RU2250894C2 - Способ модернизации установки по производству метанола (варианты), способ получения водорода уксусной кислоты или продукта, выбираемого из группы производных уксусной кислоты - Google Patents

Способ модернизации установки по производству метанола (варианты), способ получения водорода уксусной кислоты или продукта, выбираемого из группы производных уксусной кислоты Download PDF

Info

Publication number
RU2250894C2
RU2250894C2 RU2002114828/04A RU2002114828A RU2250894C2 RU 2250894 C2 RU2250894 C2 RU 2250894C2 RU 2002114828/04 A RU2002114828/04 A RU 2002114828/04A RU 2002114828 A RU2002114828 A RU 2002114828A RU 2250894 C2 RU2250894 C2 RU 2250894C2
Authority
RU
Russia
Prior art keywords
methanol
stream
hydrogen
synthesis gas
synthesis
Prior art date
Application number
RU2002114828/04A
Other languages
English (en)
Other versions
RU2002114828A (ru
Inventor
Даниэль Марсель ТИБО (FR)
Даниэль Марсель ТИБО
Кеннет Эбеннес ВИДАЛИН (CA)
Кеннет Эбеннес ВИДАЛИН
Original Assignee
Асетэкс (Кипр) Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27028819&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2250894(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/430,888 external-priority patent/US6274096B1/en
Application filed by Асетэкс (Кипр) Лимитед filed Critical Асетэкс (Кипр) Лимитед
Publication of RU2002114828A publication Critical patent/RU2002114828A/ru
Application granted granted Critical
Publication of RU2250894C2 publication Critical patent/RU2250894C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04587Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for the NH3 synthesis, e.g. for adjusting the H2/N2 ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/00024Revamping, retrofitting or modernisation of existing plants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к технологии получения синтез-газа и получения метанола и уксусной кислоты на его основе. Способ модернизации существующей установки по выпуску метанола или метанола/аммиака предусматривает одновременное использование установки также и для производства уксусной кислоты или ее производных. Существующая установка содержит установку реформинга, на которую подаются природный газ или другой углеводород и пар (вода), из которых образуется синтез-газ. Весь синтез-газ или его часть перерабатывается для отделения диоксида углерода, монооксида углерода и водорода. Выделенный диоксид углерода подается в существующий контур синтеза метанола для получения метанола или возвращается на вход установки реформинга для увеличения содержания монооксида углерода в синтез-газе. Весь остаток синтез-газа, не поступающий в сепаратор диоксида углерода, может быть превращен в метанол в существующем контуре синтеза метанола вместе с диоксидом углерода из сепаратора и/или диоксидом углерода, поступающим из внешнего источника, и водородом из сепаратора. Затем выделенный монооксид углерода подвергают реакции с метанолом для получения уксусной кислоты или промежуточного соединения уксусной кислоты по обычной технологии. Часть уксусной кислоты реагирует с кислородом и этиленом с образованием мономера винилацетата. С помощью новой установки для разделения воздуха получают азот для производства дополнительного количества аммиака на модифицированной исходной установке по получению аммиака, где отделенный водород взаимодействует с азотом по обычной технологии. Поскольку конечный продукт содержит уксусную кислоту, то дополнительно устанавливают устройство по получению мономера винилацетата путем реакции части уксусной кислоты с этиленом и кислородом. С целью производства кислорода, необходимого для получения мономера винилацетата, дополнительно устанавливают устройство разделения воздуха, причем количество азота, вырабатываемого устройством разделения воздуха, соответствует потребности в азоте для производства добавочного количества аммиака. Модернизированная установка обеспечивает производство дополнительного количества аммиака по сравнению с исходной установкой по выпуску метанола. Изобретение также предусматривает способ получения водорода и продукта, выбираемого из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, из углеводорода через метанол и монооксид углерода. Для этого осуществляют каталитический реформинг углеводорода водяным паром в присутствии относительно небольшого количества диоксида углерода с образованием синтез-газа, содержащего водород, монооксид углерода и диоксид углерода, в котором синтез-газ характеризуется величиной молярного соотношения R=((H2-CO2)/(CO+CO2)) от 2,0 до 2,9. Реакционная смесь включает монооксид углерода, воду до 20 мас.%, растворитель и каталитическую систему, содержащую по крайней мере один галогенированный промотор и по крайней мере одно соединение родия, иридия или их комбинацию. Технический результат - реконструкция действующих установок для повышения производительности с увеличением ассортимента вырабатываемых промышленных продуктов. 4 н. и 40 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способам получения синтез-газа, из которого могут быть получены потоки монооксида углерода и метанола для производства уксусной кислоты, в частности к способу модернизации установки по выпуску метанола для отвода всего или части синтез-газа с имеющегося замкнутого контура синтеза метанола на сепаратор монооксида углерода и проведения реакции метанола с контура синтеза метанола с монооксидом углерода с сепаратора в примерно стехиометрическом соотношении с целью прямого или вторичного получения уксусной кислоты.
ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ
Производство уксусной кислоты из монооксида углерода и метанола с использованием катализатора карбонилирования хорошо известно специалистам в данной области. Примеры источников, раскрывающих этот и аналогичные процессы, включают патенты США №№1961736, выданный на имя Carlin et. al. (Tennessee Products); 3769329, выданный на имя Paulik et. al. (Monsanto); 4081253, выданный на имя Marion (Texaco Development Corporation); 5155261, выданный на имя Marston et. al. (Reilly Industries); 5672743, выданный на имя Garland et. al. (PB Chemicals); 5728871, выданный на имя Joensen et. al. (Haldor Topsoe); 5773642, выданный на имя Denis et. al. (Acetex Chimie); 5817869, выданный на имя Hinnenkamp et. al. (Quantum Chemical Corporation); 5877347 и 5877348, выданные на имя Ditzel et. al. (ВР Chemicals); 5883289, выданный на имя Denis et. al. (Acetex Chimie); и 5883295, выданный на имя Sunley et. al. (BP Chemicals); а также патентные документы ЕР 845452-А (Topsoe Haldor AS) и DE 3712008-A (Linde AG).
Первичными сырьевыми материалами для производства уксусной кислоты являются, конечно, монооксид углерода и метанол. В типичных установках по производству уксусной кислоты метанол поступает извне, а монооксид углерода вследствие сложности его транспортировки и хранения производится на месте, обычно путем реформинга природного газа или другого углеводорода с водяным паром и/или диоксидом углерода. Значительная часть расходов на создание новых мощностей по производству уксусной кислоты приходится на капитальные затраты на оборудование, необходимое для получения монооксида углерода. Существует насущная потребность в устранении или существенном уменьшении этих расходов.
Время от времени рыночная конъюнктура в разных регионах может приводить к установлению относительно низких цен на метанол (избыточное предложение) и/или высоких цен на природный газ (дефицит), в результате чего производство метанола становится нерентабельным. Владельцы существующих мощностей по производству метанола могут быть поставлены перед выбором - прекратить или продолжать нерентабельное производство метанола в надежде на постепенное повышение цен на продукт до прежнего уровня и/или падение цен на сырьевые материалы до уровня, обеспечивающего рентабельность производства. Настоящее изобретение касается способа модификации существующей нерентабельной установки по выпуску метанола с целью увеличения его рентабельности в условиях низких цен на метанол и/или высоких цен на газ.
Насколько известно заявителю, в известном уровне техники не существует сведений о переоборудовании существующих установок по выпуску метанола, включая установки по выпуску метанола/аммиака, для получения МеОН и СО в стехиометрических количествах, например для производства уксусной кислоты, которая может быть более ценным продуктом, чем МеОН.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В соответствии с настоящим изобретением обнаружено, что в результате переоборудования существующей установки по выпуску метанола или метанола/аммиака для получения уксусной кислоты могут быть существенно снижены или в значительной степени устранены большие капитальные затраты, связанные с производством СО для новой установки по выпуску уксусной кислоты. Весь синтез-газ или его часть отбирается из контура синтеза МеОН и подается на сепаратор для получения СО2, СО и водорода, которые выгодно используются в различных новых способах для получения уксусной кислоты. Выделенный СО2 может быть подан в установку реформинга для увеличения производства СО или в контур синтеза МеОН для получения метанола. Выделенный СО обычно подается в реактор уксусной кислоты вместе с метанолом для получения уксусной кислоты. Выделенный водород может подаваться в контур МеОН для производства метанола, использоваться в производстве аммиака или других продуктов, сжигаться в качестве топлива или экспортироваться, поскольку производство водорода в соответствии с данным изобретением обычно превышает потребности синтеза метанола.
Диоксид углерода может подаваться в установку каталитического реформинга, в которую подаются природный газ и пар (вода). В установке реформинга образуется синтез-газ, причем природный газ и диоксид углерода подвергаются превращению с образованием синтез-газа, имеющего большее содержание монооксида углерода по сравнению с проведением реформинга без добавления диоксида углерода. Альтернативно или дополнительно, СО2 может подаваться в контур МеОН, вместе с дополнительным СО из синтез-газа и/или дополнительным СО2 из внешнего источника, для проведения каталитической реакции с водородом для получения метанола.
Синтез-газ может быть разделен на первую часть и вторую часть. Первая часть синтез-газа превращается в метанол в обычном контуре синтеза метанола, который задействован наполовину от проектной мощности исходной установки, поскольку в него подается меньшее количество синтез-газа. Вторая часть синтез-газа может быть переработана с целью выделения диоксида углерода и монооксида углерода, и выделенный диоксид углерода может быть возвращен на вход установки реформинга для увеличения производства монооксида углерода и/или подан в контур синтеза МеОН для получения метанола. Выделенный монооксид углерода может быть после этого введен в реакцию с метанолом для получения уксусной кислоты или продукта уксусной кислоты предшествующей стадии реакции по обычному способу.
Выделенный водород, производство которого по данному способу обычно превышает потребности синтеза метанола, также может быть введен в реакцию с азотом по обычному способу для получения аммиака. Кроме того, часть образующейся уксусной кислоты может быть подвергнута реакции с кислородом и этиленом по обычному способу с образованием мономера винилацетата. Азот для процесса получения аммиака (особенно для любых дополнительных мощностей по производству аммиака при переоборудовании исходной установки по выпуску метанола, включающей цикл синтеза аммиака) и кислород для процесса получения мономера винилацетата могут быть получены с обычной установки для разделения воздуха.
В общем, в соответствии с одним из аспектов настоящего изобретения предлагается способ модернизации исходной установки по выпуску метанола, которая имеет по крайней мере одну установку парового реформинга для превращения углеводородов в поток синтез-газа, содержащий водород и монооксид углерода, секцию рекуперации тепла для охлаждения потока синтез-газа, компрессорное устройство для сжатия потока синтез-газа и контур синтеза метанола для превращения по крайней мере части водорода и монооксида углерода в потоке синтез-газа в метанол. Данный способ преобразует установку по выпуску метанола в переоборудованную установку по производству из монооксида углерода и метанола продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций. Способ включает стадии: (а) отведения части потока синтез-газа от по крайней мере одной установки реформинга на сепаратор; (б) введения в действие контура синтеза метанола с использованием в качестве сырья остатка потока синтез-газа для получения меньшего количества метанола по сравнению с исходной установкой по выпуску метанола; (в) использования сепаратора для разделения отведенного синтез-газа по крайней мере на поток с повышенным содержанием монооксида углерода и поток с повышенным содержанием водорода, причем количество водорода в потоке с повышенным содержанием водорода превышает общее производство водорода исходной установки по выпуску метанола; и (г) проведение реакции потока с повышенным содержанием монооксида углерода, полученного в сепараторе, с метанолом из контура синтеза метанола, для получения конечного продукта, причем количество отбираемого из потока синтез-газа регулируется с учетом производства метанола в контуре синтеза метанола и вырабатываемого сепаратором потока с повышенным содержанием монооксида углерода для обеспечения стехиометрического превращения в продукт.
Предпочтительно, производится модификация по крайней мере одной установки парового реформинга для увеличения производства монооксида углерода в потоке синтез-газа. Поток синтез-газа предпочтительно включает диоксид углерода, а сепаратор вырабатывает поток с повышенным содержанием диоксида углерода, который предпочтительно рециркулируют на по крайней мере одну установку реформинга для увеличения производства монооксида углерода.
Эта стадия реакции может включать, например, прямую каталитическую реакцию метанола и монооксида углерода с образованием уксусной кислоты, например, по способу Mosanto-BP или, как вариант, может включать промежуточное образование метилформиата и изомеризацию метилформиата до уксусной кислоты, промежуточную реакцию СО с двумя молями метилового спирта с образованием метилацетата и гидролиз метилацетата до уксусной кислоты и метанола, или карбонилирование метилацетата с образованием уксусного ангидрида.
В оптимальном варианте реализации способа модернизации в соответствии с изобретением предлагается порядок модернизации исходной установки по выпуску метанола, которая имеет по крайней мере одну установку парового реформинга для превращения сырьевой смеси углеводород/пар в поток синтез-газа, содержащий водород и монооксид углерода, секцию рекуперации тепла для охлаждения потока синтез-газа, компрессорное устройство для сжатия потока синтез-газа и контур синтеза метанола для превращения по крайней мере части водорода и монооксида углерода в потоке синтез-газа в метанол. Модернизированная установка может производить из монооксида углерода и метанола продукт, выбранный из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций. Порядок модернизации включает стадии: (а) переоборудования по крайней мере одной установки парового реформинга для работы с сырьем, имеющим относительно повышенное содержание диоксида углерода; (б) отведения части потока синтез-газа от по крайней мере одной установки парового реформинга на сепаратор; (в) эксплуатации контура синтеза метанола с использованием в качестве сырья остатка потока синтез-газа для получения меньшего количества метанола по сравнению с исходной установкой по выпуску метанола; (г) эксплуатации сепаратора для разделения отведенного синтез-газа на поток с повышенным содержанием диоксида углерода, поток с повышенным содержанием монооксида углерода и поток с повышенным содержанием водорода; (д) рециркуляции потока с повышенным содержанием диоксида углерода от сепаратора на по крайней мере одну переоборудованную установку парового реформинга для увеличения образования монооксида углерода по сравнению с исходной установкой по выпуску метанола и повышения молярного отношения монооксида углерода к водороду; (е) проведения реакции потока с повышенным содержанием монооксида углерода, полученного в сепараторе, с метанолом из контура синтеза метанола, для получения конечного продукта, причем количество отбираемого из потока синтез-газа регулируется с учетом производства метанола в контуре синтеза метанола и вырабатываемого сепаратором потока с повышенным содержанием монооксида углерода для обеспечения стехиометрического превращения в продукт.
