RU2422723C2 - Способ подачи газа для сжигания, а также топочная установка - Google Patents

Способ подачи газа для сжигания, а также топочная установка Download PDF

Info

Publication number
RU2422723C2
RU2422723C2 RU2009113620/06A RU2009113620A RU2422723C2 RU 2422723 C2 RU2422723 C2 RU 2422723C2 RU 2009113620/06 A RU2009113620/06 A RU 2009113620/06A RU 2009113620 A RU2009113620 A RU 2009113620A RU 2422723 C2 RU2422723 C2 RU 2422723C2
Authority
RU
Russia
Prior art keywords
gas
combustion
grate
secondary combustion
internal recirculation
Prior art date
Application number
RU2009113620/06A
Other languages
English (en)
Other versions
RU2009113620A (ru
Inventor
Йоханнес МАРТИН (DE)
Йоханнес МАРТИН
Йоахим ХОРН (DE)
Йоахим ХОРН
Оливер ГОЛЬКЕ (DE)
Оливер ГОЛЬКЕ
Original Assignee
Мартин ГмбХ Фюр Умвельт-Унд Энергитехник
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мартин ГмбХ Фюр Умвельт-Унд Энергитехник filed Critical Мартин ГмбХ Фюр Умвельт-Унд Энергитехник
Publication of RU2009113620A publication Critical patent/RU2009113620A/ru
Application granted granted Critical
Publication of RU2422723C2 publication Critical patent/RU2422723C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/02Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07005Injecting pure oxygen or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Изобретение относится к области энергетики, в частности к сжиганию топлива. Описан способ ведения процесса сжигания в топочных установках, в котором к колосниковой решетке топочной установки подают топливо, газ для первичного сжигания вводят через топливо, а газ для вторичного сжигания, содержащий воздух окружающей среды, вводят через форсунки непосредственно в поток отходящего газа над топливом, причем часть потока отходящего газа отсасывают от потока отходящего газа в задней области колосниковой решетки и подают снова в процесс сжигания в качестве внутреннего рециркуляционного газа, при этом сумму количества газа для первичного сжигания и количества газа для вторичного сжигания снижают настолько, что в отношении потока отходящего газа непосредственно над плоскостью газа для вторичного сжигания достигают по существу стехиометрические условия реакции, при этом предотвращают попадание внутреннего рециркуляционного газа в область вторичного сжигания и подают внутренний рециркуляционный газ в область третичного сжигания, при этом отходящий газ имеет время выдержки по меньшей мере одну секунду после введения газа для вторичного сжигания. Газ для вторичного сжигания содержит воздух окружающей среды и внешний рециркуляционный газ, прошедший через парогенератор. Газ для вторичного сжигания содержит внешний рециркуляционный газ, прошедший через парогенератор. В области подачи внутреннего рециркуляционного газа, т.е. в области третичного сжигания, впрыскивают химическое средство для восстановления оксидов азота. К газу для третичного сжигания, т.е. к внутреннему рециркуляционному газу, подмешивают средство для восстановления оксидов азота. В качестве химического средства используют мочевину или аммиак. В области третичного сжигания или над нею, т.е. над введением внутреннего рециркуляционного газа, создают повышенную турбулентность отходящих газов. Изобретение позволяет снизить NOx в продуктах сгорания. 2 н. и 8 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу ведения процесса сжигания, в частности, в топочных установках с колосниковой решеткой, при котором газ для первичного сжигания вводят через топливо, а газ для вторичного сжигания вводят непосредственно в поток отходящего газа над топливом, причем часть отходящего газа из потока отходящего газа отсасывают в заднюю область колосниковой решетки и подают снова в процесс сжигания в качестве внутреннего рециркуляционного газа.
Способ этого типа известен из EP 0498014 B2. Там этот способ был использован, чтобы снизить количество потока отходящего газа, не обсуждая, однако, возможность снижения выделения вредных веществ.
Согласно современным знаниям часть содержащегося в отходах азота при сгорании реагирует с образованием NO или NO2, который покидает топку с отходящим газом и должен подвергаться дорогостоящей обработке, чтобы не поступать в окружающую среду в качестве вредного вещества (NOx /оксиды азота). Другая часть азота в топливе реагирует с образованием радикалов NH- или CN-соединений, которые в качестве так называемых промежуточных продуктов не обладают стабильностью при высоких температурах и продолжают реагировать. Так как эти радикалы промежуточных продуктов в состоянии восстанавливать уже образованные NO/NO2 в N2, то имеет смысл проводить процесс сжигания таким образом, чтобы использовать этот эффект в качестве присущего процессу способа удаления азота.
Согласно уровню техники сжигание в топочных пространствах топочных установок с колосниковой решеткой осуществляется таким образом, что над топочной колосниковой решеткой и непосредственно после осуществленного на колосниковой решетке первичного сжигания, при подаче воздуха окружающей среды или возвращенного отходящего газа образуется непосредственно зона вторичного сжигания в виде зоны высокой турбулентности, в которой осуществляется, по возможности, полное сгорание всех еще имеющихся горючих составляющих частей газа (газы и частицы твердых веществ).
