RU2470707C1 - Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда - Google Patents

Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда Download PDF

Info

Publication number
RU2470707C1
RU2470707C1 RU2011126122/04A RU2011126122A RU2470707C1 RU 2470707 C1 RU2470707 C1 RU 2470707C1 RU 2011126122/04 A RU2011126122/04 A RU 2011126122/04A RU 2011126122 A RU2011126122 A RU 2011126122A RU 2470707 C1 RU2470707 C1 RU 2470707C1
Authority
RU
Russia
Prior art keywords
octylthio
alkyl
alk
catalyst
ligand
Prior art date
Application number
RU2011126122/04A
Other languages
English (en)
Inventor
Наталья Борисовна БЕСПАЛОВА
Дмитрий Николаевич Чередилин
Галина Алексеевна Козлова
Антон Владимирович Дудин
Владимир Владимирович Афанасьев
Original Assignee
Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" filed Critical Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Priority to RU2011126122/04A priority Critical patent/RU2470707C1/ru
Application granted granted Critical
Publication of RU2470707C1 publication Critical patent/RU2470707C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится способу получения лиганда катализатора тримеризации этилена. Описан способ получения лиганда катализатора тримеризации этилена в 1-гексен общей формулы:
Figure 00000001
где R - алкил, R1-7 - водород и/или алкил, включающий проведение реакции синтеза 2-(алкилтио)алкиламина и 2-(алкилтио)алкилкетона или алкилтиоалканаля, где алкил в алкилтио-заместителе - октил, а алкил в алкиламине и алкилкетоне - СН3, С2Н5, в присутствии тетраизопропоксида титана в среде толуола при температуре 50-80°С с последующим добавлением этанола и тетрагидрофурана, охлаждением полученного раствора до 2-0°С, последовательным добавлением борогидрида натрия и соляной кислоты по следующей формуле:
Figure 00000010
при этом алкилтиоалканаль выбирают из группы: 2-(октилтио)-2-метилпропаналь, 2-(октилтио)бутаналь, 2-(октилтио)пентаналь, 2-(октилтио)гегсаналь, 2-(октилтио)гептаналь, 2-(октилтио)октаналь, 2-(октилтио)нонаналь, 2-(октилтио)деканаль. Технический результат - описанный способ обеспечивает токсическую и экологическую безопасность при производстве лигандов. 1 табл., 14 пр.

