RU2401839C2 - Способ получения протеогликана - Google Patents

Способ получения протеогликана Download PDF

Info

Publication number
RU2401839C2
RU2401839C2 RU2008136884/10A RU2008136884A RU2401839C2 RU 2401839 C2 RU2401839 C2 RU 2401839C2 RU 2008136884/10 A RU2008136884/10 A RU 2008136884/10A RU 2008136884 A RU2008136884 A RU 2008136884A RU 2401839 C2 RU2401839 C2 RU 2401839C2
Authority
RU
Russia
Prior art keywords
proteoglycan
cartilage
manufactured
concentrate
immersion
Prior art date
Application number
RU2008136884/10A
Other languages
English (en)
Other versions
RU2008136884A (ru
Inventor
Масаки НАРУМИ (JP)
Масаки НАРУМИ
Йосиаки КУДО (JP)
Йосиаки КУДО
Original Assignee
Кусиро Индастриал Текнолоджи Сентер
Йосиаки КУДО
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кусиро Индастриал Текнолоджи Сентер, Йосиаки КУДО filed Critical Кусиро Индастриал Текнолоджи Сентер
Publication of RU2008136884A publication Critical patent/RU2008136884A/ru
Application granted granted Critical
Publication of RU2401839C2 publication Critical patent/RU2401839C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4725Proteoglycans, e.g. aggreccan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0066Isolation or extraction of proteoglycans from organs

Abstract

Изобретение относится к биотехнологии и может быть использовано в различных областях промышленности. Способ предусматривает следующее. Исходный материал, в качестве которого, например, может быть использована хрящевая ткань рыб, птиц, моллюсков, млекопитающих, подвергают измельчению. Измельченный исходный материала подвергали иммерсии в 0,0025-0,05 н. растворе соли щелочного металла. Полученный экстракт подвергали центрифугированию с последующим отделением твердой и масляной фазы. Полученную жидкую фазу подвергали центрифугированию с получением фильтрата. Полученный фильтрат промывали дистиллированной водой, в 6 раз превышающей объем фильтрата, с последующим отделением и концентрированием с получением целевого продукта. Изобретение позволяет получить протеогликан в неизмененной нераспавшейся форме, сокращение сроков его получения. 3 з.п. ф-лы, 1 ил.

