KR20220089276A - Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same - Google Patents

Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same Download PDF

Info

Publication number
KR20220089276A
KR20220089276A KR1020200179748A KR20200179748A KR20220089276A KR 20220089276 A KR20220089276 A KR 20220089276A KR 1020200179748 A KR1020200179748 A KR 1020200179748A KR 20200179748 A KR20200179748 A KR 20200179748A KR 20220089276 A KR20220089276 A KR 20220089276A
Authority
KR
South Korea
Prior art keywords
corrosion resistance
machinability
stainless steel
austenitic stainless
present
Prior art date
Application number
KR1020200179748A
Other languages
Korean (ko)
Other versions
KR102570524B1 (en
Inventor
강형구
박미남
김영준
권영진
조규진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020200179748A priority Critical patent/KR102570524B1/en
Priority to PCT/KR2021/018701 priority patent/WO2022139275A1/en
Priority to CN202180090889.5A priority patent/CN116848283A/en
Priority to JP2023538136A priority patent/JP2024500905A/en
Priority to EP21911342.0A priority patent/EP4265799A1/en
Publication of KR20220089276A publication Critical patent/KR20220089276A/en
Application granted granted Critical
Publication of KR102570524B1 publication Critical patent/KR102570524B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

내식성과 절삭성이 향상된 오스테나이트계 스테인리스강이 개시된다.
본 발명에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량%로, C: 0.05%이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함한다.
Disclosed is an austenitic stainless steel with improved corrosion resistance and machinability.
The austenitic stainless steel with improved corrosion resistance and machinability according to the present invention is, by weight, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the remainder Fe and unavoidable impurities.

Description

내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법{AUSTENITIC STAINLESS STEEL WITH IMPROVED CORROSION RESISTANCE AND MACHINABILITY AND METHOD FOR MANUFACTURING THE SAME} AUSTENITIC STAINLESS STEEL WITH IMPROVED CORROSION RESISTANCE AND MACHINABILITY AND METHOD FOR MANUFACTURING THE SAME

본 발명은 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것으로, 더욱 상세하게는 절삭성이 요구되고, 염수 등의 부식환경에서 사용될 수 있는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것이다.The present invention relates to austenitic stainless steel with improved corrosion resistance and machinability and a method for manufacturing the same, and more particularly, to austenitic stainless steel with improved corrosion resistance and machinability that can be used in corrosive environments such as salt water and requiring machinability, and It relates to a manufacturing method thereof.

프레임, 챔버, 금형 등과 같은 기계부품에 사용되는 오스테나이트 스테인리스강은 밀링과 같은 절삭 가공을 통해 최종 형상으로 제조된다. 절삭 가공 시의 절삭 부하 저감, 절삭 속도 향상 및 공구 수명 향상을 위해서는 스테인리스강 소재의 절삭성이 요구된다. Austenitic stainless steel used for machine parts such as frames, chambers, and molds is manufactured into a final shape through machining such as milling. The machinability of stainless steel is required to reduce the cutting force during cutting, increase cutting speed, and improve tool life.

절삭성이 우수한 스테인리스강으로서는 강중에 Mn, S를 첨가하고 비금속 개재물인 MnS 화합물을 활용하여 절삭성을 향상시킨 강종이 널리 알려져 있다. 그러나 MnS 화합물은 염수와 같은 부식 환경에서 쉽게 용출되거나 공식을 발생시키는 시작점이 되어 스테인리스강의 내식성을 열화시키므로, MnS 화합물을 활용한 스테인리스강은 부식 환경에 노출되어 내식성이 요구되는 용도에서는 사용이 제한되는 문제가 있다. 이에 따라, 절삭성과 동시에 내식성을 확보할 수 있는 스테인리스강에 대한 개발이 요구되고 있다.As a stainless steel with excellent machinability, a steel type with improved machinability by adding Mn and S to the steel and utilizing a non-metallic MnS compound is widely known. However, MnS compounds are easily eluted in corrosive environments such as salt water or become a starting point for pitting, which deteriorates the corrosion resistance of stainless steel. there is a problem. Accordingly, there is a demand for the development of stainless steel that can secure machinability and corrosion resistance at the same time.

