RU2406750C2 - Способ окисления меркаптанов, содержащихся в углеводородах - Google Patents

Способ окисления меркаптанов, содержащихся в углеводородах Download PDF

Info

Publication number
RU2406750C2
RU2406750C2 RU2007131534/04A RU2007131534A RU2406750C2 RU 2406750 C2 RU2406750 C2 RU 2406750C2 RU 2007131534/04 A RU2007131534/04 A RU 2007131534/04A RU 2007131534 A RU2007131534 A RU 2007131534A RU 2406750 C2 RU2406750 C2 RU 2406750C2
Authority
RU
Russia
Prior art keywords
iron
mercaptans
heteropoly acid
oxidation
acid
Prior art date
Application number
RU2007131534/04A
Other languages
English (en)
Other versions
RU2007131534A (ru
Inventor
АНДЖЕЛИС Альберто ДЕ (IT)
Анджелис Альберто Де
Паоло ПОЛЛЕЗЕЛЬ (IT)
Паоло Поллезель
Original Assignee
Эни С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эни С.П.А. filed Critical Эни С.П.А.
Publication of RU2007131534A publication Critical patent/RU2007131534A/ru
Application granted granted Critical
Publication of RU2406750C2 publication Critical patent/RU2406750C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/22Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides
    • C07C319/24Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides by reactions involving the formation of sulfur-to-sulfur bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к способу удаления меркаптанов, содержащихся в углеводородах, посредством окисления. Способ включает: a) приведение в контакт углеводорода или смеси углеводородов, содержащих один или несколько меркаптанов, отвечающих общей формуле R-SH, в которой R представляет собой С150-алифатический или С630-ароматический углеводород, с системой, включающей трехвалентное железо, гетерополикислоту, обладающую окислительно-восстановительными свойствами, и воду, причем гетерополикислоту выбирают из гетерополикислот, отвечающих общей формуле (I):