Изменения в модифицированной установке парового реформинга предпочтительно касаются возможности ее функционирования при более высокой температуре для повышения степени превращения углерода в монооксид углерода. Сепаратор может включать абсорбер с растворителем и десорбер для извлечения диоксида углерода, а также установку криогенной дистилляции для извлечения монооксида углерода и водорода.
Компрессорное устройство предпочтительно включает трехступенчатый компрессор, и отбор из потока синтез-газа предпочтительно осуществляется между второй и третьей стадиями сжатия. Изменения в модифицированной третьей ступени компрессора касаются предпочтительно обеспечения ее работы с меньшей производительностью по сравнению с исходной установкой по выпуску метанола. Если контур синтеза метанола исходной установки по выпуску метанола включает компрессор контура рециркуляции, то компрессор контура рециркуляции может быть также модифицирован для работы с меньшей пропускной способностью.
Способ может также включать подведение извне потока смеси СО/диоксид углерода, например, в молярном соотношении от 1:2 до 2:1. Подводимый поток может поступать в контур синтеза метанола или в сепараторное устройство, но предпочтительно подается в установку реформинга, содержащийся в которой диоксид углерода превращается в СО.
Способ может дополнительно включать стадию проведения реакции водорода в потоке с повышенным содержанием водорода с азотом с образованием аммиака. В тех случаях, когда исходная установка по выпуску метанола вырабатывает поток с повышенным содержанием водорода, включающий сброс побочных продуктов из контура синтеза метанола, которые используются для проведения реакции с азотом для получения аммиака, модернизированная установка может использовать поток с повышенным содержанием водорода из сепараторного устройства в качестве первичного источника водорода для производства аммиака. При наличии дополнительного количества водорода, который может быть извлечен из синтез-газа, модернизированная установка может производить дополнительное количество аммиака по сравнению с исходной установкой по выпуску метанола.
Способ может также включать установку устройства по производству мономера винилацетата для проведения реакции части уксусной кислоты с этиленом и кислородом для получения мономера винилацетата. Для получения кислорода для устройства по производству мономера винилацетата может быть установлено устройство по разделению воздуха, при этом предпочтительно, чтобы азот, вырабатываемый устройством по разделению воздуха, покрывал потребность в азоте для дополнительного производства аммиака.
Кроме того, настоящее изобретение обеспечивает создание способа получения водорода и конечного продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, из углеводорода через метанол и монооксид углерода, который может быть осуществлен путем постройки новой установки или модернизации существующей установки. Способ включает стадии: (а) каталитического реформинга углеводорода с водяным паром в присутствии незначительной доли диоксида углерода с образованием синтез-газа, содержащего водород, монооксид углерода и диоксид углерода, и имеющего молярное отношение R=((Н2-СО2)/(СО+СО2)) от 2,0 до 2,9; (б) рекуперации тепла синтез-газа с получением охлажденного потока синтез-газа; (в) сжатия охлажденного потока синтез-газа до давления, позволяющего провести его разделение; (г) отбора значительной части сжатого синтез-газа на сепаратор; (д) разделения отобранного на сепаратор синтез-газа на поток с повышенным содержанием диоксида углерода, поток с повышенным содержанием монооксида углерода и поток с повышенным содержанием водорода; (е) рециркуляции потока с повышенным содержанием диоксида углерод до стадии реформинга; (ж) дополнительного сжатия оставшейся небольшой части синтез-газа до давления, необходимого для проведения синтеза метанола, превышающего давление, необходимое для проведения разделения; (з) осуществления замкнутого цикла синтеза метанола для превращения водорода и монооксида углерода, содержащегося в дополнительно сжатом синтез-газе, в поток метанола; и (и) проведения реакции потока с повышенным содержанием монооксида углерода, вырабатываемого сепаратором, с потоком метанола, вырабатываемым контуром синтеза метанола, для получения конечного продукта. Стадия отведения предпочтительно сбалансирована для получения стехиометрических количеств монооксида углерода и метанола.
В процессе предпочтительно используется молярное отношение диоксида углерода к природному газу, содержащему углеводород, в сырьевой смеси стадии реформинга, равное от 0,1 до 0,5, и отношение пара к природному газу, равное от 2 до 6. Цикл синтеза метанола может производиться с нагрузкой, меньшей полной максимальной производительности контура синтеза метанола. Способ может дополнительно включать стадию проведения в реакторе синтеза аммиака в потоке с повышенным содержанием водорода реакции водорода с азотом для получения аммиака. Способ может также включать стадию разделения воздуха на поток азота и поток кислорода и подачу потока азота в реактор синтеза аммиака. В тех случаях, когда продукт включает уксусную кислоту или предшественник уксусной кислоты, который превращают в уксусную кислоту, способ может дополнительно включать стадию подачи потока кислорода от устройства разделения воздуха в реактор синтеза винилацетата вместе с частью уксусной кислоты со стадии реакции монооксида углерода-метанола и этиленом для получения потока мономера винилацетата.
В соответствии с другим аспектом настоящее изобретение предлагает способ переоснащения исходной установки по выпуску метанола, включающей по крайней мере одну установку парового реформинга для превращения углеводорода в поток синтез-газа, содержащего водород, монооксид углерода и диоксид углерода и контур синтеза метанола для превращения водорода и монооксида углерода из потока синтез-газа в метанол, в переоборудованную установку для производства на основе монооксида углерода и метанола конечного продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций. Способ включает (1) разделение всего или части потока синтез-газа в сепараторе на соответствующие потоки с повышенным содержанием диоксида углерода, монооксида углерода и водорода; (2) осуществление цикла синтеза метанола с использованием сырья, включающего (а) диоксид углерода и (б) часть потока с повышенным содержанием водорода; и (3) проведение реакции по крайней мере части потока с повышенным содержанием монооксида углерода, вырабатываемого сепараторным устройством, с метанолом из контура синтеза метанола с образованием конечного продукта. Сырьевые материалы для цикла синтеза метанола могут включать подаваемый извне диоксид углерода и/или часть синтез-газа. Предпочтительно весь поток синтез-газа поступает на стадию разделения. Величина потока с повышенным содержанием водорода обычно превышает стехиометрическое количество водорода, требуемого для цикла синтеза метанола. Предпочтительно весь поток с повышенным содержанием диоксида углерода подается в контур синтеза, а весь поток, обогащенный монооксидом углерода - на стадию реакции.
В предпочтительном варианте реализации способ модернизации включает (1) подачу значительной части потока синтез-газа в сепаратор для разделения потока синтез-газа на соответствующие потоки с повышенным содержанием диоксида углерода, монооксида углерода и водорода, (2) осуществление цикла синтеза метанола с использованием в качестве сырья вырабатываемого сепараторным устройством потока с повышенным содержанием диоксида углерода, малой по величине части потока синтез-газа, а также дополнительного источника диоксида углерода для получения потока метанола, и (3) проведение реакции потока с повышенным содержанием монооксида углерода, вырабатываемого сепараторным устройством, с потоком метанола из контура синтеза метанола, с образованием конечного продукта.
В другом предпочтительном варианте реализации способ модернизации включает (1) подачу потока синтез-газа в сепараторное устройство для разделения потока синтез-газа на соответствующие потоки с повышенным содержанием диоксида углерода, монооксида углерода и водорода, (2) осуществление цикла синтеза метанола с использованием сырьевых материалов, включающих вырабатываемый сепараторным устройством поток с повышенным содержанием диоксида углерода, часть потока с повышенным содержанием водорода, вырабатываемого сепараторным устройством, незначительной по величине части потока синтез-газа и диоксида углерода из дополнительного источника для получения потока метанола, и (3) проведение реакции потока с повышенным содержанием монооксида углерода, вырабатываемого сепараторным устройством, с потоком метанола из контура синтеза метанола, взятых в стехиометрическом соотношении, с образованием конечного продукта.
В другом предпочтительном варианте реализации способ модернизации включает подведение извне смешанного потока СО/диоксид углерода, например, в молярном соотношении от 1:2 до 2:1. Подведенный извне поток может подаваться в контур синтеза метанола или в сепараторное устройство, но предпочтительно поступает с устройство реформинга для превращения диоксида углерода в СО.
Согласно еще одному аспекту, в соответствии с изобретением предложен способ получения водорода и продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, из углеводородного сырья через метанол, монооксид углерода и диоксид углерода, являющиеся промежуточными продуктами. Способ включает (1) проведение реформинга углеводорода с водяным паром с получением синтез-газа, содержащего водород, монооксид углерода и диоксид углерода, (2) рекуперацию тепла синтез-газа с образованием охлажденного потока синтез-газа, (3) сжатие охлажденного потока синтез-газа до давления, необходимого для проведения разделения, (4) переработку синтез-газа в сепараторном устройстве для отделения потока с повышенным содержанием монооксида углерода от водорода и диоксида углерода, (5) осуществление цикла синтеза метанола для проведения реакции первой части водорода, вырабатываемого сепараторным устройством, с диоксидом углерода, вырабатываемым сепараторным устройством, а также дополнительным диоксидом углерода из другого источника с получением потока метанола, (6) проведение реакции потока с повышенным содержанием монооксида углерода, вырабатываемого сепараторным устройством, с потоком метанола из контура синтеза метанола в стехиометрическом соотношении с образованием конечного продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций.
Независимо от того, является установка модернизированной или новой, в тех случаях, когда продукт включает уксусную кислоту, стадия реакции предпочтительно включает проведение реакции метанола, метилформиата или их комбинаций в присутствии реакционной смеси, включающей монооксид углерода, воду, растворитель и систему катализатора, включающую по крайней мере один галогенированный промотор и по крайней мере одно соединение родия, иридия или их комбинаций. Реакционная смесь предпочтительно имеет содержание воды до 20 массовых процентов. В тех случаях, когда стадия реакции включает простое карбонилирование, содержание воды в реакционной смеси предпочтительно составляет от 14 до 15 массовых процентов. Если стадия реакции включает карбонилирование в условиях пониженного содержания воды, то содержание воды в реакционной смеси более предпочтительно составляет от 2 до 8 массовых процентов. В тех случаях, когда стадия реакции включает изомеризацию метилформиата или комбинацию изомеризации и карбонилирования метанола, реакционная смесь предпочтительно имеет ненулевое содержание воды, составляющее до 2 массовых процентов. Стадия реакции предпочтительно осуществляется в непрерывном режиме.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 (известный уровень техники) представляет собой общую блок-схему типичной установки по производству метанола/аммиака, использующей водород, сбрасываемый из контура синтеза метанола, для получения аммиака, которая может быть модернизирована в соответствии с настоящим изобретением для производства уксусной кислоты.
Фиг.2 представляет собой общую блок-схему установки, изображенной на Фиг.1, после ее модернизации в соответствии с настоящим изобретением для получения уксусной кислоты, мономера винилацетата и дополнительного количества аммиака.
Фиг.3 представляет собой упрощенную технологическую схему передней части установки, изображенной на Фиг.2, показывающую производство синтез-газа и рециркуляцию СО2 в модернизированной установке, на которой имеющееся оборудование изображено сплошными линиями, новое оборудование - штрихпунктирными линиями, а переоборудованное оборудование - пунктирными линиями.
Фиг.4 представляет собой упрощенную технологическую схему части установки, изображенной на Фиг.2, показывающую разделение СО/Н2 и синтез метанола на модернизированной установке, на которой имеющееся оборудование изображено сплошными линиями, новое оборудование - штрихпунктирными линиями, а переоборудованное оборудование - пунктирными линиями.
Фиг.5 представляет собой общую блок-схему установки, изображенной на Фиг.1, после ее модернизации в соответствии с другим вариантом реализации настоящего изобретения, на которой часть потока синтез-газа отводится для разделения, а в контур синтеза МеОН подаются водород и СО2, полученные в результате разделения, оставшаяся часть синтез-газа и дополнительное количество СО2 из внешнего источника.
Фиг.6 представляет собой общую блок-схему установки, изображенной на Фиг.1, после ее модернизации в соответствии с другим вариантом реализации настоящего изобретения, на которой весь поток синтез-газа отводится на разделение, а в контур синтеза МеОН подаются водород и СО2, полученные в результате разделения, и дополнительное количество СО2 из внешнего источника.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Как показано на Фиг.1, исходная установка, которая может быть модернизирована в соответствии с одним из вариантов реализации настоящего изобретения, включает имеющуюся обычную установку парового реформинга 10, устройство синтеза метанола (МеОН) 12 и предпочтительно устройство синтеза аммиака 14, в которой в качестве водорода для устройства синтеза аммиака 14 используется сбрасываемый поток 16 из контура синтеза метанола. Порядок переоснащения в соответствии с настоящим изобретением в общем применим к любой установке, генерирующей и использующей синтез-газ для получения метанола. В значении, используемом в данном описании и формуле изобретения, ссылки на “исходную установку” должны подразумевать установку в состоянии на момент завершения строительства, включая любые промежуточные модификации до начала модернизации по настоящему изобретению.
Устройство реформинга 10 обычно представляет собой пламенную нагревательную печь, имеющую пакеты параллельно расположенных труб, заполненных обычным катализатором реформинга, таким как, например, оксид никеля на носителе из оксида алюминия. Сырьевым материалом для установки (установок) реформинга является любое обычное сырье для реформинга, такое как низшие углеводороды, обычно нафта или природный газ. Установка реформинга может быть одноходовой или двухстадийной установкой реформинга или любой другой имеющейся на рынке установкой реформинга, такой как, например, установка KRES, выпускаемая фирмой Kellogg, Brown & Root, известная специалистам в данной области. Выходной поток установки реформинга исходной установки по выпуску метанола может иметь любое обычное соотношение Н2:СО, но обычно близкое к значению 2,0 для установок, производящих только метанол, и имеет более высокие значения, например 3,0 и выше, для установок, производящих водород в качестве отдельного продукта или водородсодержащий поток, например, для синтеза аммиака. Водородсодержащий поток обычно получают в виде сбрасываемого потока 16 замкнутого контура устройства синтеза метанола 12, который необходим для предотвращения повышения уровня водорода и инертных материалов в синтез-газе, рециркулирующем в устройстве синтеза метанола 12.
В соответствии с настоящим изобретением исходная установка, изображенная на Фиг.1, модернизируется для производства уксусной кислоты (НАС) путем использования имеющейся установки реформинга 10 и устройства синтеза метанола 12 при сохранении любых устройств синтеза аммиака, как показано на Фиг.2.