Description

Область техники
Настоящее изобретение касается способа получения протеогликана, который может быть использован как материал для получения лекарственных средств, материалов медицинского назначения, косметики, продуктов питания, промышленных изделий и так далее, включающего стадии его выделения из биологического образца, содержащего протеогликан, например хрящевой ткани рыбы, моллюска, птицы и млекопитающего, и получения его оттуда.
Протеогликан - это общее название, относящееся к гликопротеину с очень сложными и разнообразными типами структуры и обычно состоящему из одного корового белка с несколькими - несколькими десятками ковалентно присоединенных линейных полисахаридных цепей. Наиболее типичной полисахаридной цепью, входящей в состав протеогликана из хрящевой ткани, является хондроитин сульфат.
Хондроитин сульфат является компонентом, привлекающим внимание в промышленности в свете высокой применимости, как имеющий хорошие увлажняющие свойства, биосовместимость или смазывающие свойства, и разработано множество способов для эффективного получения и приготовления хондроитин сульфата из природных источников.
В хрящевой ткани хондроитин сульфат сам по себе не представлен. Вернее, он представлен в комплексной форме с белком, то есть в форме протеогликана. При этом выделение протеогликана без каких-либо изменений часто затруднено из-за сложной структуры гликопротеинового комплекса. По этой причине обычно использовали способ выделения только хондроитин сульфата после полного разрушения части коревого белка гликопротеина. Результатом такого способа выделения является мукополисахарид, такой как хондроитин сульфат и так далее.
Между тем, также были попытки получения, приготовления и использования собственно протеингликана вместо хондроитин сульфата. Особенно в хрящевой ткани рыбы, птицы и млекопитающего содержится протеогликан с хондроитин сульфатом в качестве основной полисахаридной цепи. Более того, в свете факта, что хрящевая ткань обычно выбрасывается как отходы, было предложено несколько способов получения протеогликана из хрящевой ткани, также в качестве эффективного пути использования промышленных отходов.
Например, сообщалось о способах выделения протеогликана из хрящей носа лосося с использованием гуанидиний гидрохлорида (Патентный документ 1) и с использованием уксусной кислоты (Патентный документ 2). Однако, к сожалению, нельзя сказать, что такие традиционные способы достигают уровня коммерческой применимости, так как стоимость выделения и очистки весьма высока.
Патентный документ 1: Выложенная заявка на патент Японии №2001-172296
Патентный документ 2: JP-A №2002-69097
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Задача, решаемая в настоящем изобретении
Целью настоящего изобретения является разработка малозатратного способа получения протеогликана для перорального приема внутрь из рыбы, моллюска, птицы или млекопитающего, особенно из их частей, являющихся отходами.
Способы решения задач
Авторы настоящего изобретения обнаружили, что используя щелочной раствор, который считался неподходящим для выделения и приготовления белка или белкового комплекса, в определенных условиях, протеогликан, являющийся гликопротеиновым комплексом, можно успешно выделять из хрящевой ткани и других биологических образцов, содержащих протеогликан, и поэтому осуществили каждое из изобретений, описанных ниже.
(1) Способ получения протеогликана, включающий стадии иммерсии биологического образца, содержащего протеогликан, в 0,0025-0,1 н. растворе щелочи и получение раствора после иммерсии.
(2) Способ, описанный выше в (1), который дополнительно включает стадию выделения протеогликана из полученного раствора.
(3) Способ, описанный выше в (1) или (2), где щелочной раствор является раствором соли щелочного металла.
(4) Способ, описанный выше в любом из (1)-(3), где биологический образец, содержащий протеогликан, представляет собой хрящевую ткань, мышечные волокна или кожу рыбы, моллюска, птицы или млекопитающего.
(5) Способ, описанный выше в (4), где биологический образец, содержащий протеогликан, представляет собой хрящевую ткань рыбы, птицы или млекопитающего.
Эффект изобретения
По сравнению с обычными способами экстракции, согласно способу по настоящему изобретению протеогликан может быть легко извлечен в неизмененной и нераспавшейся форме в течение короткого отрезка времени, тем самым достигается существенное снижение стоимости производства протеогликана. Более того, протеогликан, очень полезный в промышленности, может быть получен из частей рыбы, птицы или млекопитающего, являющихся отходами и преимущественно выбрасывающихся, таким образом содействуя эффективному использованию промышленных отходов и снижению объема промышленных отходов как таковых.
Более того, по настоящему изобретению не обязательно должен быть добавлен ингибитор протеолитических ферментов для инактивации протеолитических ферментов, содержащихся в биологических тканях. Поскольку такой ингибитор не всегда эффективен для каждого протеолитического фермента, и многие ингибиторы сами по себе вредны для человека, нежелательно использовать ингибитор для производства протеогликана в качестве сырья для пищевых продуктов. В этой связи, поскольку согласно настоящему изобретению ингибитор не требуется, вышеупомянутых проблем можно избежать.
Краткое описание чертежей
Чертеж. Диаграмма, показывающая количество протеогликана, полученного с использованием гидроксида натрия и уксусной кислоты.
Лучший способ осуществления изобретения
Настоящее изобретение относится к способу экстракции и получения протеогликана, содержащего белки, которые обычно нестабильны при нагревании и в щелочи, основанному на идее использования щелочного раствора, хотя это несомненно идет вразрез с общепринятым мнением.
