RU2587498C2 - Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией - Google Patents

Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией Download PDF

Info

Publication number
RU2587498C2
RU2587498C2 RU2013129772/28A RU2013129772A RU2587498C2 RU 2587498 C2 RU2587498 C2 RU 2587498C2 RU 2013129772/28 A RU2013129772/28 A RU 2013129772/28A RU 2013129772 A RU2013129772 A RU 2013129772A RU 2587498 C2 RU2587498 C2 RU 2587498C2
Authority
RU
Russia
Prior art keywords
data
model
sources
seismogram
simultaneous
Prior art date
Application number
RU2013129772/28A
Other languages
English (en)
Other versions
RU2013129772A (ru
Inventor
Парта С. РУТ
Джером Р. Кребс
Спиридон ЛАЗАРАТОС
Анатолий БАУМШТЕЙН
Original Assignee
Эксонмобил Апстрим Рисерч Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксонмобил Апстрим Рисерч Компани filed Critical Эксонмобил Апстрим Рисерч Компани
Publication of RU2013129772A publication Critical patent/RU2013129772A/ru
Application granted granted Critical
Publication of RU2587498C2 publication Critical patent/RU2587498C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/003Seismic data acquisition in general, e.g. survey design
    • G01V1/005Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/614Synthetically generated data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ для одновременной инверсии полного волнового поля сейсмограмм кодированных (30) геофизических данных (80) источников (или приемников), чтобы определять модель (20) физических свойств для области геологической среды, особенно подходящий для обследований, где условия геометрии фиксированных приемников не были удовлетворены при регистрации данных (40). Инверсия включает в себя оптимизацию взаимнокорреляционной целевой функции (100). Технический результат - повышение точности получаемых данных. 4 н. и 23 з.п. ф-лы, 9 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Эта заявка испрашивает приоритет по предварительной патентной заявке США 61/418,694, поданной 1 декабря 2010 г., озаглавленной Simultaneous Source Inversion for Marine Streamer Data with Cross-Correlation Objective Function, и предварительной патентной заявке США 61/509,904, поданной 20 июля 2011 г., имеющей такое же название, обе из которых полностью включены в настоящий документ посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится, в общем, к области геофизической разведки, и более конкретно, к обработке геофизических данных. Конкретно, изобретение является способом для инверсии данных, полученных от множественных геофизических источников, таких как сейсмические источники, включая геофизическое моделирование, которое вычисляет данные от многих одновременно активных геофизических источников при одном выполнении моделирования.
УРОВЕНЬ ТЕХНИКИ
Даже при современных вычислительных возможностях, инверсия сейсмического полного волнового поля все еще является вычислительно дорогостоящим предприятием. Однако ожидается, что преимущество получения детального представления геологической среды с использованием этого способа перевесит это препятствие. Разработка алгоритмов и технологических процессов, которые ведут к более быстрой производительности по времени, является ключевым этапом в направлении к тому, чтобы эту технологию можно было реализовывать для масштаба данных полевых наблюдений. Инверсия сейсмической полной волновой формы включает в себя несколько итераций прямого и сопряженного моделирования данных. Поэтому способы, которые уменьшают затраты проходов прямого и сопряженного вычислений, обеспечивают возможность пользователям решать проблемы более большого масштаба за разумное время.
Геофизическая инверсия [1, 2] пытается найти модель свойств геологической среды, которая оптимально объясняет наблюдаемые данные и удовлетворяет геологическим и геофизическим ограничениям. Имеется большое количество хорошо известных способов геофизической инверсии. Эти хорошо известные способы попадают в одну из двух категорий: итеративная инверсия и неитеративная инверсия. Последующее является определениями того, что обычно предполагается под каждой из двух категорий:
Неитеративная инверсия - инверсия, которая выполняется при предположении некоторой простой фоновой модели и обновлении модели на основе входных данных. Этот способ не использует обновленную модель в качестве входа на другой этап инверсии. Для случая сейсмических данных эти способы обычно указываются как формирование изображений, миграция, дифракционная томография или инверсия Борна.
Итеративная инверсия - инверсия, включающая в себя повторяющееся улучшение модели свойств геологической среды, в результате чего находится модель, которая удовлетворительно объясняет наблюдаемые данные. Если инверсия сходится, то конечная модель будет лучше объяснять наблюдаемые данные и будет более близко приближать фактические свойства геологической среды. Итеративная инверсия обычно вырабатывает более точную модель, чем неитеративная инверсия, но является намного более дорогостоящей для вычислений.
Итеративная инверсия является, в общем, предпочтительной по сравнению с неитеративной инверсией, так как она дает более точные модели параметров геологической среды. К сожалению, итеративная инверсия является настолько вычислительно дорогостоящей, что является непрактичным применять ее ко многим интересующим проблемам. Эти высокие вычислительные затраты являются результатом того, что все способы инверсии требуют большого количества вычислительно интенсивных моделирований. Время вычислений любого индивидуального моделирования является пропорциональным количеству источников, подлежащих инвертированию, и обычно в геофизических данных имеется большое количество источников, при этом признак источник, используемый в предшествующем, указывает на местоположение активации устройства источника. Для итеративной инверсии проблема осложняется, так как количество моделирований, которые должны вычисляться, является пропорциональным количеству итераций в инверсии, и требуемое количество итераций имеет обычно порядок от сотен до тысяч.
Наиболее распространенным способом итеративной инверсии, применяемым в геофизике, является оптимизацией функции затрат. Оптимизация функции затрат включает в себя итеративную минимизацию или максимизацию значения, по отношению к модели M, функции затрат S(M), которая является мерой несоответствия между вычисленными и наблюдаемыми данными (она также иногда указывается как целевая функция), где вычисленные данные моделируются с помощью компьютера с использованием текущей модели геофизических свойств и физики, определяющей распространение сигнала источника в среде, представленной заданной моделью геофизических свойств. Вычисления моделирования могут делаться посредством любого из нескольких численных методов, включающих в себя, но не ограниченных этим, конечную разность, конечный элемент или трассировку лучей. Вычисления моделирования могут выполняться либо в частотной, либо во временной области.
Способы оптимизации функции затрат являются либо локальными, либо глобальными [3]. Глобальные способы просто включают в себя вычисление функции затрат S(M) для совокупности моделей {M1, M2, M3,...} и выбор набора одной или более моделей из этой совокупности, которые приближенно минимизируют S(M). Если требуется дополнительное улучшение, этот новый выбранный набор моделей может тогда использоваться в качестве основы, чтобы генерировать новую совокупность моделей, которая может снова тестироваться в отношении функции затрат S(M). Для глобальных способов каждая модель в тестовой совокупности может рассматриваться как итерация, или на более высоком уровне каждый набор протестированных совокупностей может рассматриваться как итерация. Хорошо известные глобальные способы инверсии включают в себя Монте-Карло, искусственный аннилинг, генетические и эволюционные алгоритмы.
К сожалению, глобальные способы оптимизации обычно сходятся в высшей степени медленно и, поэтому, большинство геофизических инверсий основываются на локальной оптимизации функции затрат. Алгоритм 1 подытоживает локальную оптимизацию функции затрат.
Алгоритм 1
Алгоритм для выполнения локальной оптимизации функции затрат
1. Выбор начальной модели,
2. Вычисление градиента функции затрат S(M) по отношению к параметрам, которые описывают модель,
3. Поиск обновленной модели, которая является возмущением начальной модели в отрицательном направлении градиента, которая более хорошо объясняет наблюдаемые данные.
Эта процедура повторяется посредством использования новой обновленной модели в качестве начальной модели для другого градиентного поиска. Процесс продолжается до тех пор, когда находится обновленная модель, которая удовлетворительно объясняет наблюдаемые данные. Распространенно используемые способы локальной инверсии функции затрат включают в себя градиентный поиск, сопряженные градиенты и способ Ньютона.
Локальная оптимизация функции затрат сейсмических данных в акустическом приближении является общей задачей геофизической инверсии, и является, в общем, иллюстрацией других типов геофизической инверсии. При инвертировании сейсмических данных в акустическом приближении функция затрат может быть записана как:
Figure 00000001
(Уравнение 1)
где
S = функция затрат,
M = вектор N параметров, (m1, m2,...mN), описывающих модель геологической среды,
g = индекс сейсмограммы,
wg = функция источника для сейсмограммы g, которая является функцией пространственных координат и времени, для точечного источника она является дельта функцией пространственных координат,
Ng = количество сейсмограмм,
r = индекс приемника в сейсмограмме,
Nr = количество приемников в сейсмограмме,
t = индекс временной выборки внутри трассы,
Nt = количество временных выборок,
W = функция критерия минимизации (мы обычно выбираем W(x)=x2, которая является критерием наименьших квадратов (L2)),
ψвычисл = вычисленные сейсмические данные давления для модели M,
ψнабл = измеренные сейсмические данные давления.
Сейсмограммы могут быть любым типом сейсмограммы, которая может моделироваться в одном проходе программы сейсмического прямого моделирования. Обычно сейсмограммы соответствуют сейсмическому взрыву, хотя взрывы могут быть более общими, чем точечные источники. Для точечных источников индекс сейсмограммы g соответствует местоположению индивидуальных точечных источников. Для источников плоской волны g соответствует разным направлениям распространения плоской волны. Эти данные обобщенного источника, ψнабл, могут либо получаться в полевых условиях, либо могут синтезироваться из данных, полученных с использованием точечных источников. Вычисленные данные ψвычисл, с другой стороны, могут обычно вычисляться напрямую посредством использования функции обобщенного источника при прямом моделировании. Для многих типов прямого моделирования, включающих в себя моделирование конечных разностей, время вычисления, необходимое для обобщенного источника, грубо равняется времени вычисления, необходимому для точечного источника.
Уравнение (1) может быть упрощено до
Figure 00000002
(Уравнение 2)
где сумма по приемникам и временным выборкам теперь подразумевается, и
Figure 00000003
(Уравнение 3)
Инверсия пытается обновить модель M так, что S(M) является минимумом. Это может выполняться посредством локальной оптимизации функции затрат, которая обновляет заданную модель
Figure 00000004
следующим образом:
Figure 00000005
(Уравнение 4)
где k является номером итерации,
Figure 00000006
является скалярным размером обновления модели и
Figure 00000007
является градиентом функции несоответствия, взятым по отношению к параметрам модели. Возмущения модели, или значения, посредством которых модель обновляется, вычисляются посредством умножения градиента целевой функции на длину шага
Figure 00000008
которая должна повторно вычисляться.
Из уравнения (2) для градиента функции затрат может быть выведено следующее уравнение:
Figure 00000009
(Уравнение 5)
Таким образом, чтобы вычислить градиент функции затрат, необходимо отдельно вычислить градиент каждого вклада сейсмограммы в функцию затрат, затем сложить эти вклады. Поэтому вычислительные затраты, требуемые для вычисления