В соответствии с настоящим изобретением исходная установка, изображенная на Фиг.1, модернизируется для производства уксусной кислоты с использованием имеющихся установки реформинга 10 и устройства синтеза метанола 12 и при сохранении любых устройств синтеза метанола 14, как показано на Фиг.2. Часть выходного потока 18 из установки реформинга 10 отводится из устройства синтеза метанола 12 по линии 20 в новое устройство извлечения СО2. Устройство извлечения СО2 22 разделяет поток, поступающий по линии 20, на поток с повышенным содержанием СО2 24 и поток с пониженным содержанием СО2 26 с помощью обычного оборудования для выделения СО2 и обычных методик, например абсорбционного поглощения растворителем, таким как вода, метанол, вообще водные алканоламины, например этаноламин, диэтаноламин, метилдиэтаноламин и т.п., водные карбонаты щелочных металлов, такие как карбонаты натрия и калия, и т.п. Такие технологии абсорбционного поглощения СО2 доступны на рынке под торговыми названиями Girbotol, Sulfinol, Rectisol, Purisol, Fluor, BASF (aMDEA) и т.п.
СО2, который получают из устройства извлечения СО2 22 или из другого источника, может подаваться в установку реформинга 10. Увеличение содержания СО2 на входе в установку реформинга 10 повышает содержание СО в выходящем потоке 18. Аналогично паровому реформингу, при котором углеводород реагирует с водяным паром с образованием синтез-газа, реакцию углеводорода с диоксидом углерода часто называют СО2-реформингом. Пропорционально увеличению содержания диоксида углерода на входе в установку реформинга возрастает доля углерода в форме монооксида углерода в полученном синтез-газе 18, образующегося из диоксида углерода, а доля, образующаяся из углеводорода, уменьшается. Таким образом, для заданной производительности по СО, уменьшается потребность в углеводородном газовом сырье. На начальной стадии реформинга более тяжелые углеводороды превращаются в метан:
НС+Н2О⇒ СН4+СО2
Основные реакции реформинга водяным паром и СО2 превращают метан в водород и монооксид углерода:
СН42О⇔ 3Н2+СО
СН4+СО2⇔ 2Н2+2СО
Реакция конверсии превращает монооксид углерода в диоксид углерода и водород:
СО+Н2O⇔ СО22
Превращение тяжелых углеводородов подходит к завершению. Паровой реформинг, СО2-реформинг и реакция конверсии лимитируются положением равновесия. Реакция в целом является сильно эндотермической. Установка реформинга 10 при желании может быть переоборудована с целью дополнительного подвода тепла для дополнительного СО2-реформинга и рекуперации дополнительного количества тепла. Выходной поток 18 переоборудованной установки реформинга 10 имеет молярное соотношение (водород минус СО2) к (СО плюс СО2) (обозначенное в данном описании и формуле изобретения как “соотношение R″ =(Н2-СO2)/(СО+СО2)), которое может быть оптимизировано для синтеза метанола, предпочтительно в интервале значений от 2,0 до 2,9. Возможность оптимизации соотношения R возникает вследствие того, что более не требуется получать водород для синтеза аммиака в виде сбрасываемого потока из контура метанола 16, а вместо этого он может быть извлечен из синтез-газа, отобранного по линии 20, как далее описано подробнее.
Поток с пониженным содержанием СО2 26 содержит преимущественно СО и водород и может быть разделен в устройстве сепарации СО 28 на поток с повышенным содержанием СО 30 и поток с повышенным содержанием водорода 32. Сепаратор 28 может включать любое оборудование и/или использовать любые методики для разделения смеси СО/водород на относительно чистые потоки СО и водорода, такие как, например, полупроницаемые мембраны, криогенное фракционирование и т.п. Предпочтительной является криогенная фракционная дистилляция, которая может включать простую частичную конденсацию без использования каких-либо колонн, частичную конденсацию с использованием колонн, необязательно с использованием устройства абсорбции с дифференциалом давления (PSA) и компрессором рециркуляции водорода, или промывку метаном. Обычно частичной конденсации в колоннах достаточно для получения СО и водорода, имеющих достаточную чистоту для производства уксусной кислоты и аммиака, что, соответственно, позволяет свести к минимуму стоимость оборудования и эксплуатационные расходы, хотя для увеличения чистоты водорода и производительности по СО могут быть добавлены устройство PSA и компрессор рециркуляции водорода. Для производства уксусной кислоты поток СО предпочтительно содержит менее 1000 млн-1 водорода и суммарно менее 2 молярных процентов азота и метана. Для производства аммиака поток водорода 32, который подается в промывное устройство азота (не показано), предпочтительно содержит не менее 80% мол. водорода, предпочтительнее не менее 95% мол. водорода.
Часть потока водорода 32 подается в имеющееся устройство синтеза аммиака 14 вместо сбрасываемого из контура метанола потока 16. Количество водорода, образующегося в потоке 32, обычно значительно больше того количества, которое ранее подавалось по линии 16. Это в значительной мере объясняется тем, что модернизированная установка вырабатывает меньшее количество метанола, и потому меньше водорода расходуется на синтез метанола. Дополнительное количество вырабатываемого водорода может быть использовано в качестве топлива или источника водородного сырья для другого процесса, например для увеличения конверсии в аммиак. Дополнительный аммиак может быть получен путем подачи части дополнительного водорода в существующий реактор синтеза аммиака 14, если его производительность по конверсии в аммиак может быть увеличена, и/или путем установки дополнительного устройства синтеза аммиака 33. Увеличению производства аммиака может способствовать наличие установленного оборудования для перекачки, хранения и транспортировки аммиака, производительность которого может быть достаточной для переработки дополнительного количества аммиака, с незначительными модификациями или без таковых.
Устройство синтеза метанола 12 представляет собой обычное устройство для конверсии в метанол, такое как, например, реактор IСI. Устройство синтеза метанола модернизированной установки, изображенной на Фиг.2, по существу такое же, как у исходной установки до ее модернизации, за исключением того, что количество производимого метанола меньше, предпочтительно вдвое меньше, чем у исходной установки. Соответственно, компрессор рециркуляционного контура (не показан) работает с меньшей производительностью, а объем сбрасываемого потока 16 значительно уменьшается. Как указывалось выше, сбрасываемый поток 16 более не требуется для подачи водорода в реактор синтеза аммиака 14, поскольку в модернизированной установке он поступает из потока водорода 32, выделяемого непосредственно из части выходного потока 18 установки реформинга 10, отводимой из питающей линии устройства синтеза метанола по линии 20. При необходимости, сбрасываемый поток 16 может быть теперь использован в качестве топлива и/или источника водорода для гидродесульфуризации сырья, поступающего в установку реформинга 10.
Поскольку более нет какой-либо необходимости пропускать избыток водорода через устройство синтеза метанола 12 для использования в устройстве синтеза аммиака 14, состав сырья, подаваемого в устройство синтеза метанола 12, т.е. выходной поток 18, может быть оптимизирован по составу для более эффективной конверсии в метанол, как описано выше. Может быть также желательным переоборудование устройства синтеза метанола 12, если это потребуется в процессе модернизации, для включения каких-либо других модификаций, отсутствовавших в исходной установке, но ставших традиционными и разработанных для использования в контурах синтеза метанола после сооружения исходной установки, однако не внедренных ранее.
Количество синтез-газа в выходном потоке 18 установки реформинга 10, который отводится для разделения на СО2/СО/Н2, предпочтительно регулируется для обеспечения стехиометрического соотношения между метанолом и СО для производства из них уксусной кислоты в устройстве синтеза уксусной кислоты 34. Предпочтительно, количества СО в линии 30 и метанола в линии 36 равны, или метанол вырабатывается с избытком 10-20% молярных, т.е. при молярном соотношении от 1,0 до 1,2. Для получения такого соотношения метанола и СО в линию 20 отводится относительно большее количество (всего кг/час) выходного потока 18, а оставшаяся меньшая часть поступает по линии 38 в устройство синтеза метанола 12.
В устройстве синтеза уксусной кислоты 34 используются обычное оборудование для производства уксусной кислоты и способы, которые являются хорошо известными и/или коммерчески доступными специалистам в данной области, такие как, например, описанные в одном или нескольких из указанных выше патентов на производство уксусной кислоты. Например, может быть использован обычный BP/Monsanto-процесс или усовершенствованный BP/Monsanto-процесс, использующий технологию BP-Cativa (иридиевый катализатор), технологию Celanese с пониженным содержанием воды (катализатор на основе ацетата родия-лития), технологию Millenium с пониженным содержанием воды (катализатор на основе оксидов родия-фосфора), технологию Acetex (родиево-иридиевый катализатор) и/или двойственный процесс карбонилирования метанола - изомеризации метилформиата. Реакция в общем включает проведение реакции метанола, метилформиата или их комбинации в присутствии реакционной смеси, включающей монооксид углерода, воду, растворитель и систему катализатора, включающую по крайней мере один галогенированный промотор и по крайней мере одно соединение родия, иридия или их комбинацию. Реакционная смесь предпочтительно имеет содержание воды до 20 массовых процентов. В тех случаях, когда реакция включает простое карбонилирование, содержание воды в реакционной смеси предпочтительно составляет от 14 до 15 массовых процентов. Если реакция включает карбонилирование при пониженном содержании воды, то содержание воды в реакционной смеси предпочтительно составляет от 2 до 8 массовых процентов. В тех случаях, когда реакция включает изомеризацию метилформиата или комбинацию изомеризации и карбонилирования метанола, реакционная смесь предпочтительно имеет ненулевое содержание воды, не превышающее 2 массовых процентов. Реакция обычно проводится в непрерывном режиме. Продукт уксусной кислоты отводится по линии 40.
При необходимости, часть уксусной кислоты из линии 40 может подаваться в обычное устройство синтеза мономера винилацетата 42, в котором она вводится в реакцию с этиленом, подаваемым по линии 44 и кислородом, поступающим по линии 46, с образованием потока мономерного продукта 48. Кислород, подаваемый по линии 46, может быть получен, например, с помощью обычного (предпочтительно криогенного) устройства разделения воздуха 50, которое также вырабатывает поток азота 52, соответствующий количеству воздуха, поступающего из линии 54, необходимого для производства кислорода в линии 46. Количество разделяемого воздуха может быть установлено в соответствии с потребностью в азоте, подаваемом по линии 52 для производства дополнительного количества аммиака в устройстве синтеза аммиака 33, как указывалось выше.
В альтернативном варианте реализации, изображенном на Фиг.5, количество СО, доступного для производства уксусной кислоты, увеличивается путем отведения значительно большей части синтез-газа из линии 18 по линии 20 в устройство извлечения СО2 22, чем в варианте реализации, изображенном на Фиг.2. Это приводит к увеличению потребности в СО для устройства синтеза метанола 12. Однако потребность в СО для устройства синтеза метанола 12 может быть также удовлетворена за счет подачи СО2, хотя при синтезе метанола с использованием СО2 возрастает потребность в водороде. Поток СО2 24 из устройства сепарации СО2 22 при этом подается в устройство синтеза метанола 12, а не в установку реформинга 10, как указано на варианте реализации, изображенном на Фиг.2. Дополнительный СО или СО2, или смесь СО/СО2, в зависимости от потребностей синтеза метанола 12 может подаваться из другого источника (не показан) по линии 25. Предпочтительно вместо СО осуществлять подачу СО2 из внешнего источника, поскольку СО2 обычно легче производить и транспортировать, чем СО, а кроме того, он менее токсичный. Часть водорода, поступающего в линию 32 из устройства сепарации СО 28, может подаваться по линии 35 в устройство синтеза метанола 12. Поскольку количество водорода в линии 32 обычно больше количества водорода, необходимого для устройства синтеза метанола 12, даже при использовании в качестве сырья СО2 вместо СО, избыток водорода, поступающий в линию 37, может отводиться для другого применения, такого как, например, синтез аммиака или сжигание в качестве горючего газа.
Вариант реализации, изображенный на Фиг.5, может иметь преимущества по сравнению с вариантом, изображенным на Фиг.2, которые заключаются в том, что при модернизации не требуется модификации установок реформинга 10, а устройство синтеза метанола может эксплуатироваться по существу на проектной мощности без значительного изменения состава каких-либо потоков в устройстве синтеза метанола 12. Кроме того, вариант реализации, изображенный на Фиг.5, может функционировать без производства избыточного количества метанола, в то же время производя водород, подающийся по линии 37 для внешних потребителей.
Вариант реализации, изображенный на Фиг.6, аналогичен Фиг.5, за исключением того, что отсутствует подача синтез-газа в устройство синтеза метанола 12, а вместо этого он полностью поступает в устройство извлечения СО2 22. Дополнительным преимуществом этого является увеличение производства СО и уксусной кислоты при незначительно большей потребности в подаче СО2 извне и несколько меньшей выработке водорода, поступающего в линию 37.
Пример 1
Модернизация существующей установки по выпуску метанола включает изменение ее конфигурации, обеспечивающее производство метанола и СО в стехиометрическом отношении для производства уксусной кислоты при сохранении производства водорода в количестве, по крайней мере достаточном для существующего синтеза аммиака. Исходная установка перерабатывает 760 метрических тонн/день (MTPD) природного газа в одноходовой установке реформинга при молярном соотношении пар:углерод, равном 2,8, вырабатывая 1760 м.т/день синтез-газа, содержащего в пересчете на сухое вещество 74,1% мол. водорода, 15.5% мол. СО, 7.1% мол. СО2, 3.1% мол. метана, 0.2% мол. азота, и поступающего в контур синтеза метанола. Количество сырьевых материалов, подаваемых в реактор синтеза метанола исходной установки (рециркуляция плюс подпитка синтез-газа), составляет 5600 м.т/день газа-сырья, содержащего в пересчете на сухое вещество 82.2% мол. водорода, 9% мол. метана, 4.8% мол. СО, 3% мол. СО2, 0.6% мол. азота и 0.4% мол. МеОН, а также другие компоненты. Синтез-газ в исходной установке перерабатывается в неочищенный метанол в количестве 1560 м.т/день, который затем очищают дистилляцией, получая 1335 м.т/день очищенного продукта. Сухой газ, сбрасываемый из производственного цикла (сырьевой водородсодержащий газ для синтеза аммиака) исходной установки, содержит 84.3% мол. водорода, 10.5% мол. метана, 2.2% мол. СО, 2% мол. СО2, 0.7% мол. азота, 0.4% мол. МеОН и другие компоненты, в пересчете на сухое вещество, а его количество достаточно для производства аммиака в исходной установке в количестве 500 м.т/день.
Исходная установка модернизируется в соответствии с Фиг.3 и 4 для производства 760 м.т/день метанола и 606 м.т/день СО, которых достаточно для получения 1208 м.т/день уксусной кислоты, и 331 м.т/день водорода, которого достаточно для получения 1085 м.т/день аммиака. Существующая установка реформинга 106 переоборудуется с целью добавления нового вентилятора форсированной тяги (не показан) и больших по размеру змеевиков перегрева пара и нагрева сырьевой смеси и подаваемых материалов (не показаны). Существующий компрессор третьей ступени сжатия синтез-газа 122 модифицируют для уменьшения его производительности путем замены внутренней оснастки, включая ротор и диафрагмы. Существующий компрессор рециркуляции синтез-газа 126 аналогично модифицируют для уменьшения пропускной способности путем замены его внутренней оснастки, включая ротор и диафрагмы. Дополнительно устанавливают новое устройство извлечения СО2 aMDEA 128, новый агрегат холодильной установки 138, новый блок теплоизолированной камеры 142, включая осушители и компрессор СО, новый компрессор СО2 134 для рециркуляции СО2 в установку реформинга 106 и новые компрессоры водорода 148 для подачи водорода в существующую установку по выпуску аммиака (не показана) и новую установку по выпуску аммиака производительностью 600 м.т/день (не показана). До начала и/или во время проведения модернизации (по крайней мере в тех случаях, когда существующее оборудование находится в рабочем состоянии, до начала строительных работ, требующих остановки производства) установка по выпуску метанола может эксплуатироваться со сниженной производительностью, при отведении примерно 27% синтез-газа с выхода компрессора синтез-газа 122 непосредственно на существующую установку по выпуску аммиака.