Протеогликан является комплексным соединением из сахара и белка. Однако поскольку соединение полисахаридной цепи и корового белка имеет слабую силу связывания, они имеют тенденцию к легкому отделению друг от друга. По этой причине выделение или очистка протеогликана являются чрезвычайно тяжелыми сами по себе, и требуется более аккуратный подход по сравнению с коллагеном, который состоит только из белка, или хондроитин сульфатом, который состоит только из углевода. Таким образом, обычные способы не подходят для массового производства протеогликана из-за сложных или ручных действий и так далее.
В дополнение к вышеупомянутому, белки обычно нестабильны при нагреве, действии кислоты, и особенно щелочи, таким образом, они легко денатурируемы и разрушаемы. Известен способ разрушения белков с активным использованием щелочи, основанный на таких свойствах белков. Однако не было известно, что протеогликан, который является гликопротеиновым комплексом, может быть экстрагирован щелочью, поскольку его белковые части оказываются защищены от разрушения.
Способ по настоящему изобретению может быть применен к биологическому образцу, содержащему протеогликан, такому как хрящевая ткань, мышечные волокна или кожа рыбы, моллюска, птицы или млекопитающего. Преимущественно, однако, из вышеуказанного он применим к хрящевой ткани. Хрящевая ткань, используемая в настоящем изобретении, может быть хрящевой тканью из рыбы, птицы или млекопитающего, особенно части, являющиеся отходами. Хрящевая ткань, описанная в настоящем изобретении, означает собственно хрящевую ткань, или все другие ткани, содержащие область, окружающую хрящевую ткань, такие как кость, мышечные волокна, кожа и так далее.
По настоящему изобретению преимущественно используется хрящевая ткань носа лосося, средний вес которой в голове лосося составляет около 6%, и обычно называемая «hiz». Когда лососи пойманы в море вблизи Хоккайдо (большинство из них являются лососями, относящимися к Oncorhynchus keta) и разделаны, их головные части обычно считаются отходами. Хотя некоторые из отделенных головных частей используются для производства рыбного порошка, в большинстве своем они выбрасываются как промышленные отходы. Таким образом, «hiz» может быть удобно и стабильно получен из таких отходов по низкой цене.
Согласно настоящему изобретению в дополнение к вышеупомянутому «hiz» может быть использована хрящевая ткань из таких рыб, как скат и акула, и так далее, хрящевая ткань птицы, такой как цыпленок, и хрящевая ткань млекопитающих, такая как хрящи шей или бронхов коровы и хрящ кита, и так далее. К тому же известно, что протеогликан также находится в эпидермисе моллюсков, таких как кальмар или осьминог, кожа таких моллюсков также может быть использована по настоящему изобретению. Особенно для эпидермиса осьминога, сообщалось, что найден хондроитин-белковый комплекс, который практически свободен от сульфатов, и этот хондроитин составляет до 70% и более всех мукополисахаридов, найденных в эпидермисе осьминога (Suyama et al., "Use of a squid", опубликовано в ноябре 1980, стр.93, Kouseisha). Таким образом, в настоящем изобретении кожа осьминога удобна в качестве примера биологического образца, содержащего протегликан. Большинство описанных выше биологических образцов, содержащих протеогликан, являются промышленными отходами, вследствие чего могут быть легко получены. Эти материалы предпочтительно нарезаются до как можно более мелкого размера для увеличения площади их поверхности для экстракции большего количества протеогликана перед их иммерсией в щелочном растворе как описано ниже.
Что касается щелочного раствора по настоящему изобретению, то соответствующим образом может быть использован водный раствор, такой как водный раствор щелочного металла или его солей и водный раствор щелочноземельного металла или его солей. Впрочем, в виду эффективности экстракции протеогликана и удобства последующей обработки и так далее, предпочтительно используются водный раствор щелочного металла, а именно гидроксид натрия (NaOH), гидрокарбонат натрия, карбонат кальция и гидроксид калия. Наиболее предпочтительно использование гидроксида натрия.
Концентрация щелочного раствора составляет 0,0025-0,1 н., предпочтительно 0,01-0,05 н. Когда используется 0,0025-0,01 н. щелочной раствор, предпочтительнее проводить иммерсию в течение как минимум 9 часов. Далее, когда используется 0,01-0,05 н. щелочной раствор, предпочтительнее проводить иммерсию около 9 часов. Более того, когда используется 0,05-0,1 н. щелочной раствор, предпочтительнее проводить иммерсию 9 часов или менее. Более того, когда используется 0,01-0,1 н. щелочной раствор, предпочтительнее проводить иммерсию около 2 часов, чтобы могла быть ингибирована деградация корового белка протеогликана. В соответствии с такими условиями обработки протеогликан с более высоким молекулярным весом может быть получен и приготовлен.
Иммерсия хрящевой ткани в щелочном растворе проводится при температуре между 0°С и комнатной температурой, предпочтительнее между 0°С и 10°С, и наиболее предпочтительно между 0°С и 4°С. В частности, когда температура иммерсии установлена между 0°С и 4°С, протеогликан деградирован лишь слегка, таким образом, он может быть выделен как полимерный гликопротеиновый комплекс.
Иммерсия может проводиться с 2-15-кратным избытком щелочного раствора по весу, предпочтительно 4-12-кратным, наиболее предпочтительно 6-13-кратным по весу по сравнению с весом хрящевой ткани. Предпочтительно, иммерсия проводится при перемешивании миксером или мешалкой.