Figure 00000010
, равняются
Figure 00000011
, умноженному на вычислительные затраты, требуемые, чтобы определить вклад одиночной сейсмограммы в градиент. Для геофизических проблем,
Figure 00000012
обычно соответствует количеству геофизических источников и имеет порядок от 10000 до 100000, что значительно увеличивает затраты на вычисление
Figure 00000013
Отметим, что вычисление
Figure 00000014
требует вычисления производной
Figure 00000015
по отношению к каждому из N параметров модели mi. Так как для геофизических проблем N является обычно очень большим (обычно больше, чем один миллион), это вычисление может быть отнимающим в высшей степени много времени, если оно должно выполняться для каждого индивидуального параметра модели. К счастью, может использоваться метод сопряженных уравнений, чтобы эффективно выполнять это вычисление для всех параметров модели сразу [1]. Метод сопряженных уравнений для целевой функции наименьших квадратов и параметризации сеточной модели резюмируется посредством следующего алгоритма:
Алгоритм 2
Алгоритм для вычисления градиента функции затрат наименьших квадратов сеточной модели с использованием метода сопряженных уравнений
1. Вычисление прямого моделирования данных с использованием текущей модели и формы импульсов сейсмограммы wg в качестве источника, чтобы получать ψвычисл(M(k), wg),
2. Вычитание наблюдаемых данных из смоделированных данных, дающее δ(M(k), wg),
3. Вычисление обратного моделирования (т.е. назад во времени) с использованием δ(M(k), wg) в качестве источника, вырабатывающее ψсопр(M(k), wg),
4. Вычисление интеграла по времени от произведения ψвычисл(M(k), wg) и ψсопр(M(k), wg), чтобы получить ∇MW(δ(M,wg)).
В то время как вычисление градиентов с использованием метода сопряженных уравнений является эффективным относительно других способов, оно является все же очень дорогостоящим. В частности метод сопряженных уравнений требует два моделирования, одно прямое во времени и одно обратное во времени, и для геофизических проблем эти моделирования являются обычно очень вычислительно интенсивными. Также, как описано выше, это вычисление метода сопряженных уравнений должно выполняться для каждой измеренной сейсмограммы данных индивидуально, что увеличивает вычислительный затраты на коэффициент Ng.
Вычислительные затраты всех категорий инверсии могут быть уменьшены посредством инвертирования данных из комбинаций источников, нежели инвертирования источников индивидуально. Это может быть названо как инверсия одновременных источников. Являются известным несколько типов комбинирования источников, включающие в себя: когерентное суммирование близко расстановленных источников, чтобы порождать эффективный источник, который вырабатывает волновой фронт некоторой требуемой формы (например, плоской волны), суммирование широко расстановленных источников, или полное или частичное суммирование данных до инверсии.
Уменьшение вычислительных затрат, достигаемое посредством инвертирования комбинированных источников, по меньшей мере, частично возмещается тем фактом, что инверсия комбинированных данных обычно вырабатывает менее точную инвертированную модель. Эта потеря в точности происходит вследствие того факта, что информация теряется, когда индивидуальные источники суммируются, и, поэтому, суммированные данные не ограничивают инвертированную модель также жестко, как несуммированные данные. Эта потеря информации во время суммирования может быть минимизирована посредством кодирования каждой записи взрыва до суммирования. Кодирование до комбинирования сохраняет значительно больше информации в данных одновременных источников, и, поэтому, лучше ограничивает инверсию [4]. Кодирование также обеспечивает возможность комбинирования близко расстановленных источников, таким образом, обеспечивая возможность комбинировать большее количество источников для заданной вычислительной области. С этим способом могут использоваться различные схемы кодирования, включающие в себя кодирование с временным сдвигом и кодирование со случайной фазой. В оставшейся части этого раздела Уровень техники кратко рассматриваются различные опубликованные способы геофизических одновременных источников, как с кодированием, так и без кодирования.
Ван Манен [6] предлагает использование способа сейсмической интерферометрии для ускорения прямого моделирования. Сейсмическая интерферометрия работает посредством размещения источников повсюду на границе области интереса. Эти источники моделируются индивидуально и волновое поле записывается во всех местоположениях, для которых требуется функция Грина. Функция Грина между любыми двумя записанными местоположениями может затем вычисляться посредством взаимного коррелирования трасс, полученных в двух записанных местоположениях, и суммирования по всем граничным источникам. Если данные, подлежащие инвертированию, имеют большое количество источников и приемников, которые находятся внутри области интереса (в противоположность наличию одного или другого на границе), то это очень эффективный способ для вычисления требуемых функций Грина. Однако для случая сейсмических данных является редким, что как источник, так и приемник для данных, подлежащих инвертированию, находятся внутри области интереса. Поэтому, это улучшение имеет очень ограниченную применимость к проблеме сейсмической инверсии.
Беркхаут [7] и Жанг [8] предлагают, что инверсия, в общем, может быть улучшена посредством инвертирования некодированных одновременных источников, которые когерентно суммируются, чтобы вырабатывать некоторый требуемый волновой фронт внутри некоторой области геологической среды. Например, данные точечного источника могут суммироваться с временными сдвигами, которые являются линейной функцией местоположения источника, чтобы вырабатывать идущую вниз плоскую волну при некотором конкретном угле по отношению к поверхности. Этот способ может применяться ко всем категориям инверсии. Проблема с этим способом состоит в том, что когерентное суммирование сейсмограмм источников обязательно уменьшает количество информации в данных. Таким образом, например, суммирование для создания плоской волны удаляет всю информацию в сейсмических данных, связанных с временем прохода по отношению к удалению источник-приемник. Эта информация является критической для обновления медленно изменяющейся фоновой скоростной модели, и, поэтому, способ Беркхаута не является хорошо ограниченным. Чтобы преодолевать эту проблему, может инвертироваться много разных когерентных сумм данных (например, много плоских волн с разными направлениями распространения), но тогда потеряется эффективность, так как затраты на инверсию пропорциональны количеству разных инвертированных сумм. Здесь, такие когерентно суммированные источники называются обобщенными источниками. Поэтому обобщенный источник может либо быть точечным источником, либо суммой точечных источников, которая вырабатывает волновой фронт некоторой требуемой формы.
Ван Риел [9] предлагает инверсию посредством некодированного суммирования или частичного суммирования (по отношению к удалению источник-приемник) входных сейсмических данных, затем определяя функцию затрат по отношению к этим суммированным данным, которые оптимизируются. Таким образом, эта публикация предлагает улучшение основывающейся на функции затрат инверсии с использованием некодированных одновременных источников. Как имело место для способа инверсии одновременных источников Беркхаута [6], суммирование, предложенное этим способом, уменьшает количество информации в данных, подлежащих инвертированию, и, поэтому, инверсия является менее хорошо ограниченной, чем она была бы с исходными данными.
Мора [10] предлагает инвертирование данных, которые являются суммой широко расстановленных источников. Таким образом, эта публикация предлагает улучшение эффективности инверсии с использованием моделирования некодированных одновременных источников. Суммирование широко расстановленных источников имеет преимущество сохранения намного большего количества информации, чем когерентное суммирование, предложенное Беркхаутом. Однако суммирование широко расстановленных источников имеет следствием, что апертура (инвертируемая область модели), которая должна использоваться в инверсии, должна быть увеличена, чтобы вмещать все широко расстановленные источники. Так как время вычислений является пропорциональным области этой апертуры, способ Мора не обеспечивает такого прироста эффективности, как мог бы быть достигнут, если бы суммируемые источники были рядом друг с другом.
Обер [11] предлагает ускорение сейсмической миграции, специальный случай неитеративной инверсии, посредством использования одновременных кодированных источников. После тестирования различных способов кодирования, Обер обнаружил, что результирующие мигрированные изображения имели значительно уменьшенное отношение сигнала к шуму вследствие того факта, что широкополосные кодирующие функции необходимо являются только приближенно ортогональными. Таким образом, при суммировании более чем 16 взрывов, качество инверсии не было удовлетворительным. Так как неитеративная инверсия не является очень дорогостоящей, чтобы с нее начинать, и так как инверсия высокого отношения сигнала к шуму является желательной, этот способ не является широко используемым в геофизических методах разведки.
Икелле [12] предлагает способ для быстрого прямого моделирования посредством одновременного моделирования точечных источников, которые активированы (в моделировании) в изменяющиеся временные интервалы. Также описывается способ для декодирования этих сдвинутых по времени смоделированных данных одновременных источников назад в отдельные моделирования, которые были бы получены от индивидуальных точечных источников. Эти декодированные данные могут затем использоваться как часть любой стандартной процедуры инверсии. Проблема со способом Икелле состоит в том, что предложенный способ декодирования вырабатывает разделенные данные, имеющие уровни шума, пропорциональные различию между данными от смежных источников. Этот шум становится значительным для моделей геологической среды, которые не являются латерально постоянными, например, для моделей, содержащих наклонные отражающие границы. Дополнительно, этот шум будет расти в пропорции к количеству одновременных источников. Вследствие этих трудностей, подход одновременных источников Икелле может давать результатом неприемлемые уровни шума, если используется в инвертировании геологической среды, которая не является латерально постоянной.