При этом процесс проводится таким образом, что реакции сжигания протекают при условиях выше стехиометрических, как правило, при коэффициенте избытка воздуха лямбда=1,7 до лямбда=2,2. Добавка вторичного воздуха и/или возвращенного отходящего газа в области дожигания с высоким импульсом и соответственно высоким эффектом смешивания приводит к тому, что указанные выше промежуточные продукты (NH- или CN-соединения) преждевременно разрушаются, т.е. окисляются, и, таким образом, больше не имеются в распоряжении для реакции с уже образованными оксидами азота (NOx). При этом возвращенный отходящий газ после прохождения через парогенератор и большей частью также дополнительно через установку очистки отходящего газа, как правило, отбирается, так что в отношении этого газового потока можно говорить о «наружном рециркуляционном газе».
Проведение способа при первичном сжигании в условиях явно ниже стехиометрических, прежде всего при подаче горючих веществ, которые сильно колеблются в своих значениях теплоты сгорания и характеристики горения, приводит к тому, что не всегда может обеспечиваться полное выгорание твердых веществ. Близкий к стехиометрическим условиям режим работы в области вторичного сжигания, т.е. при лямбда ≤1,6, приводит к наличию несгоревших составляющих газа и, как следствие, к нежелательной эмиссии в окружающую среду или коррозии в расположенном ниже по потоку парогенераторе.
Задачей изобретения является осуществление регулирования процесса сжигания таким образом, чтобы достигалось оптимальное выгорание твердых горючих веществ и оптимальное выгорание отработанных газов, чтобы при этом образовывалось или выделялось как можно меньше оксидов азота и чтобы можно было проводить стабильный процесс при небольших коэффициентах избытка воздуха (лямбда=1,3 до лямбда=1,5) при, по возможности, малых объемах отходящего газа.
Эта задача, исходя из способа поясненного вначале типа, решается согласно изобретению благодаря тому, что сумму количества газа для первичного сжигания и количества газа для вторичного сжигания снижают настолько, что в отношении потока отходящего газа непосредственно над плоскостью вторичного сжигания достигают по существу стехиометрические или близкие к стехиометрическим условия реакции, причем внутренний рециркуляционный газ подают в область третичного сжигания, в которой отходящие газы после введения газа для вторичного сжигания имеют время выдержки в течение по меньшей мере одной секунды.
Под газом для первичного сжигания подразумевается, в частности, воздух окружающей среды. В особых случаях этот воздух окружающей среды может быть также обогащен кислородом.
Чтобы достичь, по возможности, оптимального выгорания твердых горючих веществ, осуществляется неизмененное, по сравнению с обычным способом работы топочной установки с колосниковой решеткой, добавление газа для первичного сжигания в приблизительно стехиометрическом количестве. Чтобы тем не менее достичь незначительного избытка воздуха для всего процесса сжигания и создать необходимый для смешивания или гомогенизации газа для сжигания объемный поток газа для вторичного сжигания, сумму количества первичного газа для сжигания и количества вторичного газа для сжигания снижают настолько, что достигают по существу стехиометрические или близкие к стехиометрическим условия реакции. На практике это устанавливается благодаря тому, что той части, которая в образованных при первичном сжигании газах еще содержит заметные количества непрореагировавшего кислорода, создаются помехи для того, чтобы улетучиться в зону вторичного сжигания.
В отношении этих газов речь идет о том объемном потоке, который возникает в задней области топочной колосниковой решетки. Там первичный воздух для сжигания подается в первую очередь для того, чтобы обеспечить полное выгорание твердых горючих веществ (остаточное выгорание) и охладить остатки сгорания (шлаки). Возникающий при этом поток отходящих газов поэтому отличается лишь незначительно пониженным по сравнению с воздухом окружающей среды содержанием кислорода.
Путем отсасывания объемного потока из задней области топки этот газовый поток удаляется из системы, благодаря чему он не может улетучиться в зону вторичного сжигания. Этот газ называется внутренним рециркуляционным газом и в соответствии с изобретением снова добавляется в верхней области топочного пространства, т.е. явно после зоны вторичного сжигания.
В этой области, которая называется областью третичного сжигания, отработанные газы после подачи вторичного газа для сжигания имеют некоторое время выдержки, по меньшей мере, одну секунду, предпочтительно даже более двух секунд. В области вторичного сжигания при способе согласно изобретению добавляется лишь столько кислорода в форме вторичного газа для сжигания, чтобы можно было достичь достаточно хорошего смешивания или гомогенизации потока отходящего газа.
