RU2415959C1 - МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ - Google Patents

МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ Download PDF

Info

Publication number
RU2415959C1
RU2415959C1 RU2009137129/02A RU2009137129A RU2415959C1 RU 2415959 C1 RU2415959 C1 RU 2415959C1 RU 2009137129/02 A RU2009137129/02 A RU 2009137129/02A RU 2009137129 A RU2009137129 A RU 2009137129A RU 2415959 C1 RU2415959 C1 RU 2415959C1
Authority
RU
Russia
Prior art keywords
less
superalloy
single crystal
phase
based single
Prior art date
Application number
RU2009137129/02A
Other languages
English (en)
Inventor
Акихиро САТО (JP)
Акихиро САТО
Казуеси ТИКУГО (JP)
Казуеси ТИКУГО
Ясухиро АОКИ (JP)
Ясухиро АОКИ
Нобухито СЕКИНЕ (JP)
Нобухито СЕКИНЕ
Микия АРАИ (JP)
Микия АРАИ
Седзу МАСАКИ (JP)
Седзу МАСАКИ
Original Assignee
АйЭйчАй КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39759520&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2415959(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by АйЭйчАй КОРПОРЕЙШН filed Critical АйЭйчАй КОРПОРЕЙШН
Application granted granted Critical
Publication of RU2415959C1 publication Critical patent/RU2415959C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к монокристаллическим сплавам на основе никеля и изготовленным из них лопаткам турбин. Заявлены варианты монокристаллического суперсплава на основе Ni и изготовленная из него лопатка турбины. Суперсплав на основе Ni имеет следующий состав: Со: от 0,0 вес.% или более до 15,0 вес.% или менее, Сr: от 4,1 до 8,0 вес.%, Мо: от 2,1 до 6,5 вес.%, W: от 0,0 до 2,9 вес.%, Та: от 4,0 до 10,0 вес.%, Аl: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137×[W(вес.%)]+24×[Сr(вес.%)]+46×[Мо(вес.%)]-18×[Re(вес.%)]. Сплав характеризуется высоким относительным пределом ползучести, а лопатка турбины - низким весом и способностью работать при более высоких температурах. 6 н. и 20 з.п. ф-лы, 1 табл., 2 ил.

