RU2434673C2 - Статический смеситель - Google Patents

Статический смеситель Download PDF

Info

Publication number
RU2434673C2
RU2434673C2 RU2007117865/05A RU2007117865A RU2434673C2 RU 2434673 C2 RU2434673 C2 RU 2434673C2 RU 2007117865/05 A RU2007117865/05 A RU 2007117865/05A RU 2007117865 A RU2007117865 A RU 2007117865A RU 2434673 C2 RU2434673 C2 RU 2434673C2
Authority
RU
Russia
Prior art keywords
cross
section
mixing element
plates
fluid
Prior art date
Application number
RU2007117865/05A
Other languages
English (en)
Other versions
RU2007117865A (ru
Inventor
Марсель ЗУНЕР (CH)
Марсель ЗУНЕР
Original Assignee
Зульцер Хемтех Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зульцер Хемтех Аг filed Critical Зульцер Хемтех Аг
Publication of RU2007117865A publication Critical patent/RU2007117865A/ru
Application granted granted Critical
Publication of RU2434673C2 publication Critical patent/RU2434673C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4322Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa essentially composed of stacks of sheets, e.g. corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Disintegrating Or Milling (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к смешиванию текучих компонентов и может использоваться, в частности, при переработке сжиженного природного газа, в автомобилестроении и в химической реакционной технике. Смесительный элемент содержит входное отверстие для компонентов с первым поперечным сечением, расположенным в плоскости, перпендикулярной направлению основного потока во входном отверстии, и выходное отверстие для смеси со вторым поперечным сечением, расположенным в плоскости, перпендикулярной направлению основного потока в выходном отверстии. Смесительный элемент имеет форму поперечного сечения, непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. В смесительном элементе потокоразделяющие пластины расположены таким образом, что возможна точная подгонка смесительного элемента в непрерывно расширяющемся проводящем текучую среду средстве. Технический результат состоит в сохранении равномерного распределения текучей среды при транспортировке ее через непрерывно расширяющийся участок трубопровода. 5 н. и 8 з.п. ф-лы, 14 ил.

