Сирс, Сингх и Бартон (Sears, Singh and Barton, 2008), трехэтапный рабочий процесс был предложен для оценки Vp, Vs из сейсмических данных продольной волны и поперечной волны: этап один, инверсия для Vp короткого и промежуточного масштаба с использованием данных продольной волны нормального падения и широкого угла; этап два, инверсия для промежуточной Vs с использованием данных продольной волны широкого угла; и этап три, инверсия для Vs короткого масштаба с использованием данных обменной PS-волны. Короткий и промежуточный масштаб являются терминами, используемыми в работе SSB. Вообще говоря, короткий масштаб относится к пространственным масштабам, которые могут быть выведены непосредственно из высокочастотной энергии отражения в сейсмических данных, а большой масштаб относится к пространственным масштабам, чьи отраженные частоты ниже типичных сейсмических источников (например, 4-6 Гц в морских работах). Следовательно, большой масштаб, как правило, выводится из анализа скорости миграции. Разрыв между большим масштабом и коротким масштабом обычно называется промежуточным масштабом.
[0015] Тогда как способ SSB может показаться, на первый взгляд, похожим на 3-этапный изобретательский способ, который описан в материалах настоящей заявки, есть важные отличительные признаки, которые отличают их. Во-первых, способ SSB использует различные волновые режимы на протяжении 3 этапов. Настоящий изобретательский способ использует один и тот же волновой режим (PP-волна), но различный угол отражения/сдвиг на протяжении трех этапов. Хорошо известно, что данные PP-волны представляют большую часть записанной энергии в типичной сейсмической разведке, и, следовательно, большую часть значения в морских сейсморазведочных работах с буксируемой косой. Во-вторых, способ SSB не разделяет данные нормального падения и широкоугольной продольной волны на этапе 1, а использует их одновременно. Настоящий изобретательский способ использует только данные отражения малого угла на этапе 1, который является критическим этапом ускорения сходимости.
[0016] Синтетический пример используется, чтобы продемонстрировать, что этот метод является очень надежным и эффективным в извлечении Ip и Vp/Vs. Общее число итераций, необходимых для получения Ip и Vp/Vs, составляет ~10. Извлечение информации о плотности на этапе 3 (см. блок схему на Фиг.1) может потребовать дополнительные 10-15 итераций в синтетическом примере. Испытания на эксплуатационных данных показывают, что точная и надежная оценка Ip и Vp/Vs может быть получена также в пределах ~10 итераций. Однако в случае эксплуатационных данных надежность инверсии плотности сильно зависит от точности модели скорости, включая анизотропию, и качества данных на дальних сдвигах.
[0017] Синтетический пример следует варианту осуществления настоящего изобретательского способа, проиллюстрированного на блок-схеме на Фиг.1. Синтетические (смоделированные на компьютере) данные используются в этом тестовом примере, чтобы продемонстрировать изобретения. Набор данных генерируется моделированием изотропной упругой конечной разности на пластовой (ID) модели толщи пород, показанной на Фигуре 2, где Vp, Vs и плотность изображены по сравнению с глубиной в недрах. Единицами измерения для скорости и плотности являются м/с и кг/м3. Общим образом снятая сейсмограмма синтетических "измеренных" данных также показана обозначением 8 на Фиг.2. Время в секундах изображено на вертикальной оси, а сдвиг в метрах изображен на горизонтальной оси. Максимальная глубина модели толщи пород составляет 2,3 км, а максимальный доступный сдвиг составляет 5 км. Из-за ограничений патентного права на использование цвета, изображенная снятая сейсмограмма 8 представляет собой преобразование в оттенки серого цветного отображения данных, где цвет используется для представления величины сейсмических амплитуд. То же самое справедливо для сравнений смоделированных и измеренных данных, а также несоответствий, показанных на Фиг.3-6.
[0018] Шаг 1: Инверсия Ip из данных ближнего сдвига. Во-первых, акустическая FWI выполняется с использованием данных PP ближнего сдвига (сдвиг <500 м), чтобы получить оценку Ip, которая изображена на Фиг.3. Как объяснено выше, данные PP-волны на малых углах отражения (эквивалентно, малых сдвигах в этом примере) определяются акустическим сопротивлением Ip. Упругие параметры оказывают очень маленькое воздействие на данные PP отражения малых углов. Исходные модели Vp и плотности необходимы для выполнения акустической FWI. Исходная модель Vp может быть получена из традиционного анализа скорости миграции, и для этого синтетического теста сглаженная версия "истинного" профиля Vp (используемого для ускорения моделирования синтетических данных) на Фигуре 2 была использована. Исходная модель плотности может быть получена из эмпирической взаимосвязи между плотностью и Vp. Для простоты, модель постоянной плотности (1,000 кг/м3) была использована, чтобы с нее начать. Из математического определения
I p = ρ V p
Figure 00000001
(1)
ясно, что инвертированное Ip с известной плотностью ρ может быть непосредственно переведено в Vp после деления Ip на плотность ρ. Результаты на итерации 5 Ip и Vp показаны как во временной, так и в глубинной областях на Фиг.3, где темные линии представляют собой инвертированную модель, а в меньшей степени затененные линии представляют собой синтетическую модель Инвертированная неизвестная является Ip в этом случае. Оценка Vp может затем быть получена путем деления инвертированного Ip на ρ в соответствии с уравнением (1). На Фиг.3 на инвертированные модели наложены истинные синтетические модели для сравнения. Все инверсии выполнены в глубинной области (метры); результаты показаны на 11 и 12. Для сравнения в определенном частотном диапазоне результаты инверсии преобразуются во время (секунды) посредством преобразования глубина-во-время с использованием сглаженной версии истинной Vp на Фиг.2. Сравнения во временной области (9 и 10) ограничены в пределах 5-40 Гц после применения полосового фильтра. Из 9 и 11 можно увидеть, что инвертированное Ip соответствует синтетической модели очень хорошо. Поскольку Vp была получена из инвертированного Ip на основе предполагаемой постоянной ρ в соответствии с Уравнением (1), хорошее соответствие между полученной Vp и истинной Vp не ожидается (еще не была выполнена обновленная оценка ρ). Таким образом, исходная модель плотности (постоянная) очень отличается от синтетической модели (7 на Фиг.2) плотности, и это различие отражено в Vp из-за уравнения (1). Это, в частности, указано в 10 несоответствием во временной области на примерно 1,75 с, и подобным несоответствием в глубинной области (12) на примерно 1800 м. Можно увидеть на 9 и 11, что несоответствие для Ip намного меньше в это конкретное время и на этой глубине.