При этом вторичный газ для сжигания может содержать воздух окружающей среды, воздух окружающей среды и внешний рециркуляционный газ или только внешний рециркуляционный газ, который прошел через парогенератор и, при необходимости, установку для очистки отходящего газа.
Благодаря снижению количества первичного газа для сжигания в условиях реакции, близких к стехиометрическим, предпочтительно в областях со слегка пониженной стехиометрией, образуется, с одной стороны, меньше NO2, а с другой стороны, однако, больше NH- и CN-соединений.
Если теперь установить уменьшенную в своей действенности зону вторичного сжигания, которая как раз позволяет некоторое перемешивание и гомогенизацию потока отходящего газа, не разрушая при этом при интенсивном дожигании все NH-и CN-соединения, этим соединениям предоставляется возможность восстанавливать NOx в N2.
По опыту для достаточно высокого коэффициента полезного действия реакции для этого достаточно времени выдержки в диапазоне 1-2 секунды. В частности, при введении внешнего рециркуляционного газа в область вторичного сжигания эта частичная задача поддержания минимального количества оксида азота решается очень эффективно. Разумеется, при этом в качестве недостатка следует принять, что полное выгорание отработанных газов, прежде всего полное разрушение вредных газов, не всегда можно надежно отрегулировать, так что следует создать дальнейшую область реакции.
Чтобы этого достичь, в соответствии с изобретением, примыкая к области вторичного сжигания, образуется область третичного сжигания, в которой осуществляется полное выгорание газа и разрушение, возможно, еще имеющихся органических соединений. Необходимая для этого турбулентность и необходимый для этого требуемый избыток воздуха в соответствии с изобретением устанавливаются с помощью внутреннего рециркуляционного газа. Этим внутренним рециркуляционным газом является тот газ, который был отсосан в задней области колосниковой решетки и которому созданы препятствия для проникновения в область вторичного сжигания.
Общий избыток воздуха в процессе сжигания далее не поддерживается, благодаря чему решается частичная задача проведения процесса сжигания при небольших коэффициентах избытка воздуха. Кроме того, благодаря мероприятиям по возврату внутреннего рециркуляционного газа достигается то, что не используется никакой дополнительный воздух для третичного сжигания в виде воздуха окружающей среды, благодаря чему объем отходящего газа можно поддерживать как можно меньшим.
Чтобы сделать возможным дальнейшее снижение содержания NOx, а также охватить те молекулы NOx, которые к началу области третичного сжигания еще не могли восстановиться, в дальнейшем варианте выполнения изобретения в области добавки газа для третичного сжигания в поток отработанных газов топочной установки может вдуваться химическое средство для восстановления оксидов азота.
В другом варианте выполнения изобретения химическое средство для восстановления оксидов азота можно примешивать также к газу для третичного сжигания, т.е. к внутреннему рециркуляционному газу. В этом случае благоприятное воздействие турбулентности добавки газа для третичного сжигания можно использовать также для интенсивного смешивания этого химического средства с отработанным газом.
Эти химические средства известны из способа селективной некаталитической реакции (способ селективного некаталитического восстановления (SNCR)), причем предпочтительно речь идет о мочевине или о водном растворе аммиака.
Далее, предпочтительно, если в области третичного сжигания или над ней, т.е. выше введения внутреннего рециркуляционного газа, производится повышенная турбулентность отходящего газа. В дополнение к турбулентности, которая получается из-за введения внутреннего рециркуляционного газа, этого можно достичь благодаря тому, что, например, канал для вытяжки отработанных газов топочного пространства в области введения внутреннего рециркуляционного газа или над ней сужается или используются встроенные элементы для повышения турбулентности.
Оказалось, что особенно предпочтительно, если отходящие газы от введения газа для вторичного сжигания до подачи внутреннего рециркуляционного газа имеют время выдержки в течение более трех секунд. Именно это относительно большое время выдержки приводит на практике к оптимальным результатам в отношении параметров отходящего газа.
Изобретение относится также к топочной установке для проведения способа. Эта топочная установка имеет колосниковую решетку, устройство под колосниковой решеткой для подачи воздуха для первичного сжигания через колосниковую решетку, а также входящие в топочное пространство форсунки над колосниковой решеткой для подачи газа для вторичного сжигания, причем в топочном пространстве над колосниковой решеткой предусмотрен по меньшей мере один отсасывающий трубопровод для отходящего газа, при этом сторона всасывания вентилятора соединена лишь исключительно с отсасывающим трубопроводом, а его сторона нагнетания посредством трубопровода соединена с форсунками, направленными в область третичного сжигания, предусмотренными над колосниковой решеткой на некоторой высоте, на которой отходящие газы после подачи газа для вторичного сжигания имеют время выдержки по меньшей мере одну секунду.