Description

Изобретение касается смесительного элемента для статического смесителя согласно ограничительной части пункта 1 формулы изобретения, применений такого смесительного элемента, а также статического смесителя со смесительным элементом такого типа. Статические смесители используются для смешивания двух или более текучих компонентов, в частности газожидкостных смесей. В частности, смесительный элемент должен применяться в проводящем текучую среду средстве, выполненном в виде диффузорной секции. Смесительный элемент, по меньшей мере, способствует поддержанию равномерного состояния смеси в диффузоре, благодаря своей конструктивной форме противодействуя возможным эффектам разделения смеси и/или осуществляя равномерное перемешивание компонентов, протекающих через диффузорную секцию. Статический смеситель включает в себя, таким образом, проводящее текучую среду средство с входным отверстием для компонентов первого диаметра и выходным отверстием для смеси второго диаметра, при этом проводящее текучую среду средство имеет ход диаметра, по существу непрерывно возрастающий от первого диаметра ко второму диаметру, а также по меньшей мере один смесительный элемент, установленный в диффузорной секции. Проводящее текучую среду средство может быть выполнено, в частности, в виде, по существу, непрерывно расширяющегося трубопровода.
Из уровня техники согласно EP-А-918146 известно размещение встроенных элементов в корпусе смесителя, расширяющемся в виде диффузора. Эти встроенные элементы образованы из концентричных боковых поверхностей, имеющих форму усеченного конуса. Вершины конусов располагаются по меньшей мере приблизительно в одной точке, а входные поперечные сечения каждого встроенного элемента своими краями задают поверхность, которая имеет сужающуюся против направления потока форму. Благодаря встроенным элементам газы, протекающие через диффузор, в случае EP-A-918146 это вредные вещества, равномернее направляются в подсоединенный катализатор.
В устройстве для снижения вредных веществ согласно EP-А-918146 при прохождении газа наступают так называемые краевые эффекты, обозначаемые также как каналообразование. Эти краевые эффекты вызываются краевыми потоками, из-за которых происходит замедление потока относительно середины. Эти краевые потоки возникают главным образом в результате эффектов трения на внутренней стенке диффузора. При расширении в конусе в результате тормозного эффекта, вызванного вышеназванными эффектами трения, может произойти снижение скорости в пристенной зоне, что может даже привести к тому, что каплеобразная или пузырчатая фаза, то есть дисперсная фаза, в частности жидкотекучие компоненты, уже не смогут удерживаться во взвешенном состоянии сплошной фазой, в частности газом, и будут выделяться.
Газожидкостные смеси такого рода используются, например, в качестве охлаждающего средства при переработке сжиженного природного газа. Это охлаждающее средство состоит из различных газообразных и жидкотекучих компонентов, причем процент содержания охватывает, в частности, легколетучие алифатические углеводороды, предпочтительно метан, этан, пропан и/или бутан. Для охлаждения охлаждающее средство вводится в теплообменник, который, как правило, выполнен как многотрубный теплообменник. Теплообменник рассчитан на охлаждающую способность, которая требует гомогенной смеси охлаждающих средств, иначе охлаждающая способность не может использоваться оптимальным образом. Следовательно, если происходит сепарирование смеси охлаждающих средств, то, возможно, уже не может достигаться желаемая охлаждающая способность и не могут поддерживаться требуемые производственные мощности. Поэтому до сих пор для теплообменника соответственно необходимо было рассчитывать параметры с запасом.
До сих пор решению проблемы, связанной с статическими смесителями, препятствовал тот факт, что серийно выпускаемые статические смесители не могли быть приспособлены к, по существу, непрерывно расширяющемуся участку трубопровода.
Как выход предлагалось использовать статический смеситель из двух цилиндрических смесительных элементов, при этом один из этих смесительных элементов соответственно имеет диаметр подводящего трубопровода, то есть магистрального трубопровода, а второй смесительный элемент имеет диаметр впуска теплообменника. Измерения на статическом смесителе такого рода показали, что и в этом случае газообразные и жидкотекучие компоненты распределяются неравномерно. Участок смешивания рассчитан для этой цели слишком коротким, к тому же при такой системе смешивания имеет место резкий переход в месте, в котором цилиндрический смесительный элемент с диаметром подводящего трубопровода примыкает к смесительному элементу с диаметром впуска теплообменника. В настоящем случае оба смесительных элемента выполнены предпочтительно одинаковой длины, таким образом, переход располагается посредине.
Задачей изобретения является создание смесительного элемента для статического смесителя, посредством которого многофазный поток текучей среды, в частности поток газа, нагруженный капельками жидкости, или поток жидкости, нагруженный пузырьками газа, перемешиваясь, может транспортироваться через, по существу, непрерывно расширяющийся участок трубопровода с сохранением равномерного распределения текучей среды.
Поставленная задача решается посредством смесительного элемента, определенного в пункте 1 формулы изобретения. Смесительный элемент для установки в проводящем текучую среду средстве, которое может быть выполнено, в частности, в виде камеры или корпуса резервуара, имеет входное отверстие для по меньшей мере двух компонентов с первым поперечным сечением, расположенным в плоскости, лежащей по существу перпендикулярно направлению основного потока во входном отверстии, и выходное отверстие для смеси со вторым поперечным сечением, расположенным в плоскости, лежащей по существу перпендикулярно направлению основного потока в выходном отверстии, при этом смесительный элемент имеет форму поперечного сечения, по существу непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. В смесительном элементе потокоразделяющие пластины расположены таким образом, что возможна точная подгонка смесительного элемента в по существу непрерывно расширяющемся проводящем текучую среду средстве. Смесительный элемент установлен по меньшей мере частично в области между входным отверстием и выходным отверстием. Благодаря точной подгонке достигается то, что краевые потоки отклоняются от внутренней стенки проводящего текучую среду средства в направлении основного потока и совместно с основным потоком с по меньшей мере приблизительно равным распределением по скорости направляются через рассматриваемое проходное поперечное сечение через диффузор, а также то, что текучая среда с более высокой скоростью потока, чем выровненный поток, течет от центральной зоны поперечного сечения в направлении пристенной зоны, благодаря чему происходит поперечное перемешивание и, следовательно, улучшение смешивания текучих компонентов. Потокоразделяющие пластины имеют проточные каналы, которые выполнены, в частности, в виде диффузора, предпочтительно с открытыми перекрещивающимися проточными каналами, которые раскрыты, например, в СН 547 120. В смесительном элементе такого типа, по меньшей мере, в части поперечного сечения, предусмотрены встроенные элементы или пластины, посредством которых компоненты способны отклоняться таким образом, что посредством перекрещивающихся путей потока могут образовываться сдвигающие потоки, вследствие чего при наложении потоков возникают непрерывные завихрения, благодаря чему достигается непрерывное перемешивание смеси и одновременное течение в направлении выхода смесителя.
В предпочтительной форме исполнения смесительный элемент имеет по меньшей мере две пластины из тонкостенного материала. В простейшем случае пластина такого типа может быть образована из плоских, тонкостенных металлических листов, таким образом подогнанных к расширяющемуся поперечному сечению проводящего текучую среду средства, что отдельные пластины в каждом поперечном сечении предстают в виде параллельных друг другу секущих плоскостей, однако расстояние между секущими плоскостями пластин непрерывно увеличивается в направлении потока. Такие расширяющиеся, плоские пластины удерживаются в своем положении с помощью набора крепежных средств, снабженных зажимными или штекерными соединительными элементами. По меньшей мере в зоне входного сечения, то есть входного отверстия статического смесителя, а также в зоне выходного сечения, то есть выходного отверстия статического смесителя, существует возможность крепления для каждой пластины. Поэтому поверхность, заданная между двумя соседними пластинами и проводящем текучую среду средством, расположенная по существу перпендикулярно направлению основного потока, увеличивается подобно диффузору. Смесь, протекающая между двумя отдельными пластинами, проходит в этом случае по существу узкий канал, расширяющийся в соответствии с увеличением поперечного сечения смесителя.
Такая пластина может иметь складчатую, развертывающуюся в плоскость структуру из тонкостенного листового материала, при этом складчатость может быть выполнена, в частности, в виде желобков (гофров). Пластина может иметь образующие открытые каналы структуры, в частности, могут быть выполнены складчатые, волнообразные или зигзагообразные структуры. Альтернативно или в комбинации с этим могут быть использованы также структуры, образующие закрытые каналы, как, например, ячеистые или трубчатые структуры. В частности, по меньшей мере одна пластина может иметь по меньшей мере один проточный канал. Структуры состоят из металлического материала, предпочтительно может применяться листовой металл и/или сталь и/или стальной сплав, что не в последнюю очередь зависит от температуры, давления и/или природы протекающей среды. Могут применяться также высокожаропрочные стали, если этого требует температура транспортируемой среды. Транспортировка и перемешивание коррозионных смесей требует применения коррозионностойких сталей, а также керамики, кремниевых соединений, карбона и/или покрытий, содержащих политетрафторэтилен (PTFE), эпоксидную смолу, Halar, TNi-сплавы и/или карбидные слои и/или гальванические покрытия, в частности покрытия, нанесенные путем хромирования или никелирования. Если смесь содержит также доли твердого вещества, например пыль, то предъявляются высокие требования к стойкости к царапанию встроенных деталей смесительных элементов. С помощью стойкого к царапанию покрытия пластин смесительного элемента и/или проводящего текучую среду средства повышается срок службы статического смесителя. В отдельном случае может быть предпочтительным нанесение устойчивого к загрязнению слоя. Для использования в холодильных или морозильных установках статический смеситель изготовляют из материала 304 L, и/или SS 316, и/или 904 L, и/или дуплекса, и/или 1.4878, которые при высоких температурах отличаются незначительным короблением, коррозионностойкостью и вязкостью в холодном состоянии. Для статических смесителей, не испытывающих большую температурную нагрузку, используются синтетические материалы, например полипропилен, поливинилиденфторид (PVDF) или полиэтилен. Другое применение смесительного элемента согласно одному из пунктов формулы изобретения может быть предусмотрено в статическом смесителе, в котором может протекать химическая реакция. Для осуществления химической реакции должно достигаться быстрое и равномерное смешивание текучих компонентов, приводимых в контакт друг с другом. Для этой цели можно либо сами направляющие поток пластины изготовить из каталитического материала, либо нанести каталитический материал на пластины, выполненные предпочтительно из материала, не имеющего разрывов, например, из листовой стали, или из ткани, или из трикотажа, или из, например, частично пористого материала. В другом примере применения пластина, которая может быть выполнена согласно одному из предшествующих примеров исполнения, может содержать средство для захвата микроорганизмов, например бактерий.
Статический смеситель согласно другому примеру исполнения оснащен проводящими текучую среду средствами с плоскими на отдельных участках боковыми поверхностями, в частности с прямоугольными или квадратными поперечными сечениями, задающими трапецеидальные боковые поверхности, которые в итоге составляют в своей совокупности проводящее текучую среду средство. Статический смеситель такого типа содержит по меньшей мере один смесительный элемент согласно одному из предшествующих примеров исполнения.
Зависимые пункты 2-8 формулы изобретения касаются предпочтительных вариантов исполнения смесительного элемента согласно изобретению. Возможности применения смесительного элемента согласно изобретению, в частности в статическом смесителе, являются соответственно предметом пунктов 9 и 10 формулы изобретения.
По меньшей мере одна пластина смесительного элемента содержит поверхностно расширяющуюся структуру, в частности проточный канал. В последующем тексте вместо пластины с поверхностно расширяющейся структурой используется пластина с зигзагообразным профилем. Такие поверхностно расширяющиеся структуры содержат волнообразные профили, желобчатые профили, профили с выступами любой геометрии и/или угловым положением относительно направления потока. Зигзагообразный профиль, при взгляде в направлении площади поперечного сечения канальной структуры, состоит из последовательности ребер. Каждое из этих ребер в трехмерной пластине в смесительном элементе задает линию от входного поперечного сечения до концевого поперечного сечения. В простейшем случае под линией понимается прямая, однако это может быть любая, в частности, периодически повторяющаяся кривая. Такая пластина с ребрами кривой формы может применяться, например, в смесительном элементе для проводящего текучую среду средства с изменением направления основного потока, благодаря чему происходит изменение направления протекающей смеси наряду с расширением поперечного сечения потока.
В случае пластины с симметричным профилем, например зигзагообразным профилем, между двумя соседними ребрами располагается открытый канал, стенки которого образованы по меньшей мере двумя плоскими и/или следующими изгибу ребер профильными поверхностями. В этом примере применения канал имеет V-образное поперечное сечение, поскольку нижняя граница канала также образована ребром, идущим в противоположном направлении. Таким образом, в этом примере исполнения соседние профильные поверхности расположены под острым углом друг к другу, составляющим менее 180°.
Согласно примеру исполнения ребра соседних пластин оказываются линейно наложенными друг на друга так, что две соседние пластины с ребрами, указывающими в противоположные направления, оказываются наложенными друг на друга. В этом случае между двумя соседними пластинами образуются закрытые каналы, по которым перемещается протекающая смесь. Согласно этому примеру исполнения компоненты смеси от входного отверстия в смеситель до выходного отверстия остаются в том же канале, который расширяется подобно диффузору, в соответствии с расширением проводящего текучую среду средства в направлении основного потока. Расстояние между двумя соседними пластинами увеличивается от поперечного сечения входного отверстия к поперечному сечению выходного отверстия, в соответствии с расширением проводящего текучую среду средства перпендикулярно направлению основного потока. Каждая пластина может быть изготовлена из плоского листового материала, сложенного таким образом, что высота ребер и расстояние между двумя соседними ребрами увеличиваются в направлении расширяющегося, то есть сконструированного подобно диффузору, смесительного элемента. При этом ребра соседних пластин оказываются наложенными друг на друга, вследствие чего происходит линейное касание соседних пластин по общему ребру. Благодаря этой системе образуется проточный канал, поперечное сечение которого непрерывно увеличивается от входного отверстия к выходному отверстию, если должно быть охвачено все поперечное сечение диффузора. Пластины могут быть выполнены из по меньшей мере двух плоских и/или следующих изгибу ребер профильных поверхностей и/или сами профильные поверхности имеют дополнительное структурирование, которое выполнено в виде волнообразных или зигзагообразных выступов или ламелей и может содержать серию открытых каналов, проходящих между выступами или ламелями. Структурирование такого типа раскрыто, например, в СН 547 120. Согласно другому примеру исполнения можно также таким образом скомбинировать пластины с профильной поверхностью с пластинами с поверхностно расширяющейся структурой, чтобы плоская пластина и пластина с поверхностно расширяющимися структурами попеременно следовали друг за другом. Благодаря этому образуются закрытые каналы, ограниченные с одной стороны плоской пластиной, а с другой стороны пластиной с поверхностно расширяющейся структурой.
В смесительном элементе согласно предпочтительному примеру исполнения проточные каналы соседних пластин выполнены открыто перекрещиваясь и/или подобно диффузору. Благодаря этой системе достигается особо быстрое и хорошее перемешивание смешиваемых компонентов. Согласно следующему варианту для лучшего перемешивания может быть предусмотрено, чтобы происходило не линейное касание двух соседних пластин с поверхностно расширяющимися структурами, а чтобы ребра соседних пластин соприкасались лишь точечным образом. Это точечное касание достигается благодаря тому, что две соседние пластины расположены под углом друг к другу. Благодаря этому возможно, что ребро, принадлежащее первой пластине, имеет лишь точечное касание с некоторым числом соответствующих ребер соседней пластины. Существенное преимущество этого примера исполнения обосновывается тем, что протекающая среда течет не всегда в одном и том же канале, как в показанных выше вариантах, а в каждый момент времени находится в другом канале, то есть непрерывно меняет канал. В этом случае протекающая среда отклоняется существенно сильнее, чем в предшествующих примерах, что приводит к дополнительному улучшению перемешивания. Альтернативно этому могут быть скомбинированы также две соседние пластины с разными профилями, которые для улучшения перемешивания также установлены под углом от 0 до 180° относительно друг друга.
Согласно следующему примеру исполнения каждая пластина образует полое тело с поверхностно расширяющимися структурами, в частности, имеет желобчатую, зубчатую или волнистую поверхность. Согласно этому ребра поверхностно расширяющихся структур задают граничную поверхность, которую можно представить как полое тело, имеющее, в частности, коническую форму. Поверхностно расширяющиеся структуры наклонены к направлению потока под углом от 0 до 180°. Несколько таких полых тел могут быть вставлены одно в другое. Углы поверхностно расширяющихся структур двух соседних пластин, выполненных как полые тела, предпочтительно различаются, таким образом, поток может многократно отклоняться посредством поверхностно расширяющихся структур.
