RU2232783C2 - Ударопрочные полиолефиновые композиции - Google Patents

Ударопрочные полиолефиновые композиции Download PDF

Info

Publication number
RU2232783C2
RU2232783C2 RU2001116116/04A RU2001116116A RU2232783C2 RU 2232783 C2 RU2232783 C2 RU 2232783C2 RU 2001116116/04 A RU2001116116/04 A RU 2001116116/04A RU 2001116116 A RU2001116116 A RU 2001116116A RU 2232783 C2 RU2232783 C2 RU 2232783C2
Authority
RU
Russia
Prior art keywords
fraction
olefins
propylene
polymerization
polyolefin compositions
Prior art date
Application number
RU2001116116/04A
Other languages
English (en)
Other versions
RU2001116116A (ru
Inventor
Гьюль но ЧЕККИН (IT)
Гьюльяно ЧЕККИН
Антео ПЕЛЛИКОНИ (IT)
Антео ПЕЛЛИКОНИ
Паола СГАРЦИ (IT)
Паола СГАРЦИ
Паоло ФЕРРАРИ (IT)
Паоло ФЕРРАРИ
Original Assignee
Бэйселлтек Ю Эс Эй Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бэйселлтек Ю Эс Эй Инк. filed Critical Бэйселлтек Ю Эс Эй Инк.
Publication of RU2001116116A publication Critical patent/RU2001116116A/ru
Application granted granted Critical
Publication of RU2232783C2 publication Critical patent/RU2232783C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Изобретение относится к полиолефиновым композициям, содержащим две полимерные фракции с различными значениями скорости течения расплава. Композиция содержит 60–95 мас.% компонента А), представляющего собой кристаллический полипропилен, имеющий значение скорости течения расплава (MFRA) от 2,5 до 50 г/10 мин, и 5–40 мас.% компонента В) - сополимера этилена с одним или несколькими С410-α-олефинами, содержащего от 10 до 40 мас.% С410-α-олефинов. Компонент A) содержит от 20 до 80 мас.% фракции АI) и от 20 до 80 мас.% фракции АII), при этом каждая из фракций АI) и АII) выбрана из группы, включающей пропиленовые гомополимеры и статистические сополимеры пропилена, содержащие до 15 мас.% этилена, и / или С410-α-олефины. Кроме того, фракция АI) имеет значение скорости течения расплава от 0,5 до 8 г/10 мин, измеренное при 230°С, при нагрузке 2,16 кг, при этом соотношении MFRA/MFRI составляет от 2 до 25. Полученные композиции обладают совокупностью свойств, таких как перерабатываемость, ударопрочность, низкое помутнение, пониженная способность образовывать матовый налет и низкое содержание фракции, экстрагируемой в органическом растворителе. 2 н. и 8 з.п. ф-лы, 2 табл.

