NO811223L - PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID. - Google Patents

PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID.

Info

Publication number
NO811223L
NO811223L NO811223A NO811223A NO811223L NO 811223 L NO811223 L NO 811223L NO 811223 A NO811223 A NO 811223A NO 811223 A NO811223 A NO 811223A NO 811223 L NO811223 L NO 811223L
Authority
NO
Norway
Prior art keywords
furnace
carbon carrier
carbon
batch
coke
Prior art date
Application number
NO811223A
Other languages
Norwegian (no)
Inventor
Wilhelm Portz
Georg Strauss
Joachim Stendel
Friedrich-Karl Frorath
Edgar Goldmann
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO811223L publication Critical patent/NO811223L/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/748Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on electro-magnetic brakes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/942Calcium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Transportation (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

1. Process for making calcium carbide from lime and a carbon carrier in a closed electrothermal furnace with a power of more than 20 megawatts, in which the electrodes are arranged symmetrically in the corners of an equilateral triangle, which comprises : using at least 40% of the total carbon component in the furnace burden in the form of a carbon carrier consisting of anthracite, petroleum coke and/or lean coal, the carbon carrier with an initial content of volatile constituents of more than 5.0% having been subjected to thermal pretreatment at increased temperature for as long as necessary to establish a residual content of volatile constituents of less than 5.0% and having been separated into a fraction consisting of particles with a size of 3 to 10 mm and into a fraction consisting of particles with a size of more than 10 up to 25 mm ; the fraction of smaller particles being introduced into a central region inside the furnace lying between the electrodes, and the fraction of larger particles being introduced into a peripheral region of the burden surface area inside the furnace which lies outside the triangle formed by the electrodes.

Description

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av kalsiumkarbid fra kalk (også kalt hvitmateriale) og en karbonbærer (også betegnet som sortmateriale) i en lukket elektrisk ovn med en ytelse på mer enn 20 MV hvis elektroder er anordnet symmetrisk ved hjørnene av et likesidet trekant. The invention relates to a method for producing calcium carbide from lime (also called white material) and a carbon carrier (also referred to as black material) in a closed electric furnace with an output of more than 20 MV whose electrodes are arranged symmetrically at the corners of an equilateral triangle.

Elektrotermiske ovner har vært drevet i mange årtider over hele verden. Elektrotermien har begynt med. fremstill-ingen av Ca-karbid. Over mange årtider ble det drevet ovner av mindre ytelse, sannede gasser forbrente på blandings-overflaten. Reaksjonen og blanding var i stadig synlig kontroll. Manuelle inngrep- til korrektur av uregelmessig-heter var mulig med en gang under drift således at det ikke måtte anlegges noen strenge målestokker til beskaffenheten av blandingskomponentene. Electrothermal furnaces have been operated for many centuries all over the world. The electrothermy has started. the production of Ca carbide. Over many years, furnaces of lower performance were operated, true gases burned on the mixing surface. The reaction and mixing were in constant visible control. Manual intervention to correct irregularities was possible immediately during operation, so that no strict standards had to be applied to the nature of the mixture components.

Siden ca. 25 år ble det utviklet ovner som av økolog-iske grunner er helt lukket og av økonomiske grunner kan oppta meget større ytelse. Således er det i dag helt gjennom mulig å drive lukkede ovner med en ytelse inntil 75 MV. Since approx. 25 years ago, ovens were developed which, for ecological reasons, are completely closed and, for economic reasons, can absorb much greater output. Thus, today it is entirely possible to operate closed furnaces with an output of up to 75 MV.