Проточный канал ограничен по меньшей мере двумя профильными поверхностями, при этом каждые две соседние профильные поверхности одной пластины образуют общее ребро. В частности, проточные каналы с плоскими профильными поверхностями изготовляются с небольшими затратами и простым способом. Ребра одной пластины задают граничную поверхность, выполненную плоской и/или по меньшей мере на отдельных участках конической. Если пластина имеет несколько ребер, которые совместно задают такую граничную поверхность, то посредством плоских профильных поверхностей может быть простым образом получена, например, плоская или коническая граничная поверхность, поскольку необходимые параметры легко настроить и проверить. Форма граничной поверхности имеет значение, в частности, в том случае, если для изготовления смесительного элемента требуется большое количество установленных одна над другой пластин, при которых ребра соседних пластин имеют, по меньшей мере, точечное касание.
В смесительном элементе ребрами пластины задана граничная поверхность, выполненная плоской и/или по меньшей мере на отдельных участках конической. В качестве граничной поверхности обозначается при этом соединительная поверхность всех ребер. Большинство из вышеназванных примеров исполнения пластин с поверхностно расширяющимися структурами имеют плоские граничные поверхности, таким образом, соседние пластины имеют по одной такой плоской граничной поверхности. В случае пластины без поверхностно расширяющихся структур граничная поверхность совпадает с поверхностью пластины. Согласно следующему примеру исполнения граничная поверхность может представлять собой также любым образом изогнутую в пространстве поверхность. В случае пластины с поверхностно расширяющейся структурой ребра поверхностно расширяющихся структур также задают изогнутую в пространстве поверхность. Для статического смесителя с коническим расширением проводящего текучую среду средства пригодно применение пластины с конической граничной поверхностью, так что, пластины имеют граничные поверхности, образованные конически между пластинами.
Согласно предпочтительному примеру исполнения ребра, принадлежащие одной пластине смесительного элемента, выполнены с наклоном относительно друг друга под углом α в пределах от 0 до 120°, в частности от 60 до 90°. Перекрещивающиеся ребра соседних пластин предпочтительно образуют с направлением основного потока противоположно направленный, равный по величине угол α/2.
Поперечное сечение смесительного элемента расширяется от первого поперечного сечения ко второму поперечному сечению, в частности, конически, при этом, в частности, диаметр выходного поперечного сечения относительно диаметра входного поперечного сечения увеличивается в 2-5 раз, что эквивалентно увеличению поперечного сечения в 4-25 раз. В предпочтительном исполнении смесительный элемент расширяется от первого поперечного сечения ко второму поперечному сечению коническим образом, в частности, диаметр входного поперечного сечения расширяется в 2-5 раз. Поскольку проводящее текучую среду средство в этом примере исполнения также расширяется конусным образом, то предотвращается резкий переход от поперечного сечения подвода ввода, оканчивающегося во входном отверстии, то есть в большинстве случаев магистрального трубопровода, к поперечному сечению выходного отверстия. Выходное отверстие может быть выполнено как входное отверстие в теплообменник или реактор. В этот реактор смесь должна поступать уже в значительной мере гомогенной. В частности, газообразные, текучие и/или твердые компоненты смеси удерживаются во взвешенном состоянии. Состояние смеси посредством смесительного элемента или смесительных элементов прямо сохраняется в конусе - который в противном случае в качестве диффузора способствовал бы разделению смеси. В большинстве случаев достигается даже улучшение перемешивания компонентов, в частности, с помощью смесительных элементов с перекрещивающимися проточными каналами, в результате чего компоненты могут гомогенно распределяться по любому поперечному сечению конуса вниз по течению от входного поперечного сечения. Кроме того, коническая форма дает значительные преимущества для установки пластин, поскольку коническая форма проводящего текучую среду средства действует как центрирующее средство для установки конического смесительного элемента. Благодаря тому, что смесительный элемент пригнан в коническое проводящее текучую среду средство, для установки требуется лишь минимальные затраты на сварку. Смесительные элементы выполнены предпочтительно подобно диффузору, это значит, что смесительные элементы подогнаны к расширяющемуся поперечному сечению, то есть, в частности, сами имеют коническую форму. Подгонка осуществляется вследствие конической формы смесительного элемента путем позиционирования смесительного элемента или смесительных элементов в конусе, благодаря чему однозначно задается положение смесительного элемента в коническом продводящем текучую среду средстве.
Пластины должны, если возможно, примыкать непосредственно к проводящему текучую среду средству, то есть к внутренней стенке смесителя. При линейном касании в качестве линий пересечения плоской пластины или пластины с поверхностно расширяющейся структурой, в частности, составленной из плоских сегментов поверхностно расширяющейся структуры, такой, как зигзагообразный профиль, с конической внутренней стенкой получаются конические сечения, то есть в зависимости от наклона пластины к конусу, эллиптические, параболические или гиперболические ограничительные линии. Каждая из описанных выше пластин может быть развернута в плоскость, поэтому с помощью чертежных программ из желаемого положения пластины в смесителе может быть сформирована развертка. Эти развертки содержат, наряду с ограничительными линиями пластины, также линии сгиба, таким образом, и в тех случаях, когда каждый угол имеет разную величину и, следовательно, необходимы весьма сложные гибочные операции, возможно экономичное изготовление пластин.
Возможный способ изготовления смесителя включает в себя следующие этапы: изготовление проводящего текучую среду средства с входным отверстием с первым поперечным сечением и выходным отверстием со вторым поперечным сечением, при этом проводящее текучую среду средство имеет форму поперечного сечения, непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. Следующим этапом является изготовление смесительного элемента. Смесительный элемент содержит большое количество пластин, которые предварительно изготовляются по отдельности и посредством соединительных средств собираются в смесительный элемент. Если поверхностные структуры пластин имеют возможность разворачиваться в плоскость, то изготовление упрощается, поскольку развертка каждой пластины с помощью режущих средств может быть вырезана из плоского пластинчатого исходного материала и затем с помощью гибочных средств сложена для получения поверхностной структуры. Это изготовление пригодно, в частности, для пластин из металлической заготовки. Пластины из синтетического материала в их сложенной форме изготовляют методом экструзии или методом литья под давлением и дополнительно разрезают на форму, которая требуется для образования расширяющегося, то есть, в частности, конического, смесительного элемента. На следующем этапе собранные в смесительный элемент пластины позиционируют в смесителе. Если смесительный элемент посажен в коническое проводящее текучую среду средство уже в собранном состоянии, то требуются лишь минимальные затраты на сварку. В коническом смесителе происходит центрирование пластин с помощью конуса, так что установка пластин, сложенных из развертки, может происходить также непосредственно в проводящее текучую среду средство, поскольку позиционирование пластин происходит благодаря самой конической форме проводящего текучую среду средства, а ориентирование пластин относительно друг друга предварительно задано. Альтернативно этому весь смесительный элемент может быть также изготовлен методом литья под давлением или в одноразовой форме.
При использовании конструкции пластин, соответствующей перекрестной канальной структуре, возможно образование мертвых пространств, поскольку пластина на входном поперечном сечении пути потока блокированы угловой ориентацией части пластины, смежной с внутренней стенкой. Поэтому после изготовления каналы на корпусной стороне проверяются и по необходимости открываются. Пристенный зазор между смесительными элементами и внутренней стенкой корпуса составляет не более 2% от соответствующего поперечного сечения, в частности не более 1% от соответствующего поперечного сечения, особо предпочтительно не более 0,5% от соответствующего поперечного сечения, так что так называемого «эффекта каналообразования» бесспорно не происходит.
Пристенный зазор до проводящего текучую среду средства должен быть выполнен меньше нормального расстояния между двумя соседними граничными поверхностями, в частности, меньше, чем высота проточного канала поверхностно расширяющейся структуры. За высоту проточного канала принимается нормальное расстояние между двумя граничными поверхностями, заданными между ребрами поверхностно расширяющейся структуры. В частности, пристенный зазор должен составлять максимально половину высоты проточного канала.
При легких разделениях смеси в зоне входного отверстия текучая фаза по так называемому «подъемнику» направляется снова в центр и распределяется в смесителе по поперечному сечению. Подъемником называется при этом встроенный элемент, закрепленный на внутренней стенке проводящего текучую среду средства, в частности приваренный к внутренней стенке проводящего текучую среду средства. Этот встроенный элемент предназначен для того, чтобы отводить компоненты, скопившиеся в самом низкорасположенном месте проводящего текучую среду средства, назад в смесительный элемент. Встроенный элемент должен представлять при этом особые варианты исполнения, такие, как, например, профиль, наклонная площадка, плита или тому подобное.
Согласно любому из названных выше решений, наряду с хорошим эффектом распределения и/или эффектом перемешивания создается лишь небольшая потеря напора.
В предпочтительной системе смесительные элементы, встроенные в трубчатый участок с постоянным поперечным сечением, и смесительные элементы согласно любому из предшествующих примеров исполнения, могут быть скомбинированы между собой. Для достижения улучшенного эффекта перемешивания обычный смесительный элемент находится в трубчатом участке перед входом в статический смеситель с проводящим текучую среду средством с расширяющимся поперечным сечением. Согласно любому из предшествующих примеров исполнения два соседних смесительных элемента могут быть установлены относительно друг друга с поворотом на 0-90°, в частности от 60 до 90°. Благодаря такому повороту достигается дополнительное отклонение потока, что оказалось предпочтительным, в частности, для названных примеров исполнения с канальным течением, имеющемся по меньшей мере на отдельных участках.
Система смесительного элемента может быть осуществлена выше по потоку от теплообменника, в частности, на входном участке теплообменника. С расширяющимся смесительным элементом поток при увеличении среднего поперечного сечения в направлении потока равномерно распределяется по расширенному поперечному сечению, а также обеспечивается гомогенность потока по всему поперечному сечению.
Применение смесительного элемента осуществляется в способе обезазотирования отработанных газов, для распределения отработанных газов по поверхности катализатора, в способе производства СПГ (сжиженного природного газа), в частности, для подачи газожидкостной смеси в качестве охлаждающего вещества для переработки СПГ в теплообменное устройство. Теплообменное устройство может содержать, в частности, теплообменник, предпочтительно выполненный в виде пучка труб теплообменник.
Для обезазотирования отработанных газов жидкий карбамид выпаривают и смешивают с потоком газа. И выпаривание, и смешивание могут происходить одновременно в статическом смесителе. Благодаря комбинированному проведению способа существует необходимость вводить карбамидо-газовую смесь для дальнейшей переработки в последующую стадию процесса уже в смешанном состоянии. Следующая возможность применения заключается в том, чтобы выпаривать жидкости в статическом смесителе с расширяющимся поперечным сечением и одновременно перемешивать. В частности, в установках с небольшой предоставляемой площадью является предпочтительным применение смесителя такого типа, чтобы поддерживать смесь при расширении до больших диаметров во взвешенном состоянии.
При переработке природного газа охлаждающее вещество должно быть охлаждено для последующего применения. Охлаждающее вещество состоит из различных, газообразных и текучих, составных частей, при этом большую долю составляют метан и этан. Смесь из газообразного и текучего охлаждающего вещества подводится обычно в трубопроводе к теплообменнику, в частности, выполненному в виде пучка труб теплообменнику, где она затем охлаждается по многопроходной системе. Входное устройство такого теплообменника имеет, как правило, размер от DN 1500 до DN 2400 (от 1,5 до 2,4 м), что означает, что смесь в трубопроводе от в основном DN 600 (0,6 м) должна расширяться через конус во впуск выполненного в виде пучка труб теплообменника. Для того чтобы теплообменник мог достигать своей полной мощности, газообразные и текучие составные части должны равномерно смешиваться по поперечному сечению и равными долями подводиться к отдельным трубам. Теплообменник рассчитан в основном на газожидкостную смесь, это означает, что газожидкостная смесь должна иметь равномерное распределение по входному поперечному сечению в теплообменник.
Другая возможность применения смесительного элемента в автомобилестроении касается впуска отработавших газов двигателя в катализатор для каталитического отделения вредных веществ, в частности угарных газов (Nox), и связывание их путем каталитической реакции на поверхности катализатора. Поскольку в автомобилях, в частности в грузовых автомобилях, предоставляемая для статического смесителя в выхлопной трубе площадь относительно мала, то статические смесители с описанным выше расширяющимся поперечным сечением имеют большое преимущество для таких целей, поскольку не требуется дополнительного конструктивного пространства. В системе выпуска отработавших газов, в которой отработавшие газы из относительно небольшой выхлопной трубы выходят в больший по объему корпус катализатора, также возникает проблема расслоения отработавших газов и текучих и/или твердых компонентов. Для того чтобы катализатор не изнашивался односторонне, необходимо полное выпаривание и одновременно хорошая гомогенизация, которая может быть достигнута с помощью статического смесителя согласно одному из названных выше примеров исполнения при незначительных падениях напора.
Другое возможное применение смесительного элемента согласно одному из предшествующих примеров исполнения заключается в химической реакционной технологии для осуществления каталитических и/или биогенных реакций, в частности, при расширяющихся поперечных сечениях для впуска одно- или многофазной текучей смеси в реактор. Газообразные и текучие компоненты часто должны быть диспергированы перед реактором. После образования пузырькового слоя и равномерного распределения компонентов поток часто расширяется, поскольку поток с диаметром, увеличенным по сравнению с диаметром трубопровода, поступает в реактор, содержащий катализатор. Статический смеситель используется для того, чтобы поддерживать гомогенность смеси. Незначительный эффект замедления в статическом смесителе по сравнению с резким переходом поперечного сечения от трубопровода к входному поперечному сечению в корпус реактора способствует тому, что пузырьки сливаются менее быстро.
Другое применение статического смесителя предлагается в области сжижения газа. При сжижении газа различные газовые потоки смешиваются и вводятся в многотрубную систему. В предусмотренном случае применения газ смешивается в трубе DN 600 (0,6 м) и затем должен равномерно распределиться по различным трубам в диаметре корпуса DN 12000 (12 м). В уровне техники, известном на момент подачи заявки, для этой цели используют направляющие щитки. Для того чтобы каждая труба получила одну и ту же долю газа, предлагается использовать статический смеситель согласно одному из предшествующих примеров исполнения.
Другая область применения статического смесителя лежит в области реакторов, в которых должен поддерживаться равномерный поток, в области так называемых реакторов с поршневым режимом потока. В реакторах с поршневым режимом потока с помощью смесительных элементов обеспечивается прохождение текучей среды в равномерном потоке по цилиндрическому корпусу. Если диаметр должен быть изменен, то равномерный поток на коническом участке по причине отсутствия смесительных элементов нарушается. Благодаря применению конических смесительных элементов текучие свойства на коническом участке могут сохраняться.
Как говорилось выше, статический смеситель вышеназванной конструкции может быть скомбинирован также с работающим в качестве смесителя для предварительного смешивания статическим смесителем с постоянной, в частности, полоцилиндрической формой поперечного сечения. Смешивание отдельных текучих компонентов происходит в статическом смесителе цилиндрической конструкции, статический смеситель с расширяющимся поперечным сечением предназначен в первую очередь для равномерного расширения и/или распределения смеси.
Для уменьшения падений напора можно также предусмотреть между отдельными смесительными элементами промежутки, в которых действуют такие же режимы потока, как в трубопроводе. Короткие дистанции между отдельными смесительными элементами не вызывают заметного расслоения, а, напротив, служат для того, чтобы без дополнительного падения напора заново распределять поток.
Ниже изобретение поясняется на основании чертежей. На чертежах изображено:
фиг.1 - первый пример исполнения смесительного элемента из плоских пластин,
фиг.2 - второй пример исполнения смесительного элемента из пластин с зигзагообразным профилем,
фиг.3 - третий пример исполнения смесительного элемента в комбинации из плоских пластин и пластин с зигзагообразным профилем,
фиг.4а - установка пластин с зигзагообразным профилем в конический смесительный корпус,
фиг.4b - сечение ряда пластин с зигзагообразным профилем,
фиг.4c - две перекрещивающиеся пластины с зигзагообразным профилем,
фиг.5а - первая пластина с зигзагообразным профилем, образующая коническое полое тело,
фиг.5b - вторая пластина с зигзагообразным профилем, образующая коническое полое тело,
фиг.6а - установка пластины с зигзагообразным профилем из фиг.6а в конический смесительный корпус,
фиг.6b - краевая пластина с зигзагообразным профилем, установленная под наклоном относительно основного направления потока,
фиг.7 - система из двух смесительных элементов для конического статического смесителя,