Description

Настоящее изобретение относится к полиолефиновым композициям, содержащим две полимерные фракции с различными значениями скорости течения расплава, выбираемые из пропиленовых гомополимеров и пропилен-этиленовых и/или других α-олефиновых статистических сополимеров и сополимера этилена и С410-α-олефинов.
Композиции настоящего изобретения обладают уникальным балансом таких свойств, как перерабатываемость, механические свойства и оптические свойства. В дополнение к этому они характеризуются низким/очень низким помутнением, пониженной способностью образовывать матовый налет и низким содержанием фракции, экстрагируемой в органических растворителях.
Упомянутые композиции легко можно перерабатывать при помощи литья под давлением, и они могут быть использованы для нескольких применений, в том числе для хозяйственных принадлежностей и игрушек, и в особенности для случаев, когда имеет место контакт с пищевыми продуктами.
Композиции, содержащие полипропилен и фазу каучука, образованную эластомерным сополимером этилена и α-олефинов, уже известны на современном уровне техники, и они описываются, в частности, в Европейских патентах 170255 и 373660.
Упомянутые композиции характеризуются ударопрочностью и, в случае Европейского патента 373660, значениями прозрачности, представляющими интерес для многих применений, однако общий баланс свойств все еще не является полностью удовлетворительным с учетом высоких стандартов, соблюдение которых диктует рынок. Поэтому существует большая потребность в композициях данного типа с улучшенными свойствами.
В настоящее время данная цель была достигнута для полиолефиновых композиций настоящего изобретения, содержащих (в массовых процентах):
A) 60-95%, предпочтительно 70-90%, более предпочтительно 70-88% компонента - кристаллического полипропилена, значение скорости течения расплава (MFRA) (измеренное при 230°С, при нагрузке 2,16 кг) которого находится в пределах от 2,5 до 50, предпочтительно в пределах от 5 до 50, более предпочтительно в пределах от 10 до 30 г/10 мин, и который содержит от 20% до 80%, предпочтительно от 40% до 60% фракции АI), значение скорости течения расплава (MFRI) (измеренное при 230°С, при нагрузке 2,16 кг) которой находится в пределах от 0,5 до 8, предпочтительно в пределах от 0,5 до 5, более предпочтительно в пределах от 1 до 3 г/10 мин, и от 20% до 80%, предпочтительно от 40% до 60% фракции АII);
B) 5-40%, предпочтительно 10-30%, более предпочтительно 12-30% сополимера этилена с одним или несколькими С410-α-олефинами (олефином), содержащего от 10 до 40%, предпочтительно от 15 до 30%, более предпочтительно от 15 до 25% упомянутых С410-α-олефинов (олефина); причем упомянутые фракции АI) и АII) независимо выбираются из пропиленовых гомополимеров и статистических сополимеров пропилена, содержащих вплоть до 15%, предпочтительно вплоть до 10% этилена и/или C410-α-олефинов (олефина); при этом соотношение MFRA/MFRI находится в пределах от 2 до 25, предпочтительно от 4 до 20; здесь процентные содержания А) и В) определяются в расчете на сумму А) и В), а процентные содержания АI) и АII) определяются в расчете на сумму АI) и АII).
Из приведенных выше определений очевидно, что термин "сополимер" включает полимеры, содержащие более чем один тип сомономеров.
Как уже говорилось ранее, композиции настоящего изобретения можно легко переработать в различные виды конечных продуктов или полуфабрикатов, в частности при использовании методик литья под давлением, поскольку они характеризуются относительно высокими значениями MFR совместно с упомянутым хорошим балансом свойств (в частности, модулем упругости при изгибе, ударопрочностью, температурой перехода гибкость/хрупкость, мутностью и блеском). Предпочтительны композиции настоящего изобретения, значения MFR (230°С, 2,16 кг) для всей композиции у которых равны или превышают 4 г/10 мин, в особенности равны или превышают 5 г/10 мин.
Значение MFR для фракции АII) (MFRII) можно легко определить, взяв за основу расчета упомянутые выше диапазоны для значений MFRI и MFRA используя известную корреляцию между MFR полиолефиновой композиции и MFR отдельных компонентов, которая в настоящем случае может быть выражена следующим образом:
ln MFRA=(W I A /W I A +W II A )·ln MFRI+(W II A /W I A +W II A )·ln MFRII,
где W I A и W II A представляют собой массу фракций АI) и АII) соответственно.
Другими предпочтительными признаками для композиций настоящего изобретения являются:
- содержание сомономера или сомономеров в каждой из фракций АI) и АII), если по меньшей мере одна из них выбирается из пропиленовых сополимеров: от 0,5 до 15%, более предпочтительно от 0,5 до 10%, в особенности от 0,5 до 8% (от 0,5 до 5%, если присутствует только этилен, от 1 до 10%, в особенности от 1 до 8%, если присутствуют только С410-α - олефины (олефин));
- содержание полимера, нерастворимого в ксилоле при комнатной температуре (23°С), (по существу эквивалентное индексу изотактичности) для фракций АI) и АII): не меньше, чем 80%, более предпочтительно не меньше, чем 85%, в особенности не меньше, чем 90%, для пропиленовых сополимеров; не меньше, чем 90%, более предпочтительно не меньше, чем 95%, в особенности не меньше, чем 97%, для пропиленовых гомополимеров, причем упомянутые процентные величины являются массовыми, и они относятся к индивидуальной фракции;
- индекс полидисперсности (PI) для А): равняется или превышает 4, в особенности в пределах от 4 до 12;
- характеристическая вязкость [η] для фракции (в полной композиции), растворимой в ксилоле при комнатной температуре: от 0,8 до 2,5 дл/г, более предпочтительно, если желательна высокая прозрачность, от 0,8 до 2, наиболее предпочтительно от 0,8 до 1,9, в особенности от 0,8 до 1,5 дл/г.
Композиции настоящего изобретения характеризуются по меньшей мере одним пиком плавления, определенным при помощи ДСК (дифференциальной сканирующей калориметрии), при температуре, превышающей 140-145°С.
Компонент В) упомянутых композиций в общем случае характеризуется пиком плавления, определенным при помощи ДСК, при температуре в диапазоне от 120°С до 135°С. Такой пик плавления, который может быть приписан кристалличности полиэтиленового типа, в общем случае может быть обнаружен на диаграмме ДСК для полной композиции, в особенности если компонент А) образован пропиленовыми гомополимерами.
Более того, композиции настоящего изобретения предпочтительно характеризуются:
- модулем упругости при изгибе, по меньшей мере равным 700 МПа, в особенности в пределах от 700 до 1300 МПа, если по меньшей мере одна из фракций АI) и АII) выбирается из пропиленовых сополимеров, или по меньшей мере равным 1200 МПа, более предпочтительно по меньшей мере равным 1400 МПа, в особенности в пределах от 1400 или 1500 до 2000 МПа, если компонент А) образован пропиленовыми гомополимерами (то есть как АI), так и АII) являются пропиленовыми гомополимерами);
- значениями ударной вязкости по Изоду при 23°С, по меньшей мере равными 50 Дж/м, более предпочтительно по меньшей мере равными 60 Дж/м, в особенности в пределах от 50 или 60 до 500 Дж/м;
- пределом текучести при растяжении: 15-38 МПа;
- относительным удлинением при разрыве: превышающим 40%;
- по существу отсутствием побеления (помутнения) при изгибании пластины толщиной 1 мм;
- содержанием фракции, экстрагируемой в гексане (FDA 177, 1520): меньшим, чем 10%, более предпочтительно меньшим, чем 9%, в особенности меньшим, чем 5,5% (мас.);
- содержанием фракции, растворимой в ксилоле при комнатной температуре: меньшим, чем 20%, более предпочтительно меньшим, чем 15%.
Температура перехода гибкость/хрупкость и оптические свойства (мутность и блеск) сильно зависят от характеристической вязкости (I.V.) фракции (в полной композиции), растворимой в ксилоле при комнатной температуре.
Температура перехода гибкость/хрупкость будет тем ниже, чем больше будет упомянутая I.V., и в общем случае она равна или меньше -2°С, предпочтительно равна или меньше -5°С, более предпочтительно равна или меньше -10°С, причем ориентировочно нижним пределом будет приблизительно -60°С.
Мутность будет тем меньше, чем меньше будет упомянутая I.V., и предпочтительно она меньше 30%, более предпочтительно равна или меньше 25% для композиций, у которых компонент А) образован пропиленовыми гомополимерами, равна или меньше 20%, более предпочтительно равна или меньше 15% для композиций, у которых по меньшей мере одна из фракций АI) и АII) выбирается из пропиленовых сополимеров. Упомянутые значения мутности измеряются для пластин толщиной 1 мм, полученных из композиций, содержащих структурообразователь (в особенности содержащих дибензилиденсорбиты).