Utviklingen av disse moderne storovner var forbundet med noen vanskeligheter. Da en direkte innvirkning i det som foregikk i ovnens indre under driften ikke mer var mulig måtte det fremfor alt stilles høyere krav til blandings-sammensetningen. Denne måtte være beskaffen således at minst noen dagers uavbrutt drift var mulig før ved hjelp av mek-aniske inngrep fjernet sammenbakninger, slagg, osv. Alt dette ble dessuten vanskeliggjort fordi ved en betraktlig økning av ytelsesopptaket var følsomheten på uegnede bland-inger blitt større. The development of these modern blast furnaces was associated with some difficulties. As a direct impact on what was happening inside the furnace during operation was no longer possible, above all higher requirements had to be placed on the mixture composition. This had to be in such a way that at least a few days of uninterrupted operation was possible before, with the help of mechanical interventions, caking, slag, etc. was removed. All this was also made difficult because with a considerable increase in the performance absorption, the sensitivity to unsuitable mixtures had become greater.

Med elektroreduksjonsovnenes størrelsesøkning ble gassgjennomtrengeligheten av satssjiktet som avdekket reak-sjonskaret og varmeutvekslingen av gassen med satsen i økende grad et kriterium for resultatrik drift av denne ovn. Ved ujevn avgassing av dette kar opptrer støtvis meget With the increase in the size of the electroreduction furnaces, the gas permeability of the batch layer that uncovered the reaction vessel and the heat exchange of the gas with the batch increasingly became a criterion for profitable operation of this furnace. In case of uneven degassing of this vessel, a lot of shock occurs

varme ovnsgasser hvilket fører til beskadigelse på ovns-hette, elektrodeholder og eventuelt elektrofilteravstøv-ningen. Derved har det også vist seg at disse vanskeligheter dessuten forsterkes når istedenfor den normale hot oven gases, which leads to damage to the oven hood, electrode holder and possibly the electrofilter dusting. Thereby it has also been shown that these difficulties are also intensified when instead of the normal one

ytterkokstype anvendes dårlig reaksjonsdyktige karbonbærere som vanligvis antrasitt, petrolkoks og/eller magerkull er. outer coke type poorly reactive carbon carriers are used, which are usually anthracite, petroleum coke and/or lean coal.

Til forbedring av sats og siktgassgjennomtrengelighet og dermed varmeutvekslingen mellom gass og sats burde derfor hittil tilstrebet et snevrest mulig kornspektrum i satsen med en viss minste kornstørrelse spesielt av karbonbærere. To improve the batch and sieve gas permeability and thus the heat exchange between gas and batch, the narrowest possible grain spectrum in the batch with a certain minimum grain size, especially of carbon carriers, should therefore have been striven for up to now.

Karbonbæreren ble derfor overveiende anvendt i korn-størrelse IQ. - 20 mm. Støvdeler, dvs. korning i mindre enn 6 mm måtte på forhånd frasiktes fra satsen (Ullmanns Enzy-klopådie der technischen Chemie, 5. Bind, 3. opplag (1954) Urban og Schwarzenberg, Miinchen-Berlin, side 30- 33). The carbon carrier was therefore predominantly used in grain size IQ. - 20 mm. Dust particles, i.e. grains of less than 6 mm had to be waived in advance from the batch (Ullmann's Enzy-klopådie der technischen Chemie, 5. Bind, 3. oplag (1954) Urban and Schwarzenberg, Munich-Berlin, pages 30-33).

Av denne grunn ble det allerede forsøkt å anvende For this reason, it was already attempted to apply

de findelte satsbestanddeler over huleelektroder i elektrotermisk fremgangsmåte (US patent 2 996 360). the finely divided batch components over hollow electrodes in an electrothermal method (US patent 2,996,360).

Mengden av på denne måte anvendbart findelt materiale er imidlertid begrenset fordi det riktignok i første rekke økende faststoffinntak gjennom hulelektrodene gir seg for-deler for ovnsdriften (nedsetning av elektrodeavbranden pr. tidsenhet, elektroder som dypper dypt i satsen), imidlertid fører fra et visst punkt av en ytterligere økning av dette faststoffinntak til en radikal nedgang av ovnstilstanden. The amount of finely divided material that can be used in this way is, however, limited because, although in the first place increasing solids intake through the hollow electrodes gives advantages for the furnace operation (reduction of the electrode burn-off per time unit, electrodes that dip deeply into the batch), however, from a certain point of a further increase of this solids intake to a radical decrease of the furnace condition.