[0019] Несоответствие 15 данных, т.е. разница между измеренными данными 13 (из синтетических моделей) и смоделированными данными 14 (из инвертированного Ip, постоянной плотности и полученной Vp в соответствии с (1)) показано на Фигуре 3. Разница на самом деле незначительна. Несоответствие данных представляет собой очень важный критерий для проверки сходимости во время инверсии эксплуатационных (фактических) данных, потому что в применении эксплуатационных данных 'истинная модель' редко известна. Вообще говоря, когда другие условия схожи, более хорошее несоответствие данных обычно, но не всегда, указывает на более высокую уверенность в продукте инверсии. Незначительная величина несоответствия указывает, что данные ближнего сдвига могут быть хорошо объяснены одним Ip.
[0020] Шаг 2: Инверсии Is или Vp/Vs из данных среднего сдвига (< 2 км) c Ip, зафиксированным из предыдущего шага. Следующее известно, простые взаимосвязи:
I s = ρ V s
Figure 00000002
(2)
I s = V s V p I p
Figure 00000003
(3)
где Уравнение (3) непосредственно вытекает из Уравнений (1) и (2). На этом шаге 2 инверсия должна быть упругой, и неизвестная инверсии была Vp/Vs. Поскольку Ip зафиксировано из предыдущего шага, инвертирование для Vp/Vs эквивалентно инвертированию для Is на этом шаге в соответствии с (3). Альтернативно, неизвестной инверсии могло бы быть Is. Фиг.4 показывает различие между исходной моделью Vs (темная линия, постоянная) и синтетической моделью (в меньшей степени затененная линия) в 18, и отношение Vp/Vs показано в 19. С этой исходной моделью Vs и Vp (показанной на 17) и плотностью (постоянной) из шага 1, большое несоответствие данных может наблюдаться на панели 22 при расширении сдвига до 2 км, как показано на Фигуре 4. Это из-за того, что одного Ip не достаточно, чтобы объяснить данные среднего угла отражения (сдвига). Хорошая оценка для второго параметра, который представляет собой Vp/Vs, нужная для объяснения данных среднего сдвига. Однако, несоответствие данных на ближнем сдвиге все еще так же мало, как на Фигуре 3 (15), потому что Ip зафиксировано (16, 9) из шага 1.
[0021] Следуя тому же расположению, что и на Фиг.3, используемой в отображении результатов инверсии шага 1, Фиг.5 показывает инвертированное Vp/Vs (темная линия, 26) после 5 итераций, на которое наложена синтетическая модель (в меньшей степени затененная линия, 26). Инвертированная модель соответствует синтетической модели очень хорошо. Как показано на панели 29, несоответствие данных в диапазоне среднего сдвига (от 500 м до 2 км, масштаб не показан на рисунке) сильно уменьшено, обладая преимуществом инвертированной модели Vp/Vs. На шаге 2 инверсии Ip (23) и Vp (24) зафиксированы из шага 1. Из уравнения (3) точное Is может быть получено из точных результатов инверсии Ip и Vp/Vs. Но Vs из Уравнения (2) не будет такой же точной, если информация о плотности отсутствует или неточна. Это показано во время ≈ 1,75 с на Фиг.5, где можно увидеть, что Vs, полученная из Vp/Vs, не соответствует синтетической модели в той же степени, что и Vp/Vs.
[0022] Шаг 3: Инверсия плотности из данных дальнего сдвига (до 5 км) с Ip и Vp/Vs, зафиксированными из предыдущих двух шагов. Математические соотношения (1) - (3) показывают, что любое обновление плотности с зафиксированными Ip и Vp/Vs приводит к обновлению Vp и Vs. Следовательно, инверсия плотности с зафиксированными Ip и Vp/Vs эквивалентна инверсии Vp. На шаге 3 все доступные сдвиги до 5 км (в этом примере) используются, чтобы выполнить упругую инверсию для плотности с Ip и Vp/Vs, зафиксированными из шагов 1 и 2. Фигура 6 показывает инвертированную плотность (темная линия, 33) после 10 итераций, на которую наложена синтетическая модель (в меньшей степени затемненная линия, 33), где синтетическая модель - это 7 на Фиг.2, преобразованная во временную область. В то же время, шаг 3 приводит к улучшенному предсказанию Vp (31, темная линия) по сравнению с Фиг.3 (10, темная линия) из-за обновленного профиля 33 плотности. Несоответствие данных находится в основном на дальних смещениях (от 2 км до 5 км), как это показано на 36 на Фиг.3.
[0023] Вышеизложенное описание направлено на конкретные варианты осуществления настоящего изобретения в целях иллюстрирования его. Это будет очевидно, однако, специалистам в данной области техники, что различные модификации и вариации описанных здесь вариантов осуществления возможны. Все такие модификации и изменения подразумеваются быть в рамках настоящего изобретения, как определено в прилагаемой формуле изобретения.
Библиографический список
1. Aki and Richards, Количественная Сейсмология, Теория и Способы, глава 5.20, W.H.Freeman & Co. (1980).
2. Lazaratos S., Chikichev I. и Wang K., 2011, Улучшение скорости сходимости Полноволновой Инверсии (FWI) с использованием спектрального формирования, Публикация заявки на патент РСТ WO2012/134621.
3. Hampson, Russell, и Bankhead, "Одновременная инверсия сейсмических данных до суммирования", 75-й Ежегодная Международная Встреча, SEG, Расширенные Рефераты, 1633-1637 (2005).
4. Sears, Singh и Barton "Упругая полноволновая инверсия многокомпонентных сейсмических данных OBC", Геофизические изыскания 56, 843-862 (2008).