Description

Изобретение относится к технологии получения бис(2-алкилтио-этил)аминовых лигандов катализаторов для тримеризации этилена в 1-гексен.
1-Гексен - важный коммерческий полупродукт, использующийся как сомономер при производстве линейного полиэтилена низкой плотности.
Известна технология получения гомогенных каталитических систем для синтеза 1-гексена и 1-октена (Патент РФ №2352389).
Недостатком известной технологии является то, что при использовании продуктов этой технологии наряду с α-олефинами образуются бутен, высшие олигомеры и полиэтилен. Выход целевого продукта в этих процессах ограничен, так как α-олефины образуются согласно распределению Шульца-Флори и требуется дополнительная стадия разделения продуктов или среди продуктов реакции присутствует значительный процент 1-децена или других α-олефинов.
Известен лиганд для катализатора тримеризации этилена в 1-гексен на основе соединений хрома (Международная публикация WO 03/053890) и катализатор для тримеризации этилена в 1-гексен, состоящий из комплекса хрома с бис(2-алкилтио-этил)аминовым лигандом и активатора - метилалюмоксана, а также способ получения лиганда, при реализации которого используется бис(2-хлорэтил)амин или его гидрохлорид и алкилмеркаптаны (Международная публикация WO 03/053891).
Основным недостатком данного катализатора с указанным лигандом и способа его получения является необходимость применения исходных соединений - бис(2-хлорэтил)амина или его гидрохлорида, представляющих собой отравляющие вещества кожно-нарывного действия, а также алкилмеркаптанов, которые, в случае алкильного заместителя с длиной цепи в 6 атомов углерода и меньше, являются высокотоксичными экологически вредными соединениями с неприятным запахом. Также недостатком этого катализатора является тот факт, что чем больше длина углеводородной цепи заместителей у атомов серы в SNS лиганде комплексов, тем менее эти комплексы растворимы в реакционной среде, что делает систему гетерогенной и ведет к увеличению количества полимера, снижая выход целевого продукта.
Задачей данного изобретения является разработка технологии получения бис(2-алкилтио-этил)аминовых лигандов из нетоксичного и удобного в хранении сырья для дальнейшего получения катализаторов высокоселективной тримеризации этилена в 1-гексен.
Технический результат заключается в обеспечении получения лигандов изо-строения, токсической и экологической безопасности при производстве и использовании лигандов, имеющих разветвленное строение.
Технический результат достигается тем, что лиганд общей формулы:
Figure 00000001
где R - алкил, R1-7 - водород и/или алкил, получают путем проведения реакции синтеза 2-(алкилтио)алкиламина и 2-(алкилтио)алкилкетона или алкилтиоалканаля, где алкил в алкилтио-заместителе - октил, а алкил в алкиламине и алкилкетоне - СН3, С2Н5, в присутствии тетраизопропоксида титана в среде толуола при температуре 50-80°С с последующим добавлением этанола и тетрагидрофурана, охлаждением полученного раствора до 2-0°С, последовательным добавлением борогидрида натрия и соляной кислоты по следующей формуле:
Figure 00000002
Данная технология получения указанных лигандов является экологически чистой и высокоселективной по получаемому продукту, обеспечивая при этом разветвленное строение лиганда
Установлено, что комплексы хрома с разветвленными SNS-лигандами обладают лучшей растворимостью в ароматических и насыщенных углеводородах по сравнению с известными решениями, что ведет к уменьшению количества образующегося побочного полимера и повышает селективность катализатора по 1-гексену. При испытаниях полученного по предлагаемой технологии разветвленного лиганда синтезирован катализатор, селективность которого по 1-гексену достигает 97% при производительности, превышающей 30000 г/г (Сr)*ч, и селективности по полимеру менее 0,5%.
Ключевым компонентом катализатора тримеризации этилена в 1-гексен является полученный по технологии данного изобретения разветвленный бис(2-алкилтио-этил)аминовый лиганд общей формулы: RSC(R1,R2)C(R3,R4)N(H)C(R5,R6)C(R7,R8)SR, где R - алкил; R1-7 - водород и/или алкил. Комплекс хрома с SNS-лигандом может быть получен непосредственно из лиганда и источника хрома.