Med hensyn til den kjemiske sammensetning ble det til sortmaterialet bl.a. stilt det krav at det skulle være prak-tisk talt fritt for flyktige bestanddeler. For den praktiske drift anvendte man derfor i lukkede storovner overveiende koks. With regard to the chemical composition, the black material included i.a. given the requirement that it should be practically free of volatile components. For practical operation, therefore, in closed blast furnaces, mainly coke was used.

Selvsagt har man allerede forsøkt også å anvende andre sortmaterialer enn koks, fremfor alt antrasitt og petrolkoks. Den praktiske drift av lukkede storovner har imidlertid vist at anvendelsen av disse materialer pga. delene av flyktig hydrokarboner, men også pga. andre egen-skaper bød på betraktelige vanskeligheter. Det har derfor i fagkretser oppstått den mening at man til satsen i disse tilfeller bare kan tilsette en liten del antrasitt, petrolkoks eller magerkull (maks. inntil ca. 25% av sortmateriale Of course, attempts have already been made to use black materials other than coke, above all anthracite and petroleum coke. However, the practical operation of closed blast furnaces has shown that the use of these materials due to the parts of volatile hydrocarbons, but also due to other properties presented considerable difficulties. The opinion has therefore arisen in professional circles that in these cases only a small amount of anthracite, petroleum coke or lean coal can be added to the batch (max. up to approx. 25% of black material

idet prosentangivelsen også i det følgende er å forstå as the percentage is also to be understood in the following

som masseprosent) når man ikke uheldig ville forstyrre driften. Selv dette var bare mulig med godtløpende ovner. Tilsetningen av antrasitt, petrolkoks eller magerkull ble med en gang avbrutt når det opptrådte vanskeligheter. as mass percentage) when one would not accidentally disturb the operation. Even this was only possible with well-running furnaces. The addition of anthracite, petroleum coke or lean coal was immediately stopped when difficulties arose.

For fremstilling av elektrodemasser kalsineres antrasitt og petrolkoks riktignok i lengre tid, imidlertid dette kalsinerte materiale er uegnet for anvendelse i elektrotermiske reduksjonsovner allerede pga. den for høye elektriske ytelse. Men også reaksjonsevnen av disse kalsinater ér nedsatt hvorved temperaturen i ovnen øker seg. De derved begunstigede bireaksjoner forårsaker en hurtig slaggdannelse av satsen. For the production of electrode masses, anthracite and petroleum coke are certainly calcined for a longer time, however this calcined material is unsuitable for use in electrothermal reduction furnaces already due to the too high electrical performance. But the reactivity of these calcinates is also reduced, whereby the temperature in the oven increases. The thereby favored side reactions cause a rapid slag formation of the batch.

Overraskende ble det nu funnet at det er mulig også i lukkede elektrotermiske ovner med en ytelse på mer enn Surprisingly, it was now found that it is also possible in closed electrothermal furnaces with a performance of more than

20 MW, elektroder er anordnet symmetrisk ved hjørnene av 20 MW, electrodes are arranged symmetrically at the corners of

et likesidet trekant i stort omfang å anvende antrasitt, petrolkoks enkeltvis eller i blanding med hverandre. an equilateral triangle on a large scale to use anthracite, petroleum coke individually or in a mixture with each other.