Преимуществами модернизации по сравнению с полностью новой установкой по выпуску СО/МеОН являются использование существующих агрегатов и оборудования, таких как установки десульфуризации, реформинга, включая регенерацию отходящего тепла, компрессор и циркуляционный насос синтез-газа и т.д. Дополнительное преимущество обеспечивается использованием существующих сооружений за пределами производственной площадки и инфраструктуры, таких как парогенерация, водоочистка, система охлаждения воды, диспетчерская и оборудование для отгрузки конечного продукта.
На Фиг.3 изображена блок-схема модернизированной установки, в которой природный газ подается по линии 100 в устройство десульфуризации/сатурации 102. Существующая система удаления серы используется для удаления каких-либо примесей Н2S и органической серы из газообразного технологического сырья. Этот газ смешивают с рециркулируемым потоком 104 синтез-газа с повышенным содержанием водорода для получения содержания водорода 2,4% мол, и нагревают в теплообменнике десульфуратора (не показан) и конвекционной секции 116 установки реформинга 106 до температуры 330° С. Нагретый газ поступает в установку десульфуризации 102, в которой органические соединения серы сначала гидрируются до сероводорода над слоем никель-молибденового катализатора (не показан). Под слоем NiMo-катализатора находится слой адсорбента на основе оксида цинка (не показан), с которым сероводород вступает в реакцию с образованием сульфида цинка.
Десульфуризованное сырье пропускают через существующий сатуратор, в котором газ насыщается водой, поступающей по линии 108, для уменьшения потребности в технологическом паре. Газ, выходящий из сатуратора по линии 110, смешивается с рециркулируемым диоксидом углерода из линии 112 и паром среднего давления из линии 114 таким образом, чтобы газовая смесь содержала количество пара, эквивалентное 3 молям на моль углерода, причем эквивалентное количество пара рассчитывается как количество молей пара плюс 0,6 от количества молей диоксида углерода.
Добавление СО2 в подаваемый газ представляет собой модификацию существующей схемы функционирования установки реформинга 106. Это обеспечивает увеличение производства СО и сбалансированность состава синтез-газа в выходящем потоке 115 для более эффективного производства метанола, как описано выше. Сырьевую смесь предварительно подогревают в переоборудованных змеевиках сырьевой смеси (не показаны) установки реформинга 106 до температуры 515° С.
Горячую сырьевую смесь подают в катализаторные трубы установки реформинга 106 (не показаны), пропускают через никелевый катализатор реформинга и проводят реакцию с образованием водорода, СО и СО2. Давление и температура на выходе катализаторных труб составляют 19 бар (1,9 МПа) (абсолютное) и 880° С. Устройство рекуперации тепла представляет собой конвекционную секцию установки реформинга 106 и включает змеевики парового котла высокого давления, перегретого пара высокого давления (переоборудованы в модернизированной установке), предварительного подогрева сырьевой смеси (переоборудованы в модернизированной установке) и предварительного подогрева воздуха для горения. Как указывалось выше, предусматриваются переоборудованные змеевики для перегретого пара, предварительного подогрева сырьевой смеси и предварительного подогрева газообразного сырья. Установка реформинга 106 включает новый вентилятор принудительной тяги. Старый вентилятор принудительной тяги используется в качестве вентилятора искусственной тяги модернизированной установки. Выходной поток 115 установки реформинга используется для генерации пара, предварительного подогрева питающей воды парового котла и в качестве источника тепла для ребойлеров для колонн отгонки легких фракций и очистки существующих теплообменников (не показаны).
Синтез-газ в линии 118 сжимается от 17,3 бар (абсолютного давления) до 41,7 бар (абсолютного давления) в первом агрегате компрессора синтез-газа (первая и вторая стадии 120) без модификации. После этого газ в выходной линии 121 разделяется таким образом, чтобы 62% его направлялось на производство СО/Н2 по линии 130, а остальное поступало по линии 123 во второй агрегат (компрессор третьей ступени 122, подающий синтез-газ в линию 125 для синтеза МеОН). Третья ступень 122 компрессора синтез-газа перерабатывает всего 40% от потока исходной установки. Этот агрегат переоборудуют путем установки новой внутренней оснастки, включая ротор и диафрагмы. Затем газ охлаждают в исходном третьем межстадийном охлаждающем аппарате (не показан) и воду отделяют в исходном межстадийном сепараторе (не показан). После этого газ подпитки в линии 125 смешивают с рециркулирующим газом из линии 124 (см. Фиг.4) и сжимают в циркуляционном насосе 126 до 80 бар (абсолютное давление). Циркуляционный насос также будет пропускать всего 61% от исходного потока и потому требует новой внутренней оснастки, включая ротор и диафрагмы.
Шестьдесят два процента газа со второй ступени компрессора синтез-газа 120 подаются по линии 130 в новую систему извлечения СО2 aMDEA 128. Она представляет собой одноступенчатую систему aMDEA, приобретенную по лицензии у фирмы BASF, в которой в качестве циркулирующего раствора используется раствор aMDEA 40% мас., позволяющий уменьшить содержание диоксида углерода в пересчете на сухое вещество с 9,7% об. в газовом потоке 130 до 100 млн-1 об. в линии 132. Абсорбер (не показан) работает при температуре от 35° С до 40° С и давлении 39,5 бар (абсолютное). Отбираемый с абсорбера верхний газ (не показан) поступает в барабанный сепаратор (не показан) для отделения захваченного раствора. Насыщенный раствор со дна абсорбера проходит через гидравлическую турбину (не показана) для регенерации энергии. Турбина вырабатывает энергию, которая используется в качестве вспомогательной для приведение в действие одного из насосов (не показан) тощего раствора. Раствор после этого поступает в десорбер (не показан), спроектированный в виде трех секций: контактного холодильника вверху, испарительной секции низкого давления (LP) посередине и секции отгонки внизу. Насыщенный раствор из гидравлической турбины поступает в испарительную секцию LP, в которой создаются условия для испарения СО2 путем снижения давления. Насос полунасыщенного раствора (не показан) перекачивает раствор со дна испарительной секции LP через теплообменник тощего/полунасыщенного раствора (не показан) в верхнюю часть секции отгонки. Теплообменник регенерирует тепло тощего раствора, выходящего из секции отгонки. Раствор, выходящий из секции отгонки, повторно испаряется паром низкого давления в паровом ребойлере отгонки СО2 (не показан). Диоксид углерода и пар из испарительной секции LP охлаждаются до 35° С в секции контактного холодильника. Это достигается за счет контакта с охлаждающей водой. Охлажденный диоксид углерода, имеющий чистоту не менее 99% об. в пересчете на сухое вещество, по линии 133 подается в новый компрессор СО2 134, представляющий собой четырехступенчатый турбокомпрессор с приводом от встроенного двигателя, который нагнетает СО2 в линию 112 с давлением 26 бар (абсолютное) для рециркуляции в устройство реформинга 106 перед змеевиком сырьевой смеси, как указывалось ранее. Регенерированный тощий раствор охлаждается сначала в теплообменнике тощего/полунасыщенного раствора, а затем охлаждающей водой. Охлажденный тощий раствор подается насосом в верхнюю часть абсорбера, а отводимый поток может фильтроваться для удаления твердого вещества. Вода подпитки подается в систему по линии 136.
Синтез-газ в линии 132 охлаждается до 4,4° С в новом холодильном агрегате 138 (см. Фиг.4), в котором используется винтовой компрессор и аммиак в качестве хладагента. Охлажденный синтез-газ из агрегата 138 поступает затем по линии 140 в блок осушителей/теплоизолированной камеры 142, в котором он охлаждается и криогенно разделяется на поток несконденсированного водорода 144 и поток СО 146. Осушители (не показаны) представляют собой параллельно расположенные заполненные молекулярными ситами слои, один из которых является рабочим, в то время как другой регенерируется. В осушителях содержание влаги в газе уменьшается до уровня ниже 0,5 млн-1 об., а содержание диоксида углерода - ниже 1 млн-1 об. В нормальных условиях каждый осушитель может работать в течение 12 часов, а регенерация горячим (288° С) отходящим газом установки СО/Н2 и охлаждение занимают 6 часов, что обеспечивает резерв времени 6 часов.
Для разделения СО и Н2 в теплоизолированной камере применяется метод частичной конденсации с использованием двух колонн (не показаны). Осушенный газ из осушителей охлаждается и частично сжижается в теплообменниках входного/выходного потоков (не показаны). Жидкость отделяется, а водородсодержащий продукт перегревается и расширяется в турбине, работающей на расширяющемся водороде (не показана). Холодный газ из турбины под давлением 19,5 бар (абсолютное) повторно нагревается в теплообменниках входного/выходного потоков и выходит из криогенного устройства под давлением 19,0 бар (абсолютное) и 10° С по линии 144. Отделенная жидкость с повышенным содержанием СО выпаривается в колонне отгонки водорода (не показана). Отогнанный газ, состоящий преимущественно из водорода, поднимается в верхнюю часть колонны и повторно нагревается в теплообменниках входного/выходного потоков до таких же температуры и давления, как и газ после турбины, с которым он смешивается в линии 144 для подачи в компрессор водорода 148.
Повторное испарение в колонне отгонки водорода обеспечивается за счет конденсации СО высокого давления в ребойлере (не показан). Донный продукт из колонны отгонки водорода, который теперь обеднен водородом, но содержит избыточный метан, выпаривается в колонне CO/CH4 (не показана), в которой СН4 отделяется от СО и выходит из колонны в виде жидкого донного продукта. Жидкий метан испаряется и нагревается до температуры окружающей среды в теплообменниках входного/выходного потоков и выводится из установки 142 под давлением 3,15 бар (абсолютное) по линии 150 как горючий газ. СО из верхней части колонны CO/CH4 нагревается в теплообменниках входного/выходного потоков, подвергается сжатию в компрессоре СО (не показан) и поступает в линию 146. Компрессор СО также используется в цикле теплового насоса путем охлаждения СО в одном из теплообменников входного/выходного потоков, конденсации в ребойлерах отгонки водорода и колоннах СО/СН4 и переохлаждения в другом теплообменнике входного/выходного потоков. Переохлажденный жидкий СО используется в качестве флегмы в колонне СО/СН4 и в качестве холодильного агента в теплообменниках входного/выходного потоков. Испаренный СО повторно нагревается в одном из теплообменников входного/выходного потоков перед повторным сжатием в компрессоре СО.
Агрегат компрессора водорода 148 включает три параллельных поршневых бессмазочных компрессора, каждый из которых может сжимать 50% вырабатываемого водорода до 80 бар (абсолютное давление), подавая его в линию 152. Обычно два компрессора работают, а третий находится в резерве. Количество вырабатываемого водорода в линии 152 достаточно для получения 1084 м.т/день аммиака. Существующая установка по выпуску аммиака (не показана) потребляет только количество водорода, необходимое для производства 500 м.т/день аммиака, поэтому остальной водородсодержащий продукт используется для производства 584 м.т/день аммиака в новой установке по выпуску аммиака (не показана). Давление водорода, необходимое для новой установки по выпуску аммиака, может составлять величину больше или меньше 80 бар, поэтому давление компрессора водорода может быть отрегулировано соответствующим образом.
Синтез-газ подпитки в линии 123 (см. Фиг.4) имеет более сбалансированный состав для синтеза МеОН и более низкое по сравнению с исходной установкой значение соотношения R, равное 2,1. Меньшая величина R обусловлена реформингом СО2 и приводит к снижению циркуляции в линии рециркуляции 124 и к очень маленькой величине сброса из контура МеОН по линии 160. Газ, выходящий со стадии рециркуляции 126, проходит по линии 162 в исходный конвертор метанола 164, и технологические потоки по существу совпадают с технологической схемой исходного процесса, проходя по линии 166, через устройство рекуперации тепла и охлаждения 168, линию 170, сепаратор метанола 172, линию рециркуляции 124, емкость конденсата 174 и поток горючего газа 176 при величине потоков, составляющей 61-65% от исходной технологической схемы. Работа конвертора МеОН 164 моделировалась фирмой Kellogg, Brown & Root для оценки технологических показателей конвертора 164 для новых условий работы и меньшей производительности. Поток продукта МеОН 178 из емкости конденсации 176 составляет 760 м.т/день.
Величины расходов, составы и свойства отдельных потоков модернизированной установки приведены ниже в Таблице 1:
Figure 00000002
Пример 2
Существующую установку по выпуску метанола модернизируют с целью производства метанола и СО в стехиометрическом соотношении для получения 1000000 метрических тонн/год уксусной кислоты в соответствии с вариантом реализации, приведенном на Фиг.5. При количестве рабочих дней, равном 340/год, это соответствует 2040 кмоль/час уксусной кислоты, для чего требуется 2040 кмоль/час МеОН и 2040 кмоль/час СО.
Предположим, что исходная установка конвертирует природный газ в двух одноходовых установках реформинга с получением синтез-газа, содержащего 11,660 кмоль/час водорода, 2180 кмоль/час СО и 1290 кмоль/час СО2. Для получения требуемого количества уксусной кислоты из входного потока существующего устройства синтеза метанола 12 в новое устройство извлечения СО2 22 требуется отбирать количество синтез-газа, достаточное для получения 2040 кмоль/час в новом устройстве извлечения СО 28. При этом оставшийся синтез-газ содержит 140 кмоль/час СО для подачи в устройство синтеза метанола 12. Для получения 2040 кмоль/час МеОН требуется в общем 2040 кмоль/час СО и/или СО2 в любых комбинациях. При 140 кмоль/час СО из оставшегося синтез-газа в линии 38 и 1290 кмоль/час СО2 из оставшегося синтез-газа в линии 38, а также с учетом СО2 из устройства извлечения СО2 22, подаваемых по линии 24, дополнительно требуется 610 кмоль/час СО2. Этот СО2 подводится от внешнего источника по линии 25.
Для производства метанола в устройстве синтеза метанола 12 требуется два моля водорода на каждый моль СО в сырьевой смеси, а также три моля водорода на каждый моль СО2 в сырьевой смеси, или (2)(140)+(3)(1290+610)=5980 кмоль/час Н2. Две оставшиеся установки реформинга 10 производят 11660 кмоль/час, что оставляет 5680 кмоль/час водорода для сторонних потребителей.
Пример 3
Существующую установку по выпуску метанола по Примеру 2 модернизируют с целью производства метанола и СО в стехиометрическом соотношении для производства максимального количества уксусной кислоты в соответствии с вариантом реализации, изображенном на Фиг.6, т.е. путем подачи всего синтез-газа из установок реформинга 10 в новое устройство извлечения СО2 22. При конверсии всего имеющегося СО (2180 кмоль/час) в уксусную кислоту производство уксусной кислоты составляет 2180 кмоль/час или 1,07× 106 метрических тонн/год.
Для получения 2180 кмоль/час МеОН требуется в общем 2180 кмоль/час СО и/или СО2 в любых комбинациях. При отсутствии СО из синтез-газа и 1290 кмоль/час СО2 из устройства извлечения СО2 22, подаваемых в линию 24, требуется дополнительно 890 кмоль/час СО2. Этот СО2 поступает извне по линии 25.
Для производства метанола в устройстве синтеза метанола 12 требуется три моля водорода на каждый моль СО2 в сырьевой смеси, или (3)(2180)=6540 кмоль/час Н2. Две установки реформинга производят 11660 кмоль/час, причем 5120 кмоль/час водорода остается для сторонних потребителей.