Источником хрома могут служить простые неорганические или органические соли хрома, представляющие собой галогениды, ацетилацетонаты, карбоксилаты, оксиды, нитраты, сульфаты и т.д. Также они могут включать в себя координационные и металлоорганические комплексы, например комплекс трихлорида хрома с тетрагидрофураном.
Реакция каталитической тримеризации этилена проводится в автоклаве с использованием магнитной мешалки при давлении этилена 5-45 бар. Повышение давления способствует увеличению производительности. Предпочтительная температура реакции - в интервале от 50°С до 120°С. Повышение температуры способствует большему образованию продуктов олигомеризации, но слишком большой нагрев понижает производительность системы, разлагает катализатор. Поэтому оптимальная температура тримеризации этилена подбирается индивидуально для каждого комплекса из-за разницы в их устойчивости. Также слишком высокая температура понижает растворимость этилена в реакционной среде.
Производительность при использовании катализатора с лигандом, полученным по технологии согласно данному изобретению, превышает 30000 г/г (Сr)*ч при селективности по С6 - фракции 96% и выше. Содержание 1-гексена в фракции превышает 99,5%. Количество полимера при одной и той же температуре процесса меняется незначительно для комплексов с различными лигандами, селективность по полимеру для лучших катализаторов не превышает 0,5%. Наличие в лиганде в этильных мостиках по крайней мере одного диалкилзамещенного углерода понижает активность каталитической системы (уменьшает количество образующихся α-олефинов) и одновременно ведет к повышению селективности по образующемуся полимеру.
Синтез бис(2-алкилтио-этил)аминовых лигандов, имеющих один или несколько заместителей в этильных мостиках SNS-каркаса, осуществлялся по следующей схеме:
Figure 00000003
где R - алкил, R1-7 - Н и/или алкил.
Способ получения лигандов иллюстрируется следующими примерами.
Пример 1
К раствору 2,3 ммоль [2-(октилтио)-2,2-диметилэтил]амина и 2,4 ммоль 2-(октилтио)-2-метилпропаналя в 2 мл толуола добавляют 3,5 ммоль (1 г) тетраизопропоксида титана. Перемешивают смесь 18 часов при 80°С. За ходом реакции следят по ТСХ (элюент - этилацетат:гексан=1:5). Упаривают раствор до половины объема, добавляют 7 мл этанола и 7 мл тетрагидрофурана, охлаждают до 0°С, добавляют 4,17 ммоль (0,15 г) борогидрида натрия, перемешивают 30 минут. Затем реакционную массу нагревают до комнатной температуры и отфильтровывают. Фильтрат снова охлаждают до 0°С, добавляют по каплям концентрированную соляную кислоту до прекращения выделения газа. Прекращают охлаждение, а затем еще перемешивают смесь при комнатной температуре 2 часа, далее упаривают раствор досуха. Для очистки полученного амина к остатку добавляют 15 мл диэтилового эфира и 5 мл гексана и оставляют смесь кристаллизоваться при -20°С. Выпавший осадок гидрохлорида отфильтровывают и высушивают. Чистый амин получают, обрабатывая бензольный раствор гидрохлорида водным раствором основанием. Амин остается в органической фазе, его раствор упаривают и высушивают. Выход бис-[2-(октилтио)-2,2-диметилэтил] амина - 80%. Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,89 (6Н, т, СН3), 1,28 (16Н, м, CH2(S-Alk)), 1,39 (4Н, м, СH2СН3), 1,49 (12Н, с, ССН3), 1,59 (4Н, м, CH2CH2S), 2,52 (4Н, т, CH2S), 3,08 (4Н, м, CH2N).
Пример 2
Реакцию проводят, как в примере 1, но используя 2-(октилтио)пропан-2-амин и 1-(октилтио)ацетон. Выход бис[2-(октилтио)-1-(метил)этил]амина - 53%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,89 (6Н, т, СН3), 1,10 (6Н, д, СН3), 1,28 (16Н, м, CH2(S-Alk)), 1,39 (4Н, м, СH2СН3), 1,62 (4Н, м, CH2CH2S), 2,23 (4Н, дд, SCH2CH), 2,52 (4Н, т, CH2S), 3,50 (2Н, м, CHN).
Пример 3