В целях обеспечения более интенсивного перемешивания предлагается, чтобы газоход для отходящего газа в топочном пространстве в области третичного сжигания или над нею был сужен для образования турбулентности. Кроме того, предпочтительно, если в дымоходе для отходящего газа в топочном пространстве в области третичного сжигания или над нею в целях получения турбулентности предусмотрены встроенные элементы, образующие помеху для потока отходящего газа.
Также в конструкции топочной установки при выборе места подачи газа следует обратить внимание на то, чтобы предпочтительным образом отходящие газы от введения газа для вторичного сжигания до подачи внешнего рециркуляционного газа имели время выдержки более 3 секунд.
Далее, предпочтительно, если сторона всасывания вентилятора соединена с отсасывающим трубопроводом, а его сторона нагнетания посредством трубопровода соединена с форсунками, направленными в область третичного сжигания.
Изобретение поясняется далее более подробно на основе представленного в чертеже примера выполнения.
На чертеже схематично показан продольный разрез топочной установки.
Как видно из чертежа, топочная установка имеет загрузочную воронку 1 с примыкающим к ней загрузочным желобом 2 для загрузки топлива (горючего материала) на загрузочный стол 3, на котором предусмотрены загрузочные поршни, установленные с возможностью совершения возвратно-поступательных движений для подачи поступающего из загрузочного желоба 2 топлива на колосниковую решетку 5, на которой топливо сжигается. При этом не имеет значения, идет ли речь о расположенной наклонно или горизонтально колосниковой решетке неважно какого принципа.
Под колосниковой решеткой 5 расположено обозначенное в целом цифрой 6 устройство для подачи воздуха для первичного сжигания, которое может включать в себя несколько камер 7-11, в которые подается посредством вентилятора 12 через трубопровод (линию) 13 воздух для первичного сжигания. Благодаря установке камер 7-11 колосниковая решетка подразделена на несколько зон нижнего дутья, так что можно по-разному регулировать воздух для первичного сжигания на колосниковой решетке в соответствии с потребностями.
Над колосниковой решеткой 5 находится топочное пространство 14, которое в передней части переходит в газоход 15 для отходящего газа, к которому примыкают непоказанные агрегаты, как, например, подогревающий котел и установка для очистки отходящего газа. В нижней области топочное пространство 14 ограничено крышкой 16, задней стенкой 17 и боковыми стенками 18.
Сжигание обозначенного позицией 19 топлива осуществляется на передней части колосниковой решетки 5, над которой находится газоход 15 для отходящего газа. В этой области через камеры 7, 8 и 9 подается большая часть воздуха для первичного сжигания. На задней части колосниковой решетки 5 находится лишь выгоревший в достаточной степени материал, т.е. шлаки, и в этой области воздух для первичного сжигания подается через камеры 10 и 11 по существу лишь для охлаждения и остаточного выжигания этих шлаков.
Выгоревшие части топлива падают затем в желоб 20 для выгрузки шлаков в конце колосниковой решетки 5 для сжигания. В нижней области газохода 15 для отходящего газа предусмотрены форсунки 21 и 22, которые подают воздух для вторичного сжигания в поднимающийся отходящий газ, чтобы способствовать перемешиванию потока отходящего газа и дожиганию находящихся в отходящем газе горючих составляющих частей.
Для проведения способа согласно изобретению теперь в задней части пространства для сжигания, которая ограничена крышкой 16, задней стенкой 17 и боковыми стенками 18, отсасывается отходящий газ, который называется внутренним рециркуляционным газом.
В представленном примере выполнения в задней стенке 17 предусмотрено отверстие 23 для вытяжки. Это отверстие 23 для вытяжки посредством отсасывающего трубопровода 24 соединено со стороной всасывания вентилятора 25, так что отходящий газ может отсасываться. Со стороной нагнетания вентилятора соединен трубопровод 26, который отсосанное количество отходящего газа направляет к форсункам 27 в верхней области газохода 15 для отходящего газа, области 28 третичного сжигания. В этой области, начиная от введения газа для вторичного сжигания до подачи внутреннего рециркуляционного газа, отходящий газ, исходя из форсунок 21 и 22 подачи воздуха для вторичного сжигания, имеет время выдержки, по меньшей мере, 1 секунду или предпочтительно даже, по меньшей мере, 2 секунды.
В области 28 третичного сжигания или над нею для повышения турбулентности и перемешивания потока отходящего газа газоход 15 для отходящего газа заметно сужен, причем форсунки 27 находятся в этой суженной области. Могут быть предусмотрены, однако, встроенные детали или элементы 29, которые создают помехи газовому потоку и таким образом способствуют турбулентности.