본 발명의 일 측면은 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법을 제공하고자 한다. One aspect of the present invention is to provide an austenitic stainless steel with improved corrosion resistance and machinability and a method for manufacturing the same.

본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량%로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하고, BN 석출상이 10개 / 100x100μm2 이상 분포한다.The austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention is, by weight, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: more than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, remaining Fe and unavoidable impurities, including BN precipitation 10 phases / 100x100μm 2 or more are distributed.

또한, 본 발명의 일 실시 예에 따르면, MnS 석출상이 10개 / 100x100 μm2 이하로 분포할 수 있다.In addition, according to an embodiment of the present invention, 10 MnS precipitated phases / 100x100 μm 2 or less may be distributed.

또한, 본 발명의 일 실시 예에 따르면, 장축의 길이가 1μm 이상인 MnS 석출상이 10개 / 100x100 μm2 이하로 분포할 수 있다.In addition, according to an embodiment of the present invention, 10 MnS precipitated phases having a long axis length of 1 μm or more / 100×100 μm 2 or less may be distributed.

또한, 본 발명의 일 실시 예에 따르면, Cu: 0 초과 1%를 더 포함할 수 있다.In addition, according to an embodiment of the present invention, Cu: may further include more than 0 1%.

또한, 본 발명의 일 실시 예에 따르면, 공식전위는 300mV 이상일 수 있다.In addition, according to an embodiment of the present invention, the formal potential may be 300mV or more.

본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강의 제조방법은 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하는 강편을 1,150 내지 1,250℃에서 1시간 30분 이상 가열하는 단계; 가열된 강편을 열간 압연하는 단계; 및 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함한다.In the method for manufacturing austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention, in weight %, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: more than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, remaining Fe and unavoidable impurities. heating at 1,150 to 1,250° C. for 1 hour and 30 minutes or more; hot rolling the heated slab; and maintaining the rolled rolled material at 1,100 to 1,250° C. for at least 30 seconds.

본 발명의 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 내식성 및 절삭성을 동시에 확보할 수 있다. The austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention can secure corrosion resistance and machinability at the same time.

도 1a 및 도 1b는 각각 실시예7 및 비교예2의 열간압연 후 외관을 나타내는 사진이다.
도 2a 및 도 2b는 각각 실시예7 및 비교예1의 스테인리스강의 단면을 SEM으로 관찰한 사진이다.
1A and 1B are photographs showing the external appearance of Example 7 and Comparative Example 2 after hot rolling, respectively.
2a and 2b are photographs observed by SEM of cross-sections of stainless steels of Example 7 and Comparative Example 1, respectively.

본 명세서가 실시 예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시 예들 간에 중복되는 내용은 생략한다. This specification does not describe all elements of the embodiments, and general content in the technical field to which the present invention pertains or content that overlaps among the embodiments is omitted.

또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.The singular expression includes the plural expression unless the context clearly dictates otherwise.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. The following examples are presented to sufficiently convey the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains. The present invention is not limited to the embodiments presented herein, and may be embodied in other forms.

본 발명에서는 내식성의 열화를 초래하는 MnS의 형성을 배제하여, MnS 석출상이 형성되지 않도록 하였다. 또한, MnS를 대체하여 절삭성을 향상시킬 수 있도록 BN 화합물을 도입하고자 하였다. In the present invention, the formation of MnS, which causes deterioration of corrosion resistance, is excluded so that the MnS precipitated phase is not formed. In addition, it was attempted to introduce a BN compound to improve machinability by replacing MnS.

다만, 적정 수준을 초과하여 B를 첨가하면 판재를 생산하기 위한 열간압연 중에 파단이 일어나는 문제가 발생하므로, 본 발명의 발명자들은 다양한 실험을 통하여 열간압연 시 파단을 억제하면서, 절삭성 개선에 유효한 수준의 BN 형성을 위한 최적화된 B, N 및 그 밖의 다른 원소의 함량을 찾아내었다. However, if B is added in excess of an appropriate level, a problem of fracture occurs during hot rolling to produce a sheet material, so the inventors of the present invention have suppressed fracture during hot rolling through various experiments, while maintaining an effective level of machinability. Optimized content of B, N and other elements for BN formation was found.

