RU2415808C1 - Способ получения активного угля - Google Patents

Способ получения активного угля Download PDF

Info

Publication number
RU2415808C1
RU2415808C1 RU2009133964/05A RU2009133964A RU2415808C1 RU 2415808 C1 RU2415808 C1 RU 2415808C1 RU 2009133964/05 A RU2009133964/05 A RU 2009133964/05A RU 2009133964 A RU2009133964 A RU 2009133964A RU 2415808 C1 RU2415808 C1 RU 2415808C1
Authority
RU
Russia
Prior art keywords
carbon
activated carbon
activation
carried out
carbon dioxide
Prior art date
Application number
RU2009133964/05A
Other languages
English (en)
Inventor
Виктор Михайлович Мухин (RU)
Виктор Михайлович Мухин
Инна Дмитриевна Зубова (RU)
Инна Дмитриевна Зубова
Ирина Николаевна Зубова (RU)
Ирина Николаевна Зубова
Александр Александрович Курилкин (RU)
Александр Александрович Курилкин
Original Assignee
Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2009133964/05A priority Critical patent/RU2415808C1/ru
Application granted granted Critical
Publication of RU2415808C1 publication Critical patent/RU2415808C1/ru

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к области адсорбционной техники и может быть использовано для получения высокопрочных активных углей. Способ получения активного угля из полимерного сырья - текстолита - включает карбонизацию со скоростью подъема температуры 5-10°С/час до 450-500°С в атмосфере диоксида углерода, обезлетучивание при 720-760°С и активацию водяным паром при соотношении угля и водяного пара 1:7-10. Способ позволяет получать активный уголь с высокими адсорбционными свойствами по низкомолекулярным веществам типа этилхлорида, метанола, метиленхлорида, ацетона, которые являются наиболее трудноудаляемыми компонентами химических производств. 1 з.п. ф-лы.

