RU2182555C1 - Способ получения трифторида азота - Google Patents

Способ получения трифторида азота Download PDF

Info

Publication number
RU2182555C1
RU2182555C1 RU2001123299A RU2001123299A RU2182555C1 RU 2182555 C1 RU2182555 C1 RU 2182555C1 RU 2001123299 A RU2001123299 A RU 2001123299A RU 2001123299 A RU2001123299 A RU 2001123299A RU 2182555 C1 RU2182555 C1 RU 2182555C1
Authority
RU
Russia
Prior art keywords
fluoride
ammonium
ammonium fluoride
mixture
nitrogen trifluoride
Prior art date
Application number
RU2001123299A
Other languages
English (en)
Inventor
Д.В. Виноградов
С.А. Зайцев
А.С. Кузнецов
В.А. Львов
В.С. Меньшов
Р.Л. Рабинович
М.В. Сапожников
В.С. Туркин
Original Assignee
Зао "Астор-Электроникс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зао "Астор-Электроникс" filed Critical Зао "Астор-Электроникс"
Priority to RU2001123299A priority Critical patent/RU2182555C1/ru
Application granted granted Critical
Publication of RU2182555C1 publication Critical patent/RU2182555C1/ru

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способам получения трифторида азота. Трифторид азота применяется в химической промышленности как стабильный фторирующий агент и как фторсодержащее сырье. В ракетной технике он используется как окислитель для высококалорийных топлив, в электронной промышленности - для чистки кристаллов полупроводников и кремниевых пластин. Он применяется и в лазерах, и в качестве чистящего газа в аппаратах химического парофазного осаждения (СVD). Способ получения трифторида азота заключается в том, что проводят взаимодействие реагентов, находящихся в гетерогенных фазах газ - твердое вещество. В качестве твердой фазы используют фторид аммония формулы NH4F•xHF, где х - от 0,01 до 1,3, взаимодействие с газообразным фтором ведут при массовом отношении фторида аммония и фтора от 0,35 до 500 при 20-110oС с обеспечением принудительной циркуляции реагентов. Фторид аммония можно применять в смеси с инертным фторидом металла II или III группы Периодической системы элементов или их смесью. По дисперсности частиц фторид аммония и инертный материал должны быть примерно одинаковы от 1000 до 200 мк. При проведении процесса получения трифторида азота по разработанному способу достигается высокий выход целевого продукта, причем используется доступное и дешевое сырье. При этом содержание примесей в продуктовой смеси, определяющих безопасность проведения процесса, очень низко. Процесс характеризуется низкими энергозатратами и использованием доступного и простого оборудования. 3 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к органической химии, а именно к способам получения трифторида азота.
Трифторид азота применяется в химической промышленности как стабильный фторирующий агент и как фторсодержащее сырье. В ракетной технике он используется как окислитель для высококалорийных топлив, в электронной промышленности - для чистки кристаллов полупроводников и кремниевых пластин. Он применяется и в лазерах, и в качестве чистящего газа - в аппаратах химического парофазного осаждения (CVD).
В настоящее время в промышленности для производства трифторида азота используются две основные технологии. Одна из них заключается в электролизе кислых фторидов аммония [патент США 5637285, кл. С 01 В 21/08, заяв. 30.01.1996, оп. 10.06.1997].
Вторая технология включает прямое фторирование аммиака в расплаве кислого фторида аммония или в присутствии твердых комплексных фторидов аммония и металлов [ЕР 959040, кл. С 01 В 21/083 заяв. 22.05.1998, oп. 24.11.1999].
Электролитические способы энергоемки, а потому являются дорогостоящими. Кроме того, при их эксплуатации возникают проблемы, связанные с образованием взрывоопасных смесей.
Фторирование аммиака в расплаве кислого фторида аммония также требует значительных энергозатрат.
Разработанное изобретение относится к способам получения трифторида азота, проводимым в гетерогенной фазе газ - твердое вещество.
Известен способ фторирования твердых комплексных фторидов аммония и металлов [патент США 4543242, приор. Японии, заявка 83-177016, кл. С 01 В 21,83, з. 27.09.1983, oп. 04.09.1985].
Этими комплексами могут быть соединения, содержащие один металл общей формулы (NH4)xMFy или два металла формулы (NH4)хMM1Fy,
где х= 1-3, y=4-7, М=Fe, Al, Ti, Mn, Ni, Co, Cu, Zr, Nb, W, Si, Ge, Sb, Pb;
M1=Li, Na, K.
Реакция твердой соли с газообразным фтором может идти даже при комнатной температуре, однако при этом концентрация фтора в газовой фазе должна быть относительно высокой. Для подавления образования побочных фторидов азота, напротив, желательно поддерживать низкую концентрацию фтора - не более 10 об.%, но в этом случае приходится поддерживать температуру выше 80oС.
Фтор можно вводить как в чистом виде, так и разбавленным, например, азотом, аргоном или воздухом. Процесс проводят в никелевом двухступенчатом реакторе с принудительной циркуляцией. Так, через нагретый до 140oС порошок (NН4)3FеF6 непрерывно, в течение 15 часов пропускали 4584 г фтора. Получили целевой продукт с выходом 75%.