Реакцию проводят, как в примере 1, но используя [2-(октилтио)бутил]амин и 2-(октилтио)бутаналь. Выход бис[2-(октилтио)-бутил]амина - 77%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д. (S-Alk - заместитель у атома серы): 0,88 (6Н, т, CH3(S-Alk)), 1,15 (6Н, т, СНСН2СH3), 1,28 (16Н, м, CH2(S-Alk)), 1,33 (4Н, м, CH2CH2CH3(S-Alk)), 1,55 (4Н, м, CH2CH2S(S-Alk)), 1,60 (4Н, м, СНСH2СН3), 2,60 (4Н, дд, CH2N), 2,70 (4Н, дт, CH2S), 2,80 (2Н, м, СН).
Пример 4
К раствору 2,3 ммоль [2-(октилтио)-1,1-диметилэтил]амина и 2,4 ммоль 2-(октилтио)-2-метилпропаналя в 2 мл толуола добавляют 3,5 ммоль (1 г) тетраизопропоксидатитана. Перемешивают смесь 18 часов при 50°С. Заходом реакции следят по ТСХ (элюент - этилацетат:гексан - 1:5). Упаривают раствор до половины объема, добавляют 7 мл этанола и 7 мл тетрагидрофурана, охлаждают до 2°С, добавляют 4,17 ммоль (0,15 г) борогидрида натрия, перемешивают 30 минут. Затем реакционную массу нагревают до комнатной температуры и отфильтровывают. Фильтрат снова охлаждают до 2°С, добавляют по каплям концентрированную соляную кислоту до прекращения выделения газа. Прекращают охлаждение, а затем еще перемешивают смесь при комнатной температуре 2 часа, далее упаривают раствор досуха. Для очистки полученного амина к остатку добавляют 15 мл диэтилового эфира и 5 мл гексана и оставляют смесь кристаллизоваться при -20°С. Выпавший осадок гидрохлорида отфильтровывают и высушивают. Чистый амин получают, обрабатывая бензольный раствор гидрохлорида водным раствором основанием. Амин остается в органической фазе, его раствор упаривают и высушивают.
Выход 2-октилтио-1,1-(диметил)этил-[2-(октилтио)-2-метилпропил]амина - 71%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (6Н, т, CH3(S-Alk)), 1,16 (6Н, с, (СH3)2СNH), 1,35 (20Н, м, CH2(S-Alk)), 1,45 (6Н, с, (СH3)2СHS, 1,48 (2Н, с, CCH2S), 1,60 (4Н, м, CH2CH2S), 2,57 (4Н, дт, CH2S (S-Alk)), 3,21 (2Н, с, СH2NH).
Пример 5
Реакцию проводят, как в примере 4, но используя [2-(октилтио)-1,1-(диметил)этил]амин и 2-(октилтио)бутаналь. Выход [2-октилтио-1,1-(диметил)этил]-[2-(октилтио)бутил]амина - 40%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (6Н, т, CH3(S-Alk)), 1,00 (3Н, т, СH3СН2СН), 1,16 (6Н, с, (СH3)2СNH), 1,26 (16Н, м, СH2(S-Аlk)), 1,35 (4Н, уш. м, СH2СН3 (S-Alk)), 1,51 (2Н+4Н, м+м, СH2СН2S+СНСH2СН3), 2,50 (2Н+4Н+1Н, м+м+м, СH2S+СH2S(S-Аlk)+СH), 2,62 (2Н, уш. с, СHH'NH).
Пример 6
Реакцию проводят, как в примере 4, но используя 1-(октилтио)пропан-2-амин и 2-(октилтио)бутаналь. Выход [2-(октилтио)бутил][2-(октилтио)-1-(метил)этил]амина - 70%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (6Н, т, СН3 (S-Alk)), 1,01 (3Н, т, СH3СН2СН), 1,15 (3Н, д, СH3СН), 1,28 (16Н, уш. м, СH2(S8-Аlk)), 1,39 (4Н, м, СH2СН3 (S-Alk)), 1,58 (4Н, м, СH2СН2S (S-Alk), 1,67 (2Н, м, СН3СH2СН), 2,48-2,55 (2Н+4Н, м+м, SCHH'CH+CHH'S), 2,58 (1Н, м, СHS).
Пример 7
К раствору 2,3 ммоль октилтиоэтиламина и 2,4 ммоль 2-(октилтио)бутан-2-он в 2 мл толуола добавляют 3,5 ммоль (1 г) тетраизопропоксида титана. Перемешивают смесь 18 часов при 60°С. За ходом реакции следят по ТСХ (элюент - этилацетат:гексан - 1:5). Упаривают раствор до половины объема, добавляют 7 мл этанола и 7 мл тетрагидрофурана, охлаждают до 1°С, добавляют 4,17 ммоль (0,15 г) борогидрида натрия, перемешивают 30 минут. Затем реакционную массу нагревают до комнатной температуры и отфильтровывают.Фильтрат снова охлаждают до 1°С, добавляют по каплям концентрированную соляную кислоту до прекращения выделения газа. Прекращают охлаждение, а затем еще перемешивают смесь при комнатной температуре 2 часа, далее упаривают раствор досуха. Для очистки полученного амина к остатку добавляют 15 мл диэтилового эфира и 5 мл гексана и оставляют смесь кристаллизоваться при -20°С. Выпавший осадок гидрохлорида отфильтровывают и высушивают. Чистый амин получают, обрабатывая бензольный раствор гидрохлорида водным раствором основанием. Амин остается в органической фазе, его раствор упаривают и высушивают.
Выход [2-(октилтио)бутил][2-(октилтио)этил]амина - 94%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (6Н, т, СН3 (S-Alk)), 1,00 (3Н, т, СH3СН2СН), 1,26 (16Н, уш. с, СH2(S-Аlk)), 1,35 (4Н, м, СH2СН3 (S-Alk)), 1,55 (4Н, м, СH2СН2S (S-Alk)), 1,65 (2Н, м, СН3СHH'СН), 2,50 (2Н+2Н, т+м, NHCH2CH+NHCH2CHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+CHCHH'NH).