Description

Область техники
[0001] Настоящее изобретение относится к монокристаллическому суперсплаву на основе никеля (Ni) и к содержащей его лопатке турбины. Данная заявка испрашивает приоритет заявки на патент Японии № 2007-61501, поданной 12 марта 2007 г., которая настоящим включена сюда по ссылке.
Уровень техники
[0002] Лопатки турбины (лопатки статора и лопатки ротора) авиационных двигателей, промышленных газовых турбин и других систем часто работают в высокотемпературных средах в течение длительного времени и поэтому сделаны из монокристаллического суперсплава на основе Ni, который обладает отличной термостойкостью. Монокристаллический суперсплав на основе Ni получают следующим образом. Сначала к Ni основы добавляют Al, чтобы вызвать выделение Ni3Al для дисперсионного упрочнения. Затем добавляют тугоплавкие металлы, такие как Cr, W и Ta, формируя сплав, который получают в виде монокристалла. Монокристаллический суперсплав на основе Ni приобретает металлическую структуру, подходящую для упрочнения в результате термообработки на твердый раствор при заданной температуре и последующей термообработки старением. Этот суперсплав называется дисперсионно-упрочненным сплавом, который имеет кристаллическую структуру с фазой выделения (т.е. γ'-фазой), диспергированной и выделившейся в матрице (т.е. γ-фазе).
[0003] В качестве монокристаллического суперсплава на основе Ni были разработаны суперсплав первого поколения, вообще не содержащий Re, суперсплав второго поколения, содержащий примерно 3 вес.% Re, и суперсплав третьего поколения, содержащий от 5 вес.% или более до 6 вес.% или менее Re. Суперсплавы более поздних поколений приобрели повышенный предел ползучести. Например, монокристаллическим суперсплавом на основе Ni первого поколения является CMSX-2 (корпорация Cannon-Muskegon Corporation, см. патентный документ 1), монокристаллическим суперсплавом на основе Ni второго поколения является CMSX-4 (корпорация Cannon-Muskegon Corporation, см. патентный документ 2), а монокристаллическим суперсплавом на основе Ni третьего поколения является CMSX-10 (корпорация Cannon-Muskegon Corporation, см. патентный документ 3).
[0004] Цель монокристаллического суперсплава на основе Ni третьего поколения, CMSX-10, состоит в том, чтобы повысить предел ползучести в высокотемпературных средах по сравнению с монокристаллическим суперсплавом на основе Ni второго поколения. Однако монокристаллический суперсплав на основе Ni третьего поколения имеет в своем составе высокую долю Re в 5 вес.% или более, что превышает предельную растворимость Re в твердом состоянии в матрице (γ-фазе). Избыток Re может связываться с другими элементами в высокотемпературных средах и в результате может выделяться так называемая ТПУ-фаза (топологически плотноупакованная фаза). В лопатке турбины, включающей в себя монокристаллический суперсплав на основе Ni третьего поколения, при работе в течение продолжительного времени в высокотемпературных средах может появиться повышенное содержание ТПУ-фазы, что может ухудшить предел ползучести.
[0005] Чтобы решить эти проблемы, был разработан монокристаллический суперсплав на основе Ni, имеющий более высокую прочность в высокотемпературных средах. В такой суперсплав добавлен Ru для контроля ТПУ-фазы, а относительные доли других элементов-компонентов состава заданы в оптимальных диапазонах с тем, чтобы обеспечить оптимальную постоянную решетки матрицы (γ-фазы) и оптимальную постоянную решетки выделений (γ'-фазы).
[0006] А именно были разработаны монокристаллический суперсплав на основе Ni четвертого поколения, который содержит примерно 3 вес.% Ru, и монокристаллический суперсплав на основе Ni пятого поколения, который содержит 4 вес.% или более Ru. Суперсплавы более поздних поколений приобрели улучшенный предел ползучести. Например, типичным монокристаллическим суперсплавом на основе Ni четвертого поколения является TMS-138 (National Institute for Materials Science (NIMS) и корпорация IHI Corporation, см. патентный документ 4), а типичным монокристаллическим суперсплавом на основе Ni пятого поколения является TMS-162 (NIMS и корпорация IHI Corporation, см. патентный документ 5).
Патентный документ 1: патент США № 4582548
Патентный документ 2: патент США № 4643782
Патентный документ 3: патент США № 5366695
Патентный документ 4: патент США № 6966956
Патентный документ 5: заявка на патент США, публикация № 2006/0011271.
Раскрытие изобретения
Проблемы, решаемые изобретением
[0007] Однако монокристаллические суперсплавы на основе Ni четвертого и пятого поколений включают большое количество тяжелых металлов, таких как W и Re, чтобы повысить предел ползучести в высокотемпературных средах, и поэтому имеют большой удельный вес по сравнению с монокристаллическими суперсплавами на основе Ni первого и второго поколений. В результате лопатка турбины, включающая в себя монокристаллические суперсплавы на основе Ni четвертого и пятого поколений, обладает отличной прочностью в высокотемпературных средах, однако, так как вес лопатки увеличился, может снизиться окружная скорость лопатки турбины и может повыситься вес авиационного двигателя и промышленной газовой турбины. Поэтому желательно предоставить монокристаллический суперсплав на основе Ni, обладающий отличным пределом ползучести на единицу веса, т.е. с отличным относительным пределом ползучести, чтобы обеспечить лопатку турбины, которая является легкой и работает при более высоких температурах.