Кодирование источника, предложенное Кребсом и др. в публикации патентной заявки PCT номер WO 2008/042081, которая включается сюда по ссылке во всех юрисдикциях, которые это позволяют, является очень эффективным в отношении затрат способом для инвертирования данных полного волнового поля. (Такой же подход одновременной инверсии кодированной сейсмограммы будет работать для приемников, либо за счет взаимности источник-приемник, либо за счет кодирования фактических местоположений приемников в сейсмограммах общих источников данных.) Для фиксированных приемников, прямые и сопряженные вычисления должны выполняться только для одиночного эффективного источника; см. публикацию патентной заявки PCT номер WO 2009/117174, которая включается сюда по ссылке во всех юрисдикциях, которые это позволяют. Притом, что для обычных геометрий систем регистрации 2D записываются сотни взрывов, и тысячи в случае обследований 3D, этот способ обеспечивает достаточно значительные сокращения вычислений. На практике, предположение фиксированных приемников не является строго действительным для большинства общих эксплуатационных геометрий систем регистрации данных. В случае данных сейсмоприемной косы, как источники, так и приемники перемещаются для каждого нового взрыва. Даже в обследованиях, где местоположения приемников являются фиксированными, практика часто состоит в том, что не все приемники "слушают" каждый взрыв, и приемники, которые слушают, могут изменяться от взрыва к взрыву. Это также нарушает "предположение фиксированных приемников". В дополнение, вследствие логистических проблем, является трудным записывать данные, близкие к источнику, и это означает, что данные близкого удаления обычно отсутствуют. Это верно для обследований как на море, так и на земле. Оба этих фактора означают, что для сейсмограммы одновременных источников, для каждого местоположения приемника будут отсутствующие данные для некоторых взрывов источников. В итоге, в инверсии одновременных кодированных источников, для заданной одновременной кодированной сейсмограммы, требуются данные во всех местоположениях приемников для каждого взрыва, и это может указываться как предположение фиксированных приемников инверсии одновременных кодированных источников. В WO 08/042081, некоторые из раскрытых вариантов осуществления могут работать более хорошо, чем другие, когда предположение фиксированных приемников не удовлетворяется. Поэтому, будет предпочтительным иметь размещение или настройку для непосредственного применения инверсии одновременных кодированных источников (и/или приемников), которая обеспечит увеличение ее производительности, когда предположение фиксированных приемников нарушено. Настоящее изобретение обеспечивает способы делать это. Хабер и др. [15] также описывает подход к проблеме перемещения приемников в инверсии одновременных кодированных источников с использованием способа стохастической оптимизации, и применяет его к проблеме удельного сопротивления постоянному току.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном варианте осуществления изобретение является компьютерно-реализуемым способом для инверсии полного волнового поля, с использованием кодирования одновременных источников, измеренных геофизических данных из обследования, которое не удовлетворяет предположению фиксированных приемников инверсии одновременных кодированных источников, чтобы определять модель физических свойств для области геологической среды, содержащий следующие этапы, описанные со ссылкой на блок-схему последовательности операций из Фиг.2, при этом все суммирование, моделирование, вычисление и обновление выполняется на компьютере:
(a) получение группы двух или более кодированных сейсмограмм измеренных геофизических данных (40), полученных при условиях, где предположение фиксированных приемников не является действительным, при этом каждая сейсмограмма ассоциирована с одиночным обобщенным источником, или альтернативно с одиночным приемником, и при этом каждая сейсмограмма кодируется (60) с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций (30);
(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех, или выбранных, записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику (60) или альтернативно одиночному источнику, и повторение для каждого другого приемника или альтернативно для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму (80); или альтернативно получение кодированных данных в полевом обследовании (90), где кодирующие функции являются измеренными формами (50) импульсов источников;
(c) предположение модели (10) физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения, по меньшей мере, одного физического свойства в местоположениях всюду по области геологической среды;
(d) моделирование синтетической одновременной кодированной сейсмограммы данных, с использованием предполагаемой модели физических свойств, при этом моделирование использует кодированные формы (70) импульсов источников, и при этом полная одновременная кодированная сейсмограмма моделируется в одиночной операции моделирования;
(e) вычисление целевой функции, измеряющей взаимную корреляцию между одновременной кодированной сейсмограммой измеренных данных и смоделированной одновременной кодированной сейсмограммой (100);
(f) обновление (110) модели физических свойств посредством оптимизации целевой функции (100);
(g) повторение этапов (a)-(f), по меньшей мере, еще один раз с использованием обновленной модели (20) физических свойств из предыдущей итерации в качестве предполагаемой модели физических свойств в этапе (c), что дает результатом дополнительную обновленную модель физических свойств; и
(h) после схождения (120), загрузка, отображение, или сохранение дополнительной обновленной модели физических свойств в компьютерное хранилище (130).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Вследствие ограничений патентного законодательства, один или более из чертежей должны быть черно-белыми воспроизведениями цветных оригиналов. Цветные оригиналы были поданы в соответствующей заявке США. Копии публикации этого патента или патентной заявки с цветными чертежами могут быть получены от Патентного ведомства США при запросе и оплате необходимой пошлины.
Настоящее изобретение и его преимущества будут более хорошо пониматься с помощью ссылки на последующее подробное описание и прилагаемые чертежи, на которых:
Фиг.1A-1C являются данными тестового примера, при этом Фиг.1A показывает "истинную" скоростную модель для использования, т.е. модель, используемую, чтобы моделировать синтетические данные обследования; Фиг.1B показывает скоростную модель, полученную посредством инверсии моделированных данных обследования с использованием стандартной целевой функции L2; и Фиг.1C показывает скоростную модель, полученную посредством инверсии с использованием взаимнокорреляционной целевой функции представленного нового способа;
Фиг.2 является блок-схемой последовательности операций, показывающей базовые этапы в одном иллюстративном варианте осуществления представленного нового способа;
Фиг.3 является поперечным сечением моделированных сейсмических данных, показывающих сумму четырех взрывов, расстановленных на расстоянии 20 м;
Фиг.4 является поперечным сечением моделированных сейсмических данных, показывающих сумму четырех взрывов, расстановленных на расстоянии 100 м; и
Фиг.5A-5C отображают результаты модельного изучения, показывающего преимущества одного варианта осуществления представленного нового способа, который уменьшает проблему локального минимума, которая оказывает влияние на сходимость в процессе итеративной инверсии с использованием взаимнокорреляционной целевой функции.
Изобретение описывается в связи с иллюстративными вариантами осуществления. Однако в той степени, в которой последующее подробное описание является специальным для конкретного варианта осуществления или конкретного использования изобретения, предполагается, что оно является только иллюстративным, и не должно толковаться как ограничивающее объем изобретения. Напротив, предполагается, что охватываются все альтернативы, модификации и эквиваленты, которые могут содержаться в объеме изобретения, как определено посредством прилагаемой формулы изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ИЛЛЮСТРАТИВНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Способ, предложенный в этой патентной заявке, использует взаимнокорреляционную целевую функцию, чтобы инвертировать данные кодированных одновременных источников. Исходные сейсмограммы взрывов, которые кодируются, чтобы формировать данные одновременных источников, имеют отсутствующие ближние и дальние удаления, что является обычным в обследовании сейсмоприемной косы. Интуитивное понимание того, как эта взаимнокорреляционная целевая функция работает для инверсии полного волнового поля ("FWI") для данных нефиксированных приемников, может получаться при рассмотрении проблемы формирования изображений. В FWI, один или много режимов сейсмических волновых полей инвертируются, чтобы получать модель физических свойств Земли. Сначала рассмотрим проблему формирования изображений для миграции обратного времени одновременных источников ("RTM").
Предположим, что имеются два измеренных волновых поля d1, d2 в геологической среде, обусловленные двумя источниками, и они кодируются согласно
d ф и к с к о д и р
Figure 00000016
=a1Pd1+a2Pd2
где P является оператором проекции, который проецирует данные на все приемники, требуемые для геометрии фиксированных приемников. Таким образом, если оператор P является одним и тем же для всех взрывов, то это является геометрией фиксированных приемников. Кодированный источник задается посредством
S=a1S1+a2S2
Пусть прямая задача обозначается посредством Ld=S, где L является дифференциальным оператором в частных производных, d является моделированным откликом и S является функцией кодированного источника. Если обозначить прямой оператор посредством L-1, так что смоделированные данные d=L-1S, и обозначить оператор обратного распространения посредством
Figure 00000017
, то изображение, полученное посредством взаимной корреляции, задается посредством
Изображение
Figure 00000018
d ф и к с и р о в а н н о е к о д и р о в а н н о е
Figure 00000019
Figure 00000020
где P является оператором проекции, который преобразовывает данные, вычисленные во всей области, в набор фиксированных приемников. Для случая фиксированных приемников, P будет одним и тем же для всех источников, так как каждый без исключения приемник слушает все источники.
Для геометрии нефиксированных приемников, предположим, что Pk является оператором проекции на поднабор приемников для k-го источника. Тогда кодированные данные задаются посредством
d н е ф и к с к о д и р
Figure 00000021
Figure 00000022
Изображение тогда задается посредством
Изображение
Figure 00000023
Если используются несколько реализаций кодирования, второй член вследствие перекрестной помехи аннулируется и его вклад в изображение убывает, тем самым, увеличивая отношение сигнала к шуму. Имеется близкая связь между формированием изображений и формированием градиента для FWI. Если рассматривать целевую функцию (часто называемую функция затрат) в FWI, которая является L2, т.е. наименьших квадратов, нормой между измеренными и смоделированными данными, то градиент целевой функции L2 является просто взаимной корреляцией остатка обратно распространенных данных с моделированным волновым полем. Для геометрии фиксированных приемников это является хорошей мерой, так как конкретный приемник слушает все источники. Для нефиксированных приемников это является проблематичным, так как кодированные измеренные данные являются недостаточными по сравнению с кодированными смоделированными данными. Этот недостаток в конечном счете преобразовывается в артефакты модели.
Однако понимание, приобретенное из ситуации формирования изображений, где приемники являются нефиксированными, может восприниматься как намек, что использование взаимнокорреляционной целевой функции для FWI может помочь ослабить эту проблему. Таким образом, вместо L2, рассмотрим взаимнокорреляционную целевую функцию, заданную посредством:
φ = d н е ф и к с и з м d ф и к с с м о д d н е ф и к с и з м d ф и к с с м о д
Figure 00000024
где d н е ф и к с и з м
Figure 00000025
являются кодированными измеренными данными с нефиксированными приемниками, при этом предполагается, что трассы, для которых приемники не слушают источник, являются нулевыми трассами. Величины d ф и к с с м о д
Figure 00000026
являются моделированными кодированными данными из функции одновременных источников; они являются данными фиксированных приемников, так как все источники активируются одновременно и каждый приемник измеряет сигнал от этого одновременного источника. Предположим для каждого взрыва, гипотетически, что можно разделять приемники, которые представлены в обследовании, и те, которые отсутствуют, так что можно записать d ф и к с с м о д = d н е ф и к с с м о д + d о т с с м о д
Figure 00000027
φ = ( d н е ф и к с с м о д + d о т с с м о д ) d н е ф и к с и з м d н е ф и к с и з м d ф и к с с м о д = d н е ф и к с с м о д d н е ф и к с и з м d н е ф и к с и з м d ф и к с с м о д + d о т с с м о д d н е ф и к с и з м d н е ф и к с и з м d ф и к с с м о д
Figure 00000028
Трассы, которые вносят вклад в d о т с с м о д
Figure 00000029
, являются в точности трассами, которые не являются доступными в измеренных данных, т.е. d н е ф и к с и з м
Figure 00000030
. Таким образом, вклад второго члена является малым по сравнению с первым членом в вышеуказанном уравнении. Можно аппроксимировать целевую функцию посредством