Пример 8
Реакцию проводят, как в примере 7, но используя октилтиоэтиламин и 1-(октилтио)ацетон. Выход [2-(октилтио)этил][2-(октилтио)-1-(метил)этил]амина - 90%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (6Н, т, СН3 (S-Alk)), 1,11 (3Н, д, СH3СН), 1,27 (16Н, уш. м, СH2(S-Аlk)), 1,37 (4Н, м, СH2СН3 (S-Alk)), 1,58 (4Н, м, СH2СН2S (S-Alk), 2,45-2,52 (2Н+2Н, м+т, СНСHH'S+СН2CH2S), 2,64 (4Н, т, СH2S (S-Alk)), 2,71-2,87 (2Н+1Н, м+м, CH2N+CH).
Пример 9
Реакцию проводят, как в примере 7, но используя октилтиоэтиламин и 2-(октилтио)пентаналь. Выход [2-(октилтио)этил][2-(октилтио)-2-пропилэтил] амина - 42%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,76 (3Н, т, СH3СН2СН2СН), 0,88 (6Н, т, СН3 (S-Alk)), 1,26 (18Н, уш. с, СH2(S-Аlk)+СНСH2СН2СН3), 1,35 (4Н+2Н, м+м, СH2СН3 (S-Alk)+СН2СH2СН3), 1,55 (4Н, м, СH2СН2S (S-Alk)), 2,50 (2Н+2Н, т+м, NНСH2СН+NHCH2СHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+СНСHH'NH).
Пример 10
Реакцию проводят, как в примере 7, но используя октилтиоэтиламин и 2-(октилтио)гексаналь. Выход [2-(октилтио)этил][2-(октилтио)-2-бутилэтил]амина - 45%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (9Н, т, СН3 (S-Alk)+СH3СН2СН2СН2СН), 1,26 (18Н, уш. с, СH2(S-Аlk)+СНСН2СН2СH2СН3), 1,35 (4Н, м, СH2СН3 (S-Alk)), 1,55 (4Н+2Н, м+м, СH2СН2S (S-Alk)+СНСН2СH2СН2СН3), 1,65 (2Н, м, СН3СН2СН2СHH'СН), 2,50 (2Н+2Н, т+м, NHCH2CH+NHCH2CHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+СНСHH'NH).
Пример 11
Реакцию проводят, как в примере 7, но используя октилтиоэтиламин и 2-(октилтио)гептаналь. Выход [2-(октилтио)этил][2-(октилтио)-2-пентилэтил]амина - 37%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (9Н, т, СН3 (S-Alk)+СH3СН2СН2СН2СН2СН), 1,26 (18Н, уш. с, СH2(S-Аlk)+СНСН2СН2СH2СН2СН3), 1,35 (4Н, м, СH2СН3 (S-Аlk)+СН3СH2СН2СН2СН2СН), 1,55 (4Н+2Н, м+м, СH2СН2S (S-Alk)+СНСН2СH2СН2СН2СН3), 1,65 (2Н, м, СН3СН2СН2СН2СHH'СН), 2,50 (2Н+2Н, т+м, NНСH2СН+NHCH2CHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+СНСHH'NН).
Пример 12
К раствору 2,3 ммоль октилтиоэтиламина и 2,4 ммоль 2-(октилтио)октаналя в 2 мл толуола добавляют 3,5 ммоль (1 г) тетраизопропоксида титана. Перемешивают смесь 18 часов при 70°С. За ходом реакции следят по ТСХ (элюент - этилацетат: гексан -1:5). Упаривают раствор до половины объема, добавляют 7 мл этанола и 7 мл тетрагидрофурана, охлаждают до 1,5°С, добавляют 4,17 ммоль (0,15 г) борогидрида натрия, перемешивают 30 минут. Затем реакционную массу нагревают до комнатной температуры и отфильтровывают. Фильтрат снова охлаждают до 1,5°С, добавляют по каплям концентрированную соляную кислоту до прекращения выделения газа. Прекращают охлаждение, а затем еще перемешивают смесь при комнатной температуре 2 часа, далее упаривают раствор досуха. Для очистки полученного амина к остатку добавляют 15 мл диэтилового эфира и 5 мл гексана и оставляют смесь кристаллизоваться при -20°С. Выпавший осадок гидрохлорида отфильтровывают и высушивают. Чистый амин получают, обрабатывая бензольный раствор гидрохлорида водным раствором основанием. Амин остается в органической фазе, его раствор упаривают и высушивают.
Выход [2-(октилтио)этил][2-(октилтио)-2-гексилэтил]амина - 41%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (9Н, т, СН3 (S-Alk)+СH3СН2СН2СН2СН2СН2СН), 1,26 (20Н, уш. с, СH2(S-Аlk)+СНСН2СН2СH2СH2СН2СН3), 1,35 (4Н, м, СH2СН3 (S-Аlk)+СН3СH2СН2СН2СН2СН2СН), 1,55 (4Н+2Н, м+м, СH2СН2S (S-Alk)+СНСН2СH2СН2СН2СН2СН3), 1,65 (2Н, м, СН3СН2СН2СН2СН2СHH'СН), 2,50 (2Н+2Н, т+м, NСH2СН+NHCH2CHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+CHСНH'NH).
Пример 13
Реакцию проводят, как в примере 12, но используя октилтиоэтиламин и 2-(октилтио)нонаналь. Выход [2-(бутилтио)этил][2-(бутилтио)-2-гептилэтил] амина - 35%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (9Н, т, СН3 (S-Alk)+СH3СН2СН2СН2СН2СН2СН2СН), 1,26 (6Н, уш. с, СНСН2СН2СH2СH2СH2СН2СН3), 1,35 (4Н+2Н, м, СH2СН3 (S-Аlk)+СН3СH2СН2СН2СН2СН2СН2СН), 1,55 (4Н+2Н, м+м, СH2СН2S (S-Alk)+СНСН2СH2СН2СН2СН2СН2СН3), 1,65 (2Н, м, СН3СН2СН2СН2СН2СН2СHH'СН), 2,50 (2Н+2Н, т+м, NHCH2СН+NHСН2СHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+СНСHH'NH).