Блеск будет тем больше, чем меньше будет упомянутая I.V., и предпочтительно он находится в пределах от 30 до 150%, более предпочтительно в пределах от 40 до 130%, при измерении в тех же самых условиях, что и условия для измерения мутности.
Поэтому ясно, что в дополнение к ранее упомянутым предпочтительным пределам для I.V. фракции, растворимой в ксилоле при комнатной температуре, используемым тогда, когда желательны хорошие оптические свойства, существует и другой предпочтительный диапазон для упомянутой I.V., а именно от более чем 1,5, до 2,5 дл/г, используемый тогда, когда желательны низкие температуры перехода гибкость/хрупкость, а следовательно, и улучшенная ударопрочность при низких температурах. В таком диапазоне I.V. значения мутности в общем случае находятся в пределах от 45 до 75%.
Композиции настоящего изобретения также характеризуются пониженными уровнями в отношении способности образовывать матовый налет, о чем свидетельствует тот факт, что в общем случае значения блеска у них не претерпевают в ходе старения (например, после 9 дней старения при 80°С) уменьшения более, чем на 30%.
Упомянутые С410-α-олефины, которые присутствуют или же могут присутствовать в качестве сомономеров в компонентах и фракциях композиций настоящего изобретения, представляются формулой CH2=CHR, где R представляет собой алкильный радикал, линейный или разветвленный, содержащий 2-8 углеродных атомов, или арильный (в особенности фенильный) радикал.
Примерами упомянутых С410-α-олефинов являются 1-бутен, 1-пентен, 1-гексен, 4-метил-1-пентен и 1-октен. В особенности предпочтителен 1-бутен.
Композиции настоящего изобретения могут быть получены в результате ступенчатой полимеризации по меньшей мере в три стадии полимеризации. Такую полимеризацию проводят в присутствии стереоспецифических катализаторов Циглера-Натта. Существенным компонентом упомянутых катализаторов является твердый компонент катализатора, в состав которого входит соединение титана, содержащее по меньшей мере одну связь титан-галоген, и электронодонорное соединение, причем оба соединения наносят на галогенид магния в активной форме. Другим существенным компонентом (сокатализатором) является алюминийорганическое соединение, такое как алюминийалкильное соединение.
Возможно добавление внешнего донора
Катализаторы, в общем случае используемые в способе настоящего изобретения, могут позволить получить полипропилен с индексом изотактичности, превышающим 90%, предпочтительно превышающим 95%. Кроме того, упомянутые катализаторы должны обладать чувствительностью к действию регуляторов молекулярной массы (в особенности водорода), достаточно высокой для получения полипропилена, значения MFR для которого находятся в пределах от менее чем 1 г/10 мин до 100 г/10 мин или более.
Катализаторы, обладающие упомянутыми выше характеристиками, хорошо известны в патентной литературе; в особенности выгодны те катализаторы, что описываются в патенте США 4399054 и Европейском патенте 45977. Другие примеры могут быть найдены в патенте США 4472524.
Твердые компоненты катализатора, используемые в упомянутых катализаторах, содержат в качестве доноров электронов (внутренних доноров) соединения, выбираемые из группы, состоящей из простых эфиров, кетонов, лактонов, соединений, содержащих атомы N, Р и/или S, и сложных эфиров моно- и дикарбоновых кислот.
В особенности подходящими электронодонорными соединениями являются сложные эфиры фталевой кислоты, такие как диизобутил-, диоктил-, дифенил- и бензилбутилфталат.
Другими в особенности подходящими донорами электронов являются простые 1,3-диэфиры, описываемые формулой
Figure 00000001
где RI и RII одинаковы или различны и представляют собой C1-C18-алкильный, С3-C18-циклоалкильный или С7-C18-арильный радикалы; RIII и RIV одинаковы или различны и представляют собой C14-алкильные радикалы; или же ими являются простые 1,3-диэфиры, у которых углеродный атом в положении 2 входит в состав циклической или полициклической структуры, образованной 5, 6 или 7 углеродными атомами и содержащей две или три ненасыщенности.
Простые эфиры данного типа описываются в опубликованных Европейских патентных заявках 361493 и 728769.
Представительными примерами упомянутых простых диэфиров являются 2-метил-2-изопропил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан, 2-изопропил-2-циклопентил-1,3-диметоксипропан, 2-изопропил-2-изоамил-1,3-диметоксипропан, 9,9-бис(метоксиметил)флуорен.
Получение упомянутых выше компонентов катализатора проводят в соответствии с различными способами.
Например, аддукт MgCl2·nROH (в особенности в виде сфероидальных частиц), где n в общем случае находится в диапазоне от 1 до 3, a ROH представляет собой этанол, бутанол или изобутанол, вступает в реакцию с избытком TiCl4, содержащим электронодонорное соединение. Температура реакции в общем случае находится в пределах от 80 до 120°С. Твердые частицы после этого выделяют и еще раз вводят в реакцию с TiCl4 в присутствии или в отсутствие электронодонорного соединения, после чего их отделяют и промывают аликвотами углеводородов до тех пор, пока не будут удалены все ионы хлора.
В твердом компоненте катализатора соединение титана, выражаемое через Ti, в общем случае присутствует в количестве от 0,5 до 10% (мас.). Количество электронодонорного соединения, которое остается фиксированным на твердом компоненте катализатора, в общем случае находится в пределах от 5 до 20% (моль) в расчете на количество дигалогенида магния.
Соединениями титана, которые могут быть использованы для получения твердого компонента катализатора, являются галогениды и галогеналкоголяты титана. Предпочтительным соединением является тетрахлорид титана.
Описанные выше реакции приводят к получению галогенида магния в активной форме. В литературе известны и другие реакции, которые приводят к образованию галогенида магния в активной форме из исходных соединений магния, отличных от галогенидов, таких как карбоксилаты магния.
Активная форма галогенида магния в твердом компоненте катализатора может быть установлена по тому факту, что в рентгеновском спектре компонента катализатора отражение с максимальной интенсивностью, присутствующее в спектре неактивированного галогенида магния (удельная поверхность которого меньше 3 м2/г), больше не обнаруживается, но вместо него присутствует гало с максимальной интенсивностью, сдвинутой в сторону от положения отражения с максимальной интенсивностью для неактивированного галогенида магния, или же по тому факту, что отражение с максимальной интенсивностью характеризуется шириной на половине высоты пика, по меньшей мере на 30% превышающей соответствующую величину для отражения с максимальной интенсивностью, которое наблюдается в спектре неактивированного галогенида магния. Наиболее активными формами являются те, у которых в рентгеновском спектре твердого компонента катализатора появляется вышеупомянутое гало.
Среди галогенидов магния предпочтителен хлорид магния. В случае наиболее активных форм хлорида магния рентгеновский спектр твердого компонента катализатора обнаруживает гало вместо отражения, которое в спектре неактивированного хлорида имеет максимум при 2,56
Figure 00000002
.
Аl-алкильные соединения, используемые в качестве сокатализаторов, включают Аl-триалкилы, такие как Аl-триэтил, Аl-триизобутил, Аl-три-н-бутил, и линейные или циклические Al-алкильные соединения, содержащие два или более атомов Al, соединенных друг с другом посредством атомов О или N или же групп SO4 или SО3.
Al-алкильное соединение в общем случае используется в таком количестве, чтобы отношение Al/Ti находилось бы в диапазоне от 1 до 1000.
Электронодонорные соединения, которые могут быть использованы в качестве внешних доноров, включают сложные эфиры ароматических кислот, такие как алкилбензоаты, и в особенности соединения кремния, содержащие по меньшей мере одну связь Si-OR, где R представляет собой углеводородный радикал.
Примерами соединений кремния являются (трет-бутил)2Si(ОСН3)2, (циклогексил)(метил)Si(ОСН3)2, (фенил)2Si(ОСН3)2 и (циклопентил)2Si(ОСН3)2. С выгодой также могут быть использованы и простые 1,3-диэфиры, описываемые формулами, представленными выше. В том случае, если внутренним донором будет один из данных простых диэфиров, внешние доноры можно и не использовать.