Экстракция протеогликана из хрящевой ткани может контролироваться путем определения и подсчета количества уроновой кислоты в соответствии с известным способом, таким как метод Galambos (John et el., ANALYTICAL BIOCHEMISTRY, 1967, том 19, стр.119-132). Впрочем, другие известные способы могут быть также использованы для определения и отслеживания уроновой кислоты.
В щелочном растворе, полученном после прекращения иммерсии, после экстракции протеогликана содержится множество остаточных продуктов. Как таковые, они предпочтительно удаляются фильтрацией, центрифугированием или другими способами. Экстракт, содержащий протеогликан, может быть использован в качестве продукта сам по себе. Однако предпочтительнее его выделить и очистить соответствующим методом до степени чистоты, необходимой для его различного использования.
По настоящему изобретению необязательно требуется специальный способ очистки протеогликана. Однако упоминается центрифугирование как предпочтительный способ. Способом центрифугирования мелкие твердые частицы могут быть удобно отделены как осадок, а масляная фаза из сырьевого материала может быть удобно отделена как плавающая на поверхности примесь.
Кроме того, полученная после центрифугирования жидкая фаза, содержащая протеогликан, может быть дополнительно отфильтрована с помощью фильтровальной бумаги или устройства для разделения с ультрафильтрующей мембраной с подходящим отбрасываемым молекулярным весом и тому подобное. Для молекулярной массы исключаемого размера может использоваться диапазон от примерно 50000 Дальтон до 1000000 Дальтон. Для такого способа, при использовании фильтра с отбрасываемым молекулярным весом 500000 Дальтон или более, даже коллаген может быть удален из жидкой фазы, чтобы чистота протеогликана могла быть увеличена. Кроме того, проникновение через мембрану может быть облегчено уменьшением вязкости жидкой фазы при добавлении воды к жидкой фазе, содержащей протеогликан. Более того, путем повторения этой стадии может быть также удален запах рыбы, который слегка образуется в процессе.
Кроме того, при добавлении таким образом полученного концентрата к этанолу, насыщенному хлоридом натрия, может быть выделен протеогликан в гелеобразном состоянии. Такой гелеобразный протеогликан может быть превращен в твердый с использованием вакуумного лиофилизатора. Иначе он может быть высушен с использованием распылительной сушилки, что дает твердое вещество в форме порошка.
Ниже в этом документе настоящее изобретение описано более детально со ссылкой на последующие примеры. Однако настоящее изобретение не ограничивается ими.
ПРИМЕРЫ
Пример 1
Носовой хрящ, извлеченный из головной части лосося Oncorhynchus keta, который был заморожен и хранился при -40°С, был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки. 200,00 г таких измельченных кусочков были использованы в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 2397,60 г предварительно охлажденной до 0°С дистиллированной воды, и далее туда добавляли 2,40 г твердого гидроксида натрия, чтобы получить в итоге 2400,00 г водного раствора гидроксида натрия (0,025 н.). Вышеописанный стартовый материал был добавлен в этот экстракционный сосуд и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы экстракт, содержащий протеогликан, мог быть получен.
Экстракт был подвергнут центрифугированию на центрифуге (IWAKI CFS-400 тип) 20 минут при 3500 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием мембраны PREP/SCALE TFF (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Была взята проба полученного концентрата и использована для определения доли сухого вещества в растворе. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 200,00 г стартового материала было получено 6,64 г сухого вещества, что соответствует 3,32% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Ltd.) для определения количества коллагена, содержащегося в концентрате. Более того, по последующему методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана.
Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 25,0% белка, 21,5% зольных компонентов, 52,9% углеводов и 0,6% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане составляет около 7,0%. Поскольку количество углеводов, полученное в настоящем опыте, было около 52,9%, предположено, что протеогликан по настоящему изобретению имеет чистоту около 57%. Кроме того, было показано, что молекулярный вес протеогликана составляет около 2200000 Дальтон.
Что касается рабочих процессов, описанных для приведенного выше примера, концентрация гидроксида натрия была изменена до 0,0025 н., 0,025 н. или 0,05 н. и 0,666 н. уксусная кислота была использована вместо гидроксида натрия для иммерсии и экстракции в течение 24 часов. Как результат, наблюдаемое изменение в выделенном количестве протеогликана (то есть количестве уроновой кислоты) в зависимости от промежутка времени показано на чертеже.
Пример 2
Носовой хрящ, извлеченный из головной части лосося Oncorhynchus keta, который был заморожен и хранился при -40°С, был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки и проведена иммерсия в ацетоне, и носовой хрящ был обезвожен и обезжирен. 24,00 г обработанного носового хряща, после высушивания на воздухе или при пониженном давлении, было использовано в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 2997,75 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 2,25 г твердого гидроксида натрия, чтобы получить в итоге 3000,00 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный стартовый материал (24,00 г) был добавлен в этот экстракционный сосуд и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы был убран носовой хрящ и мог быть получен экстракт, содержащий протеогликан.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Была взята проба полученного концентрата и использована для определения доли сухого вещества в растворе. Пробу концентрата сушили в сушильном шкафу (YАМАТО DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 24,00 г стартового материала было получено 7,50 г сухого вещества, что соответствует 30,29% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. Более того, по методу Galambos было определено количество уроновой кислоты, чтобы подсчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 11,8% белка, 18,4% зольных компонентов, 67,8% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 91,1% (то есть (углеводы×0,07+липиды)/(углеводы+белки+липиды)×100=91,1%). Кроме того, было показано, что молекулярный вес протеогликана около 1200000 Дальтон.