Description

Изобретение относится к области адсорбционной техники и может быть использовано при получении высокопрочных активных углей для рекуперации растворителей, а также для санитарной очистки газов.
Известен способ получения сферических активных углей из органических ионообменных гелей путем сушки, термоокисления при температуре до 400°С, карбонизации в инертной атмосфере при температуре 800-900°С (см. патент GВ №2280898, кл. С01В 31/08, опубл. 09.08.94). Недостатком известного способа является отсутствие в активных углях развитого объема микропор, что снижает их адсорбционные свойства, и кроме того, получаемые угли обладают низкой прочностью.
Наиболее близким к предлагаемому способу по технической сущности и количеству совпадающих признаков является способ получения активного угля на основе фенолформальдегидной смолы, включающий карбонизацию исходного сырья со скоростью нагрева 20-40°С/час до температуры 600°С, выдержку при конечной температуре 1-3 часа и активацию при 850-900°С смесью водяного пара и диоксида углерода до суммарного объема пор 0,6-1,2 см3/г (см. патент РФ №2221745, кл. С01В 31/08, опубл. 20.01.2004 г.).
Недостатком известного способа является невысокая адсорбционная способность по низкомолекулярным веществам типа хлористого этила (этилхлорида), который в адсорбционной технике принят за тестовое вещество данного класса адсорбатов.
Техническим результатом (целью изобретения) является повышение адсорбционной способности активного угля по этилхлориду (хлористому этилу).
Поставленная цель достигается предложенным способом, включающим карбонизацию текстолита в две стадии, с проведением охлаждения и дробления продукта между упомянутыми стадиями, и активацию в присутствии водяного пара при 850-900°С, причем первую стадию проводят при нагреве текстолита в атмосфере диоксида углерода до 450-500°С со скоростью подъема температуры 5-10°С/мин, а на второй стадии дробленый продукт подвергают термообработке при 720-760°С в атмосфере диоксида углерода в течение 30-60 минут до достижения содержания летучих веществ не более 4%, активацию осуществляют при массовом соотношении уголь : водяной пар, равном 1:(7-10) соответственно, а активацию ведут до суммарного объема пор 1,3-2,0 см3/г.
Отличие предлагаемого способа от прототипа состоит в том, что первую стадию проводят при нагреве текстолита в атмосфере диоксида углерода до 450-500°С со скоростью подъема температуры 5-10°С/мин, а на второй стадии дробленый продукт подвергают термообработке при 720-760°С в атмосфере диоксида углерода в течение 30-60 минут до достижения содержания летучих веществ не более 4%, активацию осуществляют при массовом соотношении уголь : водяной пар, равном 1:(7-10) соответственно, а активацию ведут до суммарного объема пор 1,3-2,0 см3/г.
Активный уголь по предлагаемому способу позволяет удалять высокотоксичные адсорбаты с низкой молекулярной массой из паровоздушной смеси.
Сущность предлагаемого способа состоит в следующем.
Берут пластины полимерного сырья - текстолита (хлопковая ткань, пропитанная фенолформальдегидной смолой и спрессованная при давлении более 1100 кг/см2), которые помещают в ретортную печь слоем не более 0,5 м и подвергают нагреву (карбонизации) до температуры 450-500°С со скоростью ее подъема 5-10°С/час в атмосфере диоксида углерода. Затем карбонизованные пластины подвергают дроблению на щековой, валковой или зубчатой дробилке с последующим высевом фракции зерен 1-3 мм. Карбонизованные зерна подвергают обезлетучиванию во вращающейся электропечи при температуре 720-760°С в течение 30-60 минут до достижения содержания летучих веществ не более 4%, после чего активируют водяным паром при 850-900°С и массовом соотношении уголь : водяной пар 1:(7-10), что позволяет развить суммарный объем пор до 1,3-2,0 см3/г.
Многочисленными экспериментами было показано, что скорость карбонизации определяет формирование основной массы кристаллов углерода, являющихся заготовками для последующего развития объема микропор. При высоких скоростях нагрева на этой стадии идет в основном выделение летучих веществ, сопровождающееся формированием меньших количеств кристаллитов углерода, наоборот, при низких скоростях нагрева идет графитизация углеродной массы и снижается количество мелких кристаллитов и ухудшаются прочностные свойства получаемых углей. Дополнительная термообработка приводит к упорядочиванию структуры углеродного каркаса, что, в свою очередь, гарантирует целенаправленное формирование однородной микропористой структуры и упрочнение активных углей. При этом для развития микропор, наиболее благоприятных для адсорбции этилхлорида, активацию проводят при определенном массовом соотношении угля и водяного пара, причем именно водяной пар по реакции:
Figure 00000001
наиболее оптимально выжигает межплоскостные расстояния в кристаллитах углерода, формируя микропоры, размером 0,2-0,6 нм (2-6 Å).
Другим немаловажным фактором развития требуемой пористой структуры является величина суммарного объема пор, которая должна находиться в пределах 1,3-2,0 см3/г.