Пример 14
Реакцию проводят, как в примере 12, но используя этилтиоэтиламин и 2-(этилтио)деканаль. Выход [2-(этилтио)этил][2-(этилтио)-2-октилэтил]амина -43%.
Спектр 1Н ЯМР (300 МГц, CDCl3) δН, м.д.: 0,88 (9Н, т, СН3 (S-Alk)+СH3СН2СН2СН2СН2СН2СН2СН2СН), 1,26 (8Н, уш. с, СНСН2СН2СH2СH2СH2СH2СН2СН3), 1,35 (2Н, м, СН3СH2СН2СН2СН2СН2СН2СН2СН), 1,55 (2Н, м, СНСН2СH2СН2СН2СН2СН2СН2СН3), 1,65 (2Н, м, СН3СН2СН2СН2СН2СН2СН2СHH'СН), 2,50 (2Н+2Н, т+м, NHСH2СН+NHCH2CHH'S), 2,65 (4Н, м, CHH'S (S-Alk)), 2,75-2,79 (1Н+2Н, м+м, SCH+СНСHH'NH).
Синтез комплексов хрома (III) с бис(2-алкилтио-этил)аминовыми лигандами осуществляют в среде толуола по следующей схеме:
Figure 00000004
где R - алкил, R1-7 - водород и/или алкил, X - ацидолиганд или комплекс тетрагидрофурана с хлором или бромом.
Катализатор тримеризации этилена получают следующим образом. К суспензии 0,29 ммоль соединения трехвалентного хрома с ацидолигандом или комплексом тетрагидрофурана и хлора в 4 мл толуола добавляют раствор 0,29 ммоль лиганда из примеров 1-6 в 4 мл толуола. Цвет раствора становится зелено-синим. Перемешивают 45 минут, затем упаривают толуол, добавляют 8 мл гексана, 8 мл диэтилового эфира и оставляют раствор с осадком на ночь при температуре -20°С, на следующий день отфильтровывают осадок и высушивают в вакууме. Выход катализатора 95-98%.
Оценка эффективности катализаторов осуществлялась в следующем процессе каталитической тримеризации этилена.
Процесс каталитической тримеризации этилена проводят в автоклаве с использованием магнитной мешалки при давлении этилена 5-45 бар. Автоклав предварительно прогревают при 120°С 1,5 часа в токе аргона. Аргон и этилен пропускают через систему предварительной осушки и очистки, растворитель (толуол) перегоняют над натрием, дегазируют и хранят в атмосфере аргона. В автоклав в токе аргона загружают 4/5 частей необходимого для реакции количества растворителя (20 мл) и нагревают до температуры реакции при перемешивании. Раствор катализатора готовят в отдельной колбе в токе аргона, загружая навеску комплекса хрома (8 µмоль), затем добавляют оставшееся количество растворителя (5 мл) и перемешивают около 20-30 минут, из них не менее 15 минут при слабом нагреве (50°С). Затем к раствору комплекса хрома добавляют 10% раствор метилалюмоксана в толуоле (2,61 ммоль МАО), перемешивают 2-3 мин и вносят при перемешивании в автоклав при температуре реакции, затем включают подачу этилена до необходимого давления. Нагревают автоклав до требуемой температуры. Продолжительность реакции составляет 30-60 мин. По окончании времени реакции прекращают подачу этилена, автоклав охлаждают до 15°С, медленно сбрасывают давление, вводят в автоклав метанол (1,5 мл) и внутренний стандарт (н-декан, 0,2 г) и перемешивают в течение 10 минут. Далее вскрывают автоклав, всю реакционную смесь переливают в колбу, добавляют 10 мл разбавленного 5% раствора соляной кислоты и 5 мл толуола, перемешивают 10 мин, дают отстояться и отбирают пробу из органического слоя для хроматографического анализа. Анализ жидких проб, содержащих углеводороды С230, осуществляют на хроматографе с пламенно-ионизационным детектором и капиллярной колонкой. Содержимое колбы продолжают перемешивать в течение 5 часов. Затем отделяют органический слой, промывают его водой 5 раз по 10 мл, окончательно отделяют органический слой. Затем отфильтровывают полимер, промывают его этанолом (10 мл) и сушат при 100°С в течение 2-3 дней.
Результаты анализа продуктов реакции с использованием катализаторов с лигандом, полученным по технологии данного изобретения, приведены в таблице.
Как показывают результаты, применение таких катализаторов существенно увеличивает селективность по конечному продукту при сохранении высокой производительности.
Figure 00000005
Figure 00000006
Figure 00000007