본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함한다. Austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention, in weight %, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, remaining Fe and unavoidable impurities.

또한, Cu: 0 초과 1%를 더 포함할 수 있다. In addition, Cu: may further include more than 0 1%.

이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for numerical limitation of the alloying element content in the embodiment of the present invention will be described. Hereinafter, unless otherwise specified, the unit is % by weight.

C의 함량은 0 초과 0.05%이다. The content of C is greater than 0 and 0.05%.

C는 오스테나이트 형성 원소이고 불가피한 불순물로 작용하는 원소이다. C의 함량이 0.05%를 초과할 경우, 용접부 내식성을 저해할 수 있으므로, C의 함량을 0.05%로 제한한다.C is an austenite forming element and an element acting as an unavoidable impurity. If the content of C exceeds 0.05%, the corrosion resistance of the weld may be impaired, so the content of C is limited to 0.05%.

Si의 함량은 0 초과 2%이다.The content of Si is greater than 0 and 2%.

Si은 탈산제로서 첨가하고, 내식성을 향상시킬 수 있는 원소이다. 다만, Si의 함량이 2%를 초과할 경우, 인성을 저해할 수 있으므로, Si의 함량을 2% 이하로 제한한다.Si is added as a deoxidizer and is an element capable of improving corrosion resistance. However, when the content of Si exceeds 2%, since toughness may be impaired, the content of Si is limited to 2% or less.

Mn의 함량은 0 초과 2%이다.The content of Mn is greater than 0 and 2%.

Mn은 오스테나이트 안정화 원소이다. 다만, Mn의 함량이 2%를 초과할 경우, 내식성을 저해할 수 있으므로, Mn의 함량을 2% 이하로 제한한다.Mn is an austenite stabilizing element. However, when the content of Mn exceeds 2%, corrosion resistance may be impaired, so the content of Mn is limited to 2% or less.

S의 함량은 0.01% 이하이다.The content of S is 0.01% or less.

S는 본 발명에서 배제하고자 하는 MnS 형성을 방지하기 위하여 함량을 0.01% 이하로 제한한다.The content of S is limited to 0.01% or less in order to prevent the formation of MnS to be excluded in the present invention.

Cr의 함량은 16 내지 22% 이다.The content of Cr is 16 to 22%.

Cr은 오스테나이트계 스테인리스 강의 내식성을 향상시키는 원소이다. Cr의 함량이 16% 미만일 경우, 전술한 효과를 나타내기 어렵고, Cr의 함량이 22%를 초과할 경우, 원료비의 상승과 인성의 저해를 초래할 수 있다. 따라서, 본 발명에서는 Cr의 함량을 16 내지 22%로 제한한다.Cr is an element that improves the corrosion resistance of austenitic stainless steels. When the content of Cr is less than 16%, it is difficult to exhibit the above-mentioned effects, and when the content of Cr exceeds 22%, it may cause an increase in raw material cost and inhibition of toughness. Therefore, in the present invention, the content of Cr is limited to 16 to 22%.

Ni의 함량은 9 내지 15%이다.The content of Ni is 9 to 15%.

Ni은 오스테나이트 안정화 원소이다. Ni의 함량이 9% 미만일 경우, 전술한 효과를 나타내기 어렵고, Ni의 함량이 15%를 초과할 경우, 원료비의 상승을 초래하므로, 본 발명에서는 Ni의 함량을 9 내지 15%로 제한한다.Ni is an austenite stabilizing element. When the content of Ni is less than 9%, it is difficult to exhibit the above-described effect, and when the content of Ni exceeds 15%, it causes an increase in raw material cost, so the content of Ni is limited to 9 to 15% in the present invention.

Mo의 함량은 0 초과 3%이다.The content of Mo is greater than 0 and 3%.