[0008] Ввиду этого задача настоящего изобретения состоит в том, чтобы предложить монокристаллический суперсплав на основе Ni и содержащую его лопатку турбины, обладающие отличным относительным пределом ползучести.
Средства решения проблемы
[0009] Авторы изобретения провели обширные исследования и обнаружили, что монокристаллический суперсплав на основе Ni, который имеет низкий удельный вес по сравнению с монокристаллическими суперсплавами на основе Ni четвертого и пятого поколений, может быть получен путем (1) установления диапазона составов, подходящего для сохранения отличного предела ползучести в высокотемпературных средах, и (2) установления диапазона составов, подходящего для структурной стабильности, с уменьшением количества W, который имеет высокий удельный вес, и тем самым создали настоящее изобретение.
[0010] Таким образом, настоящее изобретение имеет следующие аспекты.
(1) Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Co: от 0,0 вес.% или более до 15,0 вес.% или менее, Cr: от 4,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
(2) Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Co: от 0,0 до 15,0 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
(3) Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Co: от 4,0 до 9,5 вес.%, Cr: от 4,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
(4) Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Co: от 4,0 до 9,5 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
(5) Монокристаллический суперсплав на основе Ni по любому из вышеуказанных пунктов (1)-(4), в котором содержание W составляет от 0,0 до 2,9 вес.%.
(6) Монокристаллический суперсплав на основе Ni по любому из вышеуказанных пунктов (1)-(4), в котором содержание W составляет от 0,0 до 1,9 вес.%.
(7) Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Co: от 5,0 до 8,0 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,2 до 4,8 вес.%, W: от 0,0 до 1,9 вес.%, Ta: от 5,5 до 8,0 вес.%, Al: от 5,4 до 6,0 вес.%, Ti: от 0,0 до 0,5 вес.%, Hf: от 0,08 до 0,5 вес.%, Nb: от 0,0 до 1,0 вес.%, Re: от 4,0 до 7,5 вес.% и Ru: от 1,0 до 5,0 вес.%, а остальное составляют Ni и неизбежные примеси.
(8) Монокристаллический суперсплав на основе Ni по вышеуказанному пункту (7), в котором удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
(9) Монокристаллический суперсплав на основе Ni по любому из вышеуказанных пунктов (1)-(8), в котором удовлетворяется P2 ≤ 500, где P2 обозначает параметр 2, который получен по формуле: P2 = 30 × [W (вес.%)] + 10 × [Re (вес.%)] - 30 × [Cr (вес.%)] - 20 × [Mo (вес.%)] + 30 × [Al (вес.%)] + 90 × [Ti (вес.%)] + 60 × [Ta (вес.%)] - 5 × [Ru (вес.%)].
(10) Монокристаллический суперсплав на основе Ni по любому из вышеуказанных пунктов (1)-(9), дополнительно включающий по меньшей мере один элемент, выбранный из группы, состоящей из B, C, Si, Y, La, Ce, V и Zr.
(11) Монокристаллический суперсплав на основе Ni по вышеуказанному пункту (10), в котором избранные компоненты содержатся в следующем составе: B: 0,05 вес.% или менее, C: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Ce: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
(12) Лопатка турбины, включающая в себя монокристаллический суперсплав на основе Ni по любому из вышеуказанных пунктов (1)-(11).
Эффекты изобретения
[0011] Как описано выше, согласно настоящему изобретению может быть сохранен отличный предел ползучести в высокотемпературных средах без повышения удельного веса монокристаллического суперсплава на основе Ni с отличным относительным пределом ползучести. Поэтому лопатка турбины, включающая в себя монокристаллический суперсплав на основе Ni с отличным относительным пределом ползучести, может быть сделана легкой и может работать при более высоких температурах.
Краткое описание чертежей
[0012] Фиг.1 представляет собой вид в перспективе типичной лопатки турбины, включающей в себя монокристаллический суперсплав на основе Ni по одному варианту реализации настоящего изобретения.
Фиг.2 представляет собой характерный график, показывающий соотношение между плотностью и LMP в примерах и сравнительных примерах, приведенных в Таблице 1.
Описание ссылочных позиций
[0013] 1: лопатка турбины
Описание предпочтительных вариантов реализации
[0014] Далее со ссылкой на чертежи дается подробное пояснение реализации монокристаллического суперсплава на основе Ni и содержащей его лопатки турбины в соответствии с настоящим изобретением.
[0015] Монокристаллический суперсплав на основе Ni по настоящему изобретению имеет следующий состав: Co: от 0,0 вес.% до 15,0 вес.%, Cr: от 4,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
[0016] Монокристаллический суперсплав на основе Ni по настоящему изобретению также имеет следующий состав: Co: от 0,0 до 15,0 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
[0017] Монокристаллический суперсплав на основе Ni по настоящему изобретению также имеет следующий состав: Co: от 4,0 до 9,5 вес.%, Cr: от 4,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
[0018] Монокристаллический суперсплав на основе Ni по настоящему изобретению также имеет следующий состав: Co: от 4,0 до 9,5 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,1 до 6,5 вес.%, W: от 0,0 до 3,9 вес.%, Ta: от 4,0 до 10,0 вес.%, Al: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется P1 ≤ 700, где P1 обозначает параметр 1, который получен по формуле: P1 = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