Minst 40% av de tilsammen i ovnssatsen anvendte karbonkomponenter kunne riktignok anvendes i form av en karbonbærer bestående av antrasitt, petrolkoks og/eller magerkull når denne karbonbæreren med et opprinnelig innhold av flyktige bestanddeler på mer enn 5,0% er blitt forbehandlet termisk så lenge ved forhøyede temperaturer inntil det har et restinnhold av flyktige bestanddeler på mindre enn 5,0%, fortrinnsvis 1- - 3% og man deretter oppdeler, denne karbonbærer i konstørrelsefraksjoner fra 3-10 mm på den ene side og større enn 10 - 25 mm på den annen side og med frak-sjonene av mindre kornstørrelser beskikker det sentrale mellom elektrodene plasserte område og med fraksjonen av større kornstørrelser beskikker det ytre område av satsoverflaten i ovnen som ligger utenfor den av elektrodene dannede trekant. At least 40% of the combined carbon components used in the furnace batch could indeed be used in the form of a carbon carrier consisting of anthracite, petroleum coke and/or lean coal when this carbon carrier with an original content of volatile components of more than 5.0% has been pre-treated thermally as long as at elevated temperatures until it has a residual content of volatile components of less than 5.0%, preferably 1- - 3% and then divided, this carbon carrier into cone size fractions from 3-10 mm on one side and larger than 10 - 25 mm on the other hand and with the fractions of smaller grain sizes covers the central area between the electrodes and with the fraction of larger grain sizes covers the outer area of the charge surface in the furnace which lies outside the triangle formed by the electrodes.

Fortrinnsvis gjennomfører man dermed den termiske forbehandling ved temperaturer under 1000°C, spesielt ved temperaturer mellom 600 og 800°C, idet behandlingstidene som kjent er desto kortere jo høyere temperaturen er og med en tilsvarende lenger jo lavere temperaturen er. The thermal pre-treatment is thus preferably carried out at temperatures below 1000°C, especially at temperatures between 600 and 800°C, the treatment times being known to be shorter the higher the temperature and correspondingly longer the lower the temperature.

Som fordelaktig har det videre vist seg når man tilfører til ovnen samtidig inntil 25% av de i ovnssatsen tilsammen anvendte karbonkomponenter i. form av koksstøv gjennom hulelektroder, idet koksstøvet som inneholder inntil 50% antra-sittstøv. It has also been shown to be advantageous when up to 25% of the carbon components used in the furnace batch are added to the furnace at the same time in the form of coke dust through hollow electrodes, the coke dust containing up to 50% anthracite dust.

Ytterligere utførelse av fremgangsmåten ifølge oppfinnelsen er at man i satsen til samråen anvender en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 60% koks eller at man i satsen tilsammen anvender en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 60% av en blanding som består av koks på den ene side samt ubehandlet antrasitt, petrolkoks og/eller magerkull på den andre side i forhold 1:1. A further embodiment of the method according to the invention is that a carbon component is used in the batch for the co-raw which next to the carbon carrier pretreated according to the invention contains up to 60% coke or that in the batch together a carbon component is used which next to the carbon carrier pretreated according to the invention contains up to 60% of a mixture consisting of coke on one side and untreated anthracite, petroleum coke and/or lean coal on the other side in a 1:1 ratio.

Videre er det også mulig i satsen tilsammen å anvende en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 30% ubehandlet antrasitt, petrolkoks og/eller magerkull, eller at man sogar anvender en slik karbokkomponent til 100% består av den ifølge oppfinnelsen forbehandlede karbonbærer. Furthermore, it is also possible in the batch to use a carbon component which, next to the pre-treated carbon carrier according to the invention, contains up to 30% untreated anthracite, petroleum coke and/or lean coal, or that one even uses such a carbon component that consists 100% of the one according to the invention pretreated carbon carrier.

Hensiktsmessig innstilles mengdeforholdet sort-/ hvittmateriale i den samlede sats på ca. 1:1,5 til 1,6 således at det fåes en karbid som ved omsetning med vann gir 280 til 300 1 acetylen/kg. Imidlertid er det også mulig med annen drift av ovnen. Appropriately, the proportion of black/white material is set at the overall rate of approx. 1:1.5 to 1.6 so that a carbide is obtained which, when reacted with water, gives 280 to 300 1 acetylene/kg. However, other operation of the oven is also possible.

Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler. The invention will be explained in more detail with the help of some examples.