Description

Изобретение относится к способу удаления меркаптанов, содержащихся в углеводородах, посредством окисления.
Более конкретно, настоящее изобретение относится к способу окисления меркаптанов, содержащихся в углеводородных фракциях или в природном или сопутствующем газе (добываемом в нефтяных месторождениях).
Еще более конкретно, настоящее изобретение относится к способу удаления меркаптанов, содержащихся в природном или сопутствующем газе (далее также называемом природным газом).
Меркаптаны представляют собой органические соединения, содержащие серу, которые часто присутствуют в природном газе, в сопутствующем газе и в жидких фракциях углеводородов, таких как топливо, керосин, дизельное топливо и т.д. Меркаптаны характеризуются наличием в них серы, присутствующей в виде группы -SH, и описываются общей формулой R-SH, в которой R может быть как алифатической группой, так и ароматической группой. Меркаптаны следует удалять или превращать в другие соединения, поскольку они имеют неприятный запах, токсичны и могут вызывать значительную коррозию оборудования.
По существу, имеется лишь два типа способов, пригодных для удаления меркаптанов: способы, в которых меркаптаны превращают в соответствующие дисульфиды (способы экстракции и дезодорирующей сероочистки демеркаптанизацией), и способы, в которых меркаптаны удаляют с помощью необратимых реакций, обычно используя неорганические соединения (способы мокрой очистки).
Способы первого типа применяют для удаления из углеводородов значительных количеств меркаптанов, от 200 кг до 30 т в сутки и более эквивалентной серы. С другой стороны, способы мокрой очистки применяют для удаления меркаптанов из газообразных или жидкостных потоков, если они присутствуют в количествах менее 200 кг эквивалентной серы.
Способы экстракции и дезодорирующей сероочистки более важны с экономической точки зрения и, следовательно, представляют собой больший интерес для усовершенствования характеристик существующих систем.
Экстракционные способы, в которых более легкие меркаптаны экстрагируют из газообразного потока и отделяют превращением их в дисульфиды, и способы дезодорирующей сероочистки, в которых меркаптаны окисляют до дисульфидов (которые остаются в дезодорированной жидкости), осуществляют при помощи сильнощелочных средств. Действительно, для эффективного осуществления способа применяют каустическую соду в концентрациях, составляющих от 10 до 14%; кроме того, для удаления сероводорода и других кислотных соединений, возможно присутствующих в обрабатываемой жидкости, производят ее предварительную промывку содой.
Основной критический аспект способов указанного типа состоит в том, что по окончании обработки по удалению меркаптанов в среде присутствуют большие количества каустической соды, загрязненные продуктами сульфирования, устранение которых представляет собой серьезную экономическую и экологическую проблему.
Таким образом, было бы желательно разработать способ, который не включает предварительную промывку сильнощелочными растворами и включает использование кислотного раствора, который легко поддается рециркуляции по окончании каждого каталитического цикла.
В настоящее время Заявители неожиданно обнаружили следующее явление, которое составляет цель настоящего изобретения, более точно определенную в приложенной Формуле изобретения, а именно: реакцию окисления меркаптанов до соответствующих дисульфидов можно с успехом осуществлять в кислотной среде под действием трехвалентного железа и в присутствии умеренного количества гетерополикислоты, обладающей окислительно-восстановительными свойствами. Таким образом, под действием железа можно эффективно окислять меркаптан до сульфида, причем железо легко повторно окисляется под действием кислорода воздуха благодаря присутствию гетерополикислоты.
Водный раствор железа и гетерополикислоты может быть подходящим образом подвергнут рециркуляции и использован в других дальнейших реакционных/регенерационных циклах.
Описанную выше систему можно растворить в водном растворе и предпочтительно применять для удаления меркаптанов из газообразных потоков, таких как, например, природный газ или подобный ему поток; в ином случае, систему можно нанести на подходящий носитель, например, на активированные угли, и применять для удаления меркаптанов из жидких фракций углеводородов.
Проведение реакции при рН кислой среды в присутствии гетерополикислоты имеет ряд преимуществ, например:
a) отпадает необходимость предварительной промывки обрабатываемого потока, что позволяет избежать потребления химикатов (NaOH) благодаря реакции присутствующих кислотных соединений, таких как сероводород, диоксид углерода (в газообразных потоках) или нафтеновых кислот (в случае жидкостных фракций) с содой;