Mo은 내식성을 향상시키는 원소이다. 다만, Mo의 함량이 3%를 초과할 경우, 원료비의 상승을 초래한다. 따라서, 본 발명에서는 Mo의 함량을 3%로 제한한다.Mo is an element that improves corrosion resistance. However, when the content of Mo exceeds 3%, it causes an increase in the raw material cost. Therefore, in the present invention, the content of Mo is limited to 3%.

B의 함량은 0.004 내지 0.06%이다. The content of B is 0.004 to 0.06%.

B는 BN을 확보하기 위해 첨가되는 원소이다. B의 함량이 0.004% 미만일 경우, 본 발명에서 목표로하는 충분한 BN을 형성시킬 수 없고, B의 함량이 0.06%를 초과할 경우, 열간압연 시 파단을 초래한다. 따라서, 본 발명에서는 B의 함량을 0.004 내지 0.06%로 제한한다.B is an element added to secure BN. When the content of B is less than 0.004%, sufficient BN targeted in the present invention cannot be formed, and when the content of B exceeds 0.06%, fracture occurs during hot rolling. Therefore, in the present invention, the content of B is limited to 0.004 to 0.06%.

N의 함량은 0.15 내지 0.25%이다.The content of N is 0.15 to 0.25%.

N는 BN을 확보하기 위해 첨가되는 원소이다. B의 함량이 0.15% 미만일 경우, 충분한 BN을 형성시킬 수 없고, B의 함량이 0.25%를 초과할 경우, 강의 인성의 저해를 초래한다. 따라서, 본 발명에서는 N의 함량을 0.15 내지 0.25%로 제한한다.N is an element added to secure BN. When the content of B is less than 0.15%, sufficient BN cannot be formed, and when the content of B exceeds 0.25%, the toughness of the steel is impaired. Therefore, in the present invention, the content of N is limited to 0.15 to 0.25%.

Cu의 함량은 0 초과 1%이다.The content of Cu is greater than 0 and 1%.

Cu는 내식성을 향상시키는 원소로 본 발명에서는 필요에 따라 첨가한다. 다만, Cu의 함량이 1%를 초과할 경우, 열간 가공성이 열화될 수 있으므로, 본 발명에서는 Cu의 함량을 1%로 제한한다. Cu is an element that improves corrosion resistance and is added as necessary in the present invention. However, when the content of Cu exceeds 1%, since hot workability may be deteriorated, the content of Cu is limited to 1% in the present invention.

합금조성 외 잔부는 Fe이다. 본 발명의 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 통상 강의 공업적 생산 과정에서 포함될 수 있는 기타의 불순물을 포함할 수 있다. 이러한 불순물들은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 알 수 있는 내용이므로 본 발명에서 특별히 그 종류와 함량을 제한하지는 않는다.The balance other than the alloy composition is Fe. The austenitic stainless steel with improved corrosion resistance and machinability of the present invention may contain other impurities that may be included in the industrial production process of ordinary steel. These impurities are not particularly limited in the present invention, because the content can be known by anyone having ordinary knowledge in the technical field to which the present invention pertains.

본 발명에 따른 오스테나이트계 스테인리스강은 임의의 단면에서 장축의 크기가 1μm 이상인 MnS 석출상이 10개 / 100x100 μm2 이하로 분포한다. 이때, MnS 석출상은 Mn과 S의 합으로 50at.% 이상을 포함할 수 있다.In the austenitic stainless steel according to the present invention, 10 MnS precipitated phases having a major axis of 1 μm or more in an arbitrary cross section / 100x100 μm 2 or less are distributed. In this case, the MnS precipitated phase may include 50at.% or more as the sum of Mn and S.

본 발명에서는 내식성의 열화를 초래하는 MnS의 형성이 억제되므로, 내식성을 확보할 수 있고, 본 발명에 따른 오스테나이트계 스테인리스강의 공식 전위는 300mV 이상일 수 있다. In the present invention, since the formation of MnS causing deterioration of corrosion resistance is suppressed, corrosion resistance can be secured, and the pitting potential of the austenitic stainless steel according to the present invention may be 300 mV or more.