[0019] В настоящем изобретении содержание W в составе вышеописанного монокристаллического суперсплава на основе Ni может составлять от 0,0 до 2,9 вес.% и может также составлять от 0,0 до 1,9 вес.% для того, чтобы обеспечить монокристаллический суперсплав на основе Ni, имеющий низкий удельный вес.
[0020] Монокристаллический суперсплав на основе Ni по настоящему изобретению также имеет следующий состав: Co: от 5,0 до 8,0 вес.%, Cr: от 5,1 до 8,0 вес.%, Mo: от 2,2 до 4,8 вес.%, W: от 0,0 до 1,9 вес.%, Ta: от 5,5 до 8,0 вес.%, Al: от 5,4 до 6,0 вес.%, Ti: от 0,0 до 0,5 вес.%, Hf: от 0,08 до 0,5 вес.%, Nb: от 0,0 до 1,0 вес.%, Re: от 4,0 до 7,5 вес.% и Ru: от 1,0 до 5,0 вес.%, а остальное составляют Ni и неизбежные примеси.
[0021] Металлическая структура вышеописанного монокристаллического суперсплава на основе Ni является кристаллической структурой с фазой выделения (γ'-фазой), диспергированной и выделившейся в матрице (γ-фазе). Фаза γ состоит из аустенитной фазы, а фаза γ' состоит, в основном, из интерметаллических соединений, имеющих регулярную структуру, таких как Ni3Al. В монокристаллическом суперсплаве на основе Ni по настоящему изобретению относительная доля γ-фазы и γ'-фазы, диспергированной в этой γ-фазе, может быть оптимизирована, чтобы способствовать более высокой прочности суперсплава, предназначенного для работы в высокотемпературных средах.
[0022] Диапазоны содержаний компонентов в составе монокристаллического суперсплава на основе Ni отрегулированы на основе их характеристик, описываемых ниже. Co является элементом, который повышает предел растворимости в твердом состоянии в матрице, содержащей Al, Ta и другие элементы, в высокотемпературных средах и вызывает диспергирование и выделение тонкодисперсной γ'-фазы при термообработке, тем самым повышая жаропрочность. Если присутствует более 15,0 вес.% Co, относительная доля других элементов, в том числе Al, Ta, Mo, W, Hf и Cr, становится несбалансированной. В результате выделяется вредная фаза, снижая жаропрочность. Содержание Co предпочтительно составляет от 0,0 до 15,0 вес.%, более предпочтительно - от 4,0 до 9,5 вес.%, а наиболее предпочтительно - от 5,0 до 8,0 вес.%.
[0023] Cr является элементом, который имеет отличную стойкость к окислению (жаростойкость) и улучшает, вместе с Hf и Al, стойкость к высокотемпературной коррозии монокристаллического суперсплава на основе Ni. Если содержание Cr меньше 4,1 вес.%, трудно обеспечить желаемую стойкость к высокотемпературной коррозии. Если содержание Cr превышает 8,0 вес.%, выделение γ'-фазы ингибируется и могут выделяться вредные фазы, такие как σ-фаза и µ-фаза, снижая жаропрочность. Поэтому содержание Cr предпочтительно составляет от 4,1 до 8,0 вес.%, более предпочтительно - от 5,1 до 8,0 вес.%.
[0024] Mo является элементом, который повышает жаропрочность за счет растворения в γ-фазе, которая становится матрицей, в присутствии W или Ta, а также улучшает жаропрочность благодаря дисперсионному твердению. Если содержание Mo меньше 2,1 вес.%, трудно обеспечить желаемую жаропрочность. Если содержание Mo превышает 6,5 вес.%, жаропрочность снижается и ухудшается стойкость к высокотемпературной коррозии. Поэтому содержание Mo предпочтительно составляет от 2,1 до 6,5 вес.%, а более предпочтительно - от 2,2 до 4,8 вес.%.
[0025] W является элементом, который повышает жаропрочность благодаря эффектам упрочнения твердого раствора и дисперсионного твердения в присутствии Mo или Ta. Если содержание W превышает 3,9 вес.%, ухудшается стойкость к высокотемпературной коррозии. Поэтому содержание W предпочтительно составляет от 0,0 до 3,9 вес.%. Чтобы обеспечить монокристаллический суперсплав на основе Ni, имеющий низкий удельный вес, содержание W предпочтительно составляет от 0,0 до 2,9 вес.%, а более предпочтительно - от 0,0 до 1,9 вес.%. В настоящем изобретении, при малом количестве W или вообще без W, можно сохранить отличный предел ползучести в высокотемпературных средах путем надлежащего определения относительных долей других входящих в состав элементов.
[0026] Ta является элементом, который повышает жаропрочность благодаря эффектам упрочнения твердого раствора и дисперсионного твердения в присутствии Mo или W. Ta также повышает жаропрочность посредством дисперсионного твердения по отношению к γ'-фазе. Если содержание Ta меньше 4,0 вес.%, трудно обеспечить желаемую жаропрочность. Если содержание Ta превышает 10,0 вес.%, могут выделяться вредные фазы, такие как σ-фаза и µ-фаза, снижая жаропрочность. Поэтому содержание Ta предпочтительно составляет от 4,0 до 10,0 вес.%, а более предпочтительно - от 5,5 до 8,0 вес.%.
[0027] Al соединяется с Ni, образуя 60-70% (объемных процентов) интерметаллического соединения, представленного как Ni3Al, которое является тонкодисперсной γ'-фазой, однородно диспергируемой и выделяющейся в матрицу. То есть Al является элементом, который повышает жаропрочность вместе с Ni. Кроме того, Al имеет отличную стойкость к окислению, что улучшает, вместе с Cr и Hf, стойкость к высокотемпературной коррозии монокристаллического суперсплава на основе Ni. Если содержание Al меньше 4,5 вес.%, количество выделений γ'-фазы недостаточно и поэтому трудно обеспечить желаемую жаропрочность и стойкость к высокотемпературной коррозии. Если содержание Al превышает 6,5 вес.%, образуется большое количество крупных γ-фаз, называемых эвтектической γ'-фазой, для которой невозможна обработка на твердый раствор. Таким образом, трудно обеспечить желаемую жаропрочность. Соответственно, содержание Al предпочтительно составляет от 4,5 до 6,5 вес.%, а более предпочтительно - от 5,4 до 6,0 вес.%.