Claims (44)

1. Способ модернизации установки по получению метанола, включающий следующие стадии:
устанавливают сепаратор диоксида углерода, монооксида углерода и водорода в соединение с исходной установкой по выпуску метанола, включающей (1) по крайней мере одну установку реформинга для превращения углеводорода в поток синтез-газа, содержащий диоксид углерода, монооксид углерода и водород, и (2) контур синтеза метанола для превращения водорода и монооксида углерода из потока синтез-газа в метанол;
устанавливают линию для отвода по крайней мере части потока синтез-газа в сепаратор для разделения всего или части потока синтез-газа на соответствующие потоки с повышенным содержанием диоксида углерода, монооксида углерода и водорода;
переналаживают исходную установку по выпуску метанола для подачи по крайней мере части потока с повышенным содержанием диоксида углерода в установку реформинга, в контур синтеза метанола или их сочетание;
переналаживают контур синтеза метанола для работы с уменьшенной производительностью по сравнению с исходной установкой по выпуску метанола; и
устанавливают реактор для проведения реакции по крайней мере части потока с повышенным содержанием диоксида углерода из сепаратора с метанолом из контура синтеза метанола с образованием продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций.
2. Способ по п.1, согласно которому контур синтеза метанола эксплуатируется с использованием сырьевого потока, включающего (1) диоксид углерода и (2) часть потока с повышенным содержанием водорода из сепаратора.
3. Способ по п.2, согласно которому сырье, поступающее в контур синтеза метанола, включает подаваемый извне диоксид углерода.
4. Способ по п.2 или 3, согласно которому сырье, поступающее в контур синтеза метанола, включает часть синтез-газа.
5. Способ по п.2 или 3, согласно которому весь поток синтез-газа поступает на стадию разделения в сепараторе.
6. Способ по любому из пп.1-5, согласно которому величина потока с повышенным содержанием водорода превышает стехиометрическую потребность в водороде для контура синтеза метанола.
7. Способ по любому из пп.1-6, согласно которому весь поток с повышенным содержанием диоксида углерода поступает в контурсинтеза метанола.
8. Способ по любому из пп.1-6, согласно которому весь поток с повышенным содержанием монооксида углерода поступает в реактор синтеза метанола.
9. Способ по любому из пп.1-4 и 6-8, согласно которому большая часть потока синтез-газа поступает в сепаратор, и контур синтеза метанола функционирует с использованием сырьевого потока, включающего поток с повышенным содержанием диоксида углерода из сепаратора, небольшой части потока синтез-газа и дополнительного источника диоксида углерода для образования потока метанола.
10. Способ по любому из пп.1-4 и 6-9, согласно которому контур синтеза метанола функционирует с использованием сырьевого потока, включающего поток с повышенным содержанием диоксида углерода из сепаратора, небольшой части потока синтез-газа и диоксида углерода из дополнительного источника.
11. Способ получения продукта, выбираемого из группы, состоящей из синтез-газа, метанола, уксусной кислоты или ее производных, согласно которому:
осуществляют реформинг углеводорода водяным паром с образованием синтез-газа, содержащего водород, монооксид углерода и диоксид углерода;
осуществляют рекуперацию тепла синтез-газа с образованием охлажденного потока синтез-газа;
осуществляют сжатие охлажденного потока синтез-газа до давления, необходимого для разделения;
осуществляют обработку синтез-газа в сепараторе для отделения потока с повышенным содержанием монооксида углерода от водорода и диоксида углерода;
приводят в действие контур синтеза метанола для проведения реакции первой части водорода из сепаратора с сырьевым потоком, включающим большую часть диоксида углерода и, по выбору, небольшую часть монооксида углерода для получения потока метанола, причем диоксид углерода подается из сепаратора и из другого источника;
проводят реакцию потока с повышенным содержанием монооксида углерода из сепаратора с потоком метанола из контура синтеза метанола в стехиометрическом соотношении с образованием продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций.
12. Способ модернизации установки по выпуску метанола, включающий следующие стадии:
устанавливают сепаратор монооксида углерода и водорода в соединение с исходной установкой по выпуску метанола, включающей (1) по крайней мере одну установку парового реформинга для превращения углеводорода в поток синтез-газа, содержащий водород и монооксид углерода, (2) секцию рекуперации тепла для охлаждения потока синтез-газа, (3) компрессорное устройство для сжатия потока синтез-газа, и (4) контур синтеза метанола для превращения по крайней мере части водорода и монооксида углерода в потоке синтез-газа в метанол при сохранении исходной производительности по метанолу;
устанавливают линию для отвода части потока синтез-газа после по крайней мере одной установки реформинга в сепаратор для разделения отведенного синтез-газа на по крайней мере поток с повышенным содержанием монооксида углерода и поток с повышенным содержанием водорода, в котором количество водорода в потоке с повышенным содержанием водорода превышает общую производительность по водороду исходной установки по выпуску метанола;
переналаживают контур синтеза метанола для эксплуатации с использованием сырьевого потока, включающего оставшуюся часть потока синтез-газа, для производства метанола с уменьшенной производительностью по сравнению с исходной производительностью по метанолу;
устанавливают реактор для проведения реакции потока с повышенным содержанием монооксида углерода из сепаратора с метанолом из контура синтеза метанола с образованием продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, в котором количество отбираемого потока синтез-газа балансируют для обеспечения стехиометрического превращения в продукт при производстве метанола из контура синтеза метанола и потока с повышенным содержанием монооксида углерода из сепаратора.
13. Способ по п.12, согласно которому дополнительно модифицируют по крайней мере одну установку парового реформинга для обеспечения увеличения производства монооксида углерода в потоке синтез-газа.
14. Способ по любому из пп.1-6, 8 или 12-13, согласно которому поток синтез-газа включает диоксид углерода, по крайней мере одна установка парового реформинга представляет собой установку каталитического парового реформинга, сепаратор вырабатывает поток с повышенным содержанием диоксида углерода, и по крайней мере часть потока с повышенным содержанием диоксида углерода рециркулируют на по крайней мере одну установку парового реформинга для увеличения производства монооксида углерода.
15. Способ по п.14, согласно которому поток синтез-газа исходной установки характеризуется величиной молярного соотношения R=((Н2-СО2)/(СО+СО2)) менее 2,0 или более 2,9, а модернизированная установка характеризуется величиной соотношения R от 2,0 до 2,9.
16. Способ по п.14 или 15, согласно которому рециркулирование потока с повышенным содержанием диоксида углерода из сепаратора на по крайней мере одну модифицированную установку парового реформинга увеличивает образование монооксида углерода по сравнению с исходной установкой по выпуску метанола и повышает молярное соотношение монооксида углерода к водороду.
17. Способ по любому из пп.1-16, согласно которому сепаратор включает абсорбер на основе растворителей и десорбер для извлечения диоксида углерода, а также установку криогенной дистилляции для извлечения монооксида углерода и водорода.
18. Способ по п.12 или 13, согласно которому компрессорное устройство включает трехступенчатый компрессор, и отвод потока синтез-газа происходит между второй и третьей ступенями сжатия.
19. Способ по п.18, согласно которому дополнительно модифицируют третью ступень компрессора для обеспечения его функционирования с меньшей производительностью по сравнению с исходной установкой по выпуску метанола.
20. Способ по пп.12, 13, 18 или 19, согласно которому контур синтеза исходной установки по выпуску метанола дополнительно включает компрессор контура рециркуляции, причем этот компрессор контура рециркуляции модифицирован для обеспечения функционирования с меньшей производительностью.
21. Способ по любому из пп.1-20, согласно которому дополнительно включают стадию взаимодействия водорода в потоке с повышенным содержанием водорода с азотом для получения аммиака.
22. Способ по любому из пп.1-10 и 12-19, согласно которому в исходной установке по выпуску метанола, в которой для получения аммиака приводили во взаимодействие с азотом поток с повышенным содержанием водорода, включающий продувочный поток из контура синтеза метанола, после ее модернизации в качестве основного источника водорода для производства аммиака используют поток с повышенным содержанием водорода из сепаратора.
23. Способ по п.22, согласно которому модернизированная установка обеспечивает производство дополнительного количества аммиака по сравнению с исходной установкой по выпуску метанола.
24. Способ по п.23, согласно которому конечный продукт содержит уксусную кислоту, при этом дополнительно устанавливают устройство по получению мономера винилацетата, в котором проводят реакцию части уксусной кислоты с этиленом и кислородом для получения мономера винилацетата.
25. Способ по п.24, согласно которому с целью получения кислорода для устройства по получению мономера винилацетата дополнительно устанавливают устройство разделения воздуха, причем количество азота, вырабатываемого устройством разделения воздуха, соответствует потребности в азоте для производства добавочного количества аммиака.
26. Способ получения водорода и продукта, выбираемого из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, из углеводорода через метанол и монооксид углерода, включающий следующие стадии:
осуществляют каталитический реформинг углеводорода водяным паром в присутствии относительно небольшого количества диоксида углерода с образованием синтез-газа, содержащего водород, монооксид углерода и диоксид углерода, в котором синтез-газ характеризуется величиной молярного соотношения R=((Н2-СО2)/(СО+СО2)) от 2,0 до 2,9;
осуществляют рекуперацию тепла синтез-газа с образованием охлажденного потока синтез-газа;
осуществляют сжатие охлажденного потока синтез-газа до давления, необходимого для разделения;
осуществляют отведение большей части сжатого синтез-газа в сепаратор;
осуществляют разделение синтез-газа, отведенного в сепаратор, на поток с повышенным содержанием диоксида углерода, поток с повышенным содержанием монооксида углерода и поток с повышенным содержанием водорода;
осуществляют рециркуляцию потока с повышенным содержанием диоксида углерода на стадию реформинга;
осуществляют дополнительное сжатие оставшейся относительно небольшой части синтез-газа до давления, необходимого для синтеза метанола, превышающего величину давления, необходимого для разделения;
приводят в действие контур синтеза метанола для превращения водорода, монооксида углерода и диоксида углерода в дополнительно сжатом синтез-газе в поток метанола;
проводят взаимодействие потока с повышенным содержанием монооксида углерода из сепаратора с потоком метанола из контура синтеза метанола с образованием продукта, выбранного из группы, состоящей из уксусной кислоты, уксусного ангидрида, метилформиата, метилацетата и их комбинаций, при этом стадия отвода балансируется таким образом, чтобы получить приблизительно стехиометрические количества монооксида углерода и метанола.
27. Способ по п.26, согласно которому контур синтеза метанола эксплуатируется с производительностью, меньшей полной максимальной производительности всех реакторов синтеза метанола в указанном контуре.
28. Способ по п.26 или 27, согласно которому дополнительно проводят реакцию водорода в потоке с повышенным содержанием водорода с азотом в реакторе синтеза аммиака для получения аммиака.
29. Способ по п.28, согласно которому дополнительно осуществляют стадию разделения воздуха на поток азота и поток кислорода и подачу потока азота в реактор синтеза аммиака.
30. Способ по п.29, согласно которому конечный продукт включает уксусную кислоту или продукт уксусной кислоты предшествующей стадии реакции, который превращают в уксусную кислоту, при этом дополнительно подают поток кислорода из устройства разделения воздуха в реактор синтеза винилацетата вместе с частью уксусной кислоты со стадии реакции монооксида углерода и метанола и этиленом для производства потока мономера винилацетата.
31. Способ по п.26, согласно которому молярное соотношение диоксида углерода к природному газу, содержащему углеводород, в сырьевом потоке для проведения стадии реформинга составляет от 0,1 до 0,5.
32. Способ по любому из пп.1-31, согласно которому конечный продукт включает уксусную кислоту, а стадия реакции включает проведение реакции метанола, метилформиата или их комбинации в присутствии реакционной смеси, включающей монооксид углерода, воду, растворитель и каталитическую систему, включающую по крайней мере один галогенированный промотор и по крайней мере одно соединение родия, иридия или их комбинацию.
33. Способ по п.32, согласно которому реакционная смесь имеет содержание воды до 20 мас.%.
34. Способ по п.33, согласно которому стадия реакции включает простое карбонилирование, а содержание воды в реакционной смеси составляет от 14 до 15 мас.%.
35. Способ по п.33, согласно которому стадия реакции включает карбонилирование при пониженном содержании воды, а содержание воды в реакционной смеси составляет от 2 до 8 мас.%.
36. Способ по п.ЗЗ, согласно которому взаимодействие потока с повышенным содержанием монооксида углерода и потока метанола включает изомеризацию метилформиата или сочетание указанной изомеризации и карбонилирования метанола, а реакционная смесь содержит ненулевое количество воды, не превышающее 2 мас.%.
37. Способ по п.ЗЗ, согласно которому взаимодействие потока с повышенным содержанием монооксида углерода и потока метанола осуществляется в непрерывном режиме.
38. Способ по любому из пп.1-31, согласно которому взаимодействие потока с повышенным содержанием монооксида углерода и потока метанола включает промежуточное образование метилформиата и изомеризацию метилформиата до уксусной кислоты.
39. Способ по любому из пп.1-31, согласно которому стадия реакции включает промежуточную реакцию СО с двумя молями метилового спирта с образованием метилацетата и гидролиз метилацетата до уксусной кислоты и метанола.
40. Способ по п.26, согласно которому поток с повышенным содержанием водорода, поступающий после сепарации, представляет собой исключительно отводной поток с повышенным содержанием водорода.
41. Способ по п.11, согласно которому соотношение компонентов (Н2-СО2)/(CО+СО2) потока, поступающего в контур синтеза метанола, равно 2,0.
42. Способ по п.11 или 41, согласно которому поток, поступающий в контур синтеза метанола, дополнительно содержит диоксид углерода из иного, чем сепаратор источника.
43. Способ по п.11 или 41, согласно которому поток с повышенным содержанием диоксида углерода, питающий контур синтеза метанола, подводят из сепаратора.
44. Способ по п.11, или 41, или п.42, согласно которому величина потока с повышенным содержанием водорода превышает стехиометрическую потребность в водороде контура синтеза метанола.
Приоритет по пунктам формулы:
От 01.11.1999 пп.12-41;
От 12.04.2004 пп.1-11 и 42-44.
RU2002114828/04A 1999-11-01 2000-10-31 Способ модернизации установки по производству метанола (варианты), способ получения водорода уксусной кислоты или продукта, выбираемого из группы производных уксусной кислоты RU2250894C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/430,888 US6274096B1 (en) 1999-11-01 1999-11-01 Methanol plant retrofit
US09/430,888 1999-11-01
US09/547,831 US6232352B1 (en) 1999-11-01 2000-04-12 Methanol plant retrofit for acetic acid manufacture
US09/547,831 2000-04-12