фиг.8а - проводящее текучую среду средство с квадратным поперечным сечением,
фиг.8b - проводящее текучую среду средство с прямоугольным поперечным сечением,
фиг.8с - две соседние пластины смесительного элемента с открыто перекрещивающимися проточными каналами.
На фиг.1 показан первый пример исполнения смесительного элемента. Проводящее текучую среду средство или корпус 1 имеет по существу коническую форму и лишь обозначен(о) на фиг.1. Смесительный элемент содержит комплект трапециевидных встроенных элементов или пластин 2. Каждая пластина показана в представленном примере исполнения плоской поверхностью, но при этом по меньшей мере на нескольких из представленных пластин могут быть предусмотрены любые поверхностно расширяющиеся структуры по меньшей мере по одному из приведенных выше примеров исполнения. В представленной конфигурации поток текучей смеси проходит в зону между пластинами от входного поперечного сечения 9 к выходному поперечному сечению 10, при этом стрелка 11 указывает направление основного потока. Под текучей смесью следует понимать, в частности, газожидкостную смесь или смесь газов, или смесь жидкостей. Каждая из фаз может дополнительно содержать еще долю твердого вещества. Поток равномерно расширяется и распределяется посредством подогнанной к форме направляющего текучую среду средства ориентации пластин 2. Количество пластин и расстояние между пластинами зависят в основном от перемешивающего эффекта в каждой пластине. С другой стороны, на него влияет скорость потока, а также, не в последнюю очередь, свойства протекающих компонентов, таких, в частности, как их плотность или вязкость. На каждой из стенок пластин и корпуса могут возникать эффекты трения, так что образуются краевые потоки, которые приводят к меньшей пропускной способности в приграничных и пристенных участках, поскольку близкий к стенке поток имеет из-за эффектов трения более низкую скорость, чем основной поток. В представленном примере пластины 2 посредством удерживающих устройств 7, 8 удерживаются рядом на расстоянии друг от друга. Согласно другому, не показанному примеру исполнения, посредством штекерных или зажимных соединений пластины могут быть закреплены также на внутренней стенке самого проводящего текучую среду средства. Установка пластин в конически выполненное проводящее текучую среду средство может быть выполнена таким образом, что сначала пластины собираются с помощью удерживающих устройств, чтобы затем в виде предварительно собранного смесительного элемента 12 вставить в корпус. Коническая форма корпуса 1 способствует тем самым также центрированию составленного таким образом смесительного элемента 12.
На фиг.2 показан второй пример исполнения со смесительным элементом из пластин, имеющих зигзагообразный профиль. На фиг.2 для наглядности показаны лишь две такие пластины (3, 4). Протекающая смесь направляется пластинами, образующими V-образные проточные каналы. В представленном случае пластина 3 поддерживается вдоль общих ребер 15 пластиной 4. Ребро 15 принадлежит пластине 4 и направлено перпендикулярно направлению основного потока, показанного стрелкой 11 в направлении проводящего текучую среду средства, представленного на чертеже в виде верхней стенки корпуса. Ребро 15 принадлежит пластине 3 и находится в линейном контакте с ребром 15 пластины 4. На ребрах сходятся вместе профильные поверхности (13, 14) зигзагообразного профиля, образующего соответствующую пластину, которые образуют проточный канал, по которому протекают смешиваемые компоненты. Таким образом, проточный канал ограничен профильными поверхностями (13, 14). Если ребра соседних пластин касаются по всей длине между входным поперечным сечением 9 и выходным поперечным сечением 10, то соседними пластинами образуются закрытые проточные каналы, составленные из соответственно двух открытых проточных каналов (5, 6). Закрытый проточный канал такого типа имеет по существу ромбовидное поперечное сечение. Для упрощения монтажа или улучшения перемешивания отдельных частичных потоков можно предусмотреть промежуток между пластинами (3, 4), аналогично тому, как представлено на фиг.1. В этом случае ребра двух соседних, расположенных одна над другом пластин, уже не соприкасаются, следовательно, уже не образуется общее ребро 15. Профильные пластины (13, 14) образуют тогда открытый проточный канал.
Закрепление пластин (3, 4), а также других, не показанных пластин на фиг.2 для образования смесительного элемента может осуществляться посредством тех же крепежных средств, как это представлено на фиг.1, при этом существует возможность выполнить сварное соединение, в частности точечную сварку, или паяное соединение и/или клеевое соединение или тому подобное.
Другие возможности отклонения потока и улучшения перемешивания создаются благодаря тому, что каналы снабжены не показанными потокоотклоняющими средствами. В частности, для этого предусмотрены перфорированные листы, выступы в стенках каналов, накладки или вставленные в проточные каналы, распределенные подобно сыпучему материалу, поверхностно увеличивающие структуры. Структуры такого типа применяются в газожидкостной адсорбции и в качестве насадок колонн, в частности колец Рашига, седел Берля, колец Полла, Intalox-седел, Tellerette-структур. Другая возможность заключается в том, чтобы саму пластину снабдить потокоотклоняющими структурами, в частности, насадкой, сравнимой с просечно-вытяжным металлическим листом, а также одной из структур, которые уже упоминались в общем описании смесительного элемента.
Третий пример исполнения согласно фиг.3 охватывает смесительный элемент, скомбинированный из плоских пластин 2 и пластин с профильными поверхностями (13, 14), в частности, зигзагообразным профилем. Дополнительные пластины для большей ясности не показаны. Вместо плоской пластины 2 может быть также использована пластина с профильными поверхностями, отличающимися от профильных поверхностей с зигзагообразным профилем. Посредством пластины 4, а также обеих пластин 2 образуются закрытые проточные каналы. Ребро 15 пластины 4 соприкасается с пластиной 2, но не ребро 15 пластины 3. Проточные каналы имеют, таким образом, поперечное сечение, по существу, треугольной формы. По аналогии с расширяющимся поперечным сечением смесительного элемента поперечное сечение проточных каналов, образованных соседними пластинами (2, 3, 4), непрерывно увеличивается в направлении основного потока. Преимущество смесительного элемента с пластинами, образующими проточные каналы, заключается в их незначительном падении напора и в их участии в получении и/или сохранении гомогенной смеси при простом конструктивном исполнении. Протекающая среда должна следовать форме заданного проводящем текучую среду средством пути потока, поэтому состав протекающей смеси согласно закону непрерывности за счет проточного канала остается постоянным до тех пор, пока в статическом смесителе не происходит никакой химической реакции. Поток лишь в течение короткого промежутка времени находится в проводящем текучую среду средстве, поскольку это средство служит большей частью лишь как переход от первого поперечного сечения меньшего диаметра ко второму поперечному сечению большего диаметра. Поэтому участок пути слишком короткий для того, чтобы могли стать заметными существенные при протекании через проводящее текучую среду средство эффекты разделения смеси вдоль проточных каналов. В выходном поперечном сечении 10, которое в целом совпадает с одним концом проточного канала, сходятся все частичные потоки.
При высоких скоростях потока на концах проточных каналов пластин, лежащих в плоскости выходного поперечного сечения 10, могут происходить вихревые срывы потока по принципу вихревой дорожки Кармана, вследствие чего перемешивание может даже еще улучшиться.
Согласно следующему предпочтительному примеру исполнения по фиг.4а, для улучшения перемешивания можно предусмотреть, чтобы происходило не линейное касание двух соседних ребер 15 согласно фиг.2 или каждого из ребер 15 с расположенной между ними пластиной 2 согласно фиг.3, а двух перекрещивающихся соседних пластин (3, 4) с зигзагообразным профилем, как они представлены в виде примера на фиг.4с, при которых ребра 15 соприкасаются лишь в одной точке. Это точечное касание для ребер 15 достигается в точке 17 касания благодаря тому, что две соседние пластины (3, 4) расположены под углом друг к другу. Это способствует тому, что ребро 15, принадлежащее первой пластине 3, имеет лишь одну точку 17 касания с ребром 15 пластины 4. Угол α между двумя ребрами 15 соседних пластин лежит в пределах от 0 до 120°, в частности от 60 до 90°. В особо предпочтительном примере исполнения ребро 15 пластины 3 наклонено под углом α/2 в одну сторону, ребро соседней пластины 4 под углом α/2 в другую сторону относительно направления основного потока. Эта система дает упомянутую позднее «перекрестную канальную структуру», как она описана в СН 547 120. В примере исполнения по фиг.4а, 4b или 4с ребра пластины 3 задают плоскость, которая обозначается как граничная поверхность 16 пластины. Граничная поверхность содержит все точки касания соседних пластин, когда соседние пластины расположены таким образом, что они образуют общую граничную поверхность. Существенное преимущество этой системы, обозначенной также как перекрестная канальная структура, согласно этому примеру исполнения, обосновывается тем, что протекающая смесь течет всегда не в одном и том же проточном канале, как в показанных ранее вариантах, а в каждый момент времени находится в другом проточном канале, то есть непрерывно меняет проточный канал. В этом случае протекающая смесь отклоняется сильнее, чем в предшествующих примерах исполнения, следствием чего является дополнительное улучшение перемешивания. На фиг.4а показана подгонка пластин (3, 4) с зигзагообразным профилем и плоских граничных поверхностей, при этом показана лишь каждая вторая пластина 3, а примыкающие пластины 4 из соображений наглядности не представлены. Пластины выполнены таким образом, что наикратчайшее расстояние между двумя соседними ребрами, измеренное в поперечном сечении перпендикулярно направлению основного потока, непрерывно увеличивается от входного поперечного сечения 9 к выходному поперечному сечению 10. Равным образом возможно, что нормальное расстояние между двумя соседними граничными поверхностями 16, измеренное в поперечном сечении перпендикулярно направлению основного потока, непрерывно увеличивается от входного поперечного сечения 9 к выходному поперечному сечению 10 или же сохраняется постоянным, вследствие чего граничные поверхности пластин располагаются параллельно друг другу. Согласно примеру исполнения представленному на фиг.4а, соседние граничные поверхности расширяются подобно диффузору от входного поперечного сечения 9 к выходному поперечному сечению 10.
По меньшей мере несколько из этих точек 17 касания могут быть выполнены как сварные точки для того, чтобы присоединять соседние пластины (3, 4) к смесительному элементу.
Согласно следующему варианту граничные поверхности 16 соседних ребер (3, 4) не совпадают, а имеют незначительное расстояние друг от друга, таким образом, соседние пластины не соприкасаются. Благодаря этому часть протекающей смеси отклоняется не полностью, вследствие чего поток замедляется меньшим образом. Воздействия на перемешивание зависят от смешиваемых компонентов, доли различных фаз, а также от тенденции к разделению смеси. Путем изменения расстояния между пластинами оказывается воздействие также на потерю напора статического смесителя.
Пластины, если возможно, должны примыкать непосредственно к внутренней стенке проводящего текучую среду средства, как это указано на фиг.4а, таким образом, чтобы, во всяком случае, оставался небольшой промежуток между пластиной 3 и внутренней стенкой. При линейном касании пластины 3 в качестве линии пересечения плоской или произвольно сложенной, составленной из плоских сегментов пластины с конической внутренней стенкой получаются конические сечения, то есть в зависимости от наклона пластины относительно внутренней стенке, эллиптические, параболические или гиперболические ограничительные линии, что представлено на фиг.5а и фиг.5b. Каждая из описанных выше пластин, одна из которых представлена на фиг.5а, выполнена с возможностью развертывания в плоскость, поэтому посредством чертежных программ из желаемого положения пластины в смесителе может быть сформирована развертка. Эти развертки наряду с ограничительными линиями пластины содержат также еще линии сгиба, так что, и в тех случаях, когда каждый угол разный и, следовательно, требуются весьма сложные гибочные процессы, возможно экономичное изготовление пластин. На фиг.5а представлен поперечный разрез через такую перекрестно-канальную структуру, при этом, как и на фиг.4а, показана лишь каждая вторая пластина. Если применять конструкцию пластин, соответствующую перекрестно-канальной структуре, то возможно образование мертвых пространств, поскольку пластина на входном поперечном сечении 10 пути потока в результате угловой ориентации части пластины, смежной с внутренней стенкой, блокированы. Поэтому после сборки пластин в смесительный элемент каналы со стороны корпуса, то есть внутренней стенки, проверяются и по необходимости открываются. Пристенный зазор между смесительными элементами и внутренней стенкой проводящего текучую среду средства 1 меньше стандартного расстояния между двумя соседними граничными поверхностями 16, в частности, меньше высоты проточного канала (5, 6) поверхностно расширяющейся структуры, в частности, представленного зигзагообразного профиля, так что так называемый «эффект каналообразования» не наступает.
На фиг.5b представлена пластина 3 в краевой зоне смесительного элемента. Пластина 3 имеет линии 18 пересечения, примыкающие к внутренней стенке проводящего текучую среду средства. Если бы профильные поверхности (13, 14) пластин примыкали непосредственно к внутренней стенке, то проточный канал 5 был бы непроточным. Поэтому эти профильные поверхности устанавливаются по меньшей мере частично на расстоянии от внутренней стенки, или, соответственно, после сборки смесительного элемента открываются для потока.
Согласно следующему примеру исполнения по фиг.6а и 6b каждая пластина образует полое тело 19 с поверхностно расширяющимися структурами. Поверхностно расширяющиеся структуры полого тела 19, в частности желоба, зубцы или волны, наклонены под углом от 0 до 180° относительно направления основного потока. Несколько таких полых тел могут быть выполнены таким образом, что могут быть вставлены одно в другое. В настоящем случае полое тело 19 выполнено с возможностью полной интеграции в полое тело 20, посредством вставки полого тела 19 в полое тело 20. В представленном примере исполнения полые тела (19, 20) имеют зигзагообразный профиль. Направленные наружу, а также направленные внутрь ребра задают в каждом случае граничную поверхность, которая выполнена конической. Если размеры полого тела 19 превышают размеры полого тела 20, что не означает ничего иного, как то, что внутренняя граничная поверхность полого тела 20 располагается внутри наружной граничной поверхности полого тела 19, то оба полых тела (19, 20) заклиниваются при монтаже таким образом, что при не слишком больших усилиях со стороны протекающей среды на полые тела в смонтированном состоянии смесительного элемента от дополнительного фиксирования полого тела, например, посредством сварных точек или крепежных устройств, можно полностью отказаться. Зажимные усилия дают достаточную гарантию от изменения положения пластин в рабочем режиме. Если позволяет место размещения, то смесительный элемент такого типа может быть установлен в проводящее текучую среду средство, которое имеет по существу вертикально расположенную ось основного потока, так что смесь протекает через статический смеситель снизу вверх. Если возникнет опасение, что пластины сместятся относительно друг друга или даже будут унесены потоком через выходное поперечное сечение, потому что они выполнены из легкого материала, например легкого металла или синтетического материала, то при необходимости в зоне выходного поперечного сечения 11 может быть установлено удерживающее устройство.
На фиг.7 показаны два смесительных элемента 12 для конического статического смесителя, которые установлены в непосредственном примыкании друг к другу. Эти смесительные элементы составлены из пластин 3, которые имеют, в частности, зигзагообразный профиль по одному из вышестоящих примеров исполнения, при этом соседние пластины наклонены относительно друг друга под углом, отличающимся от 0°. Каждый смесительный элемент 12 обладает высокой стабильностью, поскольку пластины опираются друг на друга и на внутреннюю стенку проводящего текучую среду средства. Направление основного потока показано стрелкой 11.
Согласно следующему, не показанному варианту, оба смесительных элемента 12 могут быть расположены также на расстоянии друг от друга.
На фиг.8а представлено проводящее текучую среду средство с квадратным поперечным сечением. Площадь поперечного сечения непрерывно увеличивается от входного поперечного сечения 9 к выходному поперечному сечению 10. При этом непрерывно возрастает длина каждой стороны квадрата.
На фиг.8b представлено проводящее текучую среду средство с прямоугольным поперечным сечением. Площадь поперечного сечения непрерывно увеличивается от входного поперечного сечения 9 к выходному поперечному сечению 10. При этом возрастает длина лишь каждой второй стороны поперечного сечения прямоугольника, на фиг.8b имеется ввиду длина стороны 21. На фиг.8b указаны граничные поверхности 16 пластин смесительного элемента.
На фиг.8с показано система из двух смежных пластин (3, 4) с зигзагообразным профилем для одного из представленных на фиг.8а или 8b примеров исполнения. Другие пластины указаны лишь своими граничными поверхностями 16, для того, чтобы не перегружать фиг.8с. В этом варианте для выполнения краевых пластин, примыкающих к внутренней стенке проводящего текучую среду средства 1, не требуется особых стадий обработки, так что затраты на изготовление смесительного элемента со средством 1 с плоскими на отдельных участках боковых поверхностей снижены. В отношении расширения каналов отдельных пластин от входного поперечного сечения 9 к выходному поперечному сечению 10 следует указать на представленные в фиг.4а-4b возможности зигзагообразных профилей, которые следует воспринимать как пример для всех других упомянутых в тексте вариантов исполнения пластин.
Список ссылочных позиций
1. Проводящее текучую среду средство
2. Пластина
3. Пластина
4. Пластина
5. Проточный канал
6. Проточный канал
7. Удерживающее устройство
8. Удерживающее устройство
9. Входное поперечное сечение
10. Выходное поперечное сечение
11. Стрелка
12. Смесительный элемент
13. Профильная поверхность
14. Профильная поверхность
15. Ребро
16. Граничная поверхность
17. Точка касания
18. Линия пересечения
19. Полое тело
20. Полое тело
21. Сторона с изменяемой длиной