Eksempel 1 Example 1

Antrasitt av følgende analyse: Anthracite of the following analysis:

oppvarmes i en rørovn indirekte oppvarming under utelukkelse av luft ca. lh time ved 850°C. Deretter har den tørre antrasitt ennu et innhold på 1,9% flyktige hydrokarboner og en elektrisk motstand på 0,8 x 10 2 Sera. Av dette materiale utsiktes deretter de 2 fraksjoner av korning 3-10 mm og 10 - 22 mm. heated in a tube furnace indirect heating under the exclusion of air approx. lh hour at 850°C. Then the dry anthracite still has a content of 1.9% volatile hydrocarbons and an electrical resistance of 0.8 x 10 2 Sera. From this material, the 2 fractions of grain size 3-10 mm and 10 - 22 mm are then screened.

Med disse to fraksjoner beskikkes en karbidovn av lukket bygningstype med et ytelsesopptak på maks. 55 MW, nemlig den finere korning i det sentrale mellom eletroden liggende område av ovnen, den grovere korning i det ytre (perifere) område. Blanding med kalk innstilles over alt jevnt i forhold i 1 del antrasitt : 1,6 deler kalk.. With these two fractions, a carbide furnace of a closed building type with a performance absorption of max. 55 MW, namely the finer graining in the central area between the electrodes of the furnace, the coarser graining in the outer (peripheral) area. The mixture with lime is set uniformly throughout in a ratio of 1 part anthracite : 1.6 parts lime..

Karbidovnen er utrustet med hulelektrode. Gjennom disse innblåses en blanding av normal koksgrus (korning 0-6 mm) og finkalk i forhold 1 : 1,6,. som utgjør ca. 15% av den samlede sats. Ovnen kan således drives uten vanske-lighet. The carbide furnace is equipped with a hollow electrode. Through these, a mixture of normal coking gravel (granulation 0-6 mm) and fine lime in a ratio of 1:1.6 is blown in. which amounts to approx. 15% of the total rate. The oven can thus be operated without difficulty.

En balanse på 8 timers drift hadde følgende resultat: A balance of 8 hours of operation had the following result:

Ovnens løpetid fra en nødvendig kontroll inntil neste er under de angitte betingelser omtrent den samme som den vanlige drift med koks. Under the specified conditions, the furnace's operating time from one necessary check to the next is roughly the same as normal operation with coke.

Eksempel 2 Example 2

Det ved opparbeidelse av antrasitt i de to kornfrak-sjoner dannede finmateriale 0-3 mm tilblandes koksgrusen for hulelektroden. Det fremkommer ved denne opparbeidelse omtrent så meget finantrasitt at den fullstendige for-arbeidelse av dette materiale består sortkomponentene av hulelektroden og en blanding av ca. 1 del koksgrus og 1 del antrasitt. The fine material 0-3 mm formed during processing of anthracite in the two grain fractions is mixed with the coke gravel for the hollow electrode. This processing results in approximately so much financial waste that the complete processing of this material consists of the black components of the hollow electrode and a mixture of approx. 1 part coke gravel and 1 part anthracite.

Forøvrig gås det frem som i eksempel 1. Otherwise, proceed as in example 1.

Det oppnådde resultat er det samme som i eksempel 1 innen rammen av feilgrensene. The result obtained is the same as in example 1 within the limits of error.

Eksempel 3 Example 3

Det gås prinsippielt frem som i eksempel 1, bare antrasitten tilsettes etter avgassing ubehandlet antrasitt i en slik mengde at blandingen inneholder ca. 30% rå antrasitt. Det tilsettes riktignok før antrasittens avkjøling for at vannet av den ubehandlede antrasitt kan fordampe, imidlertid ikke. hydrokarbonene. Proceed in principle as in example 1, only the anthracite is added after degassing untreated anthracite in such a quantity that the mixture contains approx. 30% raw anthracite. It is admittedly added before the anthracite's cooling so that the water from the untreated anthracite can evaporate, but not. the hydrocarbons.