φ d н е ф и к с с м о д d н е ф и к с и з м d н е ф и к с и з м d ф и к с с м о д
Figure 00000031
Также, если для некоторых итераций используется разное кодирование, предпочтительно на каждой итерации, как указано Кребсом и др. в публикации патентной заявки PCT номер WO 2008/042081, второй член в конечном счете будет убывать. В дополнение к изменению кодирования каждую итерацию, дополнительный вариант выбора состоит в том, чтобы использовать набор кодирований на каждой итерации с целью получать средний градиент целевой функции, т.е. градиенты, полученные из каждого из кодирований, когда суммируются, дают средний градиент. Поэтому на каждой итерации эта обработка усреднения уменьшает перекрестную помеху - идея, которая является очень похожей на формирование изображений RTM одновременных источников, где изображения, полученные с разными кодированиями, суммируются, чтобы аннулировать шум перекрестных помех. Усреднение градиента также рекомендуется в способах стохастической оптимизации (Хабер и др. [15]).
Общая цель в предпочтительных вариантах осуществления представленного нового способа состоит в том, чтобы максимизировать, не минимизировать, взаимнокорреляционную целевую функцию. Однако можно переформулировать целевую функцию, например, заменить ее на ее отрицательную, таким образом, что можно фактически решать проблему минимизации. Общее выражение этого этапа в представленном новом способе состоит, поэтому, в том, чтобы оптимизировать целевую функцию. В зависимости от выбора алгоритма оптимизации, т.е. осуществляется ли поиск решения согласно алгоритму максимизации или минимизации, целевая функция может выбираться так, что она сохраняет главные характеристики взаимнокорреляционного свойства, которые являются нечувствительными к любому произвольному масштабу данных. Преимущество взаимнокорреляционной целевой функции состоит в том, что она делает FWI нечувствительной к масштабу вейвлета. Фактически составляющие времени прохода волновой формы соответствуют этой целевой функции. Это может быть легко видно, если целевая функция записана в частотной области, где фаза является функцией времени прохода.
Синтетический пример
Осуществимость представленного нового способа была продемонстрирована с синтетическим примером с использованием скоростной модели, показанной на Фиг.1A. В примере, 383 взрыва генерировались с расстановкой взрывов 80 м и приемники были расположены каждые 20 м. Чтобы моделировать геометрию нефиксированных приемников, для каждого взрыва удалили ближние и дальние удаления и использовали удаления от положительных 200 м до 3 км. Как предполагалось, отсутствующие данные приемников на ближних и дальних удалениях нарушают предположение фиксированных приемников. Эти взрывы кодировались, чтобы формировать измеренные кодированные данные. На каждой итерации в нелинейной инверсии, использовались все последовательные взрывы в обследовании и кодировали их 8 раз с использованием разных кодирующих функций, чтобы формировать 8 одновременных источников, чтобы вычислять средний градиент. В зависимости от того, сколько перекрестных помех присутствует в среднем градиенте, можно увеличивать количество кодирований. Это осуществлено как для целевой функции L2, так и для взаимнокорреляционной целевой функции.
Чтобы выполнять инверсию, использовался способ переменной разрешающей способности с временной оконной обработкой. В способе переменной разрешающей способности, данные подвергались оконной обработке посредством частотных диапазонов, чтобы стабилизировать проблему инверсии. Обычно сначала инвертируются данные на нижнем частотном диапазоне и модель, полученная из низкочастотной инверсии, используется в качестве начальной модели для следующего более высокого частотного диапазона. Этот способ используется, чтобы избегать схождения к неверному решению, часто указываемому как решения локальных минимумов. Фиг.1B показывает модель, полученную с использованием целевой функции L2. Ясно, артефакты могут быть видны как в поверхностной, так и в глубокой части модели. Модель на Фиг.1C является результатом использования взаимнокорреляционной целевой функции. Модель ясно показывает значительное улучшение по сравнению с моделью из Фиг.1B, подкрепляющее наблюдение, что взаимнокорреляционная мера является намного более подходящей, чтобы обрабатывать данные одновременных источников геометрии нефиксированных приемников.
Инверсия с взаимнокорреляционной целевой функцией может наталкиваться на локальные минимумы, когда записи источников, которые добавлены, расстановлены слишком близко. Расстановка записей взрывов дополнительно дальше решает эту проблему, но уменьшает количество информации, переходящей в инверсию, тем самым, ухудшая качество конечной инвертированной модели. Способ, чтобы решать этот конфликт состоит в том, чтобы разбивать все доступные записи взрывов на несколько групп, где записи взрывов, принадлежащие одной и той же группе, расстановлены дополнительно дальше. Разная группа взрывов может тогда выбираться в каждой итерации нелинейной инверсии, до тех пор, когда все группы будут использованы. Обработка может повторяться до схождения. Один способ, посредством которого это может делаться, состоит в применении кодирующих функций, которые умножают формы импульсов источников и измеренные сейсмограммы данных. Все кодирующие функции для записей данных не в выбранной группе для конкретной итерации могут устанавливаться равными нулю. Фактически, кодирующие функции могут использоваться, чтобы случайным образом выбирать взрывы в каждой группе, что будет давать результатом увеличенную расстановку взрывов, следуя идее, представленной авторами Boonyasiriwat and Schuster, 2010, где они применяют ее к разнесению фиксированных приемников и для другой цели. Это может делаться с использованием случайной кодирующей последовательности [-1,0,+1]. Этот способ для увеличения расстановки взрывов может использоваться в представленном новом способе для уменьшения шума перекрестных помех для нестационарных приемников. Могут разрабатываться другие способы для достижения большего разделения взрывов в меньших группах записей взрывов.
Последующее является примером применения стратегии, описанной выше.
Осуществимость этого подхода демонстрируется с помощью синтетического примера. Имеются 383 взрыва, сгенерированные с расстановкой взрывов 20 м, и приемники помещаются каждые 10 м. Чтобы моделировать геометрию нефиксированных приемников, для каждого взрыва используются удаления от положительных 200 м до 3 км. Эти взрывы кодируются, чтобы формировать измеренные кодированные данные. На каждой итерации в нелинейной инверсии, используются 8 одновременных источников, чтобы вычислять средний градиент. Фиг.3 показывает сумму 4 взрывов, которые близко расстановлены (здесь 20 м), тогда как Фиг.4 показывает сумму 4 взрывов, которые находятся более далеко (здесь 100 м). Базовая идея состоит в том, что увеличение разделения взрывов уменьшает компоненту перекрестных помех в целевой функции; однако слишком большое разделение ведет к разрывам в данных, которые уменьшают возможность обновлять модель. Как указано выше, эта ситуация может смягчаться посредством выбора нескольких групп, чтобы формировать кодированные взрывы. Каждая группа имеет хорошо разделенные взрывы, но использование нескольких из этих групп заполняет пространственные разрывы, которые бы в противном случае оставались, если выбирается только одна группа. Для примера, представленного здесь, на каждой итерации выбираются 4 группы и для каждой группы используются 2 реализации, при этом реализация является моделированием одновременных источников с различным набором кодирующих функций. Таким образом, в целом, имеется 8 кодированных одновременных взрывов в расчете на итерацию. Для сравнения, инверсия была выполнена с кодированными взрывами, которые были близко расстановлены, с 8 реализациями в расчете на итерацию. Фиг.5A является истинной моделью, используемой в этом примере. Фиг.5B показывает результаты из инверсии одновременных источников, когда источники являются близко расстановленными. Вследствие присутствия перекрестных помех в модели, инверсия не смогла найти подходящее обновление после 50 итераций. Графическое изображение модели на 50ой итерации приведено на Фиг.5B. Для сравнения, графическое изображение модели от 50ой итерации, когда взрывы являются хорошо разделенными, представлено на Фиг.5C. Не было никакой проблемы схождения в процессе инверсии. Имеется намного более хорошее согласие между Фиг.5C и 5A, чем между Фиг.5B и 5A.
Вышеизложенная заявка направлена на конкретные варианты осуществления настоящего изобретения с целью ее иллюстрации. Однако специалисту в данной области техники, должно быть ясно, что являются возможными многие модификации и изменения с вариантами осуществления, здесь описанными. Предполагаются, что все такие модификации и изменения находятся в объеме настоящего изобретения, как определяется в прилагаемой формуле изобретения. Специалисты в данной области техники должны легко распознать, что в предпочтительных вариантах осуществления изобретения, по меньшей мере, некоторые из этапов в представленном новом способе выполняются на компьютере, т.е. изобретение является компьютерно-реализуемым. В таких случаях, результирующая обновленная модель физических свойств может либо загружаться, отображаться, либо сохраняться в компьютерном хранилище.
ССЫЛКИ
1. Tarantola, A., "Inversion of seismic reflection data in the acoustic approximation," Geophysics 49, 1259-1266 (1984).
2. Sirgue, L., and Pratt G. "Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies," Geophysics 69, 231-248 (2004).
3. Fallat, M. R., Dosso, S. E., "Geoacoustic inversion via local, global, and hybrid algorithms," Journal of the Acoustical Society of America 105, 3219-3230 (1999).
4. Hinkley, D. and Krebs, J., "Gradient computation for simultaneous source inversion", публикация патентной заявки PCT номер WO 2009/117174.
5. Krebs, J. R., Anderson, J. A., Neelamani, R., Hinkley, D., Jing, C., Dickens, T., Krohn, C., Traynin, P., "Iterative inversion of data from simultaneous geophysical sources," PCT Patent Application Publication No. WO 2008/042081.
6. Van Manen, D. J., Robertsson, J.O.A., Curtis, A., "Making wave by time reversal," SEG International Exposition and 75th Annual Meeting Expanded Abstracts, 1763-1766 (2005).
7. Berkhout, A. J., "Areal shot record technology," Journal of Seismic Exploration 1, 251-264(1992).
8. Zhang, Y., Sun, J., Notfors, C., Gray, S. H., Cherris, L., Young, J., "Delayed-shot 3D depth migration," Geophysics 70, E21-E28 (2005).
9. Van Riel, P., and Hendrik, W. J. D., "Method of estimating elastic and compositional parameters from seismic and echo-acoustic data", Патент США номер 6,876,928 (2005).
10. Mora, P., "Nonlinear two-dimensional elastic inversion of multi-offset seismic data," Geophysics 52, 1211-1228(1987).
11. Ober, C. C., Romero, L. A., Ghiglia, D. C., "Method of Migrating Seismic Records", Патент США номер 6,021,094 (2000).
12. Ikelle, L. T., "Multi-shooting approach to seismic modeling and acquisition", Патент США номер 6,327,537(2001).
13. Romero, L. A., Ghiglia, D. C., Ober, C. C., Morton, S. A., "Phase encoding of shot records in prestack migration," Geophysics 65,426-436 (2000).
14. Jing X., Finn, C. J., Dickens, T. A., Willen, D. E., "Encoding multiple shot gathers in prestack migration," SEG International Exposition and 70th Annual Meeting Expanded Abstracts, 786-789 (2000).
15. Haber, E., Chung M. and Herrmann, "An effective method for parameter estimation with PDE constraints with multiple right hand sides," Preprint - UBC http://www.math.ubc.ca/~haber/pubs/PdeOptStochV5.pdf (2010).
16. Jerome R. Krebs, John E. Anderson, David Hinkley, Ramesh Neelamani, Sunwoong Lee, Anatoly Baumstein, and Martin-Daniel Lacasse, "Full-wavefield seismic inversion using encoded sources," Geophysics 74-6, WCC177-WCC188 (2009).
17. Boonyasiriwat, C., and Schuster, G., "3D Multisource full-waveform inversion using dynamic random phase encoding," SEG Expanded Abstracts 29, 1044-1049 (2010).