Пример 3
Носовой хрящ, извлеченный из головной части лосося Oncorhynchus keta, который был заморожен и хранился при -40°С, был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки, была проведена иммерсия в ацетоне, и носовой хрящ был обезвожен и обезжирен. 17,90 г обработанного носового хряща, после высушивания на воздухе или при пониженном давлении, было использовано в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 2322,67 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 2,33 г твердого гидроксида калия, чтобы получить в итоге 2325 г водного раствора гидроксида калия (0,018 н.). Вышеописанный стартовый материал (17,90 г) был добавлен в этот экстракционный сосуд, и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы носовой хрящ был убран и экстракт, содержащий протеогликан, мог быть получен.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Была взята проба полученного концентрата и использована для определения доли сухого вещества в растворе. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 17,90 г стартового материала было получено 5,29 г сухого вещества, что соответствует 29,61% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. Кроме того, по методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 14,0% белка, 22,4% зольных компонентов, 63,6% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 87/7% (то есть (углеводы×0,07+липиды)/(углеводы+белки+липиды)×100=87,7%). Кроме того/ было показано, что молекулярный вес протеогликана около 1200000 Дальтон.
Пример 4
Хрящ, извлеченный из куриного киля, с которого вручную была убрана мышечная ткань, был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки, проведена иммерсия в ацетоне, и хрящ из киля курицы был обезвожен и обезжирен. 44,40 г обработанного хряща, после высушивания на воздухе или при пониженном давлении, было использовано в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 2997,75 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 2,25 г твердого гидроксида натрия, чтобы получить в итоге 3000,00 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный стартовый материал (44,40 г) был добавлен в этот экстракционный сосуд, и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы был убран хрящ и экстракт, содержащий протеогликан, мог быть получен.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и была получена жидкая фаза, содержащая протеогликан.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли сухого вещества в растворе. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 44,40 г стартового материала было получено 9,87 г сухого вещества, что соответствует 22,23% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. Кроме того, по методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 31,3% белка, 16,9% зольных компонентов, 51,8% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 66,7% (то есть (углеводы×0,07+липиды)/(углеводы+белки+липиды)×100=66,7%). Кроме того, было показано, что молекулярный вес протеогликана около 920000 Дальтон (16%) и около 460000 Дальтон (84%).
Пример 5
Хрящ, вручную извлеченный из ската (Dipturus kwangtungensis), был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки, проведена иммерсия в ацетоне, и хрящ был обезвожен и обезжирен. 12,00 г обработанного хряща, после высушивания на воздухе или при пониженном давлении, было использовано в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 1678,74 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 1,26 г твердого гидроксида натрия, чтобы получить в итоге 1680,00 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный стартовый материал (12,00 г) был добавлен в этот экстракционный сосуд, и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы был убран носовой хрящ и экстракт, содержащий протеогликан, мог быть отделен.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли сухого вещества в растворе. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 12,00 г стартового материала было получено 2,15 г сухого вещества, что соответствует 17,92% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. К тому же, по методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 43,5% белка, 19,5% зольных компонентов, 37,0% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 49,2% (то есть (углеводы×0,07+липиды)/(утлеводы+белки+липиды)×100=49,2%). Кроме того, было показано, что молекулярный вес протеогликана около 1700000 Дальтон.
Пример 6