Перед создателями предлагаемого изобретения стояла задача создания способа получения трифторида азота из доступного и дешевого сырья, характеризующегося высоким выходом целевого продукта и низким уровнем примесей. К задачам, стоящим перед авторами изобретения, относится также разработка условий, определяющих безопасность проведения процесса, с низкими энергозатратами, в доступном и простом в исполнении оборудовании.
Предметом данного изобретения является способ получения фторида азота взаимодействием газообразного фтора и твердофазного соединения аммония, отличающийся тем, что в качестве соединения аммония используют фторид аммония формулы NH4F•xHF, где х - от 0,01 до 1,3.
Разработанный способ получения трифторида азота заключается в том, что трифторид азота получают взаимодействием газообразного фтора и твердофазного соединения аммония, а в качестве соединения аммония используют фториды аммония формулы NH4F•xHF, где х - от 0,01 до 1,3, взаимодействие ведут при массовом отношении фторида аммония и фтора от 0,35 до 500 при 20-110oC с обеспечением принудительной циркуляции реагентов. Фторид аммония используют в смеси с твердым инертным фторидом металла II или III группы Периодической системы элементов, или их смесью. Массовое отношение фторида металла к фториду аммония составляет от 0 до 100.
Подача фторида аммония в избытке к фтору позволяет избежать образования расплава фторида аммония. В качестве инертного материала могут быть использованы фториды Са, Мg, Al и т.п., или их смеси. По дисперсности частиц фторид аммония и инертный материал должны быть примерно одинаковы, например от 1000 до 2000 мк. Смешение фторида аммония перед подачей в реактор с порошкообразными частицами инертного материала позволяет избежать плавления фторида аммония при температуре проведения процесса и одновременно снизить его расход. При увеличении содержания инертного материала выше указанного соотношения снижается эффективность процесса из-за наличия "балластного" материала. Здесь и далее, если специально не оговаривается, приводятся массовые соотношения.
Процесс проводят на установке, изображенной на чертеже. Установка состоит из смесителя 1, реактора 2 и фазоразделителя 3. Применяемые фториды аммония NH4F•xHF, где х - от 0,01 до 1,3. Это может быть, например, NH4F•xHF со значением х 0,01, х=1, и т.п. в интервале до 1,3. В смеситель 1 подают газообразный фтор и свежий и/или возвратный NH4F•xHF, или смесь NH4F•хHF, где х=0,01 до 1,3, и инертного материала в порошкообразном состоянии. В смесителе происходит перемешивание твердых и газообразных реагентов до дисперсного состояния. Из смесителя эта дисперсия подается в реактор 2, где при температуре 20-110oС проходит взаимодействие. Из реактора продукты попадают в фазоразделитель 3, откуда выводятся газообразные продукты. Твердую фазу, состоящую из NH4F•хHF, где х более 1,3, выводят из фазоразделителя и используют по усмотрению. Вещества, которые могут использоваться вновь: непрореагировавшие фториды аммония NH4F•хHF, где х менее или равно 1,3, или из смеси этих фторидов аммония с инертным материалом, рециркулируют в смеситель. Газообразные продукты направляют на стадию разделения, где выделяется целевой продукт, выход которого составляет от 50 до 95 мас.%.
Пример
В качестве исходного сырья используют порошкообразный фторид аммония дисперсностью около 200 мк и газообразный фтор. Фторид аммония подают со скоростью 0,02 кг/час в смеситель 1, где он смешивается с фтором, подаваемым со скоростью 0,002 кг/час. Из смесителя реагенты направляются в реактор 2, изготовленный из никеля, диаметром 20 мм и длиной 200 мм. В реакторе, где организована принудительная циркуляция реагентов, при температуре 20oС проходит взаимодействие. Из реактора смесь поступает в фазоразделитель 3, где газообразные продукты отделяются от твердых. Газообразные продукты пропускают через ловушку фтористого водорода (на схеме не показана) и собирают в приемнике. Анализ методом газожидкостной хроматографии показал, что продукт имеет следующий состав, об.%: NF3-77,7; N2-20,1. Суммарное содержание N2F4, CF4, и т.п. составляет 2,2%.
Твердую фазу, состоящую из NH4F•xHF, где х до 1,3, возвращают на стадию смешения, остальные продукты используют по усмотрению.
Примеры проведения остальных опытов приведены в таблице.
Таким образом, основными отличиями данного изобретения от ранее известного является использование в качестве исходного реагента соединения формулы NH4F•хHF, где х= 0,01 до 1,3, т.е. фторида аммония NH4F или его фтороводородной соли формулы NH4F•хHF, где х = более 0, но не более 1,3, температура проведения процесса 20-110 oС, и принудительная циркуляция.
При этом массовое соотношение фторидов аммония и фтора - от 0,35 до 500. Кроме того, отличием является то, что это соединение аммония может подаваться на стадию синтеза в смеси с инертным фторидом металла при массовом отношении фторид металла: NH4F•xHF oт 0 до 100, и тогда расход фторида снижается.
При проведении процесса получения трифторида азота по разработанному способу достигается высокий выход целевого продукта, причем используется доступное и дешевое сырье. При этом содержание примесей в продуктовой смеси, определяющих безопасность проведения процесса, очень низко. Процесс характеризуется низкими энергозатратами и использованием доступного и простого оборудования.