Claims (27)

1. Компьютерно-реализуемый способ инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, содержащий следующие этапы, при этом все из суммирования, моделирования, вычисления и обновления выполняются на компьютере, который запрограммирован, чтобы выполнять их:
(a) получение группы из двух или более кодированных сейсмограмм измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников не является действительным, при этом каждая сейсмограмма ассоциирована с одиночным обобщенным источником или, альтернативно, с одиночным приемником, и при этом каждая сейсмограмма кодирована с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций;
(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех, или выбранных, записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику или, альтернативно, одиночному источнику, и повторение для каждого другого приемника или, альтернативно, для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму;
(c) предположение модели физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения по меньшей мере одного физического свойства в местоположениях всюду по области геологической среды;
(d) моделирование синтетической одновременной кодированной сейсмограммы данных с использованием предполагаемой модели физических свойств, при этом при моделировании используют кодированные формы импульсов источников и при этом полная одновременная кодированная сейсмограмма моделируется в одиночной операции моделирования;
(e) вычисление целевой функции, измеряющей взаимную корреляцию между одновременной кодированной сейсмограммой измеренных данных и смоделированной одновременной кодированной сейсмограммой;
(f) обновление модели физических свойств посредством оптимизации целевой функции;
(g) итерационное повторение этапов (a)-(f) по меньшей мере еще один раз с использованием обновленной модели физических свойств из предыдущей итерации в качестве предполагаемой модели физических свойств на этапе (с), что дает результатом дополнительную обновленную модель физических свойств; и
(h) загрузку, отображение или сохранение дополнительной обновленной модели физических свойств в компьютерное хранилище.
2. Способ по п. 1, в котором целевая функция φ задается посредством или является математически эквивалентной следующему:
Figure 00000032

где
Figure 00000033
являются одновременной кодированной сейсмограммой
измеренных данных, и
Figure 00000034
являются смоделированной одновременной кодированной сейсмограммой, включающей в себя трассы смоделированных данных для всех местоположений приемников, активных или неактивных в течение конкретного взрыва, и ||…|| обозначает выбранную норму.
3. Способ по п. 2, дополнительно содержащий аппроксимацию целевой функции посредством:
Figure 00000035