Publications (2)

Publication Number Publication Date
RU2002114828A RU2002114828A (ru) 2004-01-20
RU2250894C2 true RU2250894C2 (ru) 2005-04-27

Family

ID=27028819

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002114828/04A RU2250894C2 (ru) 1999-11-01 2000-10-31 Способ модернизации установки по производству метанола (варианты), способ получения водорода уксусной кислоты или продукта, выбираемого из группы производных уксусной кислоты

Country Status (13)

Country Link
US (1) US6232352B1 (ru)
EP (3) EP2146166A3 (ru)
AT (2) ATE424378T1 (ru)
AU (1) AU781369B2 (ru)
CA (1) CA2388961C (ru)
DE (2) DE60041723D1 (ru)
ES (2) ES2322910T3 (ru)
MY (1) MY130262A (ru)
NO (1) NO328072B1 (ru)
NZ (1) NZ519314A (ru)
PT (1) PT1683780E (ru)
RU (1) RU2250894C2 (ru)
WO (1) WO2001032594A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510883C2 (ru) * 2008-10-02 2014-04-10 Аммония Касале С.А. Способ получения синтез-газа для производства аммиака
RU2584422C2 (ru) * 2010-09-24 2016-05-20 Селаниз Интернэшнл Корпорейшн Циркуляционный реактор для получения уксусной кислоты
RU2688760C2 (ru) * 2014-11-27 2019-05-22 Касале Са Способ модернизации установки для получения аммиака
RU2743402C2 (ru) * 2016-12-05 2021-02-18 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Комплексный способ и установка для разделения воздуха посредством криогенной дистилляции и охлаждения газа
RU2782754C1 (ru) * 2019-05-28 2022-11-02 Гэсконтек Гмбх Способ и установка синтеза метанола