Claims (13)

1. Смесительный элемент (12) для установки в проводящее текучую среду средство (1), содержащий входное отверстие (9) для по меньшей мере двух компонентов с первым поперечным сечением, расположенным в плоскости, лежащей по существу перпендикулярно направлению (11) основного потока во входном отверстии (9), и выходное отверстие (10) для смеси со вторым поперечным сечением, расположенным в плоскости, лежащей, по существу, перпендикулярно направлению (11) основного потока в выходном отверстии (10), при этом смесительный элемент (12) имеет форму поперечного сечения, по существу непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению, отличающийся тем, что в смесительном элементе расположены потокоразделяющие пластины (2, 3, 4) таким образом, что возможна точная подгонка смесительного элемента в, по существу, непрерывно расширяющемся проводящем текучую среду средстве (1).
2. Смесительный элемент по п.1, при этом по меньшей мере одна пластина (3, 4) содержит по меньшей мере один проточный канал (5, 6).
3. Смесительный элемент по п.2, при этом проточные каналы (5, 6) соседних пластин (3, 4) выполнены открыто перекрещиваясь и/или подобно диффузору.
4. Смесительный элемент по п.2, при этом проточный канал ограничен по меньшей мере двумя профильными поверхностями (13, 14), при этом каждые две соседние профильные поверхности одной пластины (3, 4) образуют общее ребро (15).
5. Смесительный элемент по п.4, при этом ребра (15) одной пластины (3, 4) задают граничную поверхность (16), выполненную плоской и/или по меньшей мере на отдельных участках конической.
6. Смесительный элемент по п.4, при этом ребра (15), принадлежащие одной пластине, выполнены с наклоном относительно друг друга под углом (α) в пределах от 0 до 120°, в частности от 60 до 90°, при этом, в частности, перекрещивающиеся ребра соседних пластин (3, 4) образуют с направлением основного потока противоположно направленный, равный по величине угол α/2.
7. Смесительный элемент по п.1, при этом поперечное сечение смесительного элемента, в частности, конически расширяется от первого поперечного сечения ко второму поперечному сечению, при этом, в частности, диаметр выходного поперечного сечения относительно диаметра входного поперечного сечения увеличивается в 2-5 раз.
8. Смесительный элемент по п.5, при этом пристенный зазор до проводящего текучую среду средства (1) выполнен меньше нормального расстояния между двумя соседними граничными поверхностями (16), в частности, меньше, чем высота проточного канала (5, 6) поверхностно расширяющейся структуры.
9. Система с обычным смесительным элементом и по меньшей мере одним коническим смесительным элементом по п.1, при этом, в частности, два соседних смесительных элемента установлены относительно друг друга с поворотом на 0-90°, в частности от 60 до 90°.
10. Система по п.9, при этом смесительные элементы установлены в проводящем текучую среду элементе (1) во входной области теплообменника.
11. Применение смесительного элемента по п.1 в способе переработки природного газа и/или в способе обезазотирования отработанных газов.
12. Применение смесительного элемента по п.1 для осуществления каталитических и/или биогенных реакций.
13. Статический смеситель с по меньшей мере одним смесительным элементом по п.1.
RU2007117865/05A 2006-05-15 2007-05-14 Статический смеситель RU2434673C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06113920.0 2006-05-15
EP06113920 2006-05-15