Claims (4)

1. Способ получения трифторида азота взаимодействием газообразного фтора и твердофазного соединения аммония, отличающийся тем, что в качестве соединения аммония используют фториды аммония формулы NH4F•xHF, где х - от 0,01 до 1,3, взаимодействие ведут при массовом отношении фторида аммония и фтора от 0,35 до 500 при 20-110oС с обеспечением принудительной циркуляции реагентов.
2. Способ по п. 1, отличающийся тем, что фторид аммония используют в смеси с твердым инертным фторидом металла II или III группы Периодической системы элементов или их смесью.
3. Способ по п. 1 или 2, отличающийся тем, что массовое отношение фторида металла к фториду аммония составляет 0-100.
4. Способ по любому из пп. 1-3, отличающийся тем, что непрореагировавшие соединения фторида аммония или их смесь с инертным фторидом металла после отделения газообразных продуктов взаимодействия рециркулируют на стадию смешения.
RU2001123299A 2001-08-22 2001-08-22 Способ получения трифторида азота RU2182555C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001123299A RU2182555C1 (ru) 2001-08-22 2001-08-22 Способ получения трифторида азота

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001123299A RU2182555C1 (ru) 2001-08-22 2001-08-22 Способ получения трифторида азота

Publications (1)

Publication Number Publication Date
RU2182555C1 true RU2182555C1 (ru) 2002-05-20

Family

ID=20252760

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001123299A RU2182555C1 (ru) 2001-08-22 2001-08-22 Способ получения трифторида азота

Country Status (1)

Country Link
RU (1) RU2182555C1 (ru)

Similar Documents

Publication Publication Date Title
CN1170398A (zh) 全氟化碳的制备方法
GB2146978A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
PL148109B1 (en) Method of obtaining nithomethane
JP4197783B2 (ja) フッ素化ハロゲン化合物の製造方法
RU2182555C1 (ru) Способ получения трифторида азота
US3961024A (en) Fluoro compound production
US5302763A (en) Process for preparing dinitrotoluene
RU2221743C2 (ru) Способ получения трифторида азота и продукты на основе трифторида азота
EP0660818B1 (en) A process for preparing dinitrotoluene
US5711925A (en) Synthesis of pure disilicon hexafluoride
Andrews et al. Cocondensation reaction between phosphine and fluorine: matrix infrared spectra of difluorophosphorane, difluorophosphine and fluorophosphine
EP1024124B1 (en) Process for the preparation of 1,1,1,2,2-pentafluoroethane
KR100961587B1 (ko) 할로겐화 질소의 합성방법
RU2182556C1 (ru) Способ получения трифторида азота
RU2144019C1 (ru) Способ получения пентафторйодэтана
US4193261A (en) Method of oxidation of fuels with tetrafluorammonium bifluoride
RU2038299C1 (ru) Способ получения бифторида аммония
RU2178384C1 (ru) Способ получения фторидов азота
US3347911A (en) Fluorocyanamide nf2cf2nfcn
US3254944A (en) Process for preparing chlorodifluoroamine and tetrafluorohydrazine
US20020156321A1 (en) Continuous preparation of high purity Bis(fluoroxy)difluoromethane (BDM) at elevated pressure
RU2137708C1 (ru) Способ получения нитрида кремния с повышенным содержанием альфа-фазы
RU2163221C2 (ru) Способ получения фторуглеродов
SU1724571A1 (ru) Способ получени углеродистого материала, содержащего фторид щелочного металла
JP3187544B2 (ja) アンモニウム氷晶石の製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070823