[0028] Ti является элементом, который повышает жаропрочность благодаря эффектам упрочнения твердого раствора и дисперсионного твердения в присутствии Mo или W. Ti также повышает жаропрочность посредством дисперсионного твердения по отношению к γ'-фазе. Если содержание Ti превышает 1,0 вес.%, может выделяться вредная фаза, такая как σ-фаза и µ-фаза, снижая жаропрочность. Поэтому содержание Ti предпочтительно составляет от 0,0 до 1,0 вес.%, а более предпочтительно - от 0,0 до 0,5 вес.%. В настоящем изобретении, при малом количестве Ti или вообще без Ti, можно сохранить отличный предел ползучести в высокотемпературных средах путем надлежащего определения относительных долей других входящих в состав элементов.
[0029] Hf является элементом, который сегрегируется на межзеренной границе и распределяется неравномерно по межзеренной границе, упрочняя ее, тем самым повышая жаропрочность, в том случае, когда эта межзеренная граница случайно существует. Кроме того, Hf имеет отличную стойкость к окислению и улучшает, вместе с Cr и A1, стойкость к высокотемпературной коррозии монокристаллического суперсплава на основе Ni. Если содержание Hf превышает 0,5 вес.%, происходит локальное плавление, снижая жаропрочность. Поэтому содержание Hf предпочтительно составляет от 0,00 до 0,5 вес.%, а более предпочтительно - от 0,08 до 0,5 вес.%.
[0030] Nb является элементом, который улучшает жаропрочность. Однако, если содержание Nb превышает 3,0 вес.%, выделяется вредная фаза, ухудшая жаропрочность. Поэтому содержание Nb предпочтительно составляет от 0,0 до 3,0 вес.%, а более предпочтительно - от 0,0 до 1,0 вес.%. При малом количестве Nb или вообще без Nb можно сохранить отличный предел ползучести в высокотемпературных средах путем надлежащего определения относительных долей других входящих в состав элементов.
[0031] Re является элементом, который улучшает жаропрочность благодаря упрочнению твердого раствора путем растворения в γ-фазе, являющейся матрицей. Re улучшает также коррозионную стойкость. Однако, если содержание Re меньше 3,0 вес.%, упрочнение твердого раствора γ-фазы становится недостаточным, что затрудняет обеспечение желаемой жаропрочности. Если содержание Re превышает 8,0 вес.%, в высокотемпературных средах выделяется вредная ТПУ-фаза, что затрудняет обеспечение желаемой жаропрочности. Поэтому содержание Re предпочтительно составляет от 3,0 до 8,0 вес.%, а более предпочтительно - от 4,0 до 7,5 вес.%.
[0032] Ru является элементом, который контролирует выделение ТПУ-фазы, улучшая жаропрочность. Однако, если содержание Ru меньше 0,5 вес.%, в высокотемпературных средах ТПУ-фаза выделяется, что затрудняет обеспечение желаемой жаропрочности. Если содержание Ru превышает 6,5 вес.%, выделяется вредная фаза, снижая жаропрочность. Поэтому содержание Ru предпочтительно составляет от 0,5 до 6,5 вес.%, а более предпочтительно - от 1,0 до 5,0 вес.%.
[0033] Монокристаллический суперсплав на основе Ni по настоящему изобретению может дополнительно содержать, например, B, C, Si, Y, La, Ce, V и Zr и им подобные, помимо неизбежных примесей. В случае, когда монокристаллический суперсплав на основе Ni содержит по меньшей мере один элемент, выбранный из B, C, Si, Y, La, Ce, V и Zr, является предпочтительным, чтобы эти элементы могли быть включены в состав в следующем диапазоне с тем, чтобы предотвратить выделение вредной фазы, которая в противном случае могла бы уменьшить жаропрочность: B: 0,05 вес.% или менее, C: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Ce: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
[0034] В настоящем изобретении диапазон составов, подходящий для сохранения отличного относительного предела ползучести в высокотемпературных средах, может быть установлен по следующей формуле для параметра P1:
P1 (параметр 1) = 137 × [W (вес.%)] + 24 × [Cr (вес.%)] + 46 × [Mo (вес.%)] - 18 × [Re (вес.%)].
Значение P1 может предпочтительно составлять P1 ≤ 700, более предпочтительно P1 ≤ 450, а еще более предпочтительно P1 ≤ 300. В монокристаллическом суперсплаве на основе Ni согласно настоящему изобретению, когда удовлетворяется формула для параметра P1, отличный предел ползучести в высокотемпературных средах можно сохранить при снижении количества W, который имеет высокий удельный вес.
[0035] В настоящем изобретении диапазон составов, подходящий для структурной стабильности, устанавливается по следующей формуле для параметра P2:
P2 (параметр 2) = 30 × [W (вес.%)] + 10 × [Re (вес.%)] - 30 × [Cr (вес.%)] - 20 × [Mo (вес.%)] + 30 × [Al (вес.%)] + 90 × [Ti (вес.%)] + 60 × [Ta (вес.%)] - 5 × [Ru (вес.%)].
Значение P2 может предпочтительно составлять P2 ≤ 500, а более предпочтительно P2 ≤ 400. В монокристаллическом суперсплаве на основе Ni согласно настоящему изобретению, когда удовлетворяется формула для параметра P2, отличную структурную стабильность можно реализовать при снижении количества W, который имеет высокий удельный вес.
[0036] Как описано выше, монокристаллический суперсплав на основе Ni согласно настоящему изобретению может сохранить отличный предел ползучести в высокотемпературных средах без повышения удельного веса. Конкретнее, даже если содержание W составляет всего лишь 2,9 вес.% или менее или же всего лишь 1,9 вес.% или менее для того, чтобы обеспечить монокристаллический суперсплав на основе Ni с низким удельным весом, можно сохранить отличный предел ползучести в высокотемпературных средах. Поэтому монокристаллический суперсплав на основе Ni согласно настоящему изобретению обнаруживает отличный предел ползучести на единицу плотности (т.е. отличный удельный предел ползучести).