b) поскольку реакцию проводят не в щелочной среде, отсутствует потребление каустических соединений (при карбонизации);
c) отпадает проблема устранения щелочных растворов, содержащих продукты на основе серы, что является серьезным преимуществом как с экологической, так и с экономической точек зрения.
Гетерополикислоты, ускоряющие окисление восстановленного железа, в основном представляют собой гетерополикислоты, обладающие окислительно-восстановительными свойствами и отвечающие, например, следующей общей формуле (I):
Figure 00000001
в которой n представляет собой целое число, составляющее от 3 до 6 и равное 3+у; Х представляет собой элемент, выбираемый из группы, включающей Р, Si, As, В, Ge; у представляет собой целое число, составляющее от 1 до 3; и М состоит из Мо или W.
Присутствие в растворе гетерополикислоты позволяет легко, полностью и быстро провести повторное окисление раствора восстановленных солей железа, которое в отсутствие гетерополикислоты окисляется кислородом или воздухом лишь частично и с чрезвычайно низкой скоростью.
В одном из частных случаев применения гетерополикислоту используют в твердом виде.
Возможные примеры твердых форм гетерополикислот, нерастворимых в воде, перечислены ниже:
1) полное или частичное образование солей с металлами, соли которых нерастворимы, например, цезием, калием или аммонием, приготовленными в соответствии со способом, описанным в публикации A. Corma et al., в J. of Catal., 1996, vol.164, 422-432; серебром, приготовленным в соответствии со способом, описанным в публикации J.B.Moffat et al., в Cat. Lett., 1998, vol.55, 183-188; таллием (I), приготовленным в соответствии со способом, описанным в публикации J.B.Moffat et al., в J. of Catal., 1998, vol.177, 335-342;
2) нанесение и иммобилизация на оксиде кремния в соответствии со способами, описанными, например, в публикации Y. Izumi et al., в Appl. Catal., A, 1999, vol.181, 277-282;
3) нанесение и иммобилизация на мезопористых молекулярных ситах, например, HMS и МСМ-41 в соответствии со способами, описанными, например, в публикации W.Chu et al., в Cat. Lett., 1996, vol.42, 201-208;
4) нанесение и иммобилизация на активированном угле в соответствии со способами, описанными, например, в публикации М.Е. Chimienti et al., в Appl. Catal., А, 2001, vol.208, 7-19.
В твердой и нерастворимой в воде форме гетерополикислоту можно использовать в шламовом реакторе, в котором твердое вещество диспергируют в технологической жидкости, или в реакторе с неподвижным слоем катализатора. В обоих случаях катализатор, в соответствии с известными способами, формуют подходящим образом: в виде микросфер для шламового реактора и в виде гранул для реактора с неподвижным слоем катализатора.
В случае использования твердой и нерастворимой в воде форме, гетерополикислота все время остается в реакторе окисления.
Неожиданно было обнаружено, что реакция окисления меркаптанов до дисульфидов в присутствии гетерополикислоты может быть успешно проведена без раствора трехвалентного железа, если используемая гетерополикислота содержит вместо гетероэлемента Х металл, проявляющий окислительно-восстановительные свойства, например, если гетерополикислота отвечает общей формуле (II):
Figure 00000002
в которой n представляет собой целое число, составляющее от 2 до 7, Me может представлять собой Fe, Со, Mn, Cu, и М состоит из Мо или W.
В этом случае именно металл Me, находящийся в центре структуры гетерополикислоты, окисляет меркаптан до дисульфида, восстанавливаясь до более низкой по сравнению с исходной степени окисления. Затем металл Me повторно окисляется до исходной степени окисления под действием простого барботажа воздуха через реакционный раствор, а получаемую серу отфильтровывают.
Для лучшего понимания настоящего изобретения и одного из примеров его реализации ниже даны иллюстративные и не ограничивающие примеры.
Пример 1: Синтез кислоты H4PVMo11O40
1,22 г метаванадата натрия (количество, равное 0,01 мол) растворили в 100 мл дистиллированной воды и последовательно добавили туда 3,58 г Na2HPO·12H2O (0,01 мол) и, наконец, 26,61 г Na2MoO4 2H2O (0,11 мол). Затем к полученному раствору добавили 20 г азотной кислоты концентрацией 60%, что привело к конденсации гетерополикислоты, обнаруживаемой по образованию темно-красного окрашивания. Раствор концентрировали до небольшого объема до начала кристаллизации, добавили равный объем 2н. серной кислоты и этилового эфира, следуя способу Drechsel (см. Handbook of preparative inorganic chemistry, G. Brauer, Academic Press, New York, 1965), и экстрагировали гетерополикислоту в виде комплекса с этиловым эфиром.