Forbrukene ved dette forsøk er likeledes innen rammen av feilgrensene likt eksempel 1. Bare litertall av produsert karbid utgjør bare 285 1 C2<H>2</kg.>The consumption in this experiment is also within the limits of error similar to example 1. The number of liters of produced carbide is only 285 1 C2<H>2</kg.>

Ovnen har ved denne driftsmåte imidlertid en tydelig sterkere tendens til på overflaten av satsen å danne slagg. Dette nødvendiggjør noe hyppigere kontrollering og korri-gering av ovnsgangen.Hyppighet og de dermed forbundne driftsavbrudd er ved denne driftsmåte nettopp så høy at det kan tales om ennu forsvarlig drift. In this mode of operation, however, the furnace has a distinctly stronger tendency to form slag on the surface of the charge. This necessitates somewhat more frequent checking and correction of the furnace process. The frequency and the associated interruptions in operation are just so high with this mode of operation that it can be said that it is still safe to operate.

Eksempel 4 Example 4

Petrolkoks av korning 6-35 mm og et innhold av flyktig hydrokarboner på 9,7%, 6% H20 og aske mindre enn 1% oppvarmes i samme ovn som omtalt i eksempel 1 imidlertid til en temperatur på 750° og en oppholdstid på ca. 2 timer. Deretter inneholder koksen ennu 2,8% flyktig hydrokarbon-stoffer og den elektriske motstand utgjør 1,6 x 10 2ficm. Petroleum coke with a grain size of 6-35 mm and a content of volatile hydrocarbons of 9.7%, 6% H20 and ash less than 1% is heated in the same furnace as described in example 1, however, to a temperature of 750° and a residence time of approx. 2 hours. Then the coke still contains 2.8% volatile hydrocarbon substances and the electrical resistance is 1.6 x 10 2ficm.

Opparbeidet blir koksen deretter som i eksempel 1 anvendt The processed coke is then used as in example 1

i karbidovnen blir koksen likeledes som omtalt i eksempel 1. Bare forholdet koks : kalk innstilles til 1 del koks til 1,5 deler kalk. Hulelektroden beskikkes med normal koksgrus. in the carbide furnace, the coke is the same as described in example 1. Only the ratio coke : lime is set to 1 part coke to 1.5 parts lime. The hollow electrode is coated with normal coke gravel.

Resultatet av en 8 timers balanse: The result of an 8 hour balance:

Ovnsdriften er normal, kontrollen er ikke nødvendig oftere enn ved vanlig drift med hyttekoks. Kiln operation is normal, the check is not necessary more often than in normal operation with cabin coke.

Claims (8)