본 발명에 따른 오스테나이트계 스테인리스강은 임의의 단면에서 BN 석출상이 10개 / 100x100μm2 이상 분포한다. 이때, BN 석출상은 B와 N의 합으로 50at.% 이상을 포함할 수 있다. 본 발명에서는 MnS를 BN로 대체하므로 내식성의 열화를 억제하면서도 절삭성을 확보할 수 있다. In the austenitic stainless steel according to the present invention, 10 / 100x100 μm 2 or more of BN precipitated phases are distributed in an arbitrary cross section. In this case, the BN precipitated phase may include 50at.% or more as the sum of B and N. In the present invention, since MnS is replaced with BN, it is possible to secure machinability while suppressing deterioration of corrosion resistance.

다음으로, 본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강의 제조방법에 대하여 설명한다.Next, a method for manufacturing austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention will be described.

본 발명에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 일 실시예로써 다음과 같은 방법에 의해 제조될 수 있다. The austenitic stainless steel with improved corrosion resistance and machinability according to the present invention can be manufactured by various methods, and the manufacturing method is not particularly limited. However, as an embodiment, it may be manufactured by the following method.

예를 들어, 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하는 강편을 1,150 내지 1,250℃에서 1시간 30분 이상 가열하는 단계; 가열된 강편을 열간 압연하는 단계; 및 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함한다. For example, in weight %, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: more than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the remaining Fe and the step of heating the steel slab containing unavoidable impurities at 1,150 to 1,250 ° C. for 1 hour and 30 minutes or more; hot rolling the heated slab; and maintaining the rolled rolled material at 1,100 to 1,250° C. for at least 30 seconds.

이때, 가열하는 단계는 가능한 한 많은 BN을 형성시키기 위한 공정으로, 1,150 내지 1,250℃에서 1시간 30분 이상 수행될 수 있다. At this time, the heating step is a process for forming as much BN as possible, and may be performed at 1,150 to 1,250° C. for 1 hour and 30 minutes or more.

또한, 열간 압연은 두께 8mm까지 수행될 수 있으나, 그 두께는 용도에 따라 달라질 수 있으므로 이에 한정하지 않는다.In addition, the hot rolling may be performed up to a thickness of 8 mm, but the thickness may vary depending on the use, and thus is not limited thereto.

또한, 열간 압연 후 유지하는 단계는 BN을 재차 형성하기 위한 공정으로, 1,100 내지 1,250℃에서 30초 이상 수행될 수 있다. In addition, the step of maintaining after hot rolling is a process for re-forming BN, and may be performed at 1,100 to 1,250° C. for 30 seconds or more.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for illustrating the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.

실시 예 Example

하기 표 1의 합금 조성을 만족하는 합금을 용해 주조하고, 오스테나이트 스테인리스강 주편을 1,200℃에서 1시간 30분 동안 가열하였다. 이후, 가열된 주편을 두께 8mm이 되도록 열간 압연하였다. 이어서, BN 석출상을 형성하도록 열연재를 1,150℃의 온도에서 30초 이상 유지하여, 열연재 시편을 얻었다. An alloy satisfying the alloy composition of Table 1 was melt-cast, and an austenitic stainless steel slab was heated at 1,200° C. for 1 hour and 30 minutes. Then, the heated slab was hot-rolled to a thickness of 8 mm. Then, the hot-rolled material was maintained at a temperature of 1,150° C. for 30 seconds or more to form a BN precipitation phase, thereby obtaining a hot-rolled material specimen.