После испарения эфира получали гетерополикислоту H4PVMo11O40 в виде оранжевых кристаллов. Рентгеновский спектр полученного соединения полностью соответствовал спектру, представленному в литературе (О.Akba et al„ Synth. React. Inorg. Met-org. Chem., 27(9), 1399-1415 (1997)).
Пример 2: Синтез кислоты H5PV2Mo10O40
7,32 г метаванадата натрия (количество, равное 0,06 мол) растворили в 100 мл дистиллированной воды и последовательно добавили туда 3,58 г Na2HPO·12H2O (0,01 мол) и, наконец, 24,19 г Na2MoO4·2H2O (0,1 мол). Затем к полученному раствору добавили 20 г азотной кислоты концентрацией 60%, что привело к конденсации гетерополикислоты, обнаруживаемой по образованию темно-красного окрашивания. Раствор концентрировали до небольшого объема до начала кристаллизации, добавили равный объем 2н. серной кислоты и этилового эфира, следуя способу Drechsel (см. Handbook of preparative inorganic chemistry, G. Brauer, Academic Press, New York, 1965), и экстрагировали гетерополикислоту в виде комплекса с этиловым эфиром.
После испарения эфира получали гетерополикислоту H5PV2Mo10O40 в виде оранжевых кристаллов. Рентгеновский спектр полученного соединения полностью соответствовал спектру, представленному в литературе (О. Akba et al. Synth. React. Inorg. Met-org. Chem., 27(9), 1399-1415 (1997)).
Пример 3: Синтез кислоты H6PV3Mo9O40
14,64 г метаванадата натрия (количество, равное 0,12 мол) растворили в 200 мл дистиллированной воды и последовательно добавили туда 7,16 г Na2HPO·12H2O (0,02 мол) и, наконец, 21,76 г Na2MoO4·2H2O (0,09 мол). Затем к полученному раствору добавили 40 г азотной кислоты концентрацией 60%, что привело к конденсации гетерополикислоты, обнаруживаемой по образованию темно-красного окрашивания. Раствор концентрировали до небольшого объема до начала кристаллизации, добавили равный объем 2н. серной кислоты и этилового эфира, следуя способу Drechsel (см. Handbook of preparative inorganic chemistry, G. Brauer, Academic Press, New York, 1965), и экстрагировали гетерополикислоту в виде комплекса с этиловым эфиром.
После испарения эфира получали гетерополикислоту H6PV3Mo9O40 в виде оранжевых кристаллов. Рентгеновский спектр полученного соединения полностью соответствовал спектру, представленному в литературе (О. Akba et al., Synth. React. Inorg. Met-org. Chem., 27(9), 1399-1415 (1997)).
Пример 4: Синтез кислоты H6PV3W9O40
14,64 г метаванадата натрия (количество, равное 0,12 мол) растворили в 200 мл дистиллированной воды и последовательно добавили туда 7,16 г Na2HPO·12H2O (0,02 мол) и, наконец, 29,70 г Na2WO4·2H2O (0,09 мол). Затем к полученному раствору добавили 40 г азотной кислоты концентрацией 60%, что привело к конденсации гетерополикислоты, обнаруживаемой по образованию темно-красного окрашивания. Раствор концентрировали до небольшого объема до начала кристаллизации, добавили равный объем 2н. серной кислоты и этилового эфира, следуя способу Drechsel (см. Handbook of preparative inorganic chemistry, G. Brauer, Academic Press, New York, 1965), и экстрагировали гетерополикислоту в виде комплекса с этиловым эфиром.
После испарения эфира получали гетерополикислоту H6PV3W9O40 в виде оранжевых кристаллов. Рентгеновский спектр полученного соединения полностью соответствовал спектру, представленному в литературе (О.Akba et al., Synth. React. Inorg. Met-org. Chem, 27(9), 1399-1415 (1997)).
Пример 5: Синтез катализатора на основе гетерополикислоты, нанесенного на активированный уголь
Образец активированного угля массой 20 г сначала промыли 0,1 н. HCI, затем 0,1н. NaOH и, наконец, дистиллированной водой до достижения нейтральной реакции воды. Затем образец активированного угля суспендировали в растворе азотной кислоты концентрацией 10% мас. и затем кипятили при орошении в течение трех часов для удаления окисляемых частиц, имеющихся на поверхности угля. Затем образец промыли дистиллированной водой до нейтральной реакции и сушили при 150°С в течение 12 часов.
10 г полученного таким образом образца активированного угля обрабатывали 100 мл абсолютного этилового спирта, в котором были растворены 10 г Fe(NO3)3·9H2O и 10 г H6PV3W9O40. Суспензию перемешивали в течение 3 часов при комнатной температуре, отфильтровали через пористую стеклянную пластинку и промывали безводным этиловым спиртом. Полученный таким образом катализатор сушили при 150°С в течение 12 часов.
Пример 6: Окисление трет-бутилмеркаптана раствором трехвалентного железа и H6PV3W9O40