Claims (10)

1. Способ ведения процесса сжигания в топочных установках, в котором к колосниковой решетке топочной установки подают топливо, газ для первичного сжигания вводят через топливо, а газ для вторичного сжигания, содержащий воздух окружающей среды, вводят через форсунки непосредственно в поток отходящего газа над топливом, причем часть потока отходящего газа отсасывают от потока отходящего газа в задней области колосниковой решетки и подают снова в процесс сжигания в качестве внутреннего рециркуляционного газа, при этом сумму количества газа для первичного сжигания и количества газа для вторичного сжигания снижают настолько, что в отношении потока отходящего газа непосредственно над плоскостью газа для вторичного сжигания достигают по существу стехиометрические условия реакции, при этом предотвращают попадание внутреннего рециркуляционного газа в область вторичного сжигания и подают внутренний рециркуляционный газ в область третичного сжигания, при этом отходящий газ имеет время выдержки по меньшей мере одну секунду после введения газа для вторичного сжигания.
2. Способ по п.1, в котором газ для вторичного сжигания содержит воздух окружающей среды и внешний рециркуляционный газ, прошедший через парогенератор.
3. Способ по п.1, отличающийся тем, что газ для вторичного сжигания содержит внешний рециркуляционный газ, прошедший через парогенератор.
4. Способ по п.1, отличающийся тем, что в области подачи внутреннего рециркуляционного газа, т.е. в области третичного сжигания, впрыскивают химическое средство для восстановления оксидов азота.
5. Способ по п.4, отличающийся тем, что к газу для третичного сжигания, т.е. к внутреннему рециркуляционному газу, подмешивают средство для восстановления оксидов азота.
6. Способ по п.4, отличающийся тем, что в качестве химического средства используют мочевину или аммиак.
7. Способ по п.1, отличающийся тем, что в области третичного сжигания или над нею, т.е. над введением внутреннего рециркуляционного газа, создают повышенную турбулентность отходящих газов.
8. Топочная установка для осуществления способа по любому из пп.1-7, содержащая колосниковую решетку для приема топлива, устройство под колосниковой решеткой для подачи воздуха для первичного сжигания через колосниковую решетку, а также входящие в топочное пространство форсунки над колосниковой решеткой для подачи газа для вторичного сжигания, содержащего воздух окружающей среды, причем в топочном пространстве над колосниковой решеткой предусмотрен по меньшей мере один отсасывающий трубопровод для отходящего газа, при этом часть потока отходящего газа отсасывается от потока отходящего газа в задней области колосниковой решетки и подается снова в процесс сжигания в качестве внутреннего рециркуляционного газа, при этом предотвращено попадание внутреннего рециркуляционного газа в область вторичного сжигания, и внутренний рециркуляционный газ подается в область третичного сжигания, при этом сумма количества газа для первичного сжигания и количества газа для вторичного сжигания снижается настолько, что в отношении потока отходящего газа непосредственно над плоскостью газа для вторичного сжигания достигаются по существу стехиометрические условия реакции, при этом всасывающая сторона вентилятора соединена только с отсасывающим трубопроводом, сторона нагнетания которого соединена посредством трубопровода с форсунками, направленными в область третичного сжигания и предусмотренными над колосниковой решеткой на высоте, на которой отходящие газы имеют время выдержки по меньшей мере одну секунду после введения газа для вторичного сжигания.
9. Топочная установка по п.8, отличающаяся тем, что газоход для отходящего газа топочного пространства сужен в области третичного сжигания или над нею для создания турбулентности.
10. Топочная установка по п.8, отличающаяся тем, что в газоходе для отходящего газа топочного пространства в области третичного сжигания или над нею для создания турбулентности предусмотрены встроенные элементы, являющиеся помехой для потока отходящего газа.
RU2009113620/06A 2006-09-13 2007-09-12 Способ подачи газа для сжигания, а также топочная установка RU2422723C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043807.8 2006-09-13
DE102006043807 2006-09-13