[0037] Монокристаллический суперсплав на основе Ni согласно настоящему изобретению может применяться, например, в лопатке 1 турбины, как показано на Фиг.1. Лопатка 1 турбины, включающая в себя монокристаллический суперсплав на основе Ni согласно настоящему изобретению, имеет отличный предел ползучести в высокотемпературных средах и может работать в течение длительного времени в высокотемпературных средах. Кроме того, лопатка 1 турбины имеет низкий удельный вес по сравнению с монокристаллическим суперсплавом на основе Ni четвертого и пятого поколения. Соответственно, лопатка 1 турбины может быть сделана легкой и может работать при более высоких температурах.
[0038] Таким образом, монокристаллический суперсплав на основе Ni согласно настоящему изобретению может содержаться, например, в лопатках турбины (лопатках статора и лопатках ротора) авиационных двигателей, промышленных газовых турбин и в других системах. Кроме того, монокристаллический суперсплав на основе Ni согласно варианту реализации настоящего изобретения может также применяться в деталях или продуктах, предназначенных для работы длительное время в высокотемпературных средах.
[0039] В настоящем изобретении может быть оптимизирована относительная доля γ-фазы и γ'-фазы, диспергированной в
Figure 00000001
γ-фазе. Таким образом, в дополнение к монокристаллическим суперсплавам на основе Ni изобретение может применяться, например, для направленно-кристаллизуемых материалов и обычных отливаемых материалов с подобными настоящему изобретению выгодными эффектами.
ПРИМЕРЫ
[0040] Далее выгодные эффекты настоящего изобретения будут описаны более подробно со ссылками на примеры. Следует отметить, что настоящее изобретение не ограничено этими примерами, и могут быть проделаны различные модификации без отклонения от сущности и объема настоящего изобретения.
[0041] Сначала в вакуумной плавильной печи готовят расплавы различных видов монокристаллических суперсплавов на основе Ni. Из приготовленных расплавов сплавов отливают слитки сплавов различных составов по Примерам 1-20. Относительные доли компонентов в слитках сплавов по Примерам 1-20 показаны в Таблице 1. Таблица 1 показывает также относительные доли компонентов у соответствующих уровню техники монокристаллических суперсплавов на основе Ni, указанных в качестве Сравнительных примеров 1-8.
[0042]
Figure 00000002
[0043] Далее слитки сплавов, показанных в Таблице 1, подвергают термообработке на твердый раствор и термообработке старением, получая монокристаллические суперсплавы на основе Ni по Примерам 1-20. При термообработке на твердый раствор температуру постепенно повышают от 1503K-1563K (1230ºC-1290ºC) до 1573K-1613K (1300ºC-1340ºC) и выдерживают в течение 1-10 часов или дольше. При термообработке старением проводят термообработку первичным старением, когда слитки выдерживают при 1273K-1423K (1000ºC-1150ºC) в течение 3-5 часов.
[0044] Для каждого из монокристаллических суперсплавов на основе Ni по Примерам 1-20 состояние структуры сплава изучают сканирующим электронным микроскопом (СЭМ). ТПУ-фаза не обнаружена в микроструктурах ни одного сплава.
[0045] Далее, монокристаллические суперсплавы на основе Ni по Примерам 1-20 подвергают испытанию на ползучесть при температуре 1000ºC-1050ºC и под напряжением 245 МПа. Испытание продолжают до тех пор, пока не произойдет разрушение образцов при ползучести, и длительность этого испытания определяется как долговечность при ползучести. Затем оценивают долговечность при ползучести на единицу удельного веса (плотность: г/см3) для каждого из монокристаллических суперсплавов на основе Ni по Примерам 1-20 и Сравнительным примерам 1-8, используя показанный ниже параметр Ларсона-Миллера (LMP). Результаты оценки показаны в Таблице 1. Характерный график, показывающий соотношение между удельным весом и LMP суперсплавов по Примерам 1-20 и Сравнительным примерам 1-8, представлен на Фиг.2:
LMP = (T + 273) × (20 + Logt)/1000,
где T обозначает температуру (ºC), а t обозначает время до разрушения при ползучести (часы).
[0046] Как показано в Таблице 1 и на Фиг.2, монокристаллические суперсплавы на основе Ni по Примерам 1-20 имеют более высокие значения LMP на единицу удельного веса, чем монокристаллические суперсплавы на основе Ni по Сравнительным примерам 1-8. Монокристаллические суперсплавы на основе Ni по Примерам 1, 9, 10 и 20 с пониженным содержанием W в 2,9 вес.% или менее все еще имеют отличный предел ползучести на единицу удельного веса. Монокристаллические суперсплавы на основе Ni по Примерам 2, 5, 7, 11 и 15-19 с пониженным содержанием W в 1,9 вес.% или менее все еще имеют отличный предел ползучести на единицу удельного веса. Монокристаллические суперсплавы на основе Ni по Примерам 3, 4, 6, 8 и 12-14 вообще без W все еще имеют отличный предел ползучести на единицу удельного веса. Следовательно, монокристаллический суперсплав на основе Ni согласно вариантам реализации настоящего изобретения имеет отличный относительный предел ползучести.
Промышленная применимость
[0047] Согласно настоящему изобретению монокристаллический суперсплав на основе Ni может иметь отличный относительный предел ползучести, и поэтому лопатка турбины, включающая в себя такой монокристаллический суперсплав на основе Ni с отличным относительным пределом ползучести, может быть сделана легкой и может работать при более высоких температурах.