Families Citing this family (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781014B1 (en) 1999-11-01 2004-08-24 Acetex (Cyprus) Limited Methanol plant retrofit for manufacture of acetic acid
US6531630B2 (en) 2000-12-29 2003-03-11 Kenneth Ebenes Vidalin Bimodal acetic acid manufacture
MXPA03011337A (es) * 2001-06-28 2004-03-19 Fluor Corp Configuraciones y metodos de planta mejorada de amoniaco.
US6832485B2 (en) * 2001-11-26 2004-12-21 Ormat Industries Ltd. Method of and apparatus for producing power using a reformer and gas turbine unit
DE10214003B4 (de) * 2002-03-27 2005-12-22 Lurgi Ag Verfahren zur Erzeugung von Kohlenmonoxid und Methanol
US6706770B2 (en) * 2002-04-04 2004-03-16 Air Products And Chemicals, Inc. Co-production of hydrogen and methanol from steam reformate
US6596781B1 (en) * 2002-05-02 2003-07-22 Chevron U.S.A. Inc. Integrated process for preparing Fischer-Tropsch products and acetic acid from synthesis gas
CN1310826C (zh) * 2002-05-20 2007-04-18 埃塞泰克斯(塞浦路斯)有限公司 制造乙酸和甲醇的一体化方法
US8394863B2 (en) 2003-08-21 2013-03-12 Pearson Technologies, Inc. Process and apparatus for the production of useful products from carbonaceous feedstock
TW200519073A (en) * 2003-08-21 2005-06-16 Pearson Technologies Inc Process and apparatus for the production of useful products from carbonaceous feedstock
US7087653B2 (en) * 2003-12-23 2006-08-08 World Gtl, Inc. Modification of a methanol plant for converting natural gas to liquid hydrocarbons
MY146697A (en) * 2004-07-09 2012-09-14 Acetex Cyprus Ltd Preparation of syngas for acetic acid synthesis by partial oxidation of methanol feedstock
EA011478B1 (ru) * 2005-02-18 2009-04-28 Асетэкс (Кипр) Лимитед Автотермический реформинг-процесс для комплексного производства уксусной кислоты и метанола
US7608743B2 (en) 2005-04-15 2009-10-27 University Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
KR101495085B1 (ko) * 2005-04-15 2015-02-24 유니버시티 오브 써던 캘리포니아 이산화탄소의 메탄올, 디메틸 에테르 및 유도된생성물들로의 효율적인 선택적 변환
FR2901152B1 (fr) * 2006-05-17 2008-07-04 Inst Francais Du Petrole Procede de traitement d'un gaz naturel avec valorisation du co2 pour produire de l'ester formique et du methane.
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
EP2293864A4 (en) * 2008-05-16 2011-10-26 Univ Southern California MITIGATION OR ELIMINATION OF THE CARBON FOOTPRINT OF HUMAN ACTIVITIES
US20100197486A1 (en) * 2008-07-31 2010-08-05 Celanese International Corporation Catalysts for making ethyl acetate from acetic acid
US20110263910A1 (en) * 2008-07-31 2011-10-27 Celanese International Corporation Copper Catalysts for Making Ethanol from Acetic Acid
US7816565B2 (en) 2008-07-31 2010-10-19 Celanese International Corporation Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US20100030001A1 (en) * 2008-07-31 2010-02-04 Laiyuan Chen Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US7608744B1 (en) * 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680317B2 (en) * 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820852B2 (en) * 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US20100030002A1 (en) * 2008-07-31 2010-02-04 Johnston Victor J Ethylene production from acetic acid utilizing dual reaction zone process
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US7855303B2 (en) * 2008-11-14 2010-12-21 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethylene
CN102056885B (zh) 2008-12-19 2015-04-08 大赛璐化学工业株式会社 乙酸和氨的制造方法
US8178715B2 (en) 2008-12-31 2012-05-15 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via acetaldehyde
US7820853B2 (en) * 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) * 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
BR112012009770A2 (pt) 2009-10-26 2016-05-17 Celanese Int Corp catalisador para a produçao de etanol através da hidrogenação de ácio acético que compreende platina-estanho sobre suporte de silício
MX337472B (es) 2009-10-26 2016-03-04 Celanese Int Corp Catalizadores para hacer etanol a partir de acido acetico.
EP2493607A1 (en) 2009-10-26 2012-09-05 Celanese International Corporation Processes for making ethyl acetate from acetic acid
WO2011056248A2 (en) 2009-10-26 2011-05-12 Celanese International Corporation Processes for making ethanol or ethyl acetate from acetic acid using bimetallic catalysts
CN102300638A (zh) 2009-10-26 2011-12-28 国际人造丝公司 由乙酸制备乙酸乙酯的催化剂
CA2778959A1 (en) 2009-10-26 2011-05-12 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8710277B2 (en) * 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) * 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
WO2011097220A2 (en) 2010-02-02 2011-08-11 Celanese International Corporation Process for producing ethanol using an extractive distillation column
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8318988B2 (en) 2010-05-07 2012-11-27 Celanese International Corporation Process for purifying a crude ethanol product
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8552226B2 (en) 2010-02-02 2013-10-08 Celanese International Corporation Process for heat integration for ethanol production and purification process
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
WO2011097193A2 (en) 2010-02-02 2011-08-11 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
CA2787419A1 (en) 2010-02-02 2011-08-11 Celanese International Corporation Preparation and use of a catalyst for producing ethanol comprising a crystalline support modifier
MX2012008936A (es) 2010-02-02 2012-08-15 Celanese Int Corp Proceso para purificar un producto de etanol crudo.
US8460405B2 (en) * 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
AU2011213125B2 (en) 2010-02-02 2014-07-17 Celanese International Corporation Process for purifying ethanol
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8858659B2 (en) * 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8394984B2 (en) 2010-02-02 2013-03-12 Celanese International Corporation Process for producing an ethyl acetate solvent and co-production of ethanol
US8552225B2 (en) 2010-02-02 2013-10-08 Celanese International Corporation Process for vaporizing acetic acid for hydrogenation processes to produce ethanol
US8394985B2 (en) 2010-02-02 2013-03-12 Celanese International Corporation Process for producing an ester feed stream for esters production and co-production of ethanol
US8552224B2 (en) 2010-05-07 2013-10-08 Celanese International Corporation Processes for maximizing ethanol formation in the hydrogenation of acetic acid
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
WO2012039840A2 (en) 2010-02-02 2012-03-29 Celanese International Corporation Processes for producing alcohols from a mixed acid feed
US8575404B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Process for recycling gas from acetic acid hydrogenation
US8704011B2 (en) 2010-05-07 2014-04-22 Celanese International Corporation Separating ethanol and ethyl acetate under low pressure conditions
US8704010B2 (en) 2010-05-07 2014-04-22 Celanese International Corporation Alcohol production process with impurity removal
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
EP2566837A2 (en) 2010-05-07 2013-03-13 Celanese International Corporation Process for purifying ethanol
US8604255B2 (en) 2010-05-07 2013-12-10 Celanese International Corporation Process for recovering ethanol with sidedraws to regulate C3+ alcohols concentrations
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8884080B2 (en) 2010-07-09 2014-11-11 Celanese International Corporation Reduced energy alcohol separation process
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8809597B2 (en) 2010-07-09 2014-08-19 Celanese International Corporation Separation of vapor crude alcohol product
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US20120010445A1 (en) 2010-07-09 2012-01-12 Celanese International Corporation Low Energy Alcohol Recovery Processes
US9150474B2 (en) 2010-07-09 2015-10-06 Celanese International Corporation Reduction of acid within column through esterification during the production of alcohols
US8859827B2 (en) 2011-11-18 2014-10-14 Celanese International Corporation Esterifying acetic acid to produce ester feed for hydrogenolysis
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8901358B2 (en) 2010-07-09 2014-12-02 Celanese International Corporation Esterification of vapor crude product in the production of alcohols
US8846988B2 (en) 2010-07-09 2014-09-30 Celanese International Corporation Liquid esterification for the production of alcohols
CN103619791B (zh) 2010-07-09 2015-06-24 国际人造丝公司 纯化乙醇产物的方法
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8846986B2 (en) 2011-04-26 2014-09-30 Celanese International Corporation Water separation from crude alcohol product
US8710280B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Weak acid recovery system for ethanol separation processes
BR112012029767A2 (pt) 2010-08-06 2016-08-09 Celanese Int Corp composições de etanol combustível desnaturadas para misturar com gasolina ou combustível diesel para o uso como combustíveis de motor
US8394988B2 (en) 2010-09-28 2013-03-12 Celanese International Corporation Production of acetic acid with high conversion rate
US8877963B2 (en) 2010-09-28 2014-11-04 Celanese International Corporation Production of acetic acid with high conversion rate
US8678715B2 (en) 2010-11-15 2014-03-25 B&J Rocket America, Inc. Air cooled spacer for multi-blade abrading wheel
US20120253084A1 (en) 2011-04-01 2012-10-04 Celanese International Corporation Vent scrubbers for use in production of ethanol
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
MX2013012537A (es) 2011-04-26 2013-12-02 Celanese Int Corp Reduccion de acido dentro de la columna a traves de la esterificacion durante la produccion de alcoholes.
CN103119010B (zh) 2011-04-26 2015-07-29 国际人造丝公司 通过分离来自加氢过程的粗产物回收乙醇侧线馏分
TW201242935A (en) 2011-04-26 2012-11-01 Celanese Int Corp Process to recover alcohol with secondary reactors for hydrolysis of acetal
TW201245128A (en) 2011-04-26 2012-11-16 Celanese Int Corp Reduced energy alcohol separation process having water removal
US8686199B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process for reducing the concentration of acetic acid in a crude alcohol product
US8884081B2 (en) 2011-04-26 2014-11-11 Celanese International Corporation Integrated process for producing acetic acid and alcohol
US8927780B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for removing aldehydes from ethanol reaction mixture
US9000233B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Process to recover alcohol with secondary reactors for hydrolysis of acetal
CN103140460B (zh) 2011-04-26 2015-08-19 国际人造丝公司 减少循环至乙酸加氢反应器的乙醇的方法
US8461399B2 (en) 2011-04-26 2013-06-11 Celanese International Corporation Separation process having an alcohol sidestream
US8933278B2 (en) 2011-04-26 2015-01-13 Celanese International Corporation Process for producing ethanol and reducing acetic acid concentration
AR086128A1 (es) 2011-04-26 2013-11-20 Celanese Int Corp Proceso para producir etanol que emplea una corriente de acido diluido como agente extractivo
EP2702026A1 (en) 2011-04-26 2014-03-05 Celanese International Corporation Extractive distillation of crude ethanol
US8927783B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Recovering ethanol with sidestreams to regulate C3+ alcohols concentrations
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8927787B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for controlling a reboiler during alcohol recovery and reduced ester formation
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8927784B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol from an ethyl acetate residue stream
US8927788B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol with reduced water from overhead of acid column
US8907141B2 (en) 2011-04-26 2014-12-09 Celanese International Corporation Process to recover alcohol with secondary reactors for esterification of acid
US8748675B2 (en) 2011-06-16 2014-06-10 Celanese International Corporation Extractive distillation of crude alcohol product
US9024085B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Process to reduce ethanol recycled to hydrogenation reactor
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US20120277482A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Removing Water from an Acetic Acid Stream in the Production of Alcohols
WO2012148465A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Recovering ethanol with sidestreams to regulate c3+ alcohols concentrations
US9024084B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Reduced energy alcohol separation process having controlled pressure
CN103732566A (zh) 2011-04-26 2014-04-16 国际人造丝公司 降低粗乙醇产物中乙酸浓度的方法
TW201249790A (en) 2011-04-26 2012-12-16 Celanese Int Corp Reduced energy alcohol separation process having controlled pressure
US8686200B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process to recover alcohol from an acidic residue stream
US9000232B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Extractive distillation of crude alcohol product
US8652988B2 (en) 2011-04-27 2014-02-18 Celanese International Corporation Catalyst for producing acrylic acids and acrylates
US8642498B2 (en) 2011-05-11 2014-02-04 Celanese International Corporation Catalysts for producing acrylic acids and acrylates
US8704012B2 (en) 2011-06-16 2014-04-22 Celanese International Corporation Distillation of crude alcohol product using entrainer
WO2013019239A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Ethanol separation process having stripping section for reducing acetals
US8440866B2 (en) 2011-08-03 2013-05-14 Celanese International Corporation Process for separating ethanol having low acid
WO2013019230A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Process for separating ethanol having low acid
US8481792B2 (en) 2011-08-03 2013-07-09 Celanese International Corporation Reducing acetals and/or esters during ethanol separation process
WO2013019229A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Reducing impurities in ethanol in hydrogenation processes with multiple reaction zones
US8575405B2 (en) 2011-08-03 2013-11-05 Celanese International Corporation Reducing acetals during ethanol separation process
US8884079B2 (en) 2011-08-03 2014-11-11 Celanese International Corporation Reducing impurities in hydrogenation processes with multiple reaction zones
US8877987B2 (en) 2011-08-03 2014-11-04 Celanese International Corportation Process for producing anhydrous ethanol using extractive distillation column
WO2013019231A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Vapor separation in ethanol production
US8748676B2 (en) 2011-08-03 2014-06-10 Celanese International Corporation Process for purifying a crude ethanol product
US8558034B2 (en) 2011-08-03 2013-10-15 Celanese International Corporation Reducing acetals during ethanol separation process using high pressure distillation column
BR112014003783A2 (pt) 2011-08-03 2017-03-21 Celanese Int Corp redução de acetais durante o processo de separação de etanol
WO2013019236A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Process for recovering ethanol in a side draw distillation column
WO2013019237A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Reducing acetals and/or esters during ethanol separation process
WO2013019235A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Process for purifying a crude ethanol product
US8927782B2 (en) 2011-08-03 2015-01-06 Celanese International Corporation Vapor separation in alcohol production
US8846987B2 (en) 2011-08-03 2014-09-30 Celanese International Corporation Ethanol separation process having stripping section for reducing acetals
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
WO2013019234A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Processes for improving ethanol production via hydrolysis of ester contaminants
US8877986B2 (en) 2011-08-03 2014-11-04 Celanese International Corporation Process for recovering alcohol
WO2013019238A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Reducing acetals during ethanol separation process using high pressure distillation column
WO2013019233A1 (en) 2011-08-03 2013-02-07 Celanese International Corporation Process for producing anhydrous ethanol using extractive distillation column
US8853467B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol
US8829253B2 (en) * 2011-08-19 2014-09-09 Celanese International Corporation Integrated process for producing ethanol from methanol
US8853466B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol from methanol
US20130053599A1 (en) 2011-08-22 2013-02-28 Celanese International Corporation Catalysts for producing acrylic acids and acrylates
US9663437B2 (en) 2011-09-13 2017-05-30 Celanese International Corporation Production of acetic acid with high conversion rate
US8802585B2 (en) 2011-09-22 2014-08-12 Celanese International Corporation Catalysts for producing acrylic acids and acrylates
US8735314B2 (en) 2011-09-29 2014-05-27 Celanese International Corporation Catalysts for producing acrylic acids and acrylates
US8658823B2 (en) 2011-10-03 2014-02-25 Celanese International Corporation Processes for producing acrylic acids and acrylates
US8536368B2 (en) 2011-10-03 2013-09-17 Celanese International Corporation Processes for the production of acrylic acids and acrylates from a trioxane feed
US20130085297A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylates with Pre- and Post-Reactor Dilution
US9487466B2 (en) 2011-12-16 2016-11-08 Celanese International Corporation Process for producing acrylic acids and acrylates
US20130085302A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylates
US20130085295A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for producing acrylic acids and acrylates
US8658822B2 (en) 2011-10-03 2014-02-25 Celanese International Corporation Processes for producing acrylic acids and acrylates
US8864950B2 (en) 2011-10-03 2014-10-21 Celanese International Corporation Processes for producing acrylic acids and acrylates
US20130267736A1 (en) 2011-10-03 2013-10-10 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylates with Diluted Reaction Mixture and By-Product Recycle
US20130085303A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylates
US20130085298A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylates with Liquid Product Dilution
US8658824B2 (en) 2011-10-03 2014-02-25 Celanese International Corporation Processes for producing acrylic acids and acrylates
US8729299B2 (en) 2011-10-03 2014-05-20 Celanese International Corporation Processes for the production of acrylic acids and acrylates
US20130085299A1 (en) 2011-10-03 2013-04-04 Celanese International Corporation Processes for Producing Acrylic Acids and Acrylate with Diluted Crude Acrylate Stream
US20130253224A1 (en) 2012-03-20 2013-09-26 Celanese International Corporation Process for Producing Acrylic Acids and Acrylates
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8764883B2 (en) * 2011-10-06 2014-07-01 Kellogg Brown & Root Llc Apparatus and methods for saturating and purifying syngas
WO2013056268A2 (en) 2011-10-06 2013-04-18 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol
CN103030109A (zh) * 2011-10-09 2013-04-10 中国石油化工股份有限公司 合成醋酸所需的合成气的制备方法
US8648220B2 (en) 2011-10-11 2014-02-11 Celanese International Corporation Process for producing ethanol using a crude vinyl acetate feed
US8704013B2 (en) 2011-11-09 2014-04-22 Celanese International Corporation Integrated process for producing ethanol
US8686201B2 (en) 2011-11-09 2014-04-01 Celanese International Corporation Integrated acid and alcohol production process having flashing to recover acid production catalyst
WO2013070210A1 (en) 2011-11-09 2013-05-16 Celanese International Corporation Integrated carbonylation and hydrogenation process to obtain ethanol having flashing to recover acid production catalyst
US8809598B2 (en) 2011-11-09 2014-08-19 Celanese International Corporation Producing ethanol using two different streams from acetic acid carbonylation process
US8614359B2 (en) 2011-11-09 2013-12-24 Celanese International Corporation Integrated acid and alcohol production process
US8809599B2 (en) 2011-11-09 2014-08-19 Celanese International Corporation Integrated process for producing ethanol and water balance control
WO2013070209A1 (en) 2011-11-09 2013-05-16 Celanese International Corporation Integrated carbonylation and hydrogenation process to obtain ethanol
AU2012335633B2 (en) * 2011-11-10 2017-03-30 Pioneer Energy Synthesis of high caloric fuels and chemicals
US8748673B2 (en) 2011-11-18 2014-06-10 Celanese International Corporation Process of recovery of ethanol from hydrogenolysis process
EP2782891A1 (en) 2011-11-22 2014-10-01 Celanese International Corporation Hydrogenating acetic acid to produce ethyl acetate and reducing ethyl acetate to ethanol
EP2782890A1 (en) 2011-11-22 2014-10-01 Celanese International Corporation Esterifying an ethanol and acetic acid mixture to produce an ester feed for hydrogenolysis
US20130131399A1 (en) 2011-11-23 2013-05-23 Celanese International Corporation Catalyst Preparations for High Conversion Catalysts for Producing Ethanol
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US8697802B2 (en) 2011-11-28 2014-04-15 Celanese International Corporation Process for producing polyvinyl alcohol or a copolymer thereof
US8927785B2 (en) 2011-11-29 2015-01-06 Celanese International Corporation Treatment of recycle gas from acid hydrogenation
US9029614B2 (en) 2011-12-14 2015-05-12 Celanese International Corporation Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol
US8927790B2 (en) 2011-12-15 2015-01-06 Celanese International Corporation Multiple vapor feeds for hydrogenation process to produce alcohol
US9249081B2 (en) 2011-12-16 2016-02-02 Celanese International Corporation Processes for the production of acrylic acids and acrylates
US20130165704A1 (en) 2011-12-21 2013-06-27 Celanese International Corporation Process for producing ethanol in a reactor having a constant temperature
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US20130165695A1 (en) 2011-12-22 2013-06-27 Celanese International Corporation Process conditions for producing acrylic acid
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
CN103282333A (zh) 2011-12-22 2013-09-04 国际人造丝公司 使用具有无定形载体的加氢催化剂的乙醇方法
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US20130172633A1 (en) 2011-12-29 2013-07-04 Celanese International Corporation Process For Producing Ethanol From Impure Methanol
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
WO2013101305A1 (en) 2011-12-30 2013-07-04 Celanese International Corporation Pressure driven distillation for producing and recovering ethanol from hydrogenation process
CA2862562A1 (en) 2012-01-06 2013-07-11 Celanese International Corporation Cobalt-containing hydrogenation catalysts and processes for making same
US8980789B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Modified catalyst supports
US8841230B2 (en) 2012-01-06 2014-09-23 Celanese International Corporation Processes for making catalysts with metal halide precursors
WO2013103393A1 (en) 2012-01-06 2013-07-11 Celanese International Corporation Processes for making catalysts comprising precious metal and active metal modified support
WO2013103392A1 (en) 2012-01-06 2013-07-11 Celanese International Corporation Hydrogenation catalyst and process for producing ethanol using the catalyst
BR112014015584A8 (pt) 2012-01-06 2017-07-04 Celanese Int Corp catalisadores de hidrogenação com suportes modificados com cobalto
WO2013103396A1 (en) 2012-01-06 2013-07-11 Celanese International Corporation Processes for making catalysts with oxalate precursors
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US20130197278A1 (en) 2012-01-27 2013-08-01 Celanese International Corporation Process For Manufacturing Ethanol Using A Metallic Catalyst Supported on Titania
US9353034B2 (en) 2012-02-07 2016-05-31 Celanese International Corporation Hydrogenation process with reduced residence time for vapor phase reactants
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US8729311B2 (en) 2012-02-10 2014-05-20 Celanese International Corporaton Catalysts for converting acetic acid to acetone
US8729317B2 (en) 2012-02-15 2014-05-20 Celanese International Corporation Ethanol manufacturing process over catalyst with cesium and support comprising tungsten or oxides thereof
US20130225876A1 (en) 2012-02-29 2013-08-29 Celanese International Corporation Hydrogenation Catalyst Using Multiple Impregnations of an Active Metal Solution
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US9108184B2 (en) 2012-03-13 2015-08-18 Celanese International Corporation Catalyst for producing acrylic acids and acrylates
RS58842B1 (sr) 2012-03-13 2019-07-31 Celanese Int Corp Katalizator za proizvodnju akrilnih kiselina i akrilata
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US20130245310A1 (en) 2012-03-13 2013-09-19 Celanese International Corporation Catalyst for producing acrylic acids and acrylates
CN104159670A (zh) 2012-03-13 2014-11-19 国际人造丝公司 用于产生丙烯酸和丙烯酸类的包含钒、钛和钨的催化剂
US8802903B2 (en) 2012-03-13 2014-08-12 Celanese International Corporation Stacked bed reactor with diluents for producing ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US20130261349A1 (en) 2012-03-28 2013-10-03 Celanese International Corporation Hydrogenation Catalysts and Processes for Making Same
WO2013191399A1 (ko) * 2012-06-18 2013-12-27 삼성비피화학(주) 초산, 초산비닐 및 폴리비닐알코올의 통합 제조방법
RS58692B1 (sr) 2012-09-06 2019-06-28 Celanese Int Corp Postupci za proizvodnju vinil acetata
US8759576B2 (en) 2012-09-06 2014-06-24 Celanese International Corporation Processes for purifying acetic anhydride
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
US20140121410A1 (en) 2012-10-31 2014-05-01 Celanese International Corporation Processes for Regenerating Catalyst for Producing Acrylic Acids and Acrylates
US9000237B2 (en) 2012-12-20 2015-04-07 Celanese International Corporation Ethanol refining process using intermediate reboiler
US8975450B2 (en) 2013-03-15 2015-03-10 Celanese International Corporation Ethanol and ethyl acetate production using an acetic acid and acetic anhydride mixed feed
US9073846B2 (en) 2013-06-05 2015-07-07 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
US9120743B2 (en) 2013-06-27 2015-09-01 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
US9266095B2 (en) 2014-01-27 2016-02-23 Celanese International Corporation Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports
US9024088B1 (en) 2014-04-28 2015-05-05 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide comprising nickel
WO2015168021A1 (en) 2014-04-28 2015-11-05 Celanese International Corporation Process for producing ethanol with zonal catalysts
US9382177B2 (en) 2014-04-28 2016-07-05 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide comprising a promoter metal
US9073815B1 (en) 2014-04-28 2015-07-07 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide and processes for producing ethanol
WO2016059566A1 (en) * 2014-10-15 2016-04-21 Sabic Global Technologies B.V. Integrated syngas-based production of dimethyl carbonate
WO2016122465A1 (en) 2015-01-27 2016-08-04 Celanese International Corporation Process for producing ethanol using solid catalysts
US9670120B2 (en) 2015-01-27 2017-06-06 Celanese International Corporation Process for producing ethanol using a solid catalyst
WO2016175747A1 (en) 2015-04-27 2016-11-03 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide having bismuth and process for producing ethanol
WO2016175745A1 (en) 2015-04-27 2016-11-03 Celanese International Corporation Ruthenium-bismuth mixed oxide hydrogenation catalysts and processes for producing ethanol
US9540297B2 (en) 2015-04-27 2017-01-10 Celanese International Corporation Ruthenium-bismuth mixed oxide hydrogenation catalysts and processes for producing ethanol
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
WO2019055273A1 (en) 2017-09-15 2019-03-21 Celanese International Corporation PROCESS FOR PRODUCTION OF ACRYLIC ACIDS AND ACRYLATES
GB201808019D0 (en) 2018-05-17 2018-07-04 Johnson Matthey Davy Technologies Ltd Process for synthesising methanol
CN110002402A (zh) * 2019-04-23 2019-07-12 中国五环工程有限公司 荒煤气提取co和h2的方法
HUE061228T2 (hu) 2020-03-26 2023-05-28 Air Liquide Eljárás és berendezés tiszta szén-monoxid és hidrogén elõállítására
EP4251602A1 (en) * 2020-11-25 2023-10-04 Enerkem Inc. Process for production of acetic acid and acrylic acid from waste carbon containing materials with reduced carbon footprint
US20220298095A1 (en) * 2021-03-19 2022-09-22 Saudi Arabian Oil Company Production of Acetic Acid through Cryogenic Separation of Syngas
EP4197967A1 (de) 2021-12-20 2023-06-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und anlage zum herstellen von methanol und kohlenmonoxid
IT202200004013A1 (it) * 2022-03-03 2023-09-03 Milano Politecnico Processo autosostenibile a zero emissioni per produzione di chemicals da fonti organiche