Publications (2)

Publication Number Publication Date
RU2009113620A RU2009113620A (ru) 2010-10-20
RU2422723C2 true RU2422723C2 (ru) 2011-06-27

Family

ID=38669910

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009113620/06A RU2422723C2 (ru) 2006-09-13 2007-09-12 Способ подачи газа для сжигания, а также топочная установка

Country Status (8)

Country Link
US (1) US7975628B2 (ru)
EP (1) EP1901003B1 (ru)
JP (1) JP2008070103A (ru)
CA (1) CA2590921C (ru)
DE (1) DE112007001765A5 (ru)
NO (1) NO343507B1 (ru)
RU (1) RU2422723C2 (ru)
WO (1) WO2008031410A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712555C2 (ru) * 2015-03-30 2020-01-29 Мартин ГмбХ фюр Умвельт- унд Энергитехник Способ проведения процесса сжигания в топочных установках с колосниковой решеткой
RU2738537C1 (ru) * 2020-07-24 2020-12-14 Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» Топка с наклонно-переталкивающей колосниковой решеткой для сжигания древесных отходов
RU2750588C1 (ru) * 2020-12-11 2021-06-29 Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» Топка с наклонно-переталкивающей колосниковой решеткой для сжигания биотоплив
RU2765882C1 (ru) * 2018-08-23 2022-02-04 Айво КРЕЧА Способ и устройство для улучшения поля скоростей при получении синтез-газа и/или дымового газа при использовании топлива, полученного из твердых переработанных отходов