Испытания проводили, растворяя 5,42 г Fe(NO3)3·9H2O (0,0134 мол) и 5,42 г H6PV3W9O40 (0,00195 мол) в 500 мл дистиллированной воды в молярном отношении Fe/ гетерополикислота, равном 6,9/1. К полученному прозрачному оранжевому раствору добавили 1,21 г трет-бутилмеркаптана (0,0134 мол), моделируя тем самым газообразный поток, содержащий меркаптан, в водный раствор гетерополикислоты и соли железа (III). Указанный меркаптан выбирали потому, что его особенно сложно окислить до соответствующего дисульфида. Реактор закрывали и доводили температуру до 40°С.
Смесь перемешивали в течение 6 часов, охлаждали до 10°С, чтобы избежать возможных потерь меркаптана (температура кипения которого равна 62°С), и добавляли 50 мл толуола. Смесь выливали в делительную воронку и экстрагировали органическую фазу, которую анализировали при помощи газовой хроматографии.
Конверсия трет-бутилмеркаптана составляла 80%, селективность получения ди-трет-бутилдисульфида - 53% и ди-трет-бутилсульфида - 47%, соответственно.
Пример 7: Окисление трет-бутилмеркаптана раствором трехвалентного железа и H6PV3Mo9O40
Испытания проводили, растворяя 5,42 г Fe(NO3)3·9H2O (0,0134 мол) и 5,42 г H6PV3Mo9O40 (0,0032 мол) в 500 мл дистиллированной воды в молярном отношении Fe/ гетерополикислота, равном 4,2/1. К полученному прозрачному оранжевому раствору добавили 1,21 г трет-бутилмеркаптана (0,0134 мол), моделируя тем самым газообразный поток, содержащий меркаптан, в водный раствор гетерополикислоты и соли железа (III). Указанный меркаптан выбирали потому, что его особенно сложно окислить до соответствующего дисульфида. Реактор закрывали и доводили температуру до 40°С.
Смесь перемешивали в течение 6 часов, охлаждали до 10°С, чтобы избежать возможных потерь меркаптана (температура кипения которого равна 62°С), и добавляли 50 мл толуола. Смесь выливали в делительную воронку и экстрагировали органическую фазу, которую анализировали при помощи газовой хроматографии.
Конверсия трет-бутилмеркаптана составляла 70%, селективность получения ди-трет-бутилдисульфида - 58% и ди-трет-бутилсульфида - 42%, соответственно.
Пример 8: Окисление трет-бутилмеркаптана раствором трехвалентного железа и H6PV3Mo9O40
Испытания проводили, растворяя 10,84 г Fe(NO3)3·9H2O (0,0268 мол) и 9,5 г H6PV3Mo9O40 (0,00383 мол) в 500 мл дистиллированной воды в молярном отношении Fe/ гетерополикислота, равном 7/1. К полученному прозрачному оранжевому раствору добавили 1,21 г трет-бутилмеркаптана (0,0134 мол), моделируя тем самым газообразный поток, содержащий меркаптан, в водный раствор гетерополикислоты и соли железа (III). Указанный меркаптан выбирали потому, что его особенно сложно окислить до соответствующего дисульфида. Реактор закрывали и доводили температуру до 40°С.
Смесь перемешивали в течение 6 часов, охлаждали до 10°С, чтобы избежать возможных потерь меркаптана (температура кипения которого равна 62°С), и добавляли 50 мл толуола. Смесь выливали в делительную воронку и экстрагировали органическую фазу, которую анализировали при помощи газовой хроматографии.
Конверсия трет-бутилмеркаптана составляла 86%, селективность получения ди-трет-бутилдисульфида - 45% и ди-трет-бутилсульфида - 55%, соответственно.
Пример 9: Регенерация раствора восстановленного железа, содержащего гетерополикислоту
Раствор восстановленного железа, полученный в предыдущей реакции (Пример 8), повторно окисляли, обрабатывая его током воздуха в течение двух часов при 80°С. Содержание трехвалентного железа определяли титрованием в соответствии с одним из способов, описанных в литературе (например, в соответствии со способом A. Hulanicki, опубликованным в Talanta, vol.18, 239-245, 1971, в результате чего подтвердилось полное повторное окисление железа. Повторное окисление аналогичного раствора, приготовленного без гетерополикислоты, не приводило к полному окислению даже после 48-часовой обработки при 80°С в токе воздуха. Кроме того, восстановленный раствор, не содержащий гетерополикислоты, при продолжительном нагревании разлагается с выделением значительных количеств азотистых паров и образованием осадка гидроксида железа.
Пример 10: Окисление трет-бутилмеркаптана раствором трехвалентного железа и H6PV3Mo9O40, регенерированным в соответствии с предыдущим примером
К раствору железа и гетерополикислоты, регенерированному в соответствии с предыдущим Примером 9, добавили 1,21 г трет-бутилмеркаптана (0,0134 мол) путем пропускания газообразного потока. Реактор закрывали и доводили температуру до 40°С.
Смесь перемешивали в течение 6 часов, охлаждали до 10°С, чтобы избежать возможных потерь меркаптана (температура кипения которого равна 62°С), и добавляли 50 мл толуола. Смесь выливали в делительную воронку и экстрагировали органическую фазу, которую анализировали при помощи газовой хроматографии.
Конверсия трет-бутилмеркаптана составляла 87%, селективность получения ди-трет-бутилдисульфида - 47% и ди-трет-бутилсульфида - 53%, соответственно.