Claims (10)

1. Реализуемый на компьютере способ инверсии полного волнового поля сейсмических данных, чтобы вывести параметры подповерхностных физических свойств, включая скорость продольной волны, скорость поперечной волны, и плотность, заключающийся в том, что извлекают только режим PP из сейсмических данных, и инвертируют, с помощью алгоритма инверсии полного волнового поля, данные режима PP последовательно в два или более различных диапазона сдвига, при этом каждая инверсия полного волнового поля диапазона сдвига определяет по меньшей мере один параметр физического свойства, причем во второй и последующих инверсиях полного волнового поля параметры, определенные в предыдущей инверсии, зафиксированы, и при этом инверсии полного волнового поля выполняют с использованием компьютера.
2. Способ по п.1, в котором диапазон ближнего сдвига является первым по последовательности, который должен быть инвертирован, и упомянутая первая инверсия полного волнового поля выводит акустическое сопротивление Ip продольной волны с использованием компьютера, запрограммированного с помощью алгоритма акустической инверсии полного волнового поля.
3. Способ по п.2, в котором диапазон среднего сдвига является вторым по последовательности, который должен быть инвертирован, и упомянутая вторая инверсия полного волнового поля выводит акустическое сопротивление Is поперечной волны, или скорость Vp продольной волны, деленную на скорость Vs поперечной волны, причем Ip зафиксирован на своем значении из первой инверсии полного волнового поля, при этом упомянутая вторая инверсия полного волнового поля использует алгоритм упругой инверсии полного волнового поля.
4. Способ по п.3, в котором диапазон дальнего сдвига является третьим по последовательности, который должен быть инвертирован, и упомянутая третья инверсия полного волнового поля выводит плотность или Vp с использованием алгоритма упругой инверсии полного волнового поля, причем Ip зафиксирован на своем значении из первой инверсии полного волнового поля, и Vp/Vs зафиксирован на значении, определенном из второй инверсии полного волнового поля.
5. Способ по п.4, в котором Vp и Vs вычисляются из Ip и Is с использованием определения акустического сопротивления и с использованием плотности, выведенной в третьей инверсии полного волнового поля.
6. Способ по п.4, в котором Vp получена в третьей инверсии полного волнового поля, а плотность вычислена из соотношения Ip = ρVp, и Ip такое же, как определено в первой инверсии.
7. Способ по п.4, в котором одно или оба из соотношений Ip = ρVp и Is = ρVs используются в выполнении способа.
8. Способ по п.4, дополнительно содержащий повторение последовательных инверсий полного волнового поля по меньшей мере один раз, чтобы обновить полученные параметры физических свойств.
9. Способ по п.1, в котором по меньшей мере некоторые из двух или более различных диапазонов сдвига перекрываются.
10. Способ по п.1, в котором два или более различных диапазонов сдвига не перекрываются.
RU2015148923A 2013-05-24 2014-05-07 Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi) RU2615591C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361827474P 2013-05-24 2013-05-24
US61/827,474 2013-05-24
PCT/US2014/037122 WO2014189679A1 (en) 2013-05-24 2014-05-07 Multi-parameter inversion through offset dependent elastic fwi

Publications (1)

Publication Number Publication Date
RU2615591C1 true RU2615591C1 (ru) 2017-04-05

Family

ID=50842396

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148923A RU2615591C1 (ru) 2013-05-24 2014-05-07 Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi)

Country Status (12)

Country Link
US (1) US9702993B2 (ru)
EP (1) EP3004938A1 (ru)
KR (1) KR101861060B1 (ru)
CN (1) CN105308479B (ru)
AU (1) AU2014268976B2 (ru)
BR (1) BR112015025516A2 (ru)
CA (1) CA2909105C (ru)
MX (1) MX346526B (ru)
MY (1) MY169125A (ru)
RU (1) RU2615591C1 (ru)
SG (1) SG11201508195PA (ru)
WO (1) WO2014189679A1 (ru)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084945A1 (en) 2012-11-28 2014-06-05 Exxonmobil Upstream Resarch Company Reflection seismic data q tomography
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
CA2947847C (en) 2014-05-09 2018-08-14 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
CA2947410A1 (en) 2014-06-17 2015-12-30 Exxonmobil Upstream Research Company Fast viscoacoustic and viscoelastic full-wavefield inversion
US10838092B2 (en) * 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
WO2016064462A1 (en) 2014-10-20 2016-04-28 Exxonmobil Upstream Research Company Velocity tomography using property scans
EP3234659A1 (en) 2014-12-18 2017-10-25 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
SG11201704620WA (en) 2015-02-13 2017-09-28 Exxonmobil Upstream Res Co Efficient and stable absorbing boundary condition in finite-difference calculations
US10670750B2 (en) 2015-02-17 2020-06-02 Exxonmobil Upstream Research Company Multistage full wavefield inversion process that generates a multiple free data set
WO2016195774A1 (en) 2015-06-04 2016-12-08 Exxonmobil Upstream Research Company Method for generating multiple free seismic images
CN104991272A (zh) * 2015-07-02 2015-10-21 河海大学 一种针对无井地震反演的地震速度扰动建模方法
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
EP3121625A1 (en) * 2015-07-20 2017-01-25 CGG Services SA Predicting mechanical and elastic rock properties of the subsurface
RU2693495C1 (ru) 2015-10-02 2019-07-03 Эксонмобил Апстрим Рисерч Компани Полная инверсия волнового поля с компенсацией показателя качества
KR102021276B1 (ko) * 2015-10-15 2019-09-16 엑손모빌 업스트림 리서치 캄파니 진폭 보존을 갖는 fwi 모델 도메인 각도 스택들
CN105910587B (zh) * 2016-04-11 2018-05-15 中国人民解放军理工大学 一种基于潮汐参数反演的潮汐预测方法
CN110023790B (zh) * 2016-12-02 2022-03-08 Bp北美公司 地震采集几何全波形反演
US11487036B2 (en) * 2017-01-12 2022-11-01 Cgg Services Sas Reflection full waveform inversion methods with density and velocity models updated separately
WO2018175013A1 (en) * 2017-03-24 2018-09-27 Exxonmobil Upstream Research Company Full wavefield inversion with reflected seismic data starting from a poor velocity model
US11656377B2 (en) * 2018-03-30 2023-05-23 Cgg Services Sas Visco-acoustic full waveform inversion of velocity and Q
CN110857999B (zh) * 2018-08-24 2021-12-31 中国石油化工股份有限公司 一种基于全波形反演的高精度波阻抗反演方法及***
WO2020086238A1 (en) * 2018-10-26 2020-04-30 Exxonmobil Upstream Research Company Elastic full wavefield inversion with refined anisotropy and vp/vs models
WO2020089670A1 (en) * 2018-10-28 2020-05-07 Abu Dhabi National Oil Company (ADNOC) Systems and methods for seismic inversion driven velocity analysis
KR102464449B1 (ko) * 2019-07-15 2022-11-04 서울대학교 산학협력단 다중 감쇄 및 다중 오프셋을 이용한 라플라스 푸리에 영역 완전 파형 역산 장치 및 방법
WO2021252693A1 (en) * 2020-06-11 2021-12-16 Downunder Geosolutions (America) Llc Seismic wavefield modeling honoring avo/ava with applications to full waveform inversion and least-squares imaging
US11815641B2 (en) 2020-12-04 2023-11-14 Pgs Geophysical As Composite far offset impulsive source activations for marine seismic surveying and processing
US20230063340A1 (en) * 2021-08-27 2023-03-02 Halliburton Energy Services, Inc. System and method of drilling a wellbore using wellbore and surface gravity sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007935A1 (en) * 1994-09-02 1996-03-14 Exxon Production Research Company Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data
US20040220743A1 (en) * 2003-04-30 2004-11-04 Conocophillips Company Method for determining shear-wave velocity model for depth migration of mode-converted data
US20100177595A1 (en) * 2009-01-13 2010-07-15 Vijay Khare Using Seismic Attributes for Data Alignment and Seismic Inversion In Joint PP/PS Seismic Analysis
CN101329405B (zh) * 2007-06-20 2011-02-09 中国石油天然气集团公司 一种简单的多参数地震反演方法