Claims (1)

  1. Способ получения лиганда катализатора тримеризации этилена в 1-гексен общей формулы:
    Figure 00000008

    где R-алкил, R1-7 - водород и/или алкил, включающий проведение реакции синтеза 2-(алкилтио)алкиламина и 2-(алкилтио)алкилкетона или алкилтиоалканаля, где алкил в алкилтио-заместителе - октил, а алкил в алкиламине и алкилкетоне - СН3, С2Н5, в присутствии тетраизопропоксида титана в среде толуола при температуре 50-80°С с последующим добавлением этанола и тетрагидрофурана, охлаждением полученного раствора до 2-0°С, последовательным добавлением борогидрида натрия и соляной кислоты по следующей формуле:
    Figure 00000009
    ,
    при этом алкилтиоалканаль выбирают из группы: 2-(октилтио)-2-метилпропаналь, 2-(октилтио)бутаналь, 2-(октилтио)пентаналь, 2-(октилтио)гегсаналь, 2-(октилтио)гептаналь, 2-(октилтио)октаналь, 2-(октилтио)нонаналь, 2-(октилтио)деканаль.
RU2011126122/04A 2011-06-27 2011-06-27 Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда RU2470707C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011126122/04A RU2470707C1 (ru) 2011-06-27 2011-06-27 Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011126122/04A RU2470707C1 (ru) 2011-06-27 2011-06-27 Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда

Publications (1)

Publication Number Publication Date
RU2470707C1 true RU2470707C1 (ru) 2012-12-27

Family

ID=49257404

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011126122/04A RU2470707C1 (ru) 2011-06-27 2011-06-27 Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда

Country Status (1)

Country Link
RU (1) RU2470707C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556640C1 (ru) * 2014-06-26 2015-07-10 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") Каталитическая система процесса тримеризации этилена в 1-гексен с использованием катализаторов с разветвленным углеводородным скелетом
RU2581052C1 (ru) * 2015-04-20 2016-04-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения 1-гексена из этилена методом тримеризации
RU2753694C1 (ru) * 2020-11-30 2021-08-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") Способ получения олигомеров этилена состава C6

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104088C1 (ru) * 1993-02-03 1998-02-10 Филлипс Петролеум Компани Способ получения каталитической системы для тримеризации, олигомеризации или полимеризации олефинов (варианты) и способ тримеризации, олигомеризации или полимеризации олефинов с использованием полученной каталитической системы
WO2003053890A1 (en) * 2001-12-20 2003-07-03 Sasol Technology (Pty) Ltd Trimerisation and oligomerisation of olefins using a chromium based catalyst
WO2004056477A1 (en) * 2002-12-20 2004-07-08 Sasol Technology (Pty) Limited Trimerisation of olefins
US20080021181A1 (en) * 2004-06-29 2008-01-24 Smita Kacker Chromium complexes and their use in olefin polymerization
EP2075242A1 (en) * 2001-12-20 2009-07-01 Sasol Technology (Proprietary) Limited Trimerisation and oligomerisation of olefins using a chromium based catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104088C1 (ru) * 1993-02-03 1998-02-10 Филлипс Петролеум Компани Способ получения каталитической системы для тримеризации, олигомеризации или полимеризации олефинов (варианты) и способ тримеризации, олигомеризации или полимеризации олефинов с использованием полученной каталитической системы
WO2003053890A1 (en) * 2001-12-20 2003-07-03 Sasol Technology (Pty) Ltd Trimerisation and oligomerisation of olefins using a chromium based catalyst
EP2075242A1 (en) * 2001-12-20 2009-07-01 Sasol Technology (Proprietary) Limited Trimerisation and oligomerisation of olefins using a chromium based catalyst
WO2004056477A1 (en) * 2002-12-20 2004-07-08 Sasol Technology (Pty) Limited Trimerisation of olefins
US7511183B2 (en) * 2002-12-20 2009-03-31 Sasol Technology (Pty) Limited Tetramerization of olefins
US20080021181A1 (en) * 2004-06-29 2008-01-24 Smita Kacker Chromium complexes and their use in olefin polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556640C1 (ru) * 2014-06-26 2015-07-10 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") Каталитическая система процесса тримеризации этилена в 1-гексен с использованием катализаторов с разветвленным углеводородным скелетом
RU2581052C1 (ru) * 2015-04-20 2016-04-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения 1-гексена из этилена методом тримеризации
RU2753694C1 (ru) * 2020-11-30 2021-08-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") Способ получения олигомеров этилена состава C6