구분 division 합금원소(중량%)Alloy element (wt%) CC SiSi MnMn SS CrCr NiNi MoMo BB NN 비교예1Comparative Example 1 0.020 0.020 0.6 0.6 1.1 1.1 0.003 0.003 16.2 16.2 10.1 10.1 2.1 2.1 0.000 0.000 0.015 0.015 비교예2Comparative Example 2 0.020 0.020 0.6 0.6 1.1 1.1 0.003 0.003 16.2 16.2 10.2 10.2 2.1 2.1 0.031 0.031 0.018 0.018 비교예3Comparative Example 3 0.025 0.025 0.4 0.4 0.8 0.8 0.008 0.008 21.3 21.3 14.6 14.6 0.6 0.6 0.012 0.012 0.020 0.020 비교예4Comparative Example 4 0.018 0.018 0.6 0.6 1.5 1.5 0.240 0.240 17.4 17.4 10.9 10.9 2.0 2.0 0.001 0.001 0.023 0.023 비교예5Comparative Example 5 0.018 0.018 0.6 0.6 1.3 1.3 0.180 0.180 17.5 17.5 10.8 10.8 2.1 2.1 0.001 0.001 0.017 0.017 비교예6Comparative Example 6 0.022 0.022 0.4 0.4 0.8 0.8 -- 21.4 21.4 9.3 9.3 0.6 0.6 0.001 0.001 0.210 0.210 실시예1Example 1 0.022 0.022 0.4 0.4 0.8 0.8 0.002 0.002 21.1 21.1 9.2 9.2 0.6 0.6 0.013 0.013 0.210 0.210 실시예2Example 2 0.027 0.027 0.4 0.4 0.8 0.8 0.002 0.002 21.8 21.8 9.3 9.3 0.6 0.6 0.058 0.058 0.200 0.200 실시예3Example 3 0.025 0.025 0.4 0.4 0.8 0.8 0.008 0.008 21.3 21.3 14.6 14.6 0.6 0.6 0.029 0.029 0.200 0.200 실시예4Example 4 0.0220.022 0.4 0.4 0.8 0.8 0.002 0.002 19.2 19.2 12.3 12.3 0.6 0.6 0.004 0.004 0.200 0.200 실시예5Example 5 0.0250.025 0.4 0.4 0.8 0.8 0.001 0.001 19.2 19.2 12.3 12.3 0.6 0.6 0.007 0.007 0.200 0.200 실시예6Example 6 0.0240.024 0.4 0.4 0.8 0.8 0.003 0.003 19.4 19.4 12.3 12.3 0.6 0.6 0.014 0.014 0.160 0.160 실시예7Example 7 0.0260.026 0.4 0.4 0.8 0.8 0.002 0.002 19.3 19.3 12.4 12.4 0.6 0.6 0.020 0.020 0.240 0.240 실시예8Example 8 0.0250.025 0.4 0.4 0.8 0.8 0.002 0.002 19.3 19.3 12.3 12.3 0.6 0.6 0.028 0.028 0.200 0.200 실시예9Example 9 0.0480.048 1.5 1.5 1.8 1.8 0.001 0.001 16.4 16.4 12.1 12.1 1.5 1.5 0.007 0.007 0.210 0.210 실시예10Example 10 0.0220.022 1.8 1.8 1.5 1.5 0.001 0.001 16.3 16.3 12.1 12.1 2.6 2.6 0.008 0.008 0.200 0.200

실시예 1 내지 10과 비교예 1 내지 7의 열연재 시편에 대해 열간압연 후 판파단의 발생 여부를 관찰하고, 파단이 발생한 경우를 ○, 발생하지 않은 경우를 X로 하기 표2에 나타내었다. For the hot-rolled specimens of Examples 1 to 10 and Comparative Examples 1 to 7, the occurrence of plate breakage was observed after hot rolling, and the case where breakage occurred was denoted by ○, and the case where breakage did not occur was denoted in Table 2 below.

구분division 열간압연 중 파단fracture during hot rolling 비교예1Comparative Example 1 XX 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 XX 비교예5Comparative Example 5 XX 비교예6Comparative Example 6 XX 실시예1Example 1 XX 실시예2Example 2 XX 실시예3Example 3 XX 실시예4Example 4 XX 실시예5Example 5 XX 실시예6Example 6 XX 실시예7Example 7 XX 실시예8Example 8 XX 실시예9Example 9 XX 실시예10Example 10 XX

표 2를 참조하면, 본 발명의 합금조성을 만족하는 실시예 1 내지 10은 열간압연 중 파단이 발생하지 않았다. 그러나, 비교예2는 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 파단이 발생하였다.Referring to Table 2, in Examples 1 to 10 satisfying the alloy composition of the present invention, fracture did not occur during hot rolling. However, in Comparative Example 2, the content of B was satisfactory, but the content of N did not reach the lower limit suggested in the present invention, and fracture occurred during hot rolling.