Как уже говорилось ранее, процесс полимеризации может быть проведен по меньшей мере в три последовательные стадии, где компоненты А) и В) получают на раздельных последовательных стадиях, действуя на каждой стадии, за исключением первой стадии, в присутствии полимера, сформированного, и катализатора, использованного на предшествующей стадии. Катализатор добавляют только на первой стадии, однако его активность такова, что он все еще остается активным и на всех последующих стадиях.
Компонент А) предпочтительно получают до компонента В).
По меньшей мере на двух (предпочтительно последовательных) стадиях полимеризации соответствующие мономеры (мономер) полимеризуют с получением фракций АI) и АII), а на других стадиях (стадии) полимеризуют смесь этилена и С410-α-олефинов (олефина) с получением компонента В). Предпочтительно фракцию АI) получают до фракции АII).
Регулирование молекулярной массы проводят с использованием известных регуляторов, в особенности водорода.
В результате надлежащего дозирования концентрации регулятора молекулярной массы на соответствующих стадиях добиваются получения приведенных выше значений MFR и [η].
Процесс полимеризации в целом, который может быть непрерывным или периодическим, проводят с использованием известных методик с протеканием реакций в жидкой фазе в присутствии или в отсутствие инертного разбавителя, или же с протеканием реакций в газовой фазе, или же с использованием смешанных газожидкостных методик. Предпочтительно полимеризацию проводить в газовой фазе. Однако существует возможность проведения стадий (со)полимеризации пропилена с использованием в качестве разбавителя жидкого пропилена, а другие стадии (стадию) полимеризации можно провести в газовой фазе. В общем случае потребности в промежуточных стадиях нет, за исключением дегазирования непрореагировавших мономеров.
Время реакции, давление и температура для двух стадий не являются критическими, однако лучше всего, если температура будет находиться в пределах от 20 до 100°С. Давление может быть атмосферным или более высоким. Катализаторы можно предварительно ввести в контакт с небольшими количествами олефинов (форполимеризация).
Композиции настоящего изобретения также могут быть получены в результате получения по отдельности упомянутых компонентов А) и В) или даже фракций АI), АII) и компонента В), действуя с использованием тех же самых катализаторов и по существу при тех же самых условиях проведения полимеризации, что и описанные выше (за исключением того, что полностью процесс ступенчатой полимеризации проводить не будут, а упомянутые компоненты и фракции будут получать на индивидуальных стадиях полимеризации), и после этого в результате механического смешивания упомянутых компонентов и фракций в расплавленном или размягченном состоянии. Могут быть использованы обычно применяющиеся смесительные аппараты, такие как шнековые экструдеры, в особенности двухшнековые экструдеры.
Композиции настоящего изобретения также могут содержать добавки, обычно используемые на современном уровне техники, такие как антиоксиданты, светостабилизаторы, стабилизаторы, предотвращающие термическое разрушение, структурообразователи, красители и наполнители.
В частности, добавление структурообразователей приводит к значительному улучшению важных физико-механических свойств, таких как модуль упругости при изгибе, температура деформации материала под действием нагрева (НDТ), предел текучести при растяжении и прозрачность.
Типичными примерами структурообразователей являются п-трет-бутилбензоат и 1,3- и 2,4-дибензилиденсорбиты.
Структурообразователи предпочтительно добавляют к композициям настоящего изобретения в количествах в диапазоне от 0,05 до 2% (мас.), более предпочтительно в диапазоне от 0,1 до 1% (мас.) в расчете на полный вес.
Добавление неорганических наполнителей, таких как тальк, карбонат кальция и минеральные волокна, также приводит к улучшению некоторых механических свойств, таких как модуль упругости при изгибе и температура тепловой деформации HDT. Тальк также может проявлять структурообразующий эффект.
Подробности приводятся в последующих примерах, которые даются для иллюстрации настоящего изобретения, его не ограничивая.
Примеры 1-4
В последующих примерах полиолефиновые композиции, соответствующие настоящему изобретению, получают в результате ступенчатой полимеризации.
Твердый компонент катализатора, используемый в полимеризации, представляет собой компонент высокостереоспецифического катализатора Циглера-Натта, нанесенный на хлорид магния, содержащий приблизительно 2,5% (мас.) титана и диизобутилфталат в качестве внутреннего донора, получаемый по аналогии со способом, описываемым в примерах опубликованной Европейской патентной заявки 674991.
КАТАЛИТИЧЕСКАЯ СИСТЕМА И ОБРАБОТКА НА СТАДИИ ФОРПОЛИМЕРИЗАЦИИ
Перед своим введением в полимеризационные реакторы описанный выше твердый компонент катализатора при -5°С в течение 5 минут вводят в контакт с триэтилалюминием (TEAL) и дициклопентилдиметоксисиланом (DCPMS) при массовом отношении TEAL/DCPMS, равном приблизительно 4, и с таким их количеством, чтобы мольное отношение TEAL/Ti было бы равно 65.
Каталитическую систему после этого подвергают форполимеризации, выдерживая ее в суспензии в жидком пропилене при 20°С в течение приблизительно 20 минут перед введением ее в первый полимеризационный реактор.
ПОЛИМЕРИЗАЦИЯ
Полимеризацию проводят в трех газофазных реакторах непрерывного действия, расположенных последовательно, оснащенных устройствами для передачи продукта, поступающего из непосредственно предшествующего реактора, в непосредственно последующий реактор.
В газовой фазе водород и мономеры (мономер) непрерывно анализируют и подают в систему таким образом, чтобы желательную концентрацию выдерживать постоянной.
В первом газофазном полимеризационном реакторе в результате подачи в непрерывный и постоянный поток форполимеризованной каталитической системы, водорода (используемого в качестве регулятора молекулярной массы) и мономеров пропилена и этилена в газообразном состоянии получают пропиленовый гомополимер (примеры 1-3) или сополимер пропилена/этилена (пример 4), получая, таким образом, фракцию АI).
Полимер, полученный в первом реакторе, направляют во второй реактор, где в результате подвода мономеров (мономера) и водорода с надлежащими мольными соотношениями получают пропиленовый гомополимер (примеры 1-3) или сополимер пропилена/этилена (пример 4), получая, таким образом, фракцию АII).
Полимер, полученный во втором реакторе, направляют в непрерывный поток и после удаления непрореагировавших мономеров вводят в непрерывный поток, направляемый в третий газофазный реактор вместе с количественно постоянными потоками водорода и мономеров этилена и 1-бутена в газообразном состоянии. Таким образом получают компонент В).
Частицы полимера, покидающие третий реактор, подвергают обработке паром для удаления реакционно-способных мономеров и легколетучих веществ и после этого высушивают.
Условия полимеризации, мольное отношение реагентов и состав получаемых полимеров приводятся в таблице 1.
После этого частицы полимера вводят во вращающийся барабан, где они смешиваются с 0,01% (мас.) трис(2,4-ди-трет-бутилфенил)фосфитом Irgafos 168, с 0,05% (мас.) пентаэритритил-тетракис[3-(3,5-ди-трет-бутил-4-гидроксифенил)]пропионатом Irganox 1010 и с 0,16% (мас.) 3,4-диметилбензилиденсорбитом Millad 3988.
После этого частицы полимера вводят в двухшнековый экструдер Berstorff ZE 25 (отношение длина/диаметр для шнеков: 33) и экструдируют в атмосфере азота при следующих условиях:
Скорость вращения: 250 оборотов в минуту.
Производительность экструдера: 6-20 кг/ч.
Температура расплава: 200-250°С.
Данные, относящиеся к конечным полимерным композициям, приведенные в таблице 2, получают посредством измерений, проведенных для экструдированных таким образом полимеров.
Данные, продемонстрированные в таблицах, получают при использовании следующих способов испытаний.
- Молярные концентрации, подаваемых исходных газов.
Определяют при помощи газовой хроматографии.
- Содержание этилена и 1-бутена в полимерах.
Определяют при помощи ИК-спектроскопии.
- Скорость течения расплава MFR.
Определяют в соответствии с ASTM D 1238, условие L.
- Фракции, растворимые и нерастворимые в ксилоле.
Определяют следующим образом.