где
Figure 00000036
являются смоделированной одновременной кодированной сейсмограммой, такой что трассы, соответствующие приемникам, которые являются неактивными в течение конкретного взрыва, заменяются нулями до кодирования.
4. Способ по п. 1, в котором кодирующая функция, используемая в отношении сейсмограммы на этапе (а), изменяется в по меньшей мере одной из упомянутых итераций.
5. Способ по п. 4, в котором на каждой итерации два или более наборов кодирующих функций используются и предназначены, чтобы получать средний градиент целевой функции.
6. Способ по п. 1, в котором все кодирующие функции изменяются в каждой итерации.
7. Способ по п. 1, дополнительно содержащий получение по меньшей мере одной дополнительной группы из двух или более кодированных сейсмограмм измеренных геофизических данных как на этапе (а), и выполнение этапа (b) для каждой дополнительной группы, затем накопление соответствующих вычисленных целевых функций с этапа (е), при этом обновление модели физических свойств на этапе (f) определяется посредством максимизации накопленных вычисленных целевых функций.
8. Способ по п. 1, в котором упомянутые кодированные сейсмограммы измеренных данных кодируются посредством временной свертки всех трасс из сейсмограммы с кодирующей функцией, выбранной для сейсмограммы.
9. Способ по п. 1, в котором упомянутые две или более кодированных сейсмограмм измеренных данных получаются посредством получения сейсмограмм данных из геофизического обследования, в котором данные получаются из множества одновременно работающих, однозначно кодированных устройств источника.
10. Способ по п. 1, в котором измеренные геофизические данные пребывают из сейсмического обследования области геологической среды.
11. Способ по п. 10, в котором обобщенные сейсмические источники являются либо все точечными источниками, либо все источниками плоской волны.
12. Способ по п. 1, в котором кодированные формы импульсов источников, используемые в моделировании синтетической одновременной кодированной сейсмограммы, либо используют одни и те же кодирующие функции, используемые, чтобы кодировать одновременную кодированную сейсмограмму измеренных данных, либо являются функциями, созданными посредством временной свертки измеренных или оцененных форм импульсов источников с одной и той же кодирующей функцией, используемой, чтобы кодировать соответствующую измеренную сейсмограмму на этапе (а), при этом измеренные геофизические данные включают в себя измеренные или оцененные формы импульсов источников каждой активации источников.
13. Способ по п. 8, в котором кодирующие функции имеют тип, выбранный из группы, состоящей из линейного кодирования, кодирования со случайной фазой, с линейной частотной модуляцией, модифицированной линейной частотной модуляцией, случайным временным сдвигом и частотно-независимой фазой.
14. Способ по п. 8, в котором кодирующие функции имеют один тип для некоторых источников и другой тип для других источников.
15. Способ по п. 1, в котором кодирующие функции оптимизированы, чтобы улучшать качество целевой функции.
16. Способ по п. 1, в котором моделирование на этапе (d) выполняется с кодом моделирования на основе конечных разностей, конечных элементов или конечных объемов.
17. Способ по п. 10, в котором модель физических свойств является моделью сейсмической волновой скорости, сейсмических упругих параметров, сейсмических параметров анизотропии или сейсмических параметров квазиупругости.
18. Способ по п. 1, в котором для обновления модели используется способ глобальной оптимизации целевой функции, выбранный из группы, состоящей из Монте-Карло, искусственного аннилинга, генетического или эволюционного алгоритма.
19. Способ по п. 1, в котором для обновления модели используется способ локальной оптимизации целевой функции, выбранный из группы, состоящей из градиентного линейного поиска, сопряженных градиентов и метода Ньютона.
20. Способ по п. 1, в котором максимизация целевой функции содержит вычисление градиента целевой функции по отношению к параметрам модели физических свойств.
21. Способ по п. 1, в котором кодирование выполняется посредством умножения каждой сейсмограммы и каждой формы импульсов источника на выбранную кодирующую функцию, при этом на каждой итерации с этапа (g) одна или более кодирующих функций устанавливаются равными нулю, так что записи данных, не обнуленные, соответствуют местоположениям активации источников, которые являются более разделенными, в среднем, чем в измеренных геофизических данных до кодирования, при этом в ходе итераций используются все записи данных, т.е. которые не являются обнуленными.
22. Способ по п. 21, в котором кодирующие функции используются, чтобы случайным образом выбирать взрывы в каждой итерации, что дает результатом увеличенную расстановку взрывов.
23. Способ по п. 1, в котором измеренные геофизические данные, которые инвертируются, являются сейсмическими данными полного волнового поля.
24. Компьютерно-реализуемый способ инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, содержащий:
(а) получение измеренных геофизических данных от геофизического обследования области геологической среды, в котором предположение фиксированных приемников не было действительным;
(b) использование запрограммированного компьютера, чтобы инвертировать измеренные данные посредством итеративной инверсии, содержащей использование предполагаемой или обновленной модели физических свойств, чтобы одновременно моделировать данные обследования, представляющие множество источников обследования или, альтернативно, множество приемников, при этом формы импульсов источников или приемников в моделировании кодируются, что дает результатом смоделированную одновременную кодированную сейсмограмму геофизических данных, при этом инверсия дополнительно содержит определение обновления модели для следующей итерации посредством оптимизации целевой функции, измеряющей взаимную корреляцию между смоделированной одновременной кодированной сейсмограммой и соответствующей одновременно кодированной сейсмограммой измеренных геофизических данных; и
(c) загрузку или отображение обновленной модели физических свойств или сохранение ее в компьютерной памяти или хранилище данных.
25. Способ по п. 24, в котором некоторые или все из геофизических данных разбиваются на множество групп данных таким способом, который увеличивает разделение между местоположениями активации источников внутри каждой группы данных по сравнению с некоторыми или всеми из геофизических данных до разбиения, и смоделированная одновременная кодированная сейсмограмма для каждой итерации соответствует разной группе данных со всеми группами, которые используются в ходе итераций.
26. Используемый компьютером постоянный носитель, в котором воплощен машиночитаемый программный код, причем данный машиночитаемый программный код выполнен с возможностью исполняться, чтобы осуществлять способ инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, при этом упомянутый способ содержит:
(a) ввод группы из двух или более кодированных сейсмограмм измеренных геофизических данных, при этом каждая сейсмограмма ассоциирована с одиночным обобщенным источником или, альтернативно, с одиночным приемником, и при этом каждая сейсмограмма кодирована с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций;
(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику или, альтернативно, одиночному источнику, и повторение для каждого другого приемника или, альтернативно, для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму;
(c) ввод модели физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения по меньшей мере одного физического свойства в местоположениях всюду по области геологической среды;
(d) моделирование синтетической одновременной кодированной сейсмограммы данных с использованием предполагаемой модели физических свойств, при этом моделирование использует кодированные формы импульсов источников и при этом полная одновременная кодированная сейсмограмма моделируется в одиночной операции моделирования;
(e) вычисление целевой функции, измеряющей взаимную корреляцию между одновременной кодированной сейсмограммой измеренных данных и смоделированной одновременной кодированной сейсмограммой;
(f) обновление модели физических свойств посредством оптимизации целевой функции; и
(g) итерационное повторение этапов (а)-(f) по меньшей мере еще один раз с использованием обновленной модели физических свойств из предыдущей итерации в качестве предполагаемой модели физических свойств на этапе (с), что дает результатом дополнительную обновленную модель физических свойств.
27. Способ добычи углеводородов из области геологической среды, содержащий:
(a) выполнение сейсмического обследования области геологической среды, при этом предположение фиксированных приемников инверсии одновременных кодированных источников не является удовлетворенным;
(b) получение скоростной модели области геологической среды, определенной посредством способа, содержащего:
инвертирование измеренных данных обследования посредством итеративной инверсии, содержащей использование предполагаемой или обновленной скоростной модели, чтобы одновременно моделировать данные обследования, представляющие множество источников обследования или, альтернативно, множество приемников, при этом формы импульсов источников или приемников в моделировании кодируются, что дает результатом смоделированную одновременную кодированную сейсмограмму геофизических данных, при этом инверсия дополнительно содержит определение обновления скоростной модели для следующей итерации посредством оптимизации целевой функции, измеряющей взаимную корреляцию между смоделированной одновременной кодированной сейсмограммой и соответствующей одновременно кодированной сейсмограммой измеренных данных;
(c) бурение скважины в слое в области геологической среды, идентифицированной по меньшей мере частично из интерпретации структуры в области геологической среды, созданной с использованием обновленной скоростной модели с этапа (b); и
(d) добычу углеводородов из скважины.
RU2013129772/28A 2010-12-01 2011-09-01 Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией RU2587498C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41869410P 2010-12-01 2010-12-01
US61/418,694 2010-12-01
US201161509904P 2011-07-20 2011-07-20
US61/509,904 2011-07-20
PCT/US2011/050209 WO2012074592A1 (en) 2010-12-01 2011-09-01 Simultaneous source inversion for marine streamer data with cross-correlation objective function

Publications (2)

Publication Number Publication Date
RU2013129772A RU2013129772A (ru) 2015-01-10
RU2587498C2 true RU2587498C2 (ru) 2016-06-20

Family

ID=46163017

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129772/28A RU2587498C2 (ru) 2010-12-01 2011-09-01 Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией

Country Status (11)

Country Link
US (1) US8688381B2 (ru)
EP (1) EP2646944A4 (ru)
KR (1) KR101797451B1 (ru)
CN (1) CN103238158B (ru)
AU (1) AU2011337143B2 (ru)
BR (1) BR112013008503A2 (ru)
CA (1) CA2815054C (ru)
MY (1) MY160148A (ru)
RU (1) RU2587498C2 (ru)
SG (1) SG189850A1 (ru)
WO (1) WO2012074592A1 (ru)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771865C (en) * 2009-10-23 2016-04-05 Exxonmobil Upstream Research Company Method for optimization with gradient information
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
AU2012233133B2 (en) 2011-03-30 2014-11-20 Exxonmobil Upstream Research Company Convergence rate of full wavefield inversion using spectral shaping
US9176930B2 (en) * 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
US9453928B2 (en) 2012-03-06 2016-09-27 Westerngeco L.L.C. Methods and computing systems for processing data
US20130242693A1 (en) * 2012-03-13 2013-09-19 Seoul National University R&Db Foundation Seismic imaging system using a reverse time migration algorithm
WO2014084945A1 (en) 2012-11-28 2014-06-05 Exxonmobil Upstream Resarch Company Reflection seismic data q tomography
GB2510873A (en) 2013-02-15 2014-08-20 Total Sa Method of modelling a subsurface volume
GB2510872A (en) * 2013-02-15 2014-08-20 Total Sa Method of modelling a subsurface volume
CA2886798C (en) * 2013-03-15 2022-08-30 Chevron U.S.A. Inc. Beam inversion by monte carlo back projection
CN105308479B (zh) 2013-05-24 2017-09-26 埃克森美孚上游研究公司 通过与偏移距相关的弹性fwi的多参数反演
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US10871584B2 (en) 2013-06-17 2020-12-22 Westerngeco L.L.C. Seismic data processing
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
US20150019180A1 (en) * 2013-07-12 2015-01-15 Jonathan Liu Model Replacement in a Local Region by Inversion
EP3351972A1 (en) 2013-08-23 2018-07-25 Exxonmobil Upstream Research Company Iterative inversion of field-encoded seismic data based on constructing pseudo super-source records
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
EP3069171B1 (en) 2013-11-12 2021-08-25 Westerngeco LLC Seismic data processing
US9910189B2 (en) 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
WO2015159151A2 (en) * 2014-04-14 2015-10-22 Cgg Services Sa Method for iterative inversion of data from non-encoded composite sources
CA2947847C (en) * 2014-05-09 2018-08-14 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
CN106662739B (zh) 2014-06-03 2020-06-12 Mtt创新公司 应用于成像、照明和投影的高效的动态高对比度透镜作用
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
CA2947410A1 (en) 2014-06-17 2015-12-30 Exxonmobil Upstream Research Company Fast viscoacoustic and viscoelastic full-wavefield inversion
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) * 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US9921324B2 (en) 2014-08-13 2018-03-20 Chevron U.S.A. Inc. Systems and methods employing upward beam propagation for target-oriented seismic imaging
US20160061986A1 (en) * 2014-08-27 2016-03-03 Schlumberger Technology Corporation Formation Property Characteristic Determination Methods
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
WO2016064462A1 (en) 2014-10-20 2016-04-28 Exxonmobil Upstream Research Company Velocity tomography using property scans
US10359532B2 (en) 2014-12-10 2019-07-23 Schlumberger Technology Corporation Methods to characterize formation properties
EP3234659A1 (en) 2014-12-18 2017-10-25 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
SG11201704620WA (en) 2015-02-13 2017-09-28 Exxonmobil Upstream Res Co Efficient and stable absorbing boundary condition in finite-difference calculations
US10670750B2 (en) 2015-02-17 2020-06-02 Exxonmobil Upstream Research Company Multistage full wavefield inversion process that generates a multiple free data set
WO2016195774A1 (en) 2015-06-04 2016-12-08 Exxonmobil Upstream Research Company Method for generating multiple free seismic images
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
RU2693495C1 (ru) 2015-10-02 2019-07-03 Эксонмобил Апстрим Рисерч Компани Полная инверсия волнового поля с компенсацией показателя качества
KR102021276B1 (ko) 2015-10-15 2019-09-16 엑손모빌 업스트림 리서치 캄파니 진폭 보존을 갖는 fwi 모델 도메인 각도 스택들
CN105572742B (zh) * 2015-12-21 2018-08-10 中国石油天然气集团公司 一种确定海水深度的方法和装置
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
EP3458883A1 (en) * 2016-05-20 2019-03-27 Exxonmobil Research And Engineering Company Shape-based geophysical parameter inversion
WO2018013257A1 (en) * 2016-07-13 2018-01-18 Exxonmobil Upstream Research Company Joint full wavefield inversion of p-wave velocity and attenuation using an efficient first order optimization
US10871585B2 (en) * 2016-08-03 2020-12-22 Harris Corporation System for processing seismic data based upon linear optimization and related methods
CN106646615B (zh) * 2016-12-29 2018-12-25 中国石油天然气集团公司 一种面波频散曲线的数据处理方法及装置
US10908305B2 (en) 2017-06-08 2021-02-02 Total Sa Method for evaluating a geophysical survey acquisition geometry over a region of interest, related process, system and computer program product
CA3068710A1 (en) * 2017-07-06 2019-01-10 Chevron U.S.A. Inc. System and method for full waveform inversion of seismic data
US11656377B2 (en) * 2018-03-30 2023-05-23 Cgg Services Sas Visco-acoustic full waveform inversion of velocity and Q
US11231516B2 (en) 2018-05-15 2022-01-25 Exxonmobil Upstream Research Company Direct migration of simultaneous-source survey data
US11372123B2 (en) 2019-10-07 2022-06-28 Exxonmobil Upstream Research Company Method for determining convergence in full wavefield inversion of 4D seismic data
CN112698389B (zh) * 2019-10-22 2024-02-20 中国石油化工股份有限公司 一种地震资料反演成像方法及装置
CN113484914B (zh) * 2021-07-13 2023-09-12 中海石油(中国)有限公司 海上风浪一致性影响量板制作方法、***、介质及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798982A (en) * 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
US6549854B1 (en) * 1999-02-12 2003-04-15 Schlumberger Technology Corporation Uncertainty constrained subsurface modeling
US20080189043A1 (en) * 2007-02-06 2008-08-07 Conocophillips Company Direct Time Lapse Inversion of Seismic Data
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data
US20100018718A1 (en) * 2006-09-28 2010-01-28 Krebs Jerome R Iterative inversion of data from simultaneous geophysical sources