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508022B2 (ja) * 2006-12-07 2014-05-28 ダブリュティイー ウェイスト トゥ エナジー カナダ インコーポレイテッド バッチ式廃棄物ガス化工程
PL383941A1 (pl) * 2007-12-03 2009-06-08 Witold Kowalewski Kocioł rusztowy, sposób modernizacji kotła rusztowego oraz sposób likwidowania szkodliwych przedmuchów powietrza, nie biorącego udziału w procesie spalania w kotle rusztowym
DE102008054038B3 (de) 2008-10-30 2010-04-29 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
US9353944B1 (en) * 2009-09-03 2016-05-31 Poet Research, Inc. Combustion of high solids liquid
JP5606806B2 (ja) * 2010-06-11 2014-10-15 三菱重工環境・化学エンジニアリング株式会社 溶融設備
CN102042597B (zh) * 2010-12-10 2012-08-22 江苏三信环保设备有限公司 生活垃圾焚烧和烟气处理***及其处理生活垃圾的方法
CN102003714B (zh) * 2010-12-10 2012-08-22 江苏三信环保设备有限公司 生活垃圾焚烧炉及处理生活垃圾的方法
EP2505919A1 (de) * 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Verfahren zur Optimierung des Ausbrands von Abgasen einer Verbrennungsanlage durch Homogenisierung der Abgase über dem Brennbett mittels Abgas-Einspritzung
JP2013108668A (ja) * 2011-11-21 2013-06-06 Takuma Co Ltd ストーカ式焼却炉の無触媒脱硝方法
CN102563853B (zh) * 2012-02-20 2013-10-02 于耀中 倒置层燃锅炉
JP6021603B2 (ja) * 2012-11-19 2016-11-09 三菱重工環境・化学エンジニアリング株式会社 焼却設備
CN104566389B (zh) * 2015-01-16 2018-10-23 光大环保技术装备(常州)有限公司 一种低氮燃烧的垃圾焚烧炉及燃烧方法
CN105371282A (zh) * 2015-12-10 2016-03-02 光大环保(中国)有限公司 一种低氮燃烧的垃圾焚烧炉及燃烧方法
CN105351940A (zh) * 2015-12-10 2016-02-24 光大环保(中国)有限公司 一种顺流式低氮燃烧垃圾焚烧炉及其燃烧方法
CN106524179A (zh) * 2016-12-30 2017-03-22 安徽海螺川崎工程有限公司 垃圾焚烧二次风道***
CN107013937A (zh) * 2017-05-16 2017-08-04 中国特种设备检测研究院 一种与一次燃烧空气协调的多层次分区、分级燃煤层燃锅炉低氮燃烧控制技术
CN108954341B (zh) * 2018-06-13 2020-06-16 光大环境科技(中国)有限公司 一种焚烧炉给料炉排控制***和焚烧炉给料炉排控制方法
CN109114544A (zh) * 2018-10-08 2019-01-01 沈阳工程学院 一种具有低氮氧化物燃烧技术的生物质层燃锅炉
US10928066B2 (en) * 2019-02-13 2021-02-23 Eco Burn Inc. System and method for the advanced control of nitrogen oxides in waste to energy systems
CN109945193B (zh) * 2019-03-06 2020-02-18 钟康亮 一种垃圾焚烧废气循环净化热能组合装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52118860A (en) * 1976-03-30 1977-10-05 Nippon Kokan Kk <Nkk> Process for controlling nitrogen oxide for incinerators
US4381718A (en) * 1980-11-17 1983-05-03 Carver George P Low emissions process and burner
DE3712039A1 (de) 1987-04-09 1988-10-27 Muellverbrennungsanlage Wupper Verbrennungskessel, insbesondere zur muellverbrennung
US4838183A (en) * 1988-02-11 1989-06-13 Morse Boulger, Inc. Apparatus and method for incinerating heterogeneous materials
US5205227A (en) * 1990-02-28 1993-04-27 Institute Of Gas Technology Process and apparatus for emissions reduction from waste incineration
US5020456A (en) * 1990-02-28 1991-06-04 Institute Of Gas Technology Process and apparatus for emissions reduction from waste incineration
US5014630A (en) * 1990-03-29 1991-05-14 Steve Looker Cremator
EP0498014B2 (de) 1991-02-07 1996-10-30 MARTIN GmbH für Umwelt- und Energietechnik Verfahren zur Verbrennungsluftzuführung und Feuerungsanlage
JP2643720B2 (ja) * 1991-05-13 1997-08-20 インスティチュート・オブ・ガス・テクノロジー 煙道ガス中の放出汚染物質を減少する方法と装置
JPH1061930A (ja) * 1996-08-21 1998-03-06 Kubota Corp ゴミ焼却炉及びゴミ焼却炉の燃焼制御方法
JP3295370B2 (ja) * 1998-04-07 2002-06-24 大阪市 焼却炉
KR100549654B1 (ko) 1998-05-11 2006-02-08 마틴 게엠베하 퓌르 움벨트-운트 에네르기에테크닉 고형물을 열처리하는 방법
DE19938269A1 (de) 1999-08-12 2001-02-15 Asea Brown Boveri Verfahren zur thermischen Behandlung von Feststoffen
IL143993A0 (en) * 2001-06-26 2002-04-21 Pure Fire Technologies Ltd An incineration process using high oxygen concentrations
DE102005009957B4 (de) 2005-03-04 2007-02-01 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712555C2 (ru) * 2015-03-30 2020-01-29 Мартин ГмбХ фюр Умвельт- унд Энергитехник Способ проведения процесса сжигания в топочных установках с колосниковой решеткой
US10753604B2 (en) 2015-03-30 2020-08-25 Martin Gmbh Fuer Umwelt-Und Energietechnik Method for the combustion management in firing installations and firing installation
RU2765882C1 (ru) * 2018-08-23 2022-02-04 Айво КРЕЧА Способ и устройство для улучшения поля скоростей при получении синтез-газа и/или дымового газа при использовании топлива, полученного из твердых переработанных отходов
RU2738537C1 (ru) * 2020-07-24 2020-12-14 Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» Топка с наклонно-переталкивающей колосниковой решеткой для сжигания древесных отходов
RU2750588C1 (ru) * 2020-12-11 2021-06-29 Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» Топка с наклонно-переталкивающей колосниковой решеткой для сжигания биотоплив