При более низких величинах суммарного объема пор формируется недостаточная транспортная пористость для кинетики процесса, а слишком большое его развитие (более 2,0 см3/г) резко снижает прочность гранул.
Следующие примеры поясняют сущность предлагаемого технического решения.
Пример 1. Берут пластины текстолита размером 5×20 см и помещают их в ретортную стационарную печь. Печь (для карбонизации) нагревают до 450°С со скоростью подъема температуры 5°С/час и непрерывно подают диоксид углерода со скоростью 0,3 м/с. После достижения температуры 450°С печь охлаждают, пластины выгружают и подвергают дроблению на щековой, валковой или зубчатой дробилке с выделением фракции зерен 1-3 мм. Выход карбонизата составляет 60-62%.
Затем разогревают вращающуюся электропечь и проводят вторую стадию термообработки при температуре 720°С и времени 30 минут. При этом в печь также непрерывно подают диоксид углерода. Осуществляют подачу зерен на этой стадии с загрузкой 3,0 кг/час. Процесс ведут до содержания летучих веществ не более 4%, что является достаточным для получения необходимых количеств кристаллитов.
Затем печь переводят в режим активации, подают перегретый водяной пар и производят загрузку зерен угля со скоростью 1,5 кг/час, причем процесс активации ведут при массовом соотношении угля к пару, равном 1:7. Процесс ведут до развития суммарного объема пор 1,3 см3/г.
Полученный уголь имел адсорбционную активность по этилхлориду, выраженную через время защитного действия - 85 минут.
Определение времени защитного действия по этилхлориду осуществляют по ГОСТ 18261-72.
Пример 2. Берут пластины текстолита размером 6×10 см и помещают в ретортную печь. Процесс осуществляют как в примере 1 с той лишь разницей, что печь карбонизации нагревают до 500°С со скоростью 10,0°С/час, для обезлетучивания берут фракцию 1,0-3,0 мм, дополнительную термообработку осуществляют при температуре 760°С и времени 60 мин до содержания летучих веществ не более 4%, а активацию проводят при массовом соотношении угля к перегретому водяному пару, равном 1:10. Уголь активируют до VΣ=2,0 см3/г.
Полученный активный уголь характеризуется временем защитного действия по этилхлориду, равным 90 минут.
Пример 3. Способ осуществляют как в примере 1 с той лишь разницей, что печь для карбонизации нагревают до 475°С со скоростью подъема температуры 7,5°С/час, для обезлетучивания берут фракцию зерен 1,0-3,0 мм, вторичную термообработку осуществляют при температуре 740°С и времени 45 мин, а активацию ведут при массовом соотношении угля к перегретому пару, равном 1:8,5, активируют до VΣ=1,8 см3/г.
Полученный уголь имел адсорбционную активность по этилхлориду 100 минут.
Активный уголь, полученный по прототипу (Патент РФ №2221745), имел сорбционную активность по хлорэтилу 62 минуты.
Проведенные исследования показали, что при скорости подъема температуры менее 5°С/час (карбонизация) идет графитизация сырья без развития кристаллитов, а при скорости нагрева более 10°С/час повышается выход летучих веществ и также сокращается объем кристаллитов в массе материала. Относительно влияния температурного интервала карбонизации. При температуре карбонизации ниже 450°С в продукте остается большое содержание летучих, что при активации способствует развитию крупных (балластных) макропор и снижению микропор, а при температуре выше 500°С начинается перегруппировка (перестройка) исходных кристаллитов в сторону образования больших межплоскостных расстояний, что делает поры более крупными (более 0,8 нм).
Экспериментами показано, что процесс второй термообработки играет важную роль при развитии объемов микропор (т.к. стабилизирует массовую долю кристаллитов). Если температура вторичной термообработки 720°С, то образуются мелкие кристаллиты с высокой реакционной способностью, которые выгорают, не давая микропор, а при температуре выше 760°С возрастает графитизация материала. Важную роль в процессе карбонизации и вторичной термообработки играет газовая среда, в которой проводится нагревание. Наиболее благоприятной средой, как выявлено опытами, является диоксид углерода.
Если время вторичной термообработки менее 30 минут, то стабилизация кристаллитов не завершается полностью, и в процессе активации они легко выгорают, образуя транспортные макропоры. С другой стороны, при увеличении времени вторичной термообработки более 60 минут может происходить нерегулируемое развитие нужного объема микропор, т.к. уже может наблюдаться при этих температурах взаимодействие углекислого газа с аморфным углеродом как наиболее реакционноспособным.
Наконец, вскрытие микропористой структуры и ее развитие происходит в процессе активации обезлетученных зерен. При этом при массовом соотношении угля и водяного пара (окислителя) меньше чем 1:7 начинается поверхностный обгар без вскрытия микропористой структуры. А при более высоких соотношениях, больше чем 1:10, ухудшаются технико-экономические показатели.
Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на решение поставленной задачи, а вся совокупность является достаточной для характеристики заявляемого технического решения.