1. Fremgangsmåte til fremstilling av kalsiumkarbid av kalk og en karbonbærer i en lukket elektrotermisk ovn med en ytelse på mer enn 20 MW, hvis elektroder er anordnet symmetrisk ved hjørnene av et likesidet triangel,karakterisert vedat man i det minste anvender 40% av den tilsammen i ovnssatsen anvendte karbonkomponent i form av en karbonbærer, bestående av antrasitt, petrolkoks og/eller magerkull etter at denne karbonbærer med et opprinnelig innhold av flyktige bestanddeler på mer enn 5,0%, er blitt forbehandlet termisk ved forhøyede temperaturer så lenge inntil den har et restinnhold av flyktige bestanddeler på mindre enn 5,0%, deretter oppdeles denne karbonbærer i kornstørrelsefraksjoner fra 3-10 mm på den ene side, og større enn 10 - 25 ram på den annen side, og med fraksjonen av mindre kornstørrelser beskikkes det sentrale mellom elektrodene liggende område og med fraksjonen av større kornstørrelse beskikkes det ytre området av satsoverflaten i ovnen som ligger utenfor trekanten som dannes.av elektrodene.1. Process for the production of calcium carbide from lime and a carbon carrier in a closed electrothermal furnace with an output of more than 20 MW, whose electrodes are arranged symmetrically at the corners of an equilateral triangle, characterized in that at least 40% of it is used together the carbon component used in the furnace batch in the form of a carbon carrier, consisting of anthracite, petroleum coke and/or lean coal after this carbon carrier with an initial content of volatile components of more than 5.0%, has been thermally pre-treated at elevated temperatures until it has a residual content of volatile components of less than 5.0%, then this carbon carrier is divided into grain size fractions from 3-10 mm on the one hand, and larger than 10 - 25 ram on the other hand, and with the fraction of smaller grain sizes the central area lying between the electrodes is coated and with the fraction of larger grain sizes the outer area of the charge surface in the furnace which is outside the triangle formed by the electrodes is coated. 2. Fremgangsmåte ifølge krav 1,karakterisert vedat man forbehandler karbonbæreren ved temperaturer mellom 600 og 800°C termisk.2. Method according to claim 1, characterized in that the carbon carrier is thermally pretreated at temperatures between 600 and 800°C. 3. Fremgangsmåte ifølge krav 1 eller 2,karakterisert vedat man termisk forbehandler karbonbæreren så lenge inntil den har et restinnhold av flyktige bestanddeler fra 1-3%.3. Method according to claim 1 or 2, characterized in that the carbon carrier is thermally pre-treated until it has a residual content of volatile components from 1-3%. 4. Fremgangsmåte ifølge et av kravene 1-3,karakterisert vedat man samtidig tilfører inntil 25% av de i ovnssatsen tilsammen anvendte karbonkomponenter til ovnen i form av koksstøv gjennom hulelektroder, idet koksstøvet kan inneholde inntil 50% antrasittstøv.4. Method according to one of claims 1-3, characterized in that up to 25% of the carbon components used in the furnace batch are simultaneously added to the furnace in the form of coke dust through hollow electrodes, the coke dust can contain up to 50% anthracite dust. 5. Fremgangsmåte ifølge et av kravene 1-4,karakterisert ved- at man i. satsen tilsammen anvender en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 60% koks.5. Method according to one of claims 1-4, characterized in that in the batch a carbon component is used together which, in addition to the carbon carrier pretreated according to the invention, contains up to 60% coke. 6. Fremgangsmåte ifølge et av kravene 1-4,karakterisert vedat man i satsen tilsammen anvender en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 60% av en blanding som består av koks på den ene side sårat ubehandlet antrasitt, petrolkoks og/eller magerkull på den annen side i forholdet 1 :6. Method according to one of the claims 1-4, characterized in that in the batch a carbon component is used together which, in addition to the carbon carrier pretreated according to the invention, contains up to 60% of a mixture consisting of coke on one side wound untreated anthracite, petroleum coke and /or lean coal on the other hand in the ratio 1 : 7. Fremgangsmåte ifølge et av kravene 1-4,karakterisert vedat man i satsen tilsammen anvender en karbonkomponent som ved siden av den ifølge oppfinnelsen forbehandlede karbonbærer inneholder inntil 30% ubehandlet antrasitt, petrolkoks og/eller magerkull.7. Method according to one of claims 1-4, characterized in that a carbon component is used in the batch together which, in addition to the carbon carrier pretreated according to the invention, contains up to 30% untreated anthracite, petroleum coke and/or lean coal. 8. Fremgangsmåte ifølge et av kravene 1-3,karakterisert vedat man i satsen anvender en karbonkomponent som til 100% består av den ifølge oppfinnelsen forbehandlede karbonbærer.8. Method according to one of claims 1-3, characterized in that a carbon component is used in the batch which consists 100% of the carbon carrier pretreated according to the invention.
NO811223A 1980-04-10 1981-04-09 PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID. NO811223L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803013726 DE3013726A1 (en) 1980-04-10 1980-04-10 METHOD FOR PRODUCING CALCIUM CARBIDE

Publications (1)

Publication Number Publication Date
NO811223L true NO811223L (en) 1981-10-12

Family

ID=6099621

Family Applications (1)

Application Number Title Priority Date Filing Date
NO811223A NO811223L (en) 1980-04-10 1981-04-09 PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID.