В стеклянную колбу, снабженную холодильником и магнитной мешалкой, вводят 2,5 г полимера и 250 см3 ксилола. Температуру увеличивают в течение 30 минут вплоть до температуры кипения растворителя. Полученный таким образом прозрачный раствор после этого выдерживают при температуре кипения и при перемешивании в течение еще 30 минут, проводя кипячение с использованием обратного холодильника. Закрытую колбу после этого в течение 30 минут выдерживают на бане со льдом и водой, а также в течение 30 минут в термостатированной водяной бане при 25°С. Сформированные таким образом твердые частицы отфильтровывают на бумаге для быстрого фильтрования. 100 см3 отфильтрованной жидкости выливают в предварительно взвешенный алюминиевый контейнер, который нагревают на нагревательной плитке в атмосфере азота для удаления растворителя, проводя его выпаривание. После этого контейнер выдерживают в печи при 80°С в вакууме до тех пор, пока не будет достигнут постоянный вес. После этого рассчитывают массовый процент полимера, растворимого в ксилоле пари комнатной температуре. Массовый процент полимера, нерастворимого в ксилоле при комнатной температуре, считается индексом изотактичности полимера. Данная величина по существу соответствует индексу изотактичности, определенному в результате экстрагирования при помощи кипящего н-гептана, который по определению представляет собой индекс изотактичности полипропилена.
- Индекс полидисперсности (PI).
Характеризует молекулярно-массовое распределение полимера. Для определения величины PI при температуре 200° С при помощи модели пластометра с параллельными пластинами RMS-800, представленной на рынке компанией Rheometrics (USA), функционирующей с частотой колебаний, которая увеличивается от 0,01 рад/с до 100 рад/с, определяют разделение модулей при низком значении модулей, например, при 500 Па. Из величины разделения модулей PI может быть рассчитан при использовании следующего уравнения:
PI=54,6 × (разделение модулей)-1,76,
где разделение модулей (MS) определяют как:
MS = (частота при G’=500 Па)/(частота при G’’=500 Па),
где G’ представляет собой модуль накопления, a G’’ представляет собой модуль потерь.
- Фракция, экстрагируемая в гексане.
Определяют в соответствии с FDA 177, 1520 в результате суспендирования в избытке гексана образца в виде пленки анализируемой композиции с толщиной 100 мкм, проводя операцию в автоклаве при 50°С в течение 2 часов. После этого гексан удаляют, проводя его выпаривание, а высушенный остаток взвешивают.
- Характеристическая вязкость (I.V.).
Определяют в тетрагидронафталине при 135°С.
- Температура плавления (Тm) и температура кристаллизации (Тc).
Определяют при помощи ДСК (дифференциальной сканирующей калориметрии).
- Модуль упругости при изгибе.
Определяют в соответствии с ISO 178.
- Предел текучести при растяжении.
Определяют в соответствии с ISO R 527.
- Относительное удлинение, соответствующее пределу текучести.
Определяют в соответствии с ISO R 527.
- Относительное удлинение при разрыве.
Определяют в соответствии с ISO R 527.
- Ударная прочность по Изоду (с надрезом).
Определяют в соответствии с ISO 180/1А.
- Температура перехода гибкость/хрупкость (D/В).
Определяют в соответствии со способом внутреннего пользования МА 17324, описание которого может быть представлено по запросу.
В соответствии с данным способом в результате удара автоматического компьютеризованного ударного бойка определяют двуосную ударопрочность.
Круглые образцы для испытаний получают, проводя вырубание при помощи круглого ручного штампа (диаметром 38 мм). Для приведения в равновесное состояние образцы выдерживают по меньшей мере в течение 48 часов при 23°С и относительной влажности 50, а после этого на 1 час их помещают в термостатированную баню, выдерживаемую при температуре испытания.
Кривую зависимости усилия от времени фиксируют во время удара ударного бойка (5,3 кг, полусферический штамп с диаметром 1/2’’ (12,7 мм)) по круглому образцу, находящемуся на круглой опоре. Использованной машиной является модель №2 типа CEAST 6758/000.
Температура перехода D/В обозначает температуру, при которой 50% образцов претерпевают хрупкое разрушение при проведении упомянутого испытания на ударопрочность.
- Получение образцов в виде пластин.
Пластины для измерения D/В, имеющие размеры 127×127×1,5 мм, получают в соответствии со способом внутреннего пользования МА 17283; пластины для измерения мутности, толщиной 1 мм, получают в результате литья под давлением в соответствии со способом внутреннего пользования МА 17335 при времени инжектирования 1 секунда, температуре 230°С, температуре формы 40°С; пластины для измерения блеска, толщиной 1 мм, получают в результате литья под давлением в соответствии со способом внутреннего пользования МА 17335 при времени инжектирования 3 секунды, температуре 260°С, температуре формы 40°С, описание всех упомянутых способов может быть представлено по запросу.
Способ МА 17283.
Пресс для литья под давлением относится к типу Negri Bossi (NB 90) с усилием смыкания 90 тонн. При помощи формы получают прямоугольную пластину (127×127×1,5 мм).
Основные параметры процесса приведены ниже:
Обратное давление (бар): 20
Время инжектирования (с): 3
Максимальное давление впрыска
(МПа): 14
Гидравлическое давление
впрыска (МПа): 6-3
Гидравлическое давление при
первом выдерживании (МПа): 4±2
Время первого выдерживания
(с): 3
Гидравлическое давление при
втором выдерживании (МПа): 3±2
Время второго выдерживания
(с): 7
Время охлаждения (с): 20
Температура формы (°С): 60
Температура расплава находится в интервале от 220 до 280°С.
Способ МА 17335.
Пресс для литья под давлением относится к типу Battenfeld ВА 500CD с усилием смыкания 50 тонн. Вставленная форма позволяет формовать две пластины (каждая 55×60×1 мм).
- Получение образцов в виде пленок.
Некоторые пленки с толщиной 50 мкм получают в результате экструдирования каждой испытуемой композиции в одношнековом экструдере Collin (отношение длина/диаметр для шнека: 25) при скорости вытяжки пленки 7 м/мин и температуре расплава 210-250°С. Каждую полученную в результате пленку накладывают на имеющую толщину 1000 мкм пленку пропиленового гомополимера, индекс изотактичности которого равен 97, a MFR L - 2 г/10 мин. Наложенные друг на друга пленки соединяют друг с другом в прессе Carver при 200°С при нагрузке 9000 кг, которую прикладывают в течение 5 минут.
Полученные в результате ламинаты растягивают в продольном и поперечном направлениях, то есть двуосно с коэффициентом вытяжки 6 при помощи устройства для вытяжки пленок ТМ Long при 150°С, получая, таким образом, пленку с толщиной 20 мкм (18 мкм гомополимера + 2 мкм испытуемой композиции).
Из пленок вырезают образцы 2×5 см.
- Мутность для пластины.
Определяют в соответствии со способом внутреннего пользования МА 17270, описание которого может быть представлено по запросу.
Пластины приводят в равновесное состояние в результате выдерживания в течение 24 часов при относительной влажности 50±5% и 23±1°С.
Использованным аппаратом является колориметр Hunter D25P - 9. Принцип измерения и вычислений приводится в стандарте ASTM - D1003.
Аппарат калибруют без образца, калибровку проверяют при помощи стандарта мутности. Измерение мутности проводят на пяти пластинах.
- Блеск для пластины.
Определяют в соответствии со способом внутреннего пользования МА 17021, описание которого может быть представлено по запросу.
Использованным фотометром является установка Zehntner модели ZGM 1020 или 1022 с углом падения 60°. Принцип измерения приводится в стандарте ASTM D2457.
Калибровку аппарата проводят при помощи образца, значение блеска для которого известно. Одно значение для величины блеска получают в результате измерения для трех пластин в двух различных положениях на одной пластине.
- Мутность для пленки.
Определяют для имеющих толщину 50 мкм пленок тестируемой композиции, полученных так, как описывалось выше. Измерение проводят для участка 50×50 мм, вырезанного из центральной области пленки.
Использованным при испытании прибором является фотометр Gardner с мутномером UX-10, оснащенный лампой G.Е. 1209 и фильтром С. Калибровку прибора осуществляют, проводя измерение в отсутствие образца (мутность 0%) и измерение с преградой для светового луча (мутность 100%).
- Блеск для пленки.
Определяют для тех же самых образцов, что и использованные для определения мутности.
Использованным для испытания прибором является фотометр модели 1020 Zehntner для измерений с падающим лучом. Калибровку осуществляют, проводя измерение при угле падения 60° для черного стекла, характеризующегося стандартной величиной блеска 96,2%, и проводя измерение при угле падения 45° для черного стекла, характеризующегося стандартной величиной блеска 55,4%.
Figure 00000003
Figure 00000004