Family Cites Families (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3864667A (en) 1970-09-11 1975-02-04 Continental Oil Co Apparatus for surface wave parameter determination
US3984805A (en) 1973-10-18 1976-10-05 Daniel Silverman Parallel operation of seismic vibrators without phase control
US4168485A (en) 1974-08-12 1979-09-18 Continental Oil Company Simultaneous use of pseudo-random control signals in vibrational exploration methods
US4545039A (en) 1982-09-09 1985-10-01 Western Geophysical Co. Of America Methods for seismic exploration
US4675851A (en) 1982-09-09 1987-06-23 Western Geophysical Co. Method for seismic exploration
US4575830A (en) 1982-10-15 1986-03-11 Schlumberger Technology Corporation Indirect shearwave determination
US4562540A (en) 1982-11-12 1985-12-31 Schlumberger Technology Corporation Diffraction tomography system and methods
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
FR2543306B1 (fr) 1983-03-23 1985-07-26 Elf Aquitaine Procede et dispositif pour l'optimisation des donnees sismiques
US4924390A (en) 1985-03-04 1990-05-08 Conoco, Inc. Method for determination of earth stratum elastic parameters using seismic energy
US4715020A (en) 1986-10-29 1987-12-22 Western Atlas International, Inc. Simultaneous performance of multiple seismic vibratory surveys
FR2589587B1 (fr) 1985-10-30 1988-02-05 Inst Francais Du Petrole Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre
US4707812A (en) 1985-12-09 1987-11-17 Atlantic Richfield Company Method of suppressing vibration seismic signal correlation noise
US4823326A (en) 1986-07-21 1989-04-18 The Standard Oil Company Seismic data acquisition technique having superposed signals
US4686654A (en) 1986-07-31 1987-08-11 Western Geophysical Company Of America Method for generating orthogonal sweep signals
US4766574A (en) 1987-03-31 1988-08-23 Amoco Corporation Method for depth imaging multicomponent seismic data
US4953657A (en) 1987-11-30 1990-09-04 Halliburton Geophysical Services, Inc. Time delay source coding
US4969129A (en) 1989-09-20 1990-11-06 Texaco Inc. Coding seismic sources
US4982374A (en) 1989-10-23 1991-01-01 Halliburton Geophysical Services, Inc. Method of source coding and harmonic cancellation for vibrational geophysical survey sources
GB9011836D0 (en) 1990-05-25 1990-07-18 Mason Iain M Seismic surveying
US6005916A (en) 1992-10-14 1999-12-21 Techniscan, Inc. Apparatus and method for imaging with wavefields using inverse scattering techniques
US5469062A (en) 1994-03-11 1995-11-21 Baker Hughes, Inc. Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements
GB2322704B (en) 1994-07-07 1998-12-09 Geco As Method of Processing seismic data
AU697195B2 (en) 1995-04-18 1998-10-01 Schlumberger Seismic Holdings Limited Uniform subsurface coverage at steep dips
US5924049A (en) 1995-04-18 1999-07-13 Western Atlas International, Inc. Methods for acquiring and processing seismic data
US5719821A (en) 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
US5721710A (en) 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5822269A (en) 1995-11-13 1998-10-13 Mobil Oil Corporation Method for separation of a plurality of vibratory seismic energy source signals
US5715213A (en) 1995-11-13 1998-02-03 Mobil Oil Corporation High fidelity vibratory source seismic method using a plurality of vibrator sources
US5790473A (en) 1995-11-13 1998-08-04 Mobil Oil Corporation High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
US5798982A (en) 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
GB9612471D0 (en) 1996-06-14 1996-08-14 Geco As Method and apparatus for multiple seismic vibratory surveys
US5878372A (en) 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US6014342A (en) 1997-03-21 2000-01-11 Tomo Seis, Inc. Method of evaluating a subsurface region using gather sensitive data discrimination
US5999489A (en) 1997-03-21 1999-12-07 Tomoseis Inc. High vertical resolution crosswell seismic imaging
US5920828A (en) 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
FR2765692B1 (fr) 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
GB2329043B (en) 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999488A (en) 1998-04-27 1999-12-07 Phillips Petroleum Company Method and apparatus for migration by finite differences
US6219621B1 (en) 1998-06-30 2001-04-17 Exxonmobil Upstream Research Co. Sparse hyperbolic inversion of seismic data
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6574564B2 (en) 1998-10-01 2003-06-03 Institut Francais Du Petrole 3D prestack seismic data migration method
FR2784195B1 (fr) 1998-10-01 2000-11-17 Inst Francais Du Petrole Methode pour realiser en 3d avant sommation, une migration de donnees sismiques
US6225803B1 (en) 1998-10-29 2001-05-01 Baker Hughes Incorporated NMR log processing using wavelet filter and iterative inversion
US6021094A (en) 1998-12-03 2000-02-01 Sandia Corporation Method of migrating seismic records
US6754588B2 (en) 1999-01-29 2004-06-22 Platte River Associates, Inc. Method of predicting three-dimensional stratigraphy using inverse optimization techniques
WO2000048022A1 (en) 1999-02-12 2000-08-17 Schlumberger Limited Uncertainty constrained subsurface modeling
US6058073A (en) 1999-03-30 2000-05-02 Atlantic Richfield Company Elastic impedance estimation for inversion of far offset seismic sections
FR2792419B1 (fr) 1999-04-16 2001-09-07 Inst Francais Du Petrole Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
GB9927395D0 (en) 1999-05-19 2000-01-19 Schlumberger Holdings Improved seismic data acquisition method
US6327537B1 (en) 1999-07-19 2001-12-04 Luc T. Ikelle Multi-shooting approach to seismic modeling and acquisition
FR2798197B1 (fr) 1999-09-02 2001-10-05 Inst Francais Du Petrole Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
EP2296013B1 (en) 1999-10-22 2016-03-30 CGG Services (NL) B.V. Method of estimating elastic and compositional parameters from seismic and echo-acoustic data
FR2800473B1 (fr) 1999-10-29 2001-11-30 Inst Francais Du Petrole Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
CN1188711C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 用于地震波场分离的***和方法
CN1188710C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 估算地震介质特性的***和方法
US6826486B1 (en) 2000-02-11 2004-11-30 Schlumberger Technology Corporation Methods and apparatus for predicting pore and fracture pressures of a subsurface formation