도 1a 및 도 1b는 각각 실시예7 및 비교예2의 열간압연 후 외관을 나타내는 사진이다. 도 1a를 참조하면, 본 발명에 따른 실시예2는 강판의 외관이 파단 없이 양호함을 확인할 수 있다. 반면, 도 1b를 참조하면 비교예2는 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 판 파단이 발생하였음을 확인할 수 있다. 1A and 1B are photographs showing the external appearance of Example 7 and Comparative Example 2 after hot rolling, respectively. Referring to FIG. 1A , it can be confirmed that in Example 2 according to the present invention, the appearance of the steel sheet is good without breakage. On the other hand, referring to FIG. 1b , in Comparative Example 2, the content of B was satisfied, but the content of N did not reach the lower limit suggested in the present invention, and thus it can be confirmed that plate breakage occurred during hot rolling.

비교예3도 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 파단이 발생하였다.Although the content of B was satisfactory in Comparative Example 3, the content of N did not reach the lower limit suggested in the present invention, and fracture occurred during hot rolling.

이어서, 열간 압연 중 파단되지 않은 비교예 1 및 4 내지 6, 실시예 1 내지 10의 열연재 시편에 대해 BN 및 MnS 석출물을 관찰하고, 내식성 및 절삭성을 평가하여 하기 표3에 나타내었다. Next, BN and MnS precipitates were observed for the hot-rolled specimens of Comparative Examples 1 and 4 to 6 and Examples 1 to 10 that were not fractured during hot rolling, and corrosion resistance and machinability were evaluated and shown in Table 3 below.

BN 및 MnS 석출물은 판재의 임의의 절단면을 경면 연마한 후, 100x100 μm2 당 1μm 이상의 MnS 석출물 개수 및 100x100μm2당 BN 석출물 개수를 에너지 분산형 분광기(Energy Dispersive Spectrometer, EDS)가 부착된 주사전자현미경(Scanning Electron Microscope, SEM)을 통해 관찰하고, 그 개수를 나타내었다. For BN and MnS precipitates, the number of MnS precipitates of 1 μm or more per 100x100 μm 2 and the number of BN precipitates per 100x100 μm 2 are measured with a scanning electron microscope with an Energy Dispersive Spectrometer (EDS) after mirror-polishing any cut surface of the plate material. (Scanning Electron Microscope, SEM) was observed, and the number was indicated.

내식성은 공식전위에 의해 평가하였다. 공식전위는 3.5wt% NaCl을 함유한 수용액에 열연재 시편을 담그고 전극을 연결한 후, 전압을 인가하여 자연전위로부터 점차 전압을 상승시켰을 때 전류가 0.1mA에 도달하는 시점에서의 전압을 측정하여 나타내었다.Corrosion resistance was evaluated by pitting potential. The pitting potential is determined by immersing the hot-rolled specimen in an aqueous solution containing 3.5wt% NaCl, connecting the electrodes, and then applying a voltage to gradually increase the voltage from the natural potential by measuring the voltage when the current reaches 0.1mA. indicated.

절삭성은 엔드밀을 사용하여 절삭 시, 절입 깊이 2mm, 절입 두께 5mm, 엔드밀 회전속도 2,000rpm의 조건에서 절삭 부하 토크를 측정하여 평가하였다. 다만, 절삭 환경은 변화할 수 있으므로 비교예1의 토크를 기준(100%)으로 하여 나타내었다. 공식 전위는 본 발명의 실험 방법에서는 1,000mV값이 최대치로 얻어지므로, 그 이상의 값에 대해서는 1,000mV으로 표기하였다.The machinability was evaluated by measuring the cutting load torque when cutting using an end mill under the conditions of a depth of cut of 2 mm, a depth of cut of 5 mm, and an end mill rotation speed of 2,000 rpm. However, since the cutting environment may change, the torque of Comparative Example 1 is used as a reference (100%). Since the formula potential is obtained as the maximum value of 1,000 mV in the experimental method of the present invention, values higher than that are expressed as 1,000 mV.