Claims (9)

1. Способ окисления меркаптанов, содержащихся в углеводородах, который включает:
a) приведение в контакт углеводорода или смеси углеводородов, содержащих один или несколько меркаптанов, отвечающих общей формуле R-SH, в которой R представляет собой С150-алифатический или С630-ароматический углеводород, с системой, включающей трехвалентное железо, гетерополикислоту, обладающую окислительно-восстановительными свойствами, и воду, причем гетерополикислоту выбирают из гетерополикислот, отвечающих общей формуле (I):
Figure 00000003

в которой n представляет собой целое число, составляющее от 4 до 6 и равное 3+у; Х представляет собой элемент, выбираемый из группы, включающей Р и As; у представляет собой целое число, составляющее от 1 до 3; и М состоит из Мо или W;
b) окисление меркаптанов до соответствующих (ди)сульфидов в результате окислительного действия трехвалентного железа, которое при этом восстанавливается до двухвалентного железа;
c) отделение присутствующей водной фазы от органической фазы;
d) повторное окисление двухвалентного железа до трехвалентного железа в газовом потоке, содержащем кислород;
е) рециркуляцию системы, включающей трехвалентное железо, гетерополикислоту и воду в операцию окисления (а).
2. Способ по п.1, в котором гетерополикислоту применяют в твердой форме, нерастворимой в воде, нанесенной и иммобилизованной на активированном угле.
3. Способ по п.1, в котором трехвалентное железо присутствует в виде соли неорганической кислоты.
4. Способ по п.3, в котором неорганическая кислота представляет собой азотную кислоту.
5. Способ по п.1, в котором трехвалентное железо присутствует в растворе в концентрациях, находящихся в диапазоне от 0,01 до 10 моль/л.
6. Способ по п.1, в котором гетерополикислота (I) присутствует в концентрациях, находящихся в диапазоне от 0,01 до 0,3 моль/л.
7. Способ по п.5 или 6, в котором молярное отношение гетерополикислота (I)/ трехвалентное железо находится в диапазоне от 1/1 до 1/30.
8. Способ по п.1, в котором операцию повторного окисления выполняют при температуре, находящейся в диапазоне от 20 до 100°С.
9. Способ по п.1, в котором газообразный поток, содержащий кислород, состоит из воздуха, воздуха, обогащенного кислородом, кислорода.
RU2007131534/04A 2005-03-03 2006-02-15 Способ окисления меркаптанов, содержащихся в углеводородах RU2406750C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2005A000322 2005-03-03
IT000322A ITMI20050322A1 (it) 2005-03-03 2005-03-03 Procedimento per la rimozione tramite ossidazione di mercaptani contenuti in idrocarburi

Publications (2)

Publication Number Publication Date
RU2007131534A RU2007131534A (ru) 2009-04-10
RU2406750C2 true RU2406750C2 (ru) 2010-12-20

Family

ID=35033661

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007131534/04A RU2406750C2 (ru) 2005-03-03 2006-02-15 Способ окисления меркаптанов, содержащихся в углеводородах

Country Status (15)

Country Link
US (1) US7906683B2 (ru)
EP (1) EP1856231B1 (ru)
CN (1) CN101111589B (ru)
AT (1) ATE480611T1 (ru)
AU (1) AU2006222351B2 (ru)
BR (1) BRPI0606792B1 (ru)
CA (1) CA2599385C (ru)
DE (1) DE602006016743D1 (ru)
EG (1) EG24732A (ru)
IT (1) ITMI20050322A1 (ru)
NO (1) NO339855B1 (ru)
PL (1) PL1856231T3 (ru)
RU (1) RU2406750C2 (ru)
TN (1) TNSN07324A1 (ru)
WO (1) WO2006094612A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040175A1 (it) * 2004-02-05 2004-05-05 Eni Spa Procedimento per la rimozione di idrogeno solforato tramite la sua ossidazione in presenza di eteropoliacidi
ITMI20051647A1 (it) * 2005-09-07 2007-03-08 Enitecnologie Spa Procedimento per la rimnozione in continuo di idrogeno solforato da correnti gassose
EA012808B1 (ru) 2009-05-25 2009-12-30 Ввса Инвестментс Групп Инк. Способ окислительной демеркаптанизации нефти и нефтяных дистиллятов
GB2500031B (en) * 2012-03-07 2015-04-01 Acal Energy Ltd Fuel cells
ES2692798T3 (es) * 2013-12-11 2018-12-05 Basf Se Oxidación de 2-mercaptoetanol