Claims (10)

1. Полиолефиновые композиции, содержащие A) 60 - 95 мас.% компонента - кристаллического полипропилена, значение скорости течения расплава (MFRA) (измеренное при 230°С, при нагрузке 2,16 кг) которого находится в пределах от 2,5 до 50 г/10 мин, и который содержит от 20 до 80 мас.% фракции АI), значение скорости течения расплава (MFRI) (измеренное при 230°С, при нагрузке 2,16 кг) которой находится в пределах от 0,5 до 8 г/10 мин, и от 20 до 80 мас.% фракции АII); B) 5 - 40 мас.% сополимера этилена с одним или несколькими С410-α-олефинами (олефином), содержащего от 10 до 40 мас.% упомянутых С410-α-олефинов (олефина); причем упомянутые фракции АI) и АII) независимо выбираются из пропиленовых гомополимеров и статистических сополимеров пропилена, содержащих вплоть до 15 мас.% этилена и/или С410-α-олефинов (олефина); при этом соотношение MFRA/MFRI находится в пределах от 2 до 25; причем процентные содержания А) и В) определяются в расчете на сумму А) и В), а процентные содержания АI) и АII) определяются в расчете на сумму АI) и АII).
2. Полиолефиновые композиции по п.1, значения скорости течения расплава (230°С, 2,16 кг) у которых равны или превышают 4 г/10 мин.
3. Полиолефиновые композиции по п.1, где характеристическая вязкость у фракции, растворимой в ксилоле при комнатной температуре, находится в диапазоне от 0,8 до 2,5 дл/г.
4. Полиолефиновые композиции по п.1, где содержание сомономера или сомономеров в каждой из фракций АI) и АII), когда по меньшей мере одну из них выбирают из пропиленовых сополимеров, находится в диапазоне от 0,5 до 10 мас.%.
5. Полиолефиновые композиции по п.1, где содержание полимера, растворимого в ксилоле при комнатной температуре, во фракциях АI) и АII) не меньше, чем 80% для пропиленовых сополимеров, или не меньше, чем 90% для пропиленовых гомополимеров (причем упомянутые процентные величины являются массовыми, и они относятся к массе индивидуальной фракции).
6. Полиолефиновые композиции по п.1, температура перехода гибкость/хрупкость у которых равна или меньше - 2°С.
7. Способ получения полиолефиновых композиций по п.1, реализуемый по меньшей мере в три последовательные стадии, где по меньшей мере на двух стадиях полимеризации соответствующие мономеры (мономер) полимеризуют с образованием фракций АI) и АII), а на других стадиях (стадии) полимеризуют смесь этилена и С410-α-олефинов (олефина) с образованием компонента В), действуя на каждой стадии, за исключением первой стадии, в присутствии полимера, образованного, и катализатора, использованного на предшествующей стадии.
8. Способ по п.7, где катализатором полимеризации является стереоспецифический катализатор Циглера - Натта, содержащий в качестве образующих катализатор компонентов твердый компонент, содержащий соединение титана, имеющее по меньшей мере одну связь титан - галоген, и электронодонорное соединение, причем оба наносят на галогенид магния в активной форме, и алюминийорганическое соединение.
9. Способ по п.7, где все стадии полимеризации проводят в газовой фазе.
10. Способ по п.7, где стадии (со)полимеризации пропилена проводят при использовании в качестве разбавителя жидкого пропилена, а другие стадии (стадию) полимеризации проводят в газовой фазе.
RU2001116116/04A 1999-09-14 2000-09-08 Ударопрочные полиолефиновые композиции RU2232783C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99202974.4 1999-09-14
EP99202974 1999-09-14