Claims (26)

1. Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Со: от 0,0 вес.% или более до 15,0 вес.% или менее, Сr: от 4,1 до 8,0 вес.%, Мо: от 2,1 до 6,5 вес.%, W: от 0,0 до 2,9 вес.%, Та: от 4,0 до 10,0 вес.%, Аl: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137·[W(вес.%)]+24·[Сr(вес.%)]+46·[Мо(вес.%)]-18·[Re(вес.%)].
2. Суперсплав по п.1, в котором содержание W составляет от 0,0 до 1,9 вес.%.
3. Суперсплав по п.1, в котором удовлетворяется Р2≤500, где Р2 обозначает параметр 2, который получен по формуле: Р2=30·[W(вес.%)]+10·[Re(вес.%)]-30·[Сr(вес.%)]-20·[Мо(вес.%)]+30·[Аl(вес.%)]+90·[Ti(вес.%)]+60·[Та(вес.%)]-5·[Ru(вес.%)].
4. Суперсплав по п.1, дополнительно содержащий по меньшей мере один элемент, выбранный из группы, состоящей из В, С, Si, Y, La, Ce, V и Zr.
5. Суперсплав по п.4, в котором выбранные компоненты содержатся в следующем составе: В: 0,05 вес.% или менее, С: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Се: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
6. Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Со: от 0,0 до 15,0 вес.%, Сr: от 5,1 до 8,0 вес.%, Мо: от 2,1 до 6,5 вес.%, W: от 0,0 до 2,9 вес.%, Та: от 4,0 до 10,0 вес.%, Аl: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137·[W(вес.%)]+24·[Сr(вес.%)]+46·[Мо(вес.%)]-18·[Re(вес.%)].
7. Суперсплав по п.6, в котором содержание W составляет от 0,0 до 1,9 вес.%.
8. Суперсплав по п.6, в котором удовлетворяется Р2≤500, где Р2 обозначает параметр 2, который получен по формуле: Р2=30·[W(вес.%)]+10·[Re(вес.%)]-30·[Сr(вес.%)]-20·[Мо(вес.%)]+30·[Аl(вес.%)]+90·[Ti(вес.%)]+60·[Та(вес.%)]-5·[Ru(вес.%)].
9. Суперсплав по п.6, дополнительно содержащий по меньшей мере один элемент, выбранный из группы, состоящей из В, С, Si, Y, La, Ce, V и Zr.
10. Суперсплав по п.9, в котором выбранные компоненты содержатся в следующем составе: В: 0,05 вес.% или менее, С: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Се: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
11. Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Со: от 4,0 до 9,5 вес.%, Сr: от 4,1 до 8,0 вес.%, Мо: от 2,1 до 6,5 вес.%, W: от 0,0 до 2,9 вес.%, Та: от 4,0 до 10,0 вес.%, Аl: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137·[W(вес.%)]+24·[Сr(вес.%)]+46·[Мо(вес.%)]-18·[Re(вес.%)].
12. Суперсплав по п.11, в котором содержание W составляет от 0,0 до 1,9 вес.%.
13. Суперсплав по п.11, в котором удовлетворяется Р2≤500, где Р2 обозначает параметр 2, который получен по формуле: Р2=30·[W(вес.%)]+10·[Re(вес.%)]-30·[Сr(вес.%)]-20·[Мо(вес.%)]+30·[Аl(вес.%)]+90·[Ti(вес.%)]+60·[Та(вес.%)]-5·[Ru(вес.%)].
14. Суперсплав по п.11, дополнительно содержащий по меньшей мере один элемент, выбранный из группы, состоящей из В, С, Si, Y, La, Ce, V и Zr.
15. Суперсплав по п.14, в котором выбранные компоненты содержатся в следующем составе: В: 0,05 вес.% или менее, С: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Се: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
16. Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Со: от 4,0 до 9,5 вес.%, Сr: от 5,1 до 8,0 вес.%, Мо: от 2,1 до 6,5 вес.%, W: от 0,0 до 2,9 вес.%, Та: от 4,0 до 10,0 вес.%, Аl: от 4,5 до 6,5 вес.%, Ti: от 0,0 до 1,0 вес.%, Hf: от 0,00 до 0,5 вес.%, Nb: от 0,0 до 3,0 вес.%, Re: от 3,0 до 8,0 вес.% и Ru: от 0,5 до 6,5 вес.%, а остальное составляют Ni и неизбежные примеси, причем удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137·[W(вес.%)]+24·[Сr(вес.%)]+46·[Мо(вес.%)]-18·[Re (вес.%)].
17. Суперсплав по п.16, в котором содержание W составляет от 0,0 до 1,9 вес.%.
18. Суперсплав по п.16, в котором удовлетворяется Р2≤500, где Р2 обозначает параметр 2, который получен по формуле: Р2=30·[W(вес.%)]+10·[Re(вес.%)]-30·[Сr(вес.%)]-20·[Мо(вес.%)]+30·[Аl(вес.%)]+90·[Ti(вес.%)]+60·[Та(вес.%)]-5·[Ru(вес.%)].
19. Суперсплав по п.16, дополнительно содержащий по меньшей мере один элемент, выбранный из группы, состоящей из В, С, Si, Y, La, Се, V и Zr.
20. Суперсплав по п.19, в котором выбранные компоненты содержатся в следующем составе: В: 0,05 вес.% или менее, С: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Се: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
21. Монокристаллический суперсплав на основе Ni, имеющий следующий состав: Со: от 5,0 до 8,0 вес.%, Сr: от 5,1 до 8,0 вес.%, Мо: от 2,2 до 4,8 вес.%, W: от 0,0 до 1,9 вес.%, Та: от 5,5 до 8,0 вес.%, Аl: от 5,4 до 6,0 вес.%, Ti: от 0,0 до 0,5 вес.%, Hf: от 0,08 до 0,5 вес.%, Nb: от 0,0 до 1,0 вес.%, Re: от 4,0 до 7,5 вес.% и Ru: от 1,0 до 5,0 вес.%, а остальное составляют Ni и неизбежные примеси.
22. Суперсплав по п.21, в котором удовлетворяется Р1≤700, где Р1 обозначает параметр 1, который получен по формуле: Р1=137·[W(вес.%)]+24·[Сr(вес.%)]+46·[Мо(вес.%)]-18·[Re(вес.%)].
23. Суперсплав по п.21, в котором удовлетворяется Р2≤500, где Р2 обозначает параметр 2, который получен по формуле: Р2=30·[W(вес.%)]+10·[Re(вес.%)]-30·[Сr(вес.%)]-20·[Мо(вес.%)]+30·[Аl(вес.%)]+90·[Ti(вес.%)]+60·[Та(вес.%)]-5·[Ru(вес.%)].
24. Суперсплав по п.21, дополнительно содержащий по меньшей мере один элемент, выбранный из группы, состоящей из В, С, Si, Y, La, Се, V и Zr.
25. Суперсплав по п.24, в котором выбранные компоненты содержатся в следующем составе: В: 0,05 вес.% или менее. С: 0,15 вес.% или менее, Si: 0,1 вес.% или менее, Y: 0,1 вес.% или менее, La: 0,1 вес.% или менее, Се: 0,1 вес.% или менее, V: 1 вес.% или менее и Zr: 0,1 вес.% или менее.
26. Лопатка турбины, включающая в себя монокристаллический суперсплав на основе Ni по любому из пп.1-25.
RU2009137129/02A 2007-03-12 2008-03-11 МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ RU2415959C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007061501 2007-03-12
JP2007-061501 2007-03-12