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1961736A (en) 1929-07-18 1934-06-05 Tennessee Products Corp Process of forming acetic acid from methanol and carbon monoxide
US2622089A (en) 1947-09-05 1952-12-16 Phillips Petroleum Co Method of reforming natural gas to produce hydrogen and carbon monoxide synthesis gas
US3859230A (en) 1969-10-24 1975-01-07 Fluor Corp Synthesis gas generation with carbon dioxide supplemented feed
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US4081253A (en) * 1976-12-10 1978-03-28 Texaco Development Corporation Production of purified synthesis gas and carbon monoxide
US5155261A (en) 1987-02-05 1992-10-13 Reilly Industries, Inc. Process for acetic acid preparation and heterogenous catalyst for same
DE3712008A1 (de) 1987-04-09 1988-10-27 Linde Ag Verfahren zur gleichzeitigen erzeugung von methanol und kohlenmonoxid
US5672743A (en) 1993-09-10 1997-09-30 Bp Chemicals Limited Process for the production of acetic acid
KR960009892B1 (ko) 1993-08-25 1996-07-24 재단법인 한국화학연구소 이산화탄소로 부터 합성가스의 제조방법
KR100371761B1 (ko) 1994-05-13 2003-05-22 빠르디에 아세띠끄스 가용성이리듐기재촉매의존재하에서,카르복실산또는그의해당에스테르의제조방법
FR2725443B1 (fr) 1994-10-05 1996-12-20 Rhone Poulenc Chimie Preparation d'acides carboxyliques ou des esters correspondants par carbonylation en presence d'iridium
US5767165A (en) 1995-03-16 1998-06-16 Steinberg; Meyer Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions
US5817869A (en) 1995-10-03 1998-10-06 Quantum Chemical Corporation Use of pentavalent Group VA oxides in acetic acid processing
DK40796A (da) 1996-04-10 1997-10-11 Haldor Topsoe As Fremgangsmåde til fremstilling af eddikesyre
DK136196A (da) * 1996-11-29 1998-05-30 Haldor Topsoe As Fremgangsmåde til fremstilling af eddikesyre
GB9626429D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626428D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626317D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510883C2 (ru) * 2008-10-02 2014-04-10 Аммония Касале С.А. Способ получения синтез-газа для производства аммиака
RU2584422C2 (ru) * 2010-09-24 2016-05-20 Селаниз Интернэшнл Корпорейшн Циркуляционный реактор для получения уксусной кислоты
RU2688760C2 (ru) * 2014-11-27 2019-05-22 Касале Са Способ модернизации установки для получения аммиака
US11091373B2 (en) 2014-11-27 2021-08-17 Casale Sa Method for revamping an ammonia plant
RU2743402C2 (ru) * 2016-12-05 2021-02-18 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Комплексный способ и установка для разделения воздуха посредством криогенной дистилляции и охлаждения газа
RU2800952C2 (ru) * 2019-04-18 2023-08-01 Гэсконтек Гмбх Способ и установка синтеза метанола
RU2782754C1 (ru) * 2019-05-28 2022-11-02 Гэсконтек Гмбх Способ и установка синтеза метанола

Also Published As

Publication number Publication date
DE60027453D1 (de) 2006-05-24
WO2001032594A1 (en) 2001-05-10
AU781369B2 (en) 2005-05-19
EP1683780B1 (en) 2009-03-04
ATE424378T1 (de) 2009-03-15
MY130262A (en) 2007-06-29
EP2146166A2 (en) 2010-01-20
EP2146166A3 (en) 2012-12-19
PT1683780E (pt) 2009-06-22
NO20022063D0 (no) 2002-04-30
RU2002114828A (ru) 2004-01-20
DE60027453T2 (de) 2007-05-03
CA2388961C (en) 2011-01-04
AU1127801A (en) 2001-05-14
CA2388961A1 (en) 2001-05-10
EP1226103B1 (en) 2006-04-19
ES2263498T3 (es) 2006-12-16
NO328072B1 (no) 2009-11-23
ES2322910T3 (es) 2009-07-01
US6232352B1 (en) 2001-05-15
ATE323668T1 (de) 2006-05-15
WO2001032594B1 (en) 2001-10-18
NZ519314A (en) 2003-10-31
EP1683780A1 (en) 2006-07-26
DE60041723D1 (de) 2009-04-16
NO20022063L (no) 2002-06-26
EP1226103A1 (en) 2002-07-31

Similar Documents

Publication Publication Date Title
RU2250894C2 (ru) Способ модернизации установки по производству метанола (варианты), способ получения водорода уксусной кислоты или продукта, выбираемого из группы производных уксусной кислоты
US6531630B2 (en) Bimodal acetic acid manufacture
US5736116A (en) Ammonia production with enriched air reforming and nitrogen injection into the synthesis loop
EP0849245A1 (en) Process and plant for the production of methanol
US6258860B1 (en) Process for the production of methanol
US11851394B2 (en) Process for synthesising methanol
RU2608766C2 (ru) Способ повышения производительности установки для получения аммиака
US11597691B2 (en) Process for synthesising methanol
EA008283B1 (ru) Интегрированный способ производства уксусной кислоты и метанола
US6353133B1 (en) Methanol plant retrofit
CA3137256A1 (en) Process for synthesising methanol
GB2568128A (en) Methanol synthesis process
US6781014B1 (en) Methanol plant retrofit for manufacture of acetic acid
GB2624544A (en) Methanol process
RU2353608C2 (ru) Интегрированный способ производства уксусной кислоты и метанола
EA042869B1 (ru) Способ синтеза метанола
EA042659B1 (ru) Способ синтезирования метанола

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131101