Similar Documents

Publication Publication Date Title
EP2307431B1 (en) Process for preparing amines from alcohols and ammonia
NL1015655C2 (nl) Katalysator voor de asymmetrische hydrogenering.
EP2994444B1 (en) Oligomerisation of ethylene to mixtures of 1-hexene and 1-octene
Schwab et al. Organocatalytic asymmetric aldol reactions mediated by a cysteine-derived prolinamide
CN108129287B (zh) 一种1,2-二氢萘衍生物的制备方法
RU2470707C1 (ru) Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда
Beck et al. Hydroamination of 1, 1-dimethylallene with primary aryl amines under mild conditions: An atom-economical route to N-(1, 1-dimethyl-2-propenyl)-anilines
Chandran et al. Ni (II) complexes with ligands derived from phenylpyridine, active for selective dimerization and trimerization of ethylene
Çiçek et al. Half-sandwich Ru (II) arene complexes bearing benzimidazole ligands for the N-alkylation reaction of aniline with alcohols in a solvent-free medium
Johnson et al. Binuclear ruthenium complexes employing bis (dimethylphosphino) methane (dmpm). Crystal and molecular structures of Ru2 (dmpm) 2 (CO) 5. cntdot. C6H5CH3 and Ru2 (dmpm) 2 (CO) 4 (PhCCPh)
Alonso‐Moreno et al. Well‐Defined Regioselective Iminopyridine Rhodium Catalysts for Anti‐Markovnikov Addition of Aromatic Primary Amines to 1‐Octyne
Dzyuba et al. Synthesis and structure of lipophilic dioxo-molybdenum (VI) bis (hydroxamato) complexes
Xiao et al. Transformation of 2-alkoxyimidate-1, 10-phenanthroline metal (Mn2+, Co2+ and Ni2+) chlorides from bis (2-cyano-1, 10-phenanthroline) metal chlorides: Syntheses, characterizations and their catalytic behavior toward ethylene oligomerization
Stander-Grobler et al. Amine-substituted α-N (standard)-and δ-N (remote)-pyridylidene complexes: Synthesis and bonding
Zimmermann et al. Mono‐and Bidentate Phosphine Ligands in the Palladium‐Catalyzed Methyl Acrylate Dimerization
RU2475491C1 (ru) Способ получения катионных комплексов палладия с дииминовыми лигандами
Zhang et al. Star iminopyridyl iron, cobalt and nickel complexes: synthesis, molecular structures, and evaluation as ethylene oligomerization catalysts
Wang et al. Nickel complexes bearing 2-(1H-benzo [d] imidazol-2-yl)-N-benzylidenequinolin-8-amines: Synthesis, structure and catalytic ethylene oligomerization
Almansa et al. Nickel-catalysed addition of dialkylzinc reagents to N-phosphinoyl-and N-sulfonylimines
RU2556640C1 (ru) Каталитическая система процесса тримеризации этилена в 1-гексен с использованием катализаторов с разветвленным углеводородным скелетом
JP6866371B2 (ja) 鉄錯体の製造方法及び鉄錯体を用いたエステル化合物の製造方法
Marimuthu et al. Microwave-assisted oxidation reaction of primary alcohols with sensitive functional groups to aldehydes using ruthenium diphosphorus complexes
Sentets et al. Directed formation of allene complexes upon reaction of non-heteroatom-substituted manganese alkynyl carbene complexes with nucleophiles
CN116283467B (zh) 一种合成二芳基烷基甲烷的方法
JP6659445B2 (ja) 脱ベンジル化方法