Claims (2)

1. Способ получения активного угля, включающий карбонизацию текстолита в две стадии с проведением охлаждения и дробления продукта между упомянутыми стадиями, и активацию в присутствии водяного пара при 850-900°С, отличающийся тем, что первую стадию проводят при нагреве текстолита в атмосфере диоксида углерода до 450-500°С со скоростью подъема температуры 5-10°/мин, а на второй стадии дробленый продукт подвергают термообработке при 720-760°С в атмосфере диоксида углерода в течение 30-60 мин до достижения содержания летучих веществ не более 4%, активацию осуществляют при соотношении уголь:водяной пар, равном 1:(7-10) соответственно.
2. Способ по п.1, отличающийся тем, что активацию ведут до суммарного объема пор 1,3-2,0 см3/г.
RU2009133964/05A 2009-09-11 2009-09-11 Способ получения активного угля RU2415808C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009133964/05A RU2415808C1 (ru) 2009-09-11 2009-09-11 Способ получения активного угля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009133964/05A RU2415808C1 (ru) 2009-09-11 2009-09-11 Способ получения активного угля

Publications (1)

Publication Number Publication Date
RU2415808C1 true RU2415808C1 (ru) 2011-04-10

Family

ID=44052093

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009133964/05A RU2415808C1 (ru) 2009-09-11 2009-09-11 Способ получения активного угля

Country Status (1)

Country Link
RU (1) RU2415808C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470858C1 (ru) * 2011-04-27 2012-12-27 Открытое акционерное общество "Электростальское научно-производственное объединение "Неорганика" (ОАО "ЭНПО "Неорганика") Способ получения адсорбционно-активного углеродного продукта из текстолита
RU2534784C2 (ru) * 2013-04-05 2014-12-10 Открытое акционерное общество "Государственный научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Установка для термической обработки углеродсодержащих волокнистых материалов
RU2675576C1 (ru) * 2018-04-28 2018-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Способ получения активного угля на основе растительных отходов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470858C1 (ru) * 2011-04-27 2012-12-27 Открытое акционерное общество "Электростальское научно-производственное объединение "Неорганика" (ОАО "ЭНПО "Неорганика") Способ получения адсорбционно-активного углеродного продукта из текстолита
RU2534784C2 (ru) * 2013-04-05 2014-12-10 Открытое акционерное общество "Государственный научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Установка для термической обработки углеродсодержащих волокнистых материалов
RU2675576C1 (ru) * 2018-04-28 2018-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Способ получения активного угля на основе растительных отходов

Similar Documents

Publication Publication Date Title
Hu et al. Novel activation process for preparing highly microporous and mesoporous activated carbons
JP2735491B2 (ja) 微細孔活性炭とその製造方法
Evans et al. The production of chemically-activated carbon
Labus et al. Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity
Yagmur et al. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy
DK2982649T3 (en) Process for the production of activated charcoal
ES2209931T3 (es) Procedimiento para preparar carbon activado conformado.
JP2012507470A5 (ru)
Ganan et al. Preparation of activated carbons from bituminous coal pitches
RU2436625C1 (ru) Способ получения углеродного адсорбента
Nowicki et al. The effect of chemical activation method on properties of activated carbons obtained from pine cones
Sun et al. Impacts of the pendant functional groups of cellulose precursor on the generation of pore structures of activated carbons
RU2415808C1 (ru) Способ получения активного угля
Jibril et al. Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon
RU2527221C1 (ru) Способ получения активного угля из растительных отходов
Daud et al. Effect of carbonization temperature on the yield and porosity of char produced from palm shell
JPS6261529B2 (ru)
WO2012006973A1 (de) Verfahren zur herstellung von kohlenstoff-schaumstoffen
RU2362734C1 (ru) Способ получения активного угля
RU2344075C1 (ru) Способ получения активного угля
RU2393990C1 (ru) Способ получения активного угля
Turutan Methane adsorption performance of the palm kernel shell-derived carbon material activated using CO2-steam sequential combination
KR100599254B1 (ko) 수소저장용 고기공도 활성탄과 이의 제조방법
Saadi et al. Pomegranate peels precursor used in the synthesis of activated carbon: application in the wastewater treatment
RU2412112C1 (ru) Способ получения активного угля

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120912

NF4A Reinstatement of patent

Effective date: 20151210

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170912