Publications (2)

Publication Number Publication Date
RU2007117865A RU2007117865A (ru) 2008-11-20
RU2434673C2 true RU2434673C2 (ru) 2011-11-27

Family

ID=37115994

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007117865/05A RU2434673C2 (ru) 2006-05-15 2007-05-14 Статический смеситель

Country Status (11)

Country Link
US (1) US8061890B2 (ru)
JP (2) JP2007307551A (ru)
KR (1) KR101379418B1 (ru)
CN (1) CN101108316B (ru)
AT (1) ATE442896T1 (ru)
AU (1) AU2007202138B2 (ru)
CA (1) CA2584955C (ru)
DE (1) DE502007001521D1 (ru)
MY (1) MY146069A (ru)
RU (1) RU2434673C2 (ru)
ZA (1) ZA200703830B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557263C2 (ru) * 2013-10-07 2015-07-20 Акционерное общество "ГМС Нефтемаш" Установка для измерения дебита нефтяных и газовых скважин (варианты)
RU2621768C2 (ru) * 2012-12-21 2017-06-07 Геа Меканикал Эквипмент Италия С.П.А. Способ гомогенизации и гомогенизирующее устройство с обращением потока
RU2716774C2 (ru) * 2016-07-20 2020-03-16 Форд Глобал Текнолоджиз, Ллк Смеситель карбамида
RU2759628C1 (ru) * 2020-12-01 2021-11-16 Общество С Ограниченной Ответственностью "Биопрактика" Статический смеситель для дробления пузырьков газа в газожидкостной смеси