Хрящ, извлеченный вручную из акулы, был измельчен с использованием электрической мясорубки на маленькие рубленые кусочки, проведена иммерсия в ацетоне, и хрящ был обезвожен и обезжирен. 12,00 г обработанного хряща, после высушивания на воздухе или при пониженном давлении, было использовано в качестве стартового материала. В 5-литровый экстракционный сосуд наливали 1678,74 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 1,26 г твердого гидроксида натрия, чтобы получить в итоге 1680,00 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный стартовый материал (12,00 г) был добавлен в этот экстракционный сосуд и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы носовой хрящ был убран и экстракт, содержащий протеогликан, мог быть отделен.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли сухого вещества в растворе. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 12,00 г стартового материала было получено 1,36 г сухого вещества, что соответствует 11,36% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. Более того, по методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 37,8% белка, 27,4% зольных компонентов, 37,8% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 55,7% (то есть (углеводы×0,07+липиды)/(углеводы+белки+липиды)×100=55,7%). Кроме того, было показано, что молекулярный вес протеогликана около 1500000 Дальтон.
Пример 7
Кожа осьминога была вручную ободрана, проведена иммерсия в ацетоне, и она была обезвожена и обезжирена. Обработанная кожа, после высушивания на воздухе или при пониженном давлении, была использована в качестве стартового материала. После нарезки кожи ножницами на мелкие кусочки и измельчения в ступке высушенная кожа осьминога была приготовлена. В 10-литровый экстракционный сосуд наливали 5036,20 г предварительно охлажденной до 5°С дистиллированной воды и далее туда добавляли 3,80 г твердого гидроксида натрия, чтобы получить в итоге 5040 г водного раствора гидроксида натрия (0,02 н.). Вышеописанная высушенная кожа (33,70 г) была добавлена в этот экстракционный сосуд и проводилась иммерсия в течение 9 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы кожа была убрана и мог быть отделен экстракт, содержащий протеогликан.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была получена.
Далее, жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в шесть раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отбрасываемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрация были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли сухого вещества в растворе. Пробу концентрата сушили в сушильном шкафу (Ямато DX401) при 105°С в течение 16 часов для полного испарения влаги. Тонкое взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 33,70 г высушенной кожи было получено 16,10 г сухого вещества, что соответствует 47,7% стартового материала в пересчете.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. К тому же, по методу Galambos было определено количество уроновой кислоты, чтобы посчитать количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 91,7% белка, 1,9% зольных компонентов, 6,4% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 7,0% (то есть (углевода×0,07+липиды)/(углеводы+белки+липиды)×100=7,0%). Кроме того, было показано, что молекулярный вес протеогликана около 1700000 Дальтон.
Примеры дополнительных экспериментов
Эксперимент 1
Получение протеогликана из оболочки печени кальмара.
Оболочка печени кальмара была снята вручную и подвергалась иммерсии в ацетоне, затем была обезвожена и обезжирена. Обработанная оболочка печени, после высушивания воздухом или высушивания под пониженным давлением, была использована в качестве исходного материала. После нарезки оболочки ножницами на мелкие кусочки с последующим растиранием их в ступке была получена высушенная внешняя оболочка печени кальмара. В 3-литровый экстракционный сосуд добавляли 1678,74 г дистиллированной воды, предварительно охлажденной до 5°С, и затем добавяли 1,26 г твердого гидроксида натрия, чтобы получить в итоге 1680 г водного раствора гидроксида натрия (0,02 н.). Вышеописанная высушенная оболочка печени кальмара (12 г) была добавлена в этот экстракционный сосуд и проводилась иммерсия в течение 24 часов при 5°С при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд через помещенный сверху сосуда фильтр из нержавеющей стали (1 мм), так чтобы верхняя оболочка могла быть удалена, и экстракт, содержащий протеогликан, мог быть выделен.
Экстракт был подвергнут центрифугированию на центрифуге (тип Hitachi himacCF7D2) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и была выделена жидкая фаза, содержащая протеогликан.
Далее жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата. Затем, с использованием мембраны BIOMAX 100K POLYETHERSULFONE (отсекаемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрирование были проведены одновременно.
Была взята проба полученного концентрата и использована для определения доли твердого вещества в жидкости. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Точное взвешивание оставшегося твердого вещества было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 12 г высушенной оболочки печени было получено 5,31 г сухого вещества, что соответствует 44,25% в пересчете на исходный материал.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Ltd.) для определения количества коллагена, содержащегося в концентрате. Более того, по последующему методу Galambos было определено количество уроновой кислоты, чтобы вычислить количество протеогликана.
Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 82,7% белка, 2,43% зольных компонентов, 14,87% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане составляет около 7,0%. Таким образом, предполагаемая чистота протеогликана настоящего изобретения была вычислена, как составляющая 16,3% (то есть, (углеводы×1,07+липиды)/(углеводы+белки+липиды)×100=(14,87×1,07+0,0)/(82,7+14,87+0,0)×100=16,3%). Кроме того, было найдено, что молекулярный вес протеогликана составляет около 1450000 Дальтон.
Эксперимент 2
Получение протеогликана из спинного хребта higfish(сименхел, тупорылый угорь, обезьяний угорь).