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1058215A (en) * 1911-11-11 1913-04-08 Harold B Anderson Starting mechanism for internal-combustion engines.
US4308169A (en) * 1978-12-26 1981-12-29 Uop Inc. Method of reactivating a catalytic composite of a carrier material and a mercaptan oxidation catalyst
US4490246A (en) * 1983-11-18 1984-12-25 Uop Inc. Process for sweetening petroleum fractions
CA2100294C (en) * 1992-07-27 2003-08-19 David Frederick Bowman Process of removing hydrogen sulphide from a gas mixture
GB9422391D0 (en) * 1994-11-05 1995-01-04 Solvay Interox Ltd Oxidation of organosulphur compounds
US6294699B1 (en) * 1999-08-30 2001-09-25 Richmond, Hitchcock, Fish & Dollar Oxidation of mercaptans to organic disulfides
FR2843050B1 (fr) * 2002-08-01 2005-04-15 Inst Francais Du Petrole Catalyseur a base de metaux du groupe vi et du groupe viii presents au moins en partie sous la forme d'heteropolyanions dans le precurseur oxyde
AU2003260344A1 (en) 2002-08-02 2004-02-25 Vanetta S.P.A. Redox process particularly for the production of menadione and use of polyoxometalates
ITMI20040175A1 (it) 2004-02-05 2004-05-05 Eni Spa Procedimento per la rimozione di idrogeno solforato tramite la sua ossidazione in presenza di eteropoliacidi
ITMI20051647A1 (it) * 2005-09-07 2007-03-08 Enitecnologie Spa Procedimento per la rimnozione in continuo di idrogeno solforato da correnti gassose

Also Published As

Publication number Publication date
NO339855B1 (no) 2017-02-06
AU2006222351B2 (en) 2010-07-29
DE602006016743D1 (de) 2010-10-21
EP1856231A1 (en) 2007-11-21
US20080207951A1 (en) 2008-08-28
ATE480611T1 (de) 2010-09-15
EG24732A (en) 2010-06-27
WO2006094612A1 (en) 2006-09-14
RU2007131534A (ru) 2009-04-10
BRPI0606792B1 (pt) 2016-03-29
CA2599385C (en) 2013-07-02
ITMI20050322A1 (it) 2006-09-04
AU2006222351A1 (en) 2006-09-14
CN101111589B (zh) 2013-12-04
CA2599385A1 (en) 2006-09-14
TNSN07324A1 (en) 2008-12-31
EP1856231B1 (en) 2010-09-08
NO20074319L (no) 2007-11-29
CN101111589A (zh) 2008-01-23
BRPI0606792A2 (pt) 2009-12-01
PL1856231T3 (pl) 2011-03-31
US7906683B2 (en) 2011-03-15

Similar Documents

Publication Publication Date Title
Wei et al. Performances, kinetics and mechanisms of catalytic oxidative desulfurization from oils
Kailasa et al. Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants
US3029201A (en) Water treatment
US7608231B2 (en) Process for the continuous removal of hydrogen sulfide from gaseous streams
CN108203593B (zh) 一种基于聚乙烯亚胺固定杂多酸催化剂的氧化脱硫方法
RU2406750C2 (ru) Способ окисления меркаптанов, содержащихся в углеводородах
CN1952050B (zh) 一种加氢柴油氧化脱硫的方法
CN104449395B (zh) 一种粗硫酸盐松节油的脱硫脱臭精制方法
JP6396582B2 (ja) 活性固相触媒上での廃苛性物流における硫化物の除去
CN103240092A (zh) 一种用于渣油加工废水脱臭回用的常温空气湿式氧化催化剂
CN101063043B (zh) 一种轻馏分油的氧化脱臭方法
RU2533140C2 (ru) Способ получения серы каталитическим окислением сероводорода
RU2179475C2 (ru) Способ очистки природного газа от сероводорода
Li et al. Review on advances in adsorption material for mercaptan removal from gasoline oil
RU2026721C1 (ru) Абсорбент диоксида серы
CN105195134B (zh) 矿物油脱臭用催化剂及其制备和使用方法
NO160565B (no) Fremgangsm te for separering av svovelforbindelser s.
CN113842775A (zh) 一种液相催化氧化脱除硫化氢的方法
CN104419446A (zh) 一种柴油的超深度氧化脱硫方法
EA019364B1 (ru) Способ очистки углеводородного сырья от сернистых соединений
JP2013018866A (ja) 重質油の酸化脱硫方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210216