FR2805051B1 (fr) 2000-02-14 2002-12-06 Geophysique Cie Gle Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques
GB2359363B (en) 2000-02-15 2002-04-03 Geco Prakla Processing simultaneous vibratory seismic data
US6687659B1 (en) 2000-03-24 2004-02-03 Conocophillips Company Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications
US6317695B1 (en) 2000-03-30 2001-11-13 Nutec Sciences, Inc. Seismic data processing method
US6687619B2 (en) 2000-10-17 2004-02-03 Westerngeco, L.L.C. Method of using cascaded sweeps for source coding and harmonic cancellation
AU2002239619A1 (en) 2000-12-08 2002-06-18 Peter J. Ortoleva Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories
FR2818753B1 (fr) 2000-12-21 2003-03-21 Inst Francais Du Petrole Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires
FR2821677B1 (fr) 2001-03-05 2004-04-30 Geophysique Cie Gle Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees
US6473696B1 (en) * 2001-03-13 2002-10-29 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6751558B2 (en) 2001-03-13 2004-06-15 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6927698B2 (en) 2001-08-27 2005-08-09 Larry G. Stolarczyk Shuttle-in receiver for radio-imaging underground geologic structures
US6545944B2 (en) 2001-05-30 2003-04-08 Westerngeco L.L.C. Method for acquiring and processing of data from two or more simultaneously fired sources
US6882958B2 (en) 2001-06-28 2005-04-19 National Instruments Corporation System and method for curve fitting using randomized techniques
GB2379013B (en) 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6593746B2 (en) 2001-08-27 2003-07-15 Larry G. Stolarczyk Method and system for radio-imaging underground geologic structures
US7672824B2 (en) 2001-12-10 2010-03-02 Westerngeco L.L.C. Method for shallow water flow detection
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US7330799B2 (en) 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves
US6842701B2 (en) 2002-02-25 2005-01-11 Westerngeco L.L.C. Method of noise removal for cascaded sweep data
GB2387226C (en) 2002-04-06 2008-05-12 Westerngeco Ltd A method of seismic surveying
FR2839368B1 (fr) 2002-05-06 2004-10-01 Total Fina Elf S A Methode de decimation de traces sismiques pilotee par le trajet sismique
US6832159B2 (en) 2002-07-11 2004-12-14 Schlumberger Technology Corporation Intelligent diagnosis of environmental influence on well logs with model-based inversion
US6906981B2 (en) 2002-07-17 2005-06-14 Pgs Americas, Inc. Method and system for acquiring marine seismic data using multiple seismic sources
FR2843202B1 (fr) 2002-08-05 2004-09-10 Inst Francais Du Petrole Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration
WO2004034088A2 (en) 2002-10-04 2004-04-22 Paradigm Geophysical Corporation Method and system for limited frequency seismic imaging
GB2396448B (en) 2002-12-21 2005-03-02 Schlumberger Holdings System and method for representing and processing and modeling subterranean surfaces
US20040225483A1 (en) 2003-02-24 2004-11-11 Michal Okoniewski Fdtd hardware acceleration system
US6735527B1 (en) 2003-02-26 2004-05-11 Landmark Graphics Corporation 3-D prestack/poststack multiple prediction
US6999880B2 (en) 2003-03-18 2006-02-14 The Regents Of The University Of California Source-independent full waveform inversion of seismic data
WO2004095072A2 (en) 2003-03-27 2004-11-04 Exxonmobil Upstream Research Company Method to convert seismic traces into petrophysical property logs
US7072767B2 (en) 2003-04-01 2006-07-04 Conocophillips Company Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data
WO2004095073A2 (en) 2003-04-01 2004-11-04 Exxonmobil Upstream Research Company Shaped high frequency vibratory source
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
GB2400438B (en) 2003-04-11 2005-06-01 Westerngeco Ltd Determination of waveguide parameters
FR2854468B1 (fr) * 2003-04-29 2005-06-10 Inst Francais Du Petrole Methode pour determiner un modele de vitesse d'ondes sismiques dans une formation souterrraine heterogene
US6970397B2 (en) 2003-07-09 2005-11-29 Gas Technology Institute Determination of fluid properties of earth formations using stochastic inversion
US6882938B2 (en) 2003-07-30 2005-04-19 Pgs Americas, Inc. Method for separating seismic signals from two or more distinct sources
GB2405473B (en) 2003-08-23 2005-10-05 Westerngeco Ltd Multiple attenuation method
US6944546B2 (en) 2003-10-01 2005-09-13 Halliburton Energy Services, Inc. Method and apparatus for inversion processing of well logging data in a selected pattern space
US6901333B2 (en) 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
US7046581B2 (en) 2003-12-01 2006-05-16 Shell Oil Company Well-to-well tomography
US20050128874A1 (en) 2003-12-15 2005-06-16 Chevron U.S.A. Inc. Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources
US7359283B2 (en) 2004-03-03 2008-04-15 Pgs Americas, Inc. System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers
US7791980B2 (en) 2004-05-21 2010-09-07 Westerngeco L.L.C. Interpolation and extrapolation method for seismic recordings
FR2872584B1 (fr) 2004-06-30 2006-08-11 Inst Francais Du Petrole Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires
EP1617309B1 (en) 2004-07-15 2011-01-12 Fujitsu Limited Simulation technique with local grid refinement
US7646924B2 (en) 2004-08-09 2010-01-12 David Leigh Donoho Method and apparatus for compressed sensing
US7480206B2 (en) 2004-09-13 2009-01-20 Chevron U.S.A. Inc. Methods for earth modeling and seismic imaging using interactive and selective updating
FR2876458B1 (fr) 2004-10-08 2007-01-19 Geophysique Cie Gle Perfectionnement aux traitements sismiques pour la suppression des reflexions multiples
GB2422433B (en) 2004-12-21 2008-03-19 Sondex Wireline Ltd Method and apparatus for determining the permeability of earth formations
US7373251B2 (en) 2004-12-22 2008-05-13 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US7230879B2 (en) 2005-02-12 2007-06-12 Chevron U.S.A. Inc. Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects
WO2006090374A2 (en) 2005-02-22 2006-08-31 Paradigm Geophysical Ltd. Multiple suppression in angle domain time and depth migration
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
WO2006122146A2 (en) 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