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503306A (ja) * 2005-08-04 2009-01-29 シュルンベルジェ ホールディングス リミテッド 坑井遠隔計測システム用インターフェイス及びインターフェイス方法
AT506577B1 (de) * 2008-06-26 2009-10-15 Gruber & Co Group Gmbh Statische mischvorrichtung
US20110310697A1 (en) * 2010-06-22 2011-12-22 Sebastian Hirschberg Dust mixing device
KR101664494B1 (ko) * 2010-07-08 2016-10-13 두산인프라코어 주식회사 요소 수용액과 엔진 배기가스의 혼합을 위한 정적 혼합기
JP5248650B2 (ja) * 2011-04-23 2013-07-31 江刺家 弥佳 気体溶解器、及びこれを用いた炭酸水生成装置
RU2467791C1 (ru) * 2011-09-02 2012-11-27 Владимир Леонидович Письменный Сотовый смеситель
CA2789725C (en) * 2011-11-29 2019-08-06 Sulzer Mixpac Ag Mixing element for a static mixer
US8739519B2 (en) * 2012-04-17 2014-06-03 Ford Global Technologies, Llc Multi-tiered telescope shaped atomizer
FI123831B (en) 2012-06-26 2013-11-15 Outotec Oyj Solvent extraction clarifier tank arrangement
FI123835B (en) 2012-06-26 2013-11-15 Outotec Oyj Arrangement for a pool for solvent extraction
FI124674B (en) * 2012-06-26 2014-11-28 Outotec Oyj Solvent extraction procedure and solvent extraction basin
FI123803B (en) 2012-06-26 2013-10-31 Outotec Oyj Process for preparing a solvent extraction pool and solvent extraction pool
FI124030B (en) 2012-06-26 2014-02-14 Outotec Oyj Process for producing a separating element and separating element
FI123834B (en) 2012-06-26 2013-11-15 Outotec Oyj Process for making a gutter and gutter
US9266075B2 (en) * 2012-09-28 2016-02-23 Faurecia Emissions Control Technologies Usa, Llc Doser and mixer for a vehicle exhaust system
US20150040547A1 (en) * 2013-08-08 2015-02-12 Tenneco Automotive Operating Company Inc. Mirrored Two-Stage Mixer
CN103540384A (zh) * 2013-10-21 2014-01-29 叶万久 一种清洁型高能净化器
US10406497B2 (en) 2013-12-05 2019-09-10 Exxonmobil Research And Engineering Company Reactor bed vessel and support assembly
US9636652B2 (en) 2013-12-05 2017-05-02 Exxonmobil Research And Engineering Company Reactor bed vessel and support assembly
CN104941472A (zh) * 2014-03-24 2015-09-30 安东尼奥·梅里诺 用于具有不同密度的流体相的静态混合器
US9664082B2 (en) 2014-06-02 2017-05-30 Caterpillar Inc. Reductant dosing system having staggered injectors
DE102014112715B4 (de) * 2014-09-03 2018-11-29 Windmöller & Hölscher Kg Wendevorrichtung für das Wenden einer Schmelze, Blaskopf und Verfahren für die Durchführung eines Spülvorgangs
CN104548988A (zh) * 2014-11-04 2015-04-29 华文蔚 一种用于两种液态成分静态混合的方法
US10086332B2 (en) 2015-05-07 2018-10-02 Ford Global Technologies, Llc Exhaust flow device
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
US9822688B2 (en) 2015-06-24 2017-11-21 Ford Global Technologies, Llc Exhaust flow device
JP6645086B2 (ja) * 2015-09-18 2020-02-12 日本電気株式会社 流体混合装置
JP6931355B2 (ja) 2015-11-13 2021-09-08 リ ミキサーズ,インコーポレーテッド 静的ミキサ
US10066530B2 (en) 2015-11-17 2018-09-04 Ford Global Technologies, Llc Exhaust gas mixer
JP2017180326A (ja) * 2016-03-30 2017-10-05 イビデン株式会社 拡散部材、排ガス浄化装置及び排ガス浄化装置における拡散部材の使用
CN108183247B (zh) * 2016-12-08 2020-05-19 中国科学院大连化学物理研究所 一种液态流体混合器及其于直接液体燃料电池中的应用
WO2019012399A1 (en) * 2017-07-14 2019-01-17 3M Innovative Properties Company ADAPTER FOR TRANSPORTING MULTIPLE FLOWS OF LIQUID
CN107349884A (zh) * 2017-08-31 2017-11-17 宜宾雅钡奇纳米科技有限公司 一种用于生产纳米硫酸钡的微反应器
US10577996B2 (en) * 2017-12-20 2020-03-03 Caterpillar Inc. Exhaust conduit with a flow conditioning portion
CN108327219A (zh) * 2018-01-31 2018-07-27 苏州金纬机械制造有限公司 静态混合器
DE102018107690A1 (de) 2018-03-29 2019-10-02 Tenneco Gmbh Mischer
CN108499393B (zh) * 2018-06-20 2023-08-29 南京工业职业技术学院 一种用于波瓣形切削液多组分在线混合机构的混合组合管装置
KR101977343B1 (ko) * 2018-12-19 2019-05-10 주식회사 신명엔텍 기류 지연판을 구비한 질소산화물 저감 장치
CN110252168A (zh) * 2019-07-15 2019-09-20 国电龙源节能技术有限公司 短混合距离烟道用喷氨静态混合装置
EP3808438B1 (en) * 2019-10-16 2023-12-20 Borealis AG Device for mixing process fluid with initiator in a ldpe reactor
CN111701401A (zh) * 2020-06-15 2020-09-25 苏州清溪环保科技有限公司 一种废气处理设备
USD1008485S1 (en) * 2020-12-18 2023-12-19 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD1009222S1 (en) * 2020-12-18 2023-12-26 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD1008417S1 (en) * 2020-12-18 2023-12-19 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD1008418S1 (en) * 2020-12-18 2023-12-19 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD992691S1 (en) * 2020-12-18 2023-07-18 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD1009216S1 (en) * 2020-12-18 2023-12-26 Commonwealth Scientific And Industrial Research Organisation Static mixer
USD1009221S1 (en) * 2020-12-18 2023-12-26 Commonwealth Scientific And Industrial Research Organisation Static mixer
CA3239804A1 (en) * 2021-12-09 2023-06-15 Mansour Masoudi Exhaust gas mixer, system, and method of using
CN114749118B (zh) * 2022-04-08 2023-04-14 南京工业大学 一种高通量多孔混合器
CN115155348B (zh) * 2022-06-10 2024-02-23 中国石油化工股份有限公司 用于混合乙烯与氧气的混合器
CN115178128B (zh) * 2022-06-17 2023-09-29 合盛硅业股份有限公司 一种静态混合装置及气相二氧化硅生产***
CN115350610A (zh) * 2022-09-06 2022-11-18 四川宝英环境技术有限公司 加在管道内的动态混合器