Country Status (11)

Country Link
EP (1) EP0037898B1 (en)
JP (1) JPS56155014A (en)
AT (1) ATE7218T1 (en)
AU (1) AU537815B2 (en)
CA (1) CA1156425A (en)
DD (1) DD158227A5 (en)
DE (2) DE3013726A1 (en)
IN (1) IN153956B (en)
NO (1) NO811223L (en)
PL (1) PL125382B1 (en)
ZA (1) ZA812364B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI833181A0 (en) * 1983-09-06 1983-09-06 Labsystems Oy FOERFARANDE FOER BESTAEMNING AV LOESNINGSHASTIGHET
DE4428305A1 (en) * 1993-08-20 1995-02-23 Sueddeutsche Kalkstickstoff Process for preparing calcium carbide
DE102007054343A1 (en) 2007-11-14 2009-05-20 Alzchem Hart Gmbh Process for the technical production of calcium carbide in the electric low-shaft furnace
DE102017122167B3 (en) 2017-09-25 2018-10-31 Alzchem Trostberg Gmbh Process for the recycling of carbon fiber-containing plastics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE205260C (en) *
FR835819A (en) * 1937-03-27 1939-01-04 Fu R Stickstoffdu Nger Ag Method of loading carbide furnaces and apparatus suitable for carrying out this method
DE956579C (en) * 1951-07-30 1957-01-24 Air Reduction Process for preparing the input material for carbide production in an electric arc melting furnace
US2996360A (en) * 1958-11-21 1961-08-15 Union Carbide Corp Calcium carbide production

Also Published As

Publication number Publication date
DD158227A5 (en) 1983-01-05
JPS6358766B2 (en) 1988-11-16
ZA812364B (en) 1982-05-26
CA1156425A (en) 1983-11-08
DE3013726A1 (en) 1981-10-15
AU6933981A (en) 1981-10-15
ATE7218T1 (en) 1984-05-15
EP0037898A1 (en) 1981-10-21
AU537815B2 (en) 1984-07-12
PL125382B1 (en) 1983-05-31
JPS56155014A (en) 1981-12-01
PL230586A1 (en) 1981-12-23
IN153956B (en) 1984-09-01
DE3163269D1 (en) 1984-05-30
EP0037898B1 (en) 1984-04-25

Similar Documents

Publication Publication Date Title
US3637464A (en) Upgrading coking coals and coke production
CN104194813A (en) Method for preparing coke
CN104194816A (en) Method for preparing coke
NO811223L (en) PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID.
US4160814A (en) Thermal desulfurization and calcination of petroleum coke
CN110079678B (en) Method for recycling aluminum in secondary aluminum ash
US2955991A (en) Apparatus for heating agglutinating coal
NO168310B (en) PROCEDURE FOR THE PREPARATION OF HOEYREN COOK FROM BLACK COAL
US4106996A (en) Method of improving the mechanical resistance of coke
JPH09100473A (en) Production of coke for blast furnace
US3272721A (en) Process for desulfurizing and coking high sulfur content coal
US2755234A (en) Process for making petroleum coke non-agglutinating
US1467797A (en) Preliminary preparation of furnace charges for ore-smelting furnaces
RU2740994C1 (en) Carbon reducing agent for production of technical silicon and method of its production
US4144053A (en) Processes for blast furnace operations
SU814984A1 (en) Packing refractory mass
JPS6049240B2 (en) How to use secondary tar
US513744A (en) Process of treating black-band ores
Mobley Foundry Coke from Blending of Southern Coals
US3725018A (en) Form coke coated with glanz carbon and methods of production
SU990844A1 (en) Method for processing zinc-bearing materials by rolling
RU1824414C (en) Method of dry coke quenching
CN116590041A (en) Method for improving coke performance by using heavy tar coal blending thermal infiltration coking
GB761153A (en) Process for the production of aggregates of calcined petroleum coke fines in the form of lumps or moulded bodies
CN109279609A (en) The smelting process of the method for modifying of petroleum coke and thus obtained modified petroleum coke and carbonaceous reducing agent and industrial silicon