BRPI0611627A2 (pt) 2005-06-24 2011-05-31 Exxonmobil Upstream Res Co método implementado por computador para determinar parámetros de tipo de rocha e fluido de uma região de sub-superfìcie a partir de dados de reflexão sìsmicos medidos e método para produzir hidrocarbonetos a partir de uma região subterránea
US7405997B2 (en) 2005-08-11 2008-07-29 Conocophillips Company Method of accounting for wavelet stretch in seismic data
AU2006302736A1 (en) 2005-10-18 2007-04-26 Sinvent As Geological response data imaging with stream processors
AU2006235820B2 (en) 2005-11-04 2008-10-23 Westerngeco Seismic Holdings Limited 3D pre-stack full waveform inversion
FR2895091B1 (fr) 2005-12-21 2008-02-22 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique par des donnees sismiques
GB2436626B (en) 2006-03-28 2008-08-06 Westerngeco Seismic Holdings Method of evaluating the interaction between a wavefield and a solid body
US7620534B2 (en) 2006-04-28 2009-11-17 Saudi Aramco Sound enabling computerized system for real time reservoir model calibration using field surveillance data
US20070274155A1 (en) 2006-05-25 2007-11-29 Ikelle Luc T Coding and Decoding: Seismic Data Modeling, Acquisition and Processing
US7725266B2 (en) 2006-05-31 2010-05-25 Bp Corporation North America Inc. System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling
US7599798B2 (en) 2006-09-11 2009-10-06 Westerngeco L.L.C. Migrating composite seismic response data to produce a representation of a seismic volume
EP2067112B1 (en) 2006-09-28 2017-10-18 Exxonmobil Upstream Research Company Iterative inversion of data from simultaneous geophysical sources
AU2007330350A1 (en) 2006-12-07 2008-06-12 Council Of Scientific & Industrial Research A method for computing an exact impulse response of a plane acoustic reflector at zero offset due to a point acoustic source
EP2104869B1 (en) 2007-01-20 2012-01-25 Spectraseis AG Time reverse reservoir localization
WO2008123920A1 (en) 2007-04-10 2008-10-16 Exxonmobil Upstream Research Company Separation and noise removal for multiple vibratory source seismic data
US7715986B2 (en) 2007-05-22 2010-05-11 Chevron U.S.A. Inc. Method for identifying and removing multiples for imaging with beams
JP2009063942A (ja) 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
US20090070042A1 (en) 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
US20090083006A1 (en) 2007-09-20 2009-03-26 Randall Mackie Methods and apparatus for three-dimensional inversion of electromagnetic data
WO2009067041A1 (en) 2007-11-19 2009-05-28 Steklov Mathematical Institute Ras Method and system for evaluating the characteristic properties of two contacting media and of the interface between them based on mixed surface waves propagating along the interface
US20090164186A1 (en) 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
NZ586591A (en) 2008-01-08 2012-05-25 Exxonmobil Upstream Res Co Spectral shaping inversion and migration of seismic data
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
US8812282B2 (en) 2008-03-21 2014-08-19 Exxonmobil Upstream Research Company Efficient method for inversion of geophysical data
EP2265975A4 (en) 2008-03-28 2017-05-24 Exxonmobil Upstream Research Company Surface wave mitigation in spatially inhomogeneous media
EP2105765A1 (en) 2008-03-28 2009-09-30 Schlumberger Holdings Limited Simultaneous inversion of induction data for dielectric permittivity and electric conductivity
US8275592B2 (en) 2008-04-07 2012-09-25 Westerngeco L.L.C. Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data
US8494777B2 (en) 2008-04-09 2013-07-23 Schlumberger Technology Corporation Continuous microseismic mapping for real-time 3D event detection and location
US8345510B2 (en) 2008-06-02 2013-01-01 Pgs Geophysical As Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s)
WO2010019070A1 (en) 2008-08-14 2010-02-18 Schlumberger Canada Limited Method and a system for monitoring a logging tool position in a borehole
US8559270B2 (en) 2008-08-15 2013-10-15 Bp Corporation North America Inc. Method for separating independent simultaneous sources
CA2731985C (en) 2008-08-15 2016-10-25 Bp Corporation North America Inc. Method for separating independent simultaneous sources
US20100054082A1 (en) 2008-08-29 2010-03-04 Acceleware Corp. Reverse-time depth migration with reduced memory requirements
US8296069B2 (en) 2008-10-06 2012-10-23 Bp Corporation North America Inc. Pseudo-analytical method for the solution of wave equations
US7616523B1 (en) 2008-10-22 2009-11-10 Pgs Geophysical As Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth
US9213119B2 (en) 2008-10-29 2015-12-15 Conocophillips Company Marine seismic acquisition
US20100118651A1 (en) 2008-11-10 2010-05-13 Chevron U.S.A. Inc. Method for generation of images related to a subsurface region of interest
US20100142316A1 (en) 2008-12-07 2010-06-10 Henk Keers Using waveform inversion to determine properties of a subsurface medium
US8095345B2 (en) 2009-01-20 2012-01-10 Chevron U.S.A. Inc Stochastic inversion of geophysical data for estimating earth model parameters
US8369184B2 (en) 2009-01-26 2013-02-05 Shotspotter, Inc. Systems and methods with improved three-dimensional source location processing including constraint of location solutions to a two-dimensional plane
US9052410B2 (en) 2009-02-12 2015-06-09 Conocophillips Company Multiple seismic signal inversion
WO2010095859A2 (ko) 2009-02-17 2010-08-26 Shin Changsoo 지하구조 영상화 장치 및 방법
US8352190B2 (en) 2009-02-20 2013-01-08 Exxonmobil Upstream Research Company Method for analyzing multiple geophysical data sets
US9110191B2 (en) 2009-03-30 2015-08-18 Westerngeco L.L.C. Multiple attenuation for ocean-bottom seismic data
US8547794B2 (en) 2009-04-16 2013-10-01 Baker Hughes Incorporated Extending the coverage of VSP/CDP imaging by using first-order downgoing multiples
US9075163B2 (en) 2009-04-17 2015-07-07 Westerngeco L.L.C. Interferometric seismic data processing
US8176284B2 (en) 2009-08-11 2012-05-08 Texas Memory Systems, Inc. FLASH-based memory system with variable length page stripes including data protection information
US20110044127A1 (en) 2009-08-19 2011-02-24 Clement Kostov Removing free-surface effects from seismic data acquired in a towed survey
US8923093B2 (en) 2009-08-25 2014-12-30 Westerngeco L.L.C. Determining the quality of a seismic inversion
CA2767757A1 (en) 2009-09-09 2011-03-17 Conocophillips Company Dip guided full waveform inversion