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3864667A (en) 1970-09-11 1975-02-04 Continental Oil Co Apparatus for surface wave parameter determination
US3984805A (en) 1973-10-18 1976-10-05 Daniel Silverman Parallel operation of seismic vibrators without phase control
US4168485A (en) 1974-08-12 1979-09-18 Continental Oil Company Simultaneous use of pseudo-random control signals in vibrational exploration methods
US4675851A (en) 1982-09-09 1987-06-23 Western Geophysical Co. Method for seismic exploration
US4545039A (en) 1982-09-09 1985-10-01 Western Geophysical Co. Of America Methods for seismic exploration
US4575830A (en) 1982-10-15 1986-03-11 Schlumberger Technology Corporation Indirect shearwave determination
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
US4562540A (en) 1982-11-12 1985-12-31 Schlumberger Technology Corporation Diffraction tomography system and methods
FR2543306B1 (fr) 1983-03-23 1985-07-26 Elf Aquitaine Procede et dispositif pour l'optimisation des donnees sismiques
US4924390A (en) 1985-03-04 1990-05-08 Conoco, Inc. Method for determination of earth stratum elastic parameters using seismic energy
US4715020A (en) 1986-10-29 1987-12-22 Western Atlas International, Inc. Simultaneous performance of multiple seismic vibratory surveys
FR2589587B1 (fr) 1985-10-30 1988-02-05 Inst Francais Du Petrole Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre
US4707812A (en) 1985-12-09 1987-11-17 Atlantic Richfield Company Method of suppressing vibration seismic signal correlation noise
US4823326A (en) 1986-07-21 1989-04-18 The Standard Oil Company Seismic data acquisition technique having superposed signals
US4686654A (en) 1986-07-31 1987-08-11 Western Geophysical Company Of America Method for generating orthogonal sweep signals
US4766574A (en) 1987-03-31 1988-08-23 Amoco Corporation Method for depth imaging multicomponent seismic data
US4953657A (en) 1987-11-30 1990-09-04 Halliburton Geophysical Services, Inc. Time delay source coding
US4969129A (en) 1989-09-20 1990-11-06 Texaco Inc. Coding seismic sources
US4982374A (en) 1989-10-23 1991-01-01 Halliburton Geophysical Services, Inc. Method of source coding and harmonic cancellation for vibrational geophysical survey sources
GB9011836D0 (en) 1990-05-25 1990-07-18 Mason Iain M Seismic surveying
US5469062A (en) 1994-03-11 1995-11-21 Baker Hughes, Inc. Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements
GB2322704B (en) 1994-07-07 1998-12-09 Geco As Method of Processing seismic data
US5583825A (en) 1994-09-02 1996-12-10 Exxon Production Research Company Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data
AU697195B2 (en) 1995-04-18 1998-10-01 Schlumberger Seismic Holdings Limited Uniform subsurface coverage at steep dips
US5924049A (en) 1995-04-18 1999-07-13 Western Atlas International, Inc. Methods for acquiring and processing seismic data
US5721710A (en) 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5719821A (en) 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
US5822269A (en) 1995-11-13 1998-10-13 Mobil Oil Corporation Method for separation of a plurality of vibratory seismic energy source signals
US5715213A (en) 1995-11-13 1998-02-03 Mobil Oil Corporation High fidelity vibratory source seismic method using a plurality of vibrator sources
US5790473A (en) 1995-11-13 1998-08-04 Mobil Oil Corporation High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
GB9612471D0 (en) 1996-06-14 1996-08-14 Geco As Method and apparatus for multiple seismic vibratory surveys
US5878372A (en) 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US5999489A (en) 1997-03-21 1999-12-07 Tomoseis Inc. High vertical resolution crosswell seismic imaging
US6014342A (en) 1997-03-21 2000-01-11 Tomo Seis, Inc. Method of evaluating a subsurface region using gather sensitive data discrimination
US5920828A (en) 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
FR2765692B1 (fr) 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
GB2329043B (en) 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999488A (en) 1998-04-27 1999-12-07 Phillips Petroleum Company Method and apparatus for migration by finite differences
US6219621B1 (en) 1998-06-30 2001-04-17 Exxonmobil Upstream Research Co. Sparse hyperbolic inversion of seismic data
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6574564B2 (en) 1998-10-01 2003-06-03 Institut Francais Du Petrole 3D prestack seismic data migration method
FR2784195B1 (fr) 1998-10-01 2000-11-17 Inst Francais Du Petrole Methode pour realiser en 3d avant sommation, une migration de donnees sismiques
US6225803B1 (en) 1998-10-29 2001-05-01 Baker Hughes Incorporated NMR log processing using wavelet filter and iterative inversion
US6021094A (en) 1998-12-03 2000-02-01 Sandia Corporation Method of migrating seismic records
US6754588B2 (en) 1999-01-29 2004-06-22 Platte River Associates, Inc. Method of predicting three-dimensional stratigraphy using inverse optimization techniques
US6058073A (en) 1999-03-30 2000-05-02 Atlantic Richfield Company Elastic impedance estimation for inversion of far offset seismic sections
FR2792419B1 (fr) 1999-04-16 2001-09-07 Inst Francais Du Petrole Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
GB9927395D0 (en) 1999-05-19 2000-01-19 Schlumberger Holdings Improved seismic data acquisition method
US6327537B1 (en) 1999-07-19 2001-12-04 Luc T. Ikelle Multi-shooting approach to seismic modeling and acquisition
FR2798197B1 (fr) 1999-09-02 2001-10-05 Inst Francais Du Petrole Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
EP2296013B1 (en) 1999-10-22 2016-03-30 CGG Services (NL) B.V. Method of estimating elastic and compositional parameters from seismic and echo-acoustic data
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
FR2800473B1 (fr) 1999-10-29 2001-11-30 Inst Francais Du Petrole Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques
CN1188710C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 估算地震介质特性的***和方法
CN1188711C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 用于地震波场分离的***和方法
US6826486B1 (en) 2000-02-11 2004-11-30 Schlumberger Technology Corporation Methods and apparatus for predicting pore and fracture pressures of a subsurface formation
FR2805051B1 (fr) 2000-02-14 2002-12-06 Geophysique Cie Gle Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques
GB2359363B (en) 2000-02-15 2002-04-03 Geco Prakla Processing simultaneous vibratory seismic data
US6687659B1 (en) 2000-03-24 2004-02-03 Conocophillips Company Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications
US6317695B1 (en) 2000-03-30 2001-11-13 Nutec Sciences, Inc. Seismic data processing method
US6687619B2 (en) 2000-10-17 2004-02-03 Westerngeco, L.L.C. Method of using cascaded sweeps for source coding and harmonic cancellation
AU2002239619A1 (en) 2000-12-08 2002-06-18 Peter J. Ortoleva Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories
FR2818753B1 (fr) 2000-12-21 2003-03-21 Inst Francais Du Petrole Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires
FR2821677B1 (fr) 2001-03-05 2004-04-30 Geophysique Cie Gle Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees
US6751558B2 (en) 2001-03-13 2004-06-15 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6927698B2 (en) 2001-08-27 2005-08-09 Larry G. Stolarczyk Shuttle-in receiver for radio-imaging underground geologic structures
US6545944B2 (en) 2001-05-30 2003-04-08 Westerngeco L.L.C. Method for acquiring and processing of data from two or more simultaneously fired sources
US6882958B2 (en) 2001-06-28 2005-04-19 National Instruments Corporation System and method for curve fitting using randomized techniques
GB2379013B (en) 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6593746B2 (en) 2001-08-27 2003-07-15 Larry G. Stolarczyk Method and system for radio-imaging underground geologic structures
US7672824B2 (en) 2001-12-10 2010-03-02 Westerngeco L.L.C. Method for shallow water flow detection
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US7330799B2 (en) 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves
US6842701B2 (en) 2002-02-25 2005-01-11 Westerngeco L.L.C. Method of noise removal for cascaded sweep data
GB2387226C (en) 2002-04-06 2008-05-12 Westerngeco Ltd A method of seismic surveying
FR2839368B1 (fr) 2002-05-06 2004-10-01 Total Fina Elf S A Methode de decimation de traces sismiques pilotee par le trajet sismique
US6832159B2 (en) 2002-07-11 2004-12-14 Schlumberger Technology Corporation Intelligent diagnosis of environmental influence on well logs with model-based inversion
FR2843202B1 (fr) 2002-08-05 2004-09-10 Inst Francais Du Petrole Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration
WO2004034088A2 (en) 2002-10-04 2004-04-22 Paradigm Geophysical Corporation Method and system for limited frequency seismic imaging
GB2396448B (en) 2002-12-21 2005-03-02 Schlumberger Holdings System and method for representing and processing and modeling subterranean surfaces
US6735527B1 (en) 2003-02-26 2004-05-11 Landmark Graphics Corporation 3-D prestack/poststack multiple prediction
US6999880B2 (en) 2003-03-18 2006-02-14 The Regents Of The University Of California Source-independent full waveform inversion of seismic data
WO2004095072A2 (en) 2003-03-27 2004-11-04 Exxonmobil Upstream Research Company Method to convert seismic traces into petrophysical property logs
WO2004095073A2 (en) 2003-04-01 2004-11-04 Exxonmobil Upstream Research Company Shaped high frequency vibratory source
US7072767B2 (en) 2003-04-01 2006-07-04 Conocophillips Company Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
GB2400438B (en) 2003-04-11 2005-06-01 Westerngeco Ltd Determination of waveguide parameters
US6970397B2 (en) 2003-07-09 2005-11-29 Gas Technology Institute Determination of fluid properties of earth formations using stochastic inversion
US6882938B2 (en) 2003-07-30 2005-04-19 Pgs Americas, Inc. Method for separating seismic signals from two or more distinct sources
US6944546B2 (en) 2003-10-01 2005-09-13 Halliburton Energy Services, Inc. Method and apparatus for inversion processing of well logging data in a selected pattern space
US6901333B2 (en) 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
US7046581B2 (en) 2003-12-01 2006-05-16 Shell Oil Company Well-to-well tomography
US20050128874A1 (en) 2003-12-15 2005-06-16 Chevron U.S.A. Inc. Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources
WO2005096018A1 (en) * 2004-03-17 2005-10-13 Westerngeco Seismic Holdings Ltd. Marine seismic survey method and system
US7791980B2 (en) 2004-05-21 2010-09-07 Westerngeco L.L.C. Interpolation and extrapolation method for seismic recordings
FR2872584B1 (fr) 2004-06-30 2006-08-11 Inst Francais Du Petrole Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires
US7646924B2 (en) 2004-08-09 2010-01-12 David Leigh Donoho Method and apparatus for compressed sensing
US7480206B2 (en) 2004-09-13 2009-01-20 Chevron U.S.A. Inc. Methods for earth modeling and seismic imaging using interactive and selective updating
GB2422433B (en) 2004-12-21 2008-03-19 Sondex Wireline Ltd Method and apparatus for determining the permeability of earth formations
US7373251B2 (en) 2004-12-22 2008-05-13 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US7230879B2 (en) 2005-02-12 2007-06-12 Chevron U.S.A. Inc. Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects
WO2006090374A2 (en) 2005-02-22 2006-08-31 Paradigm Geophysical Ltd. Multiple suppression in angle domain time and depth migration
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
WO2006122146A2 (en) 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
WO2007018862A2 (en) * 2005-07-27 2007-02-15 Exxonmobil Upstream Research Company Well modeling associated with extraction of hydrocarbons from subsurface formations
US7405997B2 (en) 2005-08-11 2008-07-29 Conocophillips Company Method of accounting for wavelet stretch in seismic data
AU2006302736A1 (en) 2005-10-18 2007-04-26 Sinvent As Geological response data imaging with stream processors
AU2006235820B2 (en) 2005-11-04 2008-10-23 Westerngeco Seismic Holdings Limited 3D pre-stack full waveform inversion
FR2895091B1 (fr) 2005-12-21 2008-02-22 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique par des donnees sismiques
GB2436626B (en) 2006-03-28 2008-08-06 Westerngeco Seismic Holdings Method of evaluating the interaction between a wavefield and a solid body
US7620534B2 (en) 2006-04-28 2009-11-17 Saudi Aramco Sound enabling computerized system for real time reservoir model calibration using field surveillance data
US20070274155A1 (en) 2006-05-25 2007-11-29 Ikelle Luc T Coding and Decoding: Seismic Data Modeling, Acquisition and Processing
US7725266B2 (en) 2006-05-31 2010-05-25 Bp Corporation North America Inc. System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling
US7599798B2 (en) 2006-09-11 2009-10-06 Westerngeco L.L.C. Migrating composite seismic response data to produce a representation of a seismic volume
GB2455664B (en) 2006-09-13 2011-02-16 Exxonmobil Upstream Res Co Rapid inversion of electromagnetic reconnaissance survey data
EP2104869B1 (en) 2007-01-20 2012-01-25 Spectraseis AG Time reverse reservoir localization
JP2009063942A (ja) 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
US20090070042A1 (en) 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
US20090083006A1 (en) 2007-09-20 2009-03-26 Randall Mackie Methods and apparatus for three-dimensional inversion of electromagnetic data
US20090164186A1 (en) 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
NZ586591A (en) 2008-01-08 2012-05-25 Exxonmobil Upstream Res Co Spectral shaping inversion and migration of seismic data
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
EP2105765A1 (en) 2008-03-28 2009-09-30 Schlumberger Holdings Limited Simultaneous inversion of induction data for dielectric permittivity and electric conductivity
EP2265975A4 (en) 2008-03-28 2017-05-24 Exxonmobil Upstream Research Company Surface wave mitigation in spatially inhomogeneous media
US8275592B2 (en) 2008-04-07 2012-09-25 Westerngeco L.L.C. Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data
US8494777B2 (en) 2008-04-09 2013-07-23 Schlumberger Technology Corporation Continuous microseismic mapping for real-time 3D event detection and location
US8345510B2 (en) 2008-06-02 2013-01-01 Pgs Geophysical As Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s)
US20120095690A1 (en) * 2008-08-01 2012-04-19 Higginbotham Joseph H Methods and computer-readable medium to implement inversion of angle gathers for rock physics reflectivity attributes
US8559270B2 (en) 2008-08-15 2013-10-15 Bp Corporation North America Inc. Method for separating independent simultaneous sources
CA2731985C (en) 2008-08-15 2016-10-25 Bp Corporation North America Inc. Method for separating independent simultaneous sources
US20100054082A1 (en) 2008-08-29 2010-03-04 Acceleware Corp. Reverse-time depth migration with reduced memory requirements
US8296069B2 (en) * 2008-10-06 2012-10-23 Bp Corporation North America Inc. Pseudo-analytical method for the solution of wave equations
US7616523B1 (en) 2008-10-22 2009-11-10 Pgs Geophysical As Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth
US9213119B2 (en) 2008-10-29 2015-12-15 Conocophillips Company Marine seismic acquisition
US20100118651A1 (en) 2008-11-10 2010-05-13 Chevron U.S.A. Inc. Method for generation of images related to a subsurface region of interest
US20100142316A1 (en) 2008-12-07 2010-06-10 Henk Keers Using waveform inversion to determine properties of a subsurface medium
US8095345B2 (en) 2009-01-20 2012-01-10 Chevron U.S.A. Inc Stochastic inversion of geophysical data for estimating earth model parameters
US9052410B2 (en) 2009-02-12 2015-06-09 Conocophillips Company Multiple seismic signal inversion
US8352190B2 (en) 2009-02-20 2013-01-08 Exxonmobil Upstream Research Company Method for analyzing multiple geophysical data sets
US9075163B2 (en) 2009-04-17 2015-07-07 Westerngeco L.L.C. Interferometric seismic data processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798982A (en) * 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
US6549854B1 (en) * 1999-02-12 2003-04-15 Schlumberger Technology Corporation Uncertainty constrained subsurface modeling
US20100018718A1 (en) * 2006-09-28 2010-01-28 Krebs Jerome R Iterative inversion of data from simultaneous geophysical sources
US20080189043A1 (en) * 2007-02-06 2008-08-07 Conocophillips Company Direct Time Lapse Inversion of Seismic Data
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data