Хребет угря (сименхела) был подвергнут иммерсии в ацетоне, затем был обезвожен и обезжирен. Обработанный хребет, после высушивания на воздухе или при пониженном давлении, был использован в качестве исходного материала. После нарезки хребта ножницами на мелкие кусочки и измельчения в ступке был получен высушенный хребет угря. В 3-литровый экстракционный сосуд добавляли 1678,74 г дистиллированной воды, предварительно охлажденной до 5°С, и затем добавляли 1,26 г твердого гидроксида натрия, чтобы получить в итоге 1680 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный высушенный хребет (12 г) был добавлен в этот экстракционный сосуд, и проводилась иммерсия в течение 9 часов при 5°С при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы удалить сам хребет, и выделить экстракт, содержащий протеогликан.
Экстракт был подвергнут центрифугированию на центрифуге (Hitachi himacCF7D2 тип) 20 минут при 3000 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и жидкая фаза, содержащая протеогликан, была выделена.
Далее жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в шесть раз превышающим объем фильтрата. Затем, с использованием BIOMAX 100K POLYETHERSULFONE (отсекаемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрирование были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли твердого вещества в жидкости. Пробу концентрата сушили в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Точное взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 12 г высушенного хребта было получено 3,83 г сухого вещества, что соответствует 31,9% в пересчете на исходный материал.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. К тому же, по методу Galambos было определено количество уроновой кислоты, чтобы вычислить количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 86,68% белка, 3,32% зольных компонентов, 10,0% углеводов и 0,0% липидов. На основании описания Патентного документа 1, массовая доля коревого белка в протеогликане составляет около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 11,07% (то есть (углеводы×1,07+липиды)/(углеводы+белки+липиды)×100=(10,0×1,07+0,0)/(86,68+10,0+0,0)×100=11,07%). Кроме того, было показано, что молекулярный вес протеогликана около 1450000 Дальтон.
Эксперимент 3
Получение протеогликана из хряща кита - малого полосатика (Balaenoptera acutorostrata).
Хрящ, извлеченный из кита - малого полосатика (Balaenoptera acutorostrata), который был заморожен и хранился при -40°С, был измельчен с использованием электрической мясорубки на маленькие кусочки, проведена иммерсия в ацетоне, и хрящ был обезвожен и обезжирен. Обработанный хрящ, после высушивания на воздухе или при пониженном давлении, был использован в качестве исходного материала. После нарезки хряща ножницами на мелкие кусочки и измельчения в ступке высушенный хрящ кита бал получен. В 3-литровый экстракционный сосуд добавляли 1678,74 г предварительно охлажденной до 0°С дистиллированной воды и далее туда добавляли 1,26 г твердого гидроксида натрия, чтобы получить в итоге 1680,00 г водного раствора гидроксида натрия (0,02 н.). Вышеописанный исходный материал (12, 00 г) был добавлен в этот экстракционный сосуд, и проводилась иммерсия в течение 24 часов при перемешивании содержимого на мешалке.
После окончания иммерсии содержимое было перенесено в другой сосуд, поверх которого был помещен фильтр из нержавеющей стали (1 мм), чтобы был удален хрящ, и экстракт, содержащий протеогликан, мог быть выделен.
Экстракт был подвергнут центрифугированию на центрифуге (IWAKI CFS-400 тип) 20 минут при 3500 об/мин. Как результат, твердые частицы и масляная фаза были отделены, и была выделена жидкая фаза, содержащая протеогликан.
Далее жидкая фаза была профильтрована через бумажный фильтр (произведено Advantec) с последующим добавлением дистиллированной воды объемом, в 6 раз превышающим объем фильтрата.
Затем, с использованием PREP/SCALE TFF мембраны (отсекаемый молекулярный вес 100000 Дальтон, произведено Millipore, Япония), отделение и концентрирование были проведены одновременно.
Проба полученного концентрата была взята и использована для определения доли твердого вещества в жидкости. Проба концентрата сушилась в сушильном шкафу (YAMATO DX401) при 105°С в течение 16 часов для полного испарения влаги. Точное взвешивание оставшегося сухого остатка было проведено с использованием цифровых весов (GF-400, произведено A&D Corp.). Как результат, было установлено, что из 12,00 г стартового материала было получено 4,61 г сухого вещества, что соответствует 38,42% в пересчете на исходный материал.
Кроме того, количество аминокислот было определено при анализе концентрата на автоматическом аминокислотном анализаторе (L-8500 Amino Acid Analyzer, произведен Hitachi Co. Ltd.) для определения количества коллагена, содержащегося в концентрате. К тому же, по методу Galambos было определено количество уроновой кислоты, чтобы вычислить количество протеогликана. Более того, с помощью высокоскоростной жидкостной хроматографии (колонка TSK-GEL G4000PWXL, произведена Shimadzu Corporation) был определен молекулярный вес протеогликана.
В результате этих анализов было найдено, что сухой остаток содержит 12,76% белка, 20,4% зольных компонентов, 66,84% углеводов и 0,0% липидов. На основании описания Патентного документа 1 массовая доля корового белка в протеогликане около 7,0%. Таким образом, предполагаемая чистота протеогликана по настоящему изобретению по подсчетам составила 89,8% (то есть (углеводы×1,07+липиды)/(углеводы+белки+липиды)×100=(66,84×1,07+0,0)/(66,84+12,76+0,0)×100=89,8%). Кроме того, было показано, что молекулярный вес протеогликана около 1250000 Дальтон.