WO2011040926A1 (en) 2009-10-01 2011-04-07 Halliburton Energy Services, Inc. Apparatus and methods of locating downhole anomalies
US9244181B2 (en) 2009-10-19 2016-01-26 Westerngeco L.L.C. Full-waveform inversion in the traveltime domain
GB2490051B (en) 2009-12-07 2015-04-01 Geco Technology Bv Simultaneous joint inversion of surface wave and refraction data
FR2955396B1 (fr) 2010-01-15 2013-03-01 Cggveritas Services Sa Dispositif de traitement de donnees sismiques marines
US9482775B2 (en) 2010-01-22 2016-11-01 Schlumberger Technology Corporation Real-time formation anisotropy and dip evaluation using tri-axial induction measurements
US8619500B2 (en) 2010-01-25 2013-12-31 Frederick D. Gray Methods and systems for estimating stress using seismic data
US8265875B2 (en) 2010-01-29 2012-09-11 Westerngeco L.L.C. Interpolation of periodic data
AU2010344186B2 (en) 2010-01-29 2016-04-14 Exxonmobil Upstream Research Company Temporary field storage of gas to optimize field development
US8537638B2 (en) * 2010-02-10 2013-09-17 Exxonmobil Upstream Research Company Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration
WO2011112932A1 (en) 2010-03-12 2011-09-15 Cggveritas Services (Us) Inc. Methods and systems for performing azimuthal simultaneous elatic inversion
US8680865B2 (en) 2010-03-19 2014-03-25 Schlumberger Technology Corporation Single well reservoir imaging apparatus and methods
US20110235464A1 (en) 2010-03-24 2011-09-29 John Brittan Method of imaging the earth's subsurface during marine seismic data acquisition
US8223587B2 (en) 2010-03-29 2012-07-17 Exxonmobil Upstream Research Company Full wavefield inversion using time varying filters
US9176244B2 (en) 2010-03-31 2015-11-03 Schlumberger Technology Corporation Data set inversion using source-receiver compression
US8576663B2 (en) 2010-04-30 2013-11-05 Schlumberger Technology Corporation Multicomponent seismic inversion of VSP data
KR101167715B1 (ko) 2010-04-30 2012-07-20 서울대학교산학협력단 복소 구배 최소자승법에의한 파형 역산을 이용한 지하 구조의 영상화 장치 및 방법
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
US8756042B2 (en) 2010-05-19 2014-06-17 Exxonmobile Upstream Research Company Method and system for checkpointing during simulations
CN102947233B (zh) 2010-06-15 2016-01-27 电化株式会社 透光性硬质基板层叠体的制造方法
US20110320180A1 (en) 2010-06-29 2011-12-29 Al-Saleh Saleh M Migration Velocity Analysis of Seismic Data Using Common Image Cube and Green's Functions
US8612188B2 (en) 2010-07-12 2013-12-17 The University Of Manchester Wave modelling
WO2012024025A1 (en) 2010-08-16 2012-02-23 Exxonmobil Upstream Research Company Reducing the dimensionality of the joint inversion problem
US8243548B2 (en) 2010-08-27 2012-08-14 Board Of Regents Of The University Of Texas System Extracting SV shear data from P-wave seismic data
US20120051176A1 (en) 2010-08-31 2012-03-01 Chevron U.S.A. Inc. Reverse time migration back-scattering noise removal using decomposed wavefield directivity
US8781748B2 (en) 2010-09-20 2014-07-15 Chevron U.S.A. Inc. System and method for generating images of subsurface structures
KR101908278B1 (ko) 2010-09-27 2018-10-17 엑손모빌 업스트림 리서치 캄파니 풀 파동장 반전을 위한 실제적인 해결책으로서의 동시 소스 인코딩 및 소스 분리
BR112013002847A2 (pt) 2010-09-27 2016-06-07 Exxonmobil Upstream Res Co método híbrido para inversão de forma de onda completa que usa um método de fonte simultânea e sequencial
US8437998B2 (en) 2010-09-27 2013-05-07 Exxonmobil Upstream Research Company Hybrid method for full waveform inversion using simultaneous and sequential source method
GB2497055A (en) 2010-09-28 2013-05-29 Shell Int Research Earth model estimation through an acoustic full waveform inversion of seismic data
AU2011337143B2 (en) 2010-12-01 2016-09-29 Exxonmobil Upstream Research Company Simultaneous source inversion for marine streamer data with cross-correlation objective function
US9134442B2 (en) 2010-12-16 2015-09-15 Bp Corporation North America Inc. Seismic acquisition using narrowband seismic sources
US9702994B2 (en) 2011-02-18 2017-07-11 Westerngeco L.L.C. Waveform inversion by multiple shot-encoding for non-fixed spread geometries
AU2012233133B2 (en) 2011-03-30 2014-11-20 Exxonmobil Upstream Research Company Convergence rate of full wavefield inversion using spectral shaping
US20120275267A1 (en) 2011-04-26 2012-11-01 Ramesh Neelamani Seismic Data Processing
WO2012158452A1 (en) 2011-05-13 2012-11-22 Saudi Arabian Oil Company Couple time-distance dependent swept frequency source acquisition design and data de-noising
US20120316790A1 (en) 2011-06-08 2012-12-13 Chevron U.S.A. Inc. System and method for data inversion with phase extrapolation
US20120316844A1 (en) 2011-06-08 2012-12-13 Chevron U.S.A. Inc. System and method for data inversion with phase unwrapping
US20120316791A1 (en) 2011-06-08 2012-12-13 Chevron U.S.A. Inc. System and method for seismic data inversion by non-linear model update
US9075159B2 (en) 2011-06-08 2015-07-07 Chevron U.S.A., Inc. System and method for seismic data inversion
US9176930B2 (en) 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
KR101262990B1 (ko) 2011-12-08 2013-05-10 서울대학교산학협력단 단계별 파형역산을 통한 지하매질 구조 추정 방법 및 장치
AU2013230789B2 (en) 2012-03-08 2016-02-11 Exxonmobil Upstream Research Company Orthogonal source and receiver encoding
US9541661B2 (en) 2012-04-19 2017-01-10 Cgg Services Sa Device and method for deghosting variable depth streamer data
US9435905B2 (en) 2012-04-19 2016-09-06 Cgg Services Sa Premigration deghosting of seismic data with a bootstrap technique
US20130311149A1 (en) 2012-05-17 2013-11-21 Yaxun Tang Tomographically Enhanced Full Wavefield Inversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007935A1 (en) * 1994-09-02 1996-03-14 Exxon Production Research Company Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data
US20040220743A1 (en) * 2003-04-30 2004-11-04 Conocophillips Company Method for determining shear-wave velocity model for depth migration of mode-converted data
CN101329405B (zh) * 2007-06-20 2011-02-09 中国石油天然气集团公司 一种简单的多参数地震反演方法
US20100177595A1 (en) * 2009-01-13 2010-07-15 Vijay Khare Using Seismic Attributes for Data Alignment and Seismic Inversion In Joint PP/PS Seismic Analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jeffrey A. Larsen, Gary F. Margrave, Han-xing Lu and Colin C. Potter, ";Simultaneous P-P and P-S inversion by weighted stacking applied to the Blackfoot 3C-3D survey";, CREWES Research Report — Volume 10 (1998), p.50-1 -50-21. *