Publications (2)

Publication Number Publication Date
RU2001116116A RU2001116116A (ru) 2003-05-20
RU2232783C2 true RU2232783C2 (ru) 2004-07-20

Family

ID=8240637

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001116116/04A RU2232783C2 (ru) 1999-09-14 2000-09-08 Ударопрочные полиолефиновые композиции

Country Status (22)

Country Link
US (1) US6441094B1 (ru)
EP (1) EP1135440B1 (ru)
JP (1) JP4732649B2 (ru)
KR (1) KR100635888B1 (ru)
CN (1) CN1132865C (ru)
AR (1) AR025636A1 (ru)
AT (1) ATE273347T1 (ru)
AU (1) AU776743B2 (ru)
BR (1) BR0007075B1 (ru)
CA (1) CA2349297C (ru)
CZ (1) CZ292977B6 (ru)
DE (1) DE60012879T2 (ru)
ES (1) ES2225220T3 (ru)
HU (1) HUP0104592A3 (ru)
ID (1) ID28962A (ru)
MY (1) MY120633A (ru)
NO (1) NO20012326L (ru)
PL (1) PL198071B1 (ru)
RU (1) RU2232783C2 (ru)
TR (1) TR200101320T1 (ru)
TW (1) TW593521B (ru)
WO (1) WO2001019915A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470963C2 (ru) * 2008-06-16 2012-12-27 Бореалис Аг Термопластичные полиолефины с высокой текучестью и превосходным качеством поверхности, получаемые в многоступенчатом технологическом процессе
RU2470946C2 (ru) * 2008-04-24 2012-12-27 Бореалис Аг Гетерофазные сополимеры пропилена высокой чистоты
RU2697706C1 (ru) * 2016-04-14 2019-08-19 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586531B2 (en) * 2000-10-04 2003-07-01 Basell Poliolefine Italia S.P.A. Polyolefin masterbatch and composition suitable for injection molding
CA2465785A1 (en) * 2001-11-19 2003-05-30 Exxonmobil Chemical Patents Inc. Impact resistant compositions
JP4233454B2 (ja) 2001-11-27 2009-03-04 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 透明で柔軟なプロピレンポリマー組成物
CA2470660A1 (en) * 2001-12-19 2003-06-26 Basell Poliolefine Italia S.P.A. Impact-resistant polyolefin compositions
CN100434445C (zh) * 2002-04-26 2008-11-19 阿托菲纳研究公司 金属茂聚丙烯制造的旋转注模制品及其应用
PL372196A1 (en) * 2002-06-26 2005-07-11 Basell Poliolefine Italia S.P.A. Impact-resistant polyolefin compositions
KR101186271B1 (ko) 2002-06-26 2012-09-27 애버리 데니슨 코포레이션 폴리프로필렌/올레핀 탄성체 혼합물을 포함하는 배향된필름
IL165342A0 (en) * 2002-06-26 2006-01-15 Basell Poliolefine Spa Impact resistant polyolefin compositions
JP2005533920A (ja) 2002-07-24 2005-11-10 バセル ポリオレフィン ジーエムビーエイチ プロピレンポリマー組成物の製造の少なくとも2段階方法
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
CA2499951C (en) 2002-10-15 2013-05-28 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
MY136027A (en) * 2003-04-02 2008-07-31 Basell Poliolefine Spa Polyolefin masterbatch and composition suitable for injection molding
US6962889B2 (en) * 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization
US20050261434A1 (en) * 2004-05-24 2005-11-24 Piraye Yaras Thermoplastic elastomeric blends having enhanced surface appearance
US7109290B2 (en) 2004-06-07 2006-09-19 Chevron Phillips Chemical Company Lp Polymer transfer within a polymerization system
WO2006037705A1 (en) 2004-10-04 2006-04-13 Basell Poliolefine Italia S.R.L. Elastomeric polyolefin compositions
BRPI0711963B1 (pt) 2006-06-14 2019-09-17 Avery Dennison Corporation Etiquetas e rótulos conformáveis e destacáveis de orientação direcionada por máquina, e processos para preparação
WO2007149900A2 (en) 2006-06-20 2007-12-27 Avery Dennison Corporation Multilayered polymeric film for hot melt adhesive labeling and label stock and label thereof
JP5579436B2 (ja) 2006-07-17 2014-08-27 エーブリー デニソン コーポレイション 非対称の多層高分子フィルム、並びにラベルストック及びそのラベル
DE602007008133D1 (de) * 2006-11-23 2010-09-09 Basell Poliolefine Srl Polyolefinzusammensetzungen
EP2137257B1 (en) * 2007-01-12 2010-09-22 Dow Global Technologies Inc. Composition suitable for thin-wall injection molded articles
EP2022824A1 (en) 2007-08-08 2009-02-11 Borealis Technology Oy Sterilisable and Tough Impact Polypropylene Composition
EP2077286A1 (en) * 2008-01-07 2009-07-08 Total Petrochemicals Research Feluy Heterophasic propylene copolymer with improved creep behavior
RU2010139855A (ru) * 2008-02-29 2012-04-10 Базелль Полиолефин Италия С.Р.Л. (It) Полиолефиновые композиции
ATE536390T1 (de) 2008-10-29 2011-12-15 Borealis Ag Feste zusammensetzung für lebensmittelanwendungen
EP2445962B1 (en) * 2009-06-26 2013-06-05 Basell Poliolefine Italia S.r.l. Polyolefin compositions
CN102549062B (zh) * 2009-09-22 2013-11-20 巴塞尔聚烯烃意大利有限责任公司 丙烯聚合物组合物
CN102612538B (zh) * 2009-10-13 2015-11-25 巴塞尔聚烯烃意大利有限责任公司 丙烯聚合物组合物
EP2504391B1 (en) * 2009-11-25 2018-07-25 Dow Global Technologies LLC Molded polymeric article with low haze and high clarity
JP5751539B2 (ja) * 2010-12-15 2015-07-22 サンアロマー株式会社 射出成形用透明ポリプロピレン樹脂組成物および成形品
US8748539B2 (en) * 2011-05-24 2014-06-10 Braskem America, Inc. Propylene impact copolymers having good optical properties
CN103649208B (zh) * 2011-07-07 2016-08-17 巴塞尔聚烯烃意大利有限责任公司 聚丙烯组合物
EP2583999A1 (en) 2011-10-20 2013-04-24 Basell Poliolefine Italia S.r.l. Polyolefin compositions
US9676532B2 (en) 2012-08-15 2017-06-13 Avery Dennison Corporation Packaging reclosure label for high alcohol content products
EP2953986A4 (en) * 2013-02-06 2016-04-20 Exxonmobil Chem Patents Inc USEFUL MOISTURE PROCESS FOR INCREASING THE PRODUCTIVITY OF SUPPORTED ZIEGLER NATTA CATALYSTS
EP2781548A1 (en) 2013-03-19 2014-09-24 Basell Poliolefine Italia S.r.l. Mineral-filled polypropylene composition
EP2821434A1 (en) 2013-07-05 2015-01-07 Basell Poliolefine Italia S.r.l. Polypropylene compositions containing glass fiber fillers
JP2017520642A (ja) 2014-06-02 2017-07-27 アベリー・デニソン・コーポレイションAvery Dennison Corporation 耐スカッフ性、透明性、及び順応性が改善されたフィルム
JP6633942B2 (ja) * 2016-02-29 2020-01-22 サンアロマー株式会社 中空成形用ポリプロピレン系樹脂組成物及び中空成形品
CN107805349B (zh) * 2016-09-09 2020-10-23 中国石油化工股份有限公司 一种聚烯烃组合物及其制备方法和聚烯烃材料
CN107805340B (zh) * 2016-09-09 2021-07-02 中国石油化工股份有限公司 一种聚烯烃组合物和聚烯烃材料
US11834534B2 (en) * 2018-08-22 2023-12-05 Basell Poliolefine Italia S.R.L. Random propylene-ethylene copolymers
US20220177682A1 (en) * 2019-04-05 2022-06-09 W. R. Grace & Co.-Conn Polypropylene polymer composition having high stiffness properties
JP2023523069A (ja) 2020-04-29 2023-06-01 中国石油化工股▲ふん▼有限公司 無水物基含有ポリプロピレングラフトおよびポリプロピレングラフトの調製方法
AU2021332812A1 (en) 2020-08-27 2023-03-09 Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation Polypropylene composition, preparation method therefor, and article made therefrom
EP4382568A1 (en) 2021-08-04 2024-06-12 China Petroleum & Chemical Corporation Flexible polypropylene modified insulation material, preparation method therefor, and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1098272B (it) 1978-08-22 1985-09-07 Montedison Spa Componenti,di catalizzatori e catalizzatori per la polimerizzazione delle alfa-olefine
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
IT1190681B (it) 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
IT1206128B (it) 1984-07-30 1989-04-14 Himont Inc Composizioni polipropileniche resistenti all'urto aventi migliorata resistenza allo sbiancamento.
US5023300A (en) * 1988-01-04 1991-06-11 Exxon Chemical Patents Inc. Thermoplastic olefin alloys and method for producing the same
US5210139A (en) 1988-01-04 1993-05-11 Exxon Chemical Patents Inc. Thermoplastic olefin alloys and method for producing the same
IT1227260B (it) 1988-09-30 1991-03-28 Himont Inc Dieteri utilizzabili nella preparazione di catalizzatori ziegler-natta
IT1227893B (it) 1988-12-14 1991-05-14 Himont Inc Centerville Road Ne Composizioni polipropileniche aventi buona trasparenza e migliorata resistenza all'urto
IT1271420B (it) * 1993-08-30 1997-05-28 Himont Inc Composizioni poliolefiniche aventi un elevato bilancio di rigidita' e resilienza
IT1269914B (it) * 1994-03-24 1997-04-16 Himonty Inc Composizioni verniciabili di copolimeri cristallini del propilene aventi bassa temperatura di saldabilita'
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
JP3570797B2 (ja) * 1995-05-24 2004-09-29 三井化学株式会社 プロピレン重合体組成物
JPH09157492A (ja) * 1995-12-12 1997-06-17 Tonen Chem Corp 熱可塑性樹脂組成物
JP3270322B2 (ja) * 1996-02-22 2002-04-02 三菱化学株式会社 金型汚染性の改良された熱可塑性樹脂組成物
US5835518A (en) * 1997-01-31 1998-11-10 Star Medical Technologies, Inc. Laser diode array packaging
DE69923660T2 (de) * 1998-11-03 2006-03-30 Basell Poliolefine Italia S.P.A. Polyolefinzusammensetzung mit gleichzeitig hoher steifheit und schlagfestigkeit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470946C2 (ru) * 2008-04-24 2012-12-27 Бореалис Аг Гетерофазные сополимеры пропилена высокой чистоты
RU2470963C2 (ru) * 2008-06-16 2012-12-27 Бореалис Аг Термопластичные полиолефины с высокой текучестью и превосходным качеством поверхности, получаемые в многоступенчатом технологическом процессе
RU2697706C1 (ru) * 2016-04-14 2019-08-19 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции
US10494468B2 (en) 2016-04-14 2019-12-03 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
RU2697706C9 (ru) * 2016-04-14 2020-02-28 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции

Also Published As

Publication number Publication date
EP1135440B1 (en) 2004-08-11
EP1135440A1 (en) 2001-09-26
CN1321178A (zh) 2001-11-07
NO20012326D0 (no) 2001-05-11
AR025636A1 (es) 2002-12-04
JP2003509562A (ja) 2003-03-11
TR200101320T1 (tr) 2001-12-21
TW593521B (en) 2004-06-21
AU7517000A (en) 2001-04-17
HUP0104592A3 (en) 2003-08-28
JP4732649B2 (ja) 2011-07-27
ATE273347T1 (de) 2004-08-15
PL347656A1 (en) 2002-04-22
BR0007075A (pt) 2001-07-10
ES2225220T3 (es) 2005-03-16
CA2349297C (en) 2008-11-18
NO20012326L (no) 2001-05-11
MY120633A (en) 2005-11-30
AU776743B2 (en) 2004-09-23
CZ20012131A3 (cs) 2002-03-13
CA2349297A1 (en) 2001-03-22
KR100635888B1 (ko) 2006-10-18
CZ292977B6 (cs) 2004-01-14
DE60012879T2 (de) 2005-08-11
CN1132865C (zh) 2003-12-31
WO2001019915A1 (en) 2001-03-22
ID28962A (id) 2001-07-19
US6441094B1 (en) 2002-08-27
DE60012879D1 (de) 2004-09-16
BR0007075B1 (pt) 2009-05-05
HUP0104592A2 (hu) 2002-03-28
PL198071B1 (pl) 2008-05-30
KR20010086444A (ko) 2001-09-12

Similar Documents

Publication Publication Date Title
RU2232783C2 (ru) Ударопрочные полиолефиновые композиции
RU2309169C2 (ru) Ударопрочные полиолефиновые композиции
RU2294342C2 (ru) Композиция на основе кристаллического пропиленового сополимера, отличающаяся улучшенными свариваемостью и оптическими свойствами и пониженной растворимостью
US6599986B2 (en) Propylene polymer compositions having improved impact strength and excellent optical properties
KR100921364B1 (ko) 내충격성 폴리올레핀 조성물
RU2308470C2 (ru) Ударопрочные полиолефиновые композиции
EP2445962B1 (en) Polyolefin compositions
MXPA01004822A (en) Impact-resitant polyolefin compositions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120909