Also Published As

Publication number Publication date
BR112013008503A2 (pt) 2016-08-16
EP2646944A4 (en) 2017-02-22
KR20130121895A (ko) 2013-11-06
RU2013129772A (ru) 2015-01-10
AU2011337143B2 (en) 2016-09-29
MY160148A (en) 2017-02-28
US8688381B2 (en) 2014-04-01
CA2815054C (en) 2017-05-16
SG189850A1 (en) 2013-06-28
AU2011337143A1 (en) 2013-06-20
US20120143506A1 (en) 2012-06-07
CA2815054A1 (en) 2012-06-07
WO2012074592A1 (en) 2012-06-07
CN103238158A (zh) 2013-08-07
CN103238158B (zh) 2016-08-17
EP2646944A1 (en) 2013-10-09
KR101797451B1 (ko) 2017-11-14

Similar Documents

Publication Publication Date Title
RU2587498C2 (ru) Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией
RU2612896C2 (ru) Ортогональное кодирование источника и приемника
RU2582480C2 (ru) Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля
CA2711126C (en) An efficient method for inversion of geophysical data
US8437998B2 (en) Hybrid method for full waveform inversion using simultaneous and sequential source method
AU2007302695B2 (en) Iterative inversion of data from simultaneous geophysical sources
RU2570827C2 (ru) Гибридный способ для полноволновой инверсии с использованием способа одновременных и последовательных источников

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180902