Also Published As

Publication number Publication date
SG11201508195PA (en) 2015-12-30
CN105308479B (zh) 2017-09-26
US20140350861A1 (en) 2014-11-27
CA2909105C (en) 2018-08-28
MX346526B (es) 2017-03-23
AU2014268976A1 (en) 2015-12-10
MX2015014703A (es) 2016-03-07
BR112015025516A2 (pt) 2017-07-18
US9702993B2 (en) 2017-07-11
EP3004938A1 (en) 2016-04-13
AU2014268976B2 (en) 2016-12-22
KR101861060B1 (ko) 2018-05-28
CA2909105A1 (en) 2014-11-27
WO2014189679A1 (en) 2014-11-27
CN105308479A (zh) 2016-02-03
MY169125A (en) 2019-02-18
KR20160013970A (ko) 2016-02-05

Similar Documents

Publication Publication Date Title
RU2615591C1 (ru) Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi)
DK1746443T3 (en) A method of calculating the elastic parameters and stone composition of subterranean formations using seismic data
Liang‐Guo et al. Objective‐Function Behavior in Acoustic Full‐Waveform Inversion
AU2014254449B2 (en) Seismic velocity model updating and imaging with elastic wave imaging
US11243318B2 (en) Method and apparatus for unambiguously estimating seismic anisotropy parameters
US20100004870A1 (en) Method of Joint Inversion of Seismic Data Represented on Different Time Scales
Toverud et al. Comparison of seismic attenuation models using zero-offset vertical seismic profiling (VSP) data
EP1624321A1 (fr) Méthode pour construire un modèle d&#39;un milieu hétérogène décrit par plusieurs paramètres à partir de données exprimées dans des échelles de temps différentes
WO2011124532A1 (en) A process for characterising the evolution of a reservoir
Witten et al. Extended wave-equation imaging conditions for passive seismic data
EP3183599B1 (en) Joint inversion of compressional and shear seismic data in native time domains
Liner et al. SPICE: A new general seismic attribute
Zeng et al. Recent progress in analysis of seismically thin beds
US11635540B2 (en) Methods and devices performing adaptive quadratic Wasserstein full-waveform inversion
Luo et al. Registration-free multicomponent joint AVA inversion using optimal transport
EP3575835B1 (en) Method and system performing joint vvaz and avaz inversion
Al-Rahim et al. Subsurface 3D prediction porosity model from converted seismic and well data using model based inversion technique
Haiba Inverse Attenuation-Filtering
Chen et al. Joint inversion of PP-and PSV-wave amplitudes for attenuation factors
Qambar Seismic Attributes
Asplet et al. Shear-wave attenuation anisotropy: a fluid detection tool
Nzikou et al. Estimating elastic wave velocities, attenuation factors, and their frequency dependency by inverting ultrasonic waveforms
Lindwall et al. Fast Thin? layer Inversion (Theory)
Beresford Elastic modelling of reflectivity and AVO at the Elang Formation, Laminaria East

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180508