Also Published As

Publication number Publication date
EP1901003B1 (de) 2020-09-02
RU2009113620A (ru) 2010-10-20
US20080063992A1 (en) 2008-03-13
DE112007001765A5 (de) 2009-04-30
NO343507B1 (no) 2019-03-25
CA2590921C (en) 2012-10-23
US7975628B2 (en) 2011-07-12
CA2590921A1 (en) 2008-03-13
JP2008070103A (ja) 2008-03-27
EP1901003A1 (de) 2008-03-19
WO2008031410A1 (de) 2008-03-20
NO20091062L (no) 2009-06-15

Similar Documents

Publication Publication Date Title
RU2422723C2 (ru) Способ подачи газа для сжигания, а также топочная установка
US10386064B2 (en) Stoker-type incinerator
US5241916A (en) Procedure for supplying combustion air and a furnace therefor
JP4938801B2 (ja) 2工程の燃焼プロセスにおける一次側での窒素酸化物の減少方法
RU2712555C2 (ru) Способ проведения процесса сжигания в топочных установках с колосниковой решеткой
CN203744265U (zh) 焚烧炉的脱硝***
US20140182492A1 (en) Method for optimizing the burnout of exhaust gases of an incinerator
JP3199568U (ja) 焼却システム
JP2001263631A (ja) ストーカ式焼却炉の燃焼方法及びストーカ式焼却炉
JP6021603B2 (ja) 焼却設備
JP2006194533A (ja) 循環流動層ボイラにおけるNOx低減方法
KR101560713B1 (ko) 연소실 삽입식 fgr 덕트가 구비된 스토커 연소실 보일러
JP2001090920A (ja) 固形物を熱処理する方法
EP0512156A1 (en) A process for reducing nitric oxides in a flue gas
JP2003227604A (ja) 焼却炉および焼却炉の燃焼排ガス再循環方法
JPH11294724A (ja) 焼却炉
JPH06213423A (ja) 焼却炉
JP3014953B2 (ja) 焼却炉
CA2619194C (en) Methods and systems for removing mercury from combustion flue gas
JP2002213715A (ja) 二回流式廃棄物焼却炉の操業方法および二回流式廃棄物焼却炉
JPH0340288B2 (ru)
JPH09296705A (ja) 排気再燃コンバインドサイクルの空気供給装置
CN104807019A (zh) 焚烧炉的脱硝方法及焚烧炉的脱硝***
JPS5976524A (ja) 脱硝装置