Claims (4)

1. Способ получения протеогликана, включающий стадии:
иммерсии биологического образца, содержащего протеогликан, в 0,0025-0,05 н. щелочном растворе при 0-10°С, получения раствора после иммерсии; и выделения протеогликана из полученного раствора.
2. Способ получения протеогликана по п.1, где щелочной раствор является раствором соли щелочного металла.
3. Способ получения протеогликана по п.1, где биологический образец, содержащий протеогликан, является хрящевой тканью, или кожей рыбы, моллюска, птицы или млекопитающего.
4. Способ получения протеогликана по п.3, где биологический образец, содержащий протеогликан, является хрящевой тканью рыбы, птицы или млекопитающего или кожей моллюска.
RU2008136884/10A 2006-02-14 2007-02-09 Способ получения протеогликана RU2401839C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-036277 2006-02-14
JP2006036277 2006-02-14

Publications (2)

Publication Number Publication Date
RU2008136884A RU2008136884A (ru) 2010-03-20
RU2401839C2 true RU2401839C2 (ru) 2010-10-20

Family

ID=38371435

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008136884/10A RU2401839C2 (ru) 2006-02-14 2007-02-09 Способ получения протеогликана

Country Status (7)

Country Link
US (1) US8153769B2 (ru)
EP (1) EP1985623B1 (ru)
JP (1) JP4219974B2 (ru)
CN (1) CN101384611A (ru)
ES (1) ES2431666T3 (ru)
RU (1) RU2401839C2 (ru)
WO (1) WO2007094248A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097876B2 (ja) * 2008-12-01 2012-12-12 地方独立行政法人鳥取県産業技術センター グリコサミノグリカンの減容抽出方法
US20120157391A1 (en) 2009-07-16 2012-06-21 Hirosaki University Proteoglycan-containing material
CN105107083B (zh) * 2010-03-19 2018-04-24 考思美德制药株式会社 含有蛋白聚糖的微针阵列
CN103429608B (zh) * 2011-01-19 2016-08-03 国立大学法人弘前大学 蛋白多糖的大量制备方法
CN103327987A (zh) * 2011-01-19 2013-09-25 国立大学法人弘前大学 水生动物软骨提取物
ES2769850T3 (es) * 2012-07-25 2020-06-29 Univ Hirosaki Composición para prevenir o tratar la osteoartrosis
JP6253047B2 (ja) * 2013-01-24 2017-12-27 地方独立行政法人青森県産業技術センター プロテオグリカン及び化粧料
JP7070883B2 (ja) * 2017-03-08 2022-05-18 地方独立行政法人青森県産業技術センター ヒアルロン酸産生能が改善したプロテオグリカン
JP2018151206A (ja) * 2017-03-10 2018-09-27 一丸ファルコス株式会社 プロテオグリカン分析方法
JP6611968B1 (ja) * 2019-01-17 2019-11-27 株式会社リナイス プロテオグリカン含有組成物の製造方法及びプロテオグリカン含有組成物
KR102337667B1 (ko) * 2019-10-02 2021-12-09 휴젤(주) 피부 보습용 화장료 조성물 및 이의 제조방법
JP7113436B2 (ja) * 2020-02-17 2022-08-05 義昭 工藤 コンドロイチン硫酸型プロテオグリカン及びヒアルロン酸の製造方法
CN111253503A (zh) * 2020-03-09 2020-06-09 河北农业大学 鳐鱼硫酸软骨素及其提取方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444464A1 (fr) * 1978-12-19 1980-07-18 Fabre Sa Pierre Proteoglycanes bacteriens purifies, procede pour leur preparation et vaccin les contenant
FR2659351B1 (fr) 1990-03-08 1994-12-02 Pf Medicament Compose polysaccharidique delipide, procede de preparation, compositions en comprenant.
JP2001172296A (ja) 1999-10-07 2001-06-26 Japan Science & Technology Corp 軟骨型プロテオグリカンの精製方法
JP3731150B2 (ja) * 2000-08-22 2006-01-05 株式会社角弘 軟骨型プロテオグリカンの精製方法
JP2003268004A (ja) 2002-03-14 2003-09-25 Marukyo Suisan Kk エイ軟骨由来コンドロイチン硫酸とその製造方法
WO2004083257A1 (ja) 2003-03-20 2004-09-30 Hosokawa Micron Corporation 軟骨魚類から単離されたプロテオグリカンおよびその製造方法
JP5252623B2 (ja) 2008-01-22 2013-07-31 国立大学法人弘前大学 プロテオグリカンの抽出方法

Also Published As

Publication number Publication date
WO2007094248A1 (ja) 2007-08-23
US20100234580A1 (en) 2010-09-16
EP1985623A4 (en) 2009-04-29
ES2431666T3 (es) 2013-11-27
RU2008136884A (ru) 2010-03-20
EP1985623B1 (en) 2013-08-28
JPWO2007094248A1 (ja) 2009-07-02
EP1985623A1 (en) 2008-10-29
US8153769B2 (en) 2012-04-10
CN101384611A (zh) 2009-03-11
JP4219974B2 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
RU2401839C2 (ru) Способ получения протеогликана
Sujithra et al. Isolation and determination of type I collagen from Tilapia (Oreochromis niloticus) waste
JP6006545B2 (ja) プロテオグリカンの製造方法
Suparno et al. Isolation of collagen from chicken feet with hydro-extraction method and its physico-chemical characterisation
CN103554248A (zh) 一种从淡水珍珠蚌肉中提取胶原蛋白的工艺方法
KR20140122532A (ko) 축산 부산물로부터의 고순도 콜라겐의 추출방법
O'Sullivan et al. Extraction of collagen from fish skins and its use in the manufacture of biopolymer films
KR101248617B1 (ko) 초음파에 의한 콜라겐을 추출하는 방법
JP2013014529A (ja) チョウザメ類脊索から簡便な抽出方法で得られるii型コラーゲン
RU2287959C2 (ru) Способ производства натуральных структурообразователей из рыбных отходов
BR102016027429A2 (pt) Processo de extração de colágeno a partir da cartilagem do osso da quilha de frangos
RU2409216C1 (ru) Способ получения функционального коллагенового гидролизата
JP2012201614A (ja) プロテオグリカンの製造方法
US20190263891A1 (en) Process for isolating bioactive biomolecules from animal by-products
RU2007926C1 (ru) Способ получения коллагеновых волокон из коллагенсодержащих тканей животных
RU2259779C2 (ru) Способ получения коллагеновой дисперсии
Alparce et al. Sequential extraction of hyaluronic acid and collagen from chicken eggshell membrane
CN113603768B (zh) 一种鱼源胶原蛋白的制备方法
Agustina et al. Effect of Ultrasonic Assisted Extraction with Ethanol for Removing Lipid on Catfish (Pangasius sp.) Skin as a Collagen Sources and Its Characteristic.
RU2727904C1 (ru) Способ получения пищевых добавок из вторичного копченого рыбного сырья с применением термического гидролиза
RU2791550C1 (ru) Концентрат из перопухового сырья
Hidayati et al. Gelatin extraction optimization from skin of sub adult and adult pangasius hypophthalmus
JP7138873B2 (ja) コラーゲン含有組成物の製造方法及びコラーゲン単離物
SEKOGUCHI et al. Cysteamine induced changes in the properties of intramuscular collagen and its relation to the tenderness of meat obtained from mature chickens
Cherim et al. Study on the collagen from skin of marine fish from the Black Sea

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20120521

PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20211230

PC41 Official registration of the transfer of exclusive right

Effective date: 20220126