Publications (1)

Publication Number Publication Date
RU2415959C1 true RU2415959C1 (ru) 2011-04-10

Family

ID=39759520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009137129/02A RU2415959C1 (ru) 2007-03-12 2008-03-11 МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ

Country Status (7)

Country Link
US (1) US20100092302A1 (ru)
EP (1) EP2128284B1 (ru)
JP (1) JP4557079B2 (ru)
CN (1) CN101680059B (ru)
CA (1) CA2680650C (ru)
RU (1) RU2415959C1 (ru)
WO (1) WO2008111585A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119709A1 (ja) 2009-04-17 2010-10-21 株式会社Ihi Ni基単結晶超合金及びこれを用いたタービン翼
US8449262B2 (en) * 2009-12-08 2013-05-28 Honeywell International Inc. Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components
KR20110114928A (ko) * 2010-04-14 2011-10-20 한국기계연구원 크리프 특성이 우수한 단결정 니켈기 초내열합금
JP6016016B2 (ja) * 2012-08-09 2016-10-26 国立研究開発法人物質・材料研究機構 Ni基単結晶超合金
JP6093567B2 (ja) * 2012-12-26 2017-03-08 中部電力株式会社 ニッケル基超合金の劣化診断方法
EP3031939B1 (en) * 2013-08-05 2018-04-11 National Institute for Materials Science Ni-group superalloy strengthened by oxide-particle dispersion
JP6226231B2 (ja) 2013-09-18 2017-11-08 株式会社Ihi 熱遮蔽コーティングしたNi合金部品及びその製造方法
GB2536940A (en) 2015-04-01 2016-10-05 Isis Innovation A nickel-based alloy
EP3133178B1 (de) * 2015-08-19 2018-08-01 MTU Aero Engines GmbH Optimierte nickelbasis-superlegierung
US10253396B2 (en) 2016-09-02 2019-04-09 General Electric Company Modified articles, coated articles, and modified alloys
FR3091709B1 (fr) * 2019-01-16 2021-01-22 Safran Superalliage à base de nickel à tenue mécanique élevée à haute température
FR3091708B1 (fr) * 2019-01-16 2021-01-22 Safran Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température
CN109797433B (zh) * 2019-01-23 2021-05-25 深圳市万泽中南研究院有限公司 单晶高温合金、热端部件及设备
RU2700442C1 (ru) * 2019-06-04 2019-09-17 Публичное Акционерное Общество "Одк-Сатурн" Никелевый жаропрочный сплав для монокристаллического литья
CN114892044A (zh) * 2022-05-30 2022-08-12 湘潭大学 一种tcp相析出少、蠕变断裂寿命长的镍基高温合金
CN115466881A (zh) * 2022-09-30 2022-12-13 浙江大学 一种组织稳定的***镍基单晶高温合金及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) * 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
JP2843476B2 (ja) * 1992-03-09 1999-01-06 日立金属株式会社 高耐食高強度超合金、高耐食高強度単結晶鋳造物、ガスタービンおよびコンバインドサイクル発電システム
US5395584A (en) * 1992-06-17 1995-03-07 Avco Corporation Nickel-base superalloy compositions
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US5482789A (en) * 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
JPH11256258A (ja) * 1998-03-13 1999-09-21 Toshiba Corp Ni基単結晶超合金およびガスタービン部品
US6966956B2 (en) 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
JP3840555B2 (ja) * 2001-05-30 2006-11-01 独立行政法人物質・材料研究機構 Ni基単結晶超合金
WO2003080882A1 (fr) * 2002-03-27 2003-10-02 National Institute For Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
JP3814662B2 (ja) * 2002-12-06 2006-08-30 独立行政法人物質・材料研究機構 Ni基単結晶超合金
JP3944582B2 (ja) * 2003-09-22 2007-07-11 独立行政法人物質・材料研究機構 Ni基超合金
GB0412584D0 (en) * 2004-06-05 2004-07-07 Rolls Royce Plc Composition of matter

Also Published As

Publication number Publication date
WO2008111585A1 (ja) 2008-09-18
CA2680650C (en) 2012-07-03
CN101680059A (zh) 2010-03-24
EP2128284B1 (en) 2015-08-19
CA2680650A1 (en) 2008-09-18
EP2128284A1 (en) 2009-12-02
JPWO2008111585A1 (ja) 2010-06-24
JP4557079B2 (ja) 2010-10-06
CN101680059B (zh) 2011-07-06
US20100092302A1 (en) 2010-04-15
EP2128284A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
RU2415959C1 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ
RU2482205C1 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ВКЛЮЧАЮЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ
CA2663632C (en) Ni-based single crystal superalloy
JP5696995B2 (ja) 耐熱超合金
JP3814662B2 (ja) Ni基単結晶超合金
JP3892831B2 (ja) 単結晶タービンベーン用の超合金
JPWO2006059805A1 (ja) 耐熱超合金
RU2518838C2 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ЛОПАТКА ТУРБИНЫ
RU2295585C2 (ru) Высокопрочный, стойкий к высокотемпературной коррозии и окислению суперсплав на основе никеля и направленно отвержденное изделие из этого суперсплава
KR101687320B1 (ko) Ni기 단결정 초합금
US8852500B2 (en) Ni-base superalloy, method for producing the same, and turbine blade or turbine vane components
JP3840555B2 (ja) Ni基単結晶超合金
JP5876915B2 (ja) 高強度単結晶超合金
JP4115369B2 (ja) Ni基超合金
JP4911753B2 (ja) Ni基超耐熱合金及びそれを用いたガスタービン部品
CA2727105C (en) Improved low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium
US9499886B2 (en) Ni-based single crystal superalloy and turbine blade incorporating the same
JP2002194467A (ja) 産業用タービンの単結晶ブレードのための高い耐高温腐食性をもつニッケル系超合金