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US574157A (en) * 1896-12-29 ljtjngstrom
US772279A (en) * 1903-08-05 1904-10-11 Jules Grouvelle Condenser.
US778301A (en) * 1904-02-25 1904-12-27 Mark S Burdick Bin.
US846751A (en) * 1906-04-03 1907-03-12 Elmer Beebe Mixing-device.
US1095555A (en) * 1912-08-19 1914-05-05 Francis G Crone Mixing unit for fluids.
US1224656A (en) * 1916-09-30 1917-05-01 Edgar S Mccandliss Concrete-mixer.
US1496896A (en) * 1920-08-05 1924-06-10 James F Laffoon Wheat-treating device
NL43858C (ru) * 1936-02-01
US2321110A (en) * 1936-08-25 1943-06-08 Servel Inc Heat exchanger
US2132961A (en) * 1936-09-05 1938-10-11 Jabez Burns & Sons Inc Cleaner for coffee and other grains
US2396208A (en) * 1943-03-08 1946-03-05 Anemostat Corp Method of and means for treating gases
US2455572A (en) * 1948-07-08 1948-12-07 Earl R Evans Grain blender
US2684690A (en) * 1949-10-01 1954-07-27 Paper Patents Co Flow control apparatus
NL107104C (ru) * 1957-03-15
DE1171397B (de) 1959-07-02 1964-06-04 Dynamit Nobel Ag Vorrichtung zur Absorption von Gasen und/oder Daempfen mittels Fluessigkeiten
US3075559A (en) * 1960-03-16 1963-01-29 Exxon Research Engineering Co Deflector for solids flowing in a gasiform stream
FR1377537A (fr) * 1963-09-26 1964-11-06 Tissmetal Lionel Dupont élément de garnissage pour colonnes d'échange entre deux fluides
US3275304A (en) * 1964-06-08 1966-09-27 Phillips Petroleum Co Blending apparatus
NL6506004A (ru) * 1965-05-12 1966-03-25
US3373562A (en) * 1966-03-17 1968-03-19 Wingaersheek Turbine Co Inc Combustion chamber for gas turbines and the like having improved flame holder
US3645298A (en) * 1968-01-30 1972-02-29 Brunswick Corp Collimated hole flow control device
SE328597B (ru) * 1968-04-04 1970-09-21 C Munters
FR1574140A (ru) * 1968-05-07 1969-07-11
US3532161A (en) * 1968-06-27 1970-10-06 Aqua Chem Inc Plate type heat exchanger
US3540702A (en) * 1968-08-22 1970-11-17 Nippon Kokan Kk Multi-wave packing material and a device for utilizing the same
GB1292365A (en) * 1969-05-23 1972-10-11 Windmoeller & Hoelscher Mixing devices for plastics materials
US3887739A (en) * 1969-11-10 1975-06-03 Aerojet General Co Honeycomb structures
CH537208A (de) * 1971-04-29 1973-07-13 Sulzer Ag Mischeinrichtung für fliessfähige Medien
GB1422531A (en) * 1972-02-07 1976-01-28 English Clays Lovering Pochin Hoses including devices for inducing streamline flow in fluids
FR2182614B1 (ru) * 1972-03-17 1978-05-05 Louyot Comptoir Lyon Alemand
CH563802A5 (ru) * 1973-04-18 1975-07-15 Sulzer Ag
US3953176A (en) * 1973-05-22 1976-04-27 Texas Instruments Incorporated Catalytic converter
US3977657A (en) * 1973-10-23 1976-08-31 Charles John Shearer Apparatus for mixing particulate solids
US3936382A (en) * 1973-11-21 1976-02-03 Aerojet-General Corporation Fluid eductor
US3902850A (en) * 1974-03-18 1975-09-02 Upjohn Co Solvent-free, self-cleaning mixing head nozzles for reactive polymer mixes
US3893509A (en) * 1974-04-08 1975-07-08 Garrett Corp Lap joint tube plate heat exchanger
US4007908A (en) * 1975-05-09 1977-02-15 Masoneilan International, Inc. Process and device for attenuating noise caused by a valve during the expansion of a fluid
US4181509A (en) * 1975-06-19 1980-01-01 Envirotech Corporation Flow preconditioner for electrostatic precipitator
CH613512A5 (ru) * 1976-07-30 1979-09-28 Sulzer Ag
FR2369005A1 (fr) * 1976-10-29 1978-05-26 Neu Ets Dispositif pour epandage de poudre
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
JPS5549133A (en) * 1978-10-02 1980-04-09 Tokumitsu Kuromatsu Two fluid mixer
CA1145192A (en) * 1980-02-06 1983-04-26 General Foods, Inc. Soft-moist pet food and process
SE432059B (sv) * 1980-04-11 1984-03-19 Munters Ab Carl Blandningsanordning for blandning av strommande medier innefattande minst tva system av atskilda genomstromningskanaler
US4385840A (en) * 1981-03-02 1983-05-31 Gulf Oil Corporation Mixing apparatus
US4418722A (en) * 1981-04-30 1983-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pressure letdown method and device for coal conversion systems
CH656321A5 (de) * 1981-07-30 1986-06-30 Sulzer Ag Einbauelement fuer eine vorrichtung fuer stoff- und/oder direkten waermeaustausch oder mischen.
JPS5939174B2 (ja) * 1982-02-01 1984-09-21 名友産業株式会社 流体混合装置
JPS6055173B2 (ja) * 1982-07-27 1985-12-04 名友産業株式会社 流体混合装置
DE3229486C2 (de) * 1982-08-07 1985-01-24 Franz 2000 Hamburg Cukrowicz Statischer Rohrmischer
US4513807A (en) * 1983-04-29 1985-04-30 The United States Of America As Represented By The Secretary Of The Army Method for making a radial flow ceramic rotor for rotary type regenerator heat exchange apparatus: and attendant ceramic rotor constructions
EP0201614B1 (de) * 1985-05-14 1989-12-27 GebràœDer Sulzer Aktiengesellschaft Reaktor zum Durchführen von heterogenen, katalysierten chemischen Reaktionen
DE3520555A1 (de) * 1985-06-07 1986-12-11 H.P. + H.P. Chemie-Stellglieder GmbH, 4156 Willich Geraeuscharmes stellventil
US4598063A (en) * 1985-08-09 1986-07-01 Retallick William B Spiral catalyst support and method of making it
CH670573A5 (ru) * 1985-11-22 1989-06-30 Sulzer Ag
US4813788A (en) * 1986-01-03 1989-03-21 Union Oil Company Of California Static, gravity-flow mixing apparatus for particulate matter
NL8602338A (nl) * 1986-09-16 1988-04-18 Hoogovens Groep Bv Gasmenger.
DE3719773A1 (de) * 1987-06-13 1988-12-22 Sueddeutsche Kuehler Behr Traegerkoerper fuer einen katalytischen reaktor
DE3733402A1 (de) * 1987-10-02 1989-04-13 Emitec Emissionstechnologie Katalysatoranordnung mit stroemungsleitkoerper
JPH01168338A (ja) * 1987-12-23 1989-07-03 Eriiteku Kk 流体接触板
US4869594A (en) * 1988-03-08 1989-09-26 Delaware Investments, Inc. Apparatus and method for blending particulate materials
DE8900467U1 (de) * 1989-01-17 1990-05-17 Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar Metallischer Wabenkörper, vorzugsweise Katalysator-Trägerkörper mit Mikrostrukturen zur Strömungsdurchmischung
US5005983A (en) * 1989-01-23 1991-04-09 Apex Engineering Inc. Plate blender
DE3923094C2 (de) * 1989-07-13 1993-11-25 Ltg Lufttechnische Gmbh Katalysator-Trägerkörper
JP2834236B2 (ja) 1989-11-29 1998-12-09 カルソニック株式会社 触媒コンバータの金属触媒担体およびその製造方法
DE4104637A1 (de) * 1990-02-16 1991-08-29 Bischoff Erhardt Gmbh Co Kg Katalysator fuer kraftfahrzeuge
SE466871B (sv) * 1990-04-17 1992-04-13 Alfa Laval Thermal Ab Plattfoeraangare med korrugerade plattor daer moenstrets orientering varieras i stroemningsriktningen saa att stroemningsmotstaandet successivt minskar
SE466171B (sv) * 1990-05-08 1992-01-07 Alfa Laval Thermal Ab Plattfoeraangare daer aatminstone den ena plattan i en foeraangningspassage aer uppdelad i faelt anordnade bredvid varandra mellan plattans laangsidor, vilka faelt uppvisar sinsemellan olika korrugeringsmoenster saa att stroemningsmotstaandet successivt minskar fraan ena sidan till den andra
DE4112884C2 (de) * 1991-04-19 1997-02-06 Waeschle Maschf Gmbh Mischsilo
US5099879A (en) * 1991-05-16 1992-03-31 Coen Company, Inc. Combustion air flow stabilizer
JPH04137733U (ja) * 1991-06-12 1992-12-22 京都機械株式会社 スタテイツクミキサー
ATE130220T1 (de) * 1991-07-30 1995-12-15 Sulzer Chemtech Ag Einmischvorrichtung kleiner fluidmengen.
DE4142177C2 (de) * 1991-12-20 1994-04-28 Balcke Duerr Ag Plattenwärmetauscher
RU2107828C1 (ru) * 1992-04-03 1998-03-27 Эмитек Гезелльшафт Фюр Эмиссионстехнологи Мбх Элемент с сотовой структурой
US5407274A (en) * 1992-11-27 1995-04-18 Texaco Inc. Device to equalize steam quality in pipe networks
EP0638711B1 (de) * 1993-08-05 1997-06-04 Sulzer Chemtech AG Abgaskatalysator, insbesondere für Automobile
EP0667460B1 (en) * 1994-02-10 2001-04-18 Michihiko Kawano Elbow provided with guide vanes
US5529084A (en) * 1994-03-24 1996-06-25 Koch Engineering Company, Inc. Laminar flow elbow system and method
JPH0857279A (ja) * 1994-08-24 1996-03-05 Kankyo Kagaku Kogyo Kk 静止型混合装置
US5531831A (en) * 1994-12-12 1996-07-02 Minnesota Mining And Manufacturing Company Static blending device
JPH08312339A (ja) 1995-05-11 1996-11-26 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH0942865A (ja) * 1995-07-28 1997-02-14 Honda Motor Co Ltd 熱交換器
DE19541265A1 (de) * 1995-11-06 1997-05-07 Bayer Ag Verfahren zur Herstellung von Dispersionen und zur Durchführung chemischer Reaktionen mit disperser Phase
US5772178A (en) * 1995-12-22 1998-06-30 Rotatrol Ag Rotary noise attenuating valve
EP0794325A1 (en) 1996-03-07 1997-09-10 Corning Incorporated Exhaust gas fluidics apparatus
DE29611143U1 (de) * 1996-06-25 1996-09-12 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Konischer Wabenkörper mit Longitudinalstrukturen
CN1115541C (zh) * 1996-10-17 2003-07-23 本田技研工业株式会社 热交换器
JPH10122208A (ja) * 1996-10-18 1998-05-12 Sharp Corp 整流装置
US6089549A (en) * 1997-09-25 2000-07-18 Koch-Glitsch, Inc. Exchange column structured packing bed having packing bricks
EP0918146A1 (de) 1997-11-19 1999-05-26 Sulzer Chemtech AG Einrichtung zum Abbau von Schadstoffen in Abgasen mittels Katalysatoren
DE19819202A1 (de) * 1998-04-29 1999-11-04 Emitec Emissionstechnologie Konischer Wabenkörper und Verfahren zu seiner Herstellung
US6186223B1 (en) * 1998-08-27 2001-02-13 Zeks Air Drier Corporation Corrugated folded plate heat exchanger
CN1090591C (zh) * 1998-11-24 2002-09-11 梁维安 漩涡污水处理器
JP2002533238A (ja) * 1998-12-29 2002-10-08 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ 液相物質を連続的にプラスチック粒子内に導入する方法及び装置
TW443941B (en) * 1999-02-12 2001-07-01 Sulzer Chemtech Ag Filler body with a cross channel structure
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
DE50101102D1 (de) * 2000-04-04 2004-01-22 Sulzer Chemtech Ag Winterthur Geordnete Kolonnenpackung mit einer Feinstrukturierung
CA2343538C (en) * 2000-05-08 2004-09-28 Sulzer Chemtech Ag Static mixer with profiled layers
TW512071B (en) * 2000-07-31 2002-12-01 Kinetics Chempure Systems Inc Method and apparatus for blending process materials
AU2002210690A1 (en) * 2000-11-10 2002-05-21 Maelstrom Advanced Process Technologies Ltd Dynamic mixer
JP3794687B2 (ja) * 2002-08-23 2006-07-05 株式会社山武 マイクロ乳化器
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
US7089963B2 (en) * 2002-11-26 2006-08-15 David Meheen Flow laminarizing device
RU2239491C1 (ru) 2003-02-05 2004-11-10 Автономная некоммерческая организация "Секция "Инженерные проблемы стабильности и конверсии" Российской инженерной академии" Диспергатор
CA2460292C (en) * 2003-05-08 2011-08-23 Sulzer Chemtech Ag A static mixer
US7114638B2 (en) * 2004-01-20 2006-10-03 Xerox Corporation Bin partitions to improve material flow
DE102004024685A1 (de) * 2004-05-19 2005-12-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Katalysator-Trägerkörper für einen motornah einzusetzenden katalytischen Konverter
DE102005032348A1 (de) * 2005-07-08 2007-01-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Filterlage für einen, insbesondere konischen, Wabenkörper zur Abgasbehandlung und Verfahren zur Herstellung der Filterlage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621768C2 (ru) * 2012-12-21 2017-06-07 Геа Меканикал Эквипмент Италия С.П.А. Способ гомогенизации и гомогенизирующее устройство с обращением потока
US10159946B2 (en) 2012-12-21 2018-12-25 Gea Mechanical Equipment Italia S.P.A. Homogenising process and apparatus with flow reversal
RU2557263C2 (ru) * 2013-10-07 2015-07-20 Акционерное общество "ГМС Нефтемаш" Установка для измерения дебита нефтяных и газовых скважин (варианты)
RU2716774C2 (ru) * 2016-07-20 2020-03-16 Форд Глобал Текнолоджиз, Ллк Смеситель карбамида
RU2759628C1 (ru) * 2020-12-01 2021-11-16 Общество С Ограниченной Ответственностью "Биопрактика" Статический смеситель для дробления пузырьков газа в газожидкостной смеси

Also Published As

Publication number Publication date
AU2007202138B2 (en) 2011-05-12
MY146069A (en) 2012-06-29
CN101108316A (zh) 2008-01-23
CA2584955C (en) 2014-12-02
CA2584955A1 (en) 2007-11-15
ATE442896T1 (de) 2009-10-15
US20070263486A1 (en) 2007-11-15
KR101379418B1 (ko) 2014-03-28
AU2007202138A1 (en) 2007-11-29
CN101108316B (zh) 2012-09-05
JP2012206123A (ja) 2012-10-25
RU2007117865A (ru) 2008-11-20
JP2007307551A (ja) 2007-11-29
KR20070110799A (ko) 2007-11-20
US8061890B2 (en) 2011-11-22
DE502007001521D1 (de) 2009-10-29
ZA200703830B (en) 2008-08-27

Similar Documents

Publication Publication Date Title
RU2434673C2 (ru) Статический смеситель
JP5530100B2 (ja) ウィッキング構造内での混合およびマイクロチャネルデバイス内のウィック内での向上した混合の使用
US7547134B2 (en) Arrangement for mixing of fluid streams
US7448794B2 (en) Method for mixing fluid streams
JPS62144738A (ja) 流体混合器
Shen et al. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels
US20150083375A1 (en) Device for Mixing and Heat Exchange
US20110081282A1 (en) Flow distribution device for downflow catalytic reactors
JPH07784A (ja) 混合装置
HRP20050811A2 (en) Auto thermal cracking reactor
JP2009243644A (ja) 流れ分配器及び流れ分配システム
KR100303908B1 (ko) 유동기체및액체를혼합및와류화하는자동차배기가스촉매반응용장치
JP2023073343A (ja) 改善されたミキサー・ダクトおよびそれを使用するプロセス
RU2403962C2 (ru) Поверхностные элементы в технологии микропроцессов
EP1857172B1 (de) Statikmischer
JP4298671B2 (ja) マイクロデバイス
US20150071835A1 (en) Non-adiabatic catalytic reactor
Jiang et al. Distribution and Mass Transfer of Gas–Liquid Two-Phase Flow in Comb-Shaped Microchannels
RU2359743C1 (ru) Способ и устройство смешения текучих сред
CN215694086U (zh) 一种微流控通道单元及微流控芯片
CN114797602A (zh) 一种适用于高粘流体混合的新型混合器
CN104548988A (zh) 一种用于两种液态成分静态混合的方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201023