구분division 100x100μm2
1μm 이상
MnS 개수
per 100x100μm 2
1 μm or more
MnS count
100x100μm2
BN 개수
per 100x100μm 2
number of BNs
공식전위
(mV)
official vanguard
(mV)
절삭 부하
(%)
cutting force
(%)
비교예1Comparative Example 1 -- -- 550 550 100 100 비교예4Comparative Example 4 35 35 -- 2 2 82 82 비교예5Comparative Example 5 15 15 -- 50 50 80 80 비교예6Comparative Example 6 -- -- 1,000 1,000 105 105 실시예1Example 1 -- 40 40 1,000 1,000 91 91 실시예2Example 2 -- 205 205 1,000 1,000 81 81 실시예3Example 3 -- 90 90 1,000 1,000 85 85 실시예4Example 4 -- 11 11 1,000 1,000 94 94 실시예5Example 5 -- 20 20 651 651 91 91 실시예6Example 6 -- 54 54 510 510 90 90 실시예7Example 7 -- 88 88 453 453 86 86 실시예8Example 8 -- 150 150 329 329 84 84 실시예9Example 9 -- 1515 372372 92 92 실시예10Example 10 -- 2121 567567 93 93

표 2 및 표3을 참조하면, 본 발명의 합금조성을 만족하는 실시예 1 내지 10은 MnS 석출물을 형성하지 않으므로 공식전위가 300mV이상으로 내식성이 양호하고, BN 석출물이 100x100μm2 당 11개 이상으로 절삭 부하도 비교예1보다 낮게 나타나 절삭성도 확보하였음을 확인할 수 있다.도 2a 및 도 2b는 각각 실시예7 및 비교예1의 스테인리스강의 단면을 SEM으로 관찰한 사진이다. 도 2a를 참조하면, 본 발명에 따른 실시예7은 본 발명에서 구현하고자 하는 BN이 다량 형성되었다는 것을 확인할 수 있다. 반면, 도 2b를 참조하면, 비교예1은 BN을 형성할 수 있는 조건이 형성되지 않아 BN이 형성되지 않았다는 것을 확인할 수 있다. 일부 보이는 검은색 영역은 BN이 아닌 산화물로 보여진다. Referring to Tables 2 and 3, Examples 1 to 10, which satisfy the alloy composition of the present invention, do not form MnS precipitates, so the pitting potential is 300mV or more, and the corrosion resistance is good, and the BN precipitates are cut at 11 or more per 100x100μm 2 The load was also lower than that of Comparative Example 1, confirming that machinability was secured. FIGS. 2A and 2B are photographs of SEM observation of cross sections of stainless steels of Example 7 and Comparative Example 1, respectively. Referring to FIG. 2A , it can be confirmed that in Example 7 according to the present invention, a large amount of BN to be implemented in the present invention is formed. On the other hand, referring to FIG. 2B , in Comparative Example 1, it can be confirmed that BN was not formed because conditions for forming BN were not formed. Some visible black areas appear to be oxides rather than BN.

반면, 비교예1은 MnS이 형성되지 않아 공식전위가 550mV로 내식성은 양호하였으나, B가 첨가되지 않아 BN이 형성되지 않았고 절삭 부하가 실시예에 비해 열위하였다. On the other hand, in Comparative Example 1, MnS was not formed, so the pitting potential was 550 mV, and corrosion resistance was good, but BN was not formed because B was not added, and the cutting load was inferior to that of Example.

비교예4는 MnS가 형성되어 절삭 부하는 낮았으나, N의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 충분한 BN이 형성되지 못하였고, 내식성이 열위하였다. In Comparative Example 4, MnS was formed and the cutting load was low, but the content of N did not reach the lower limit suggested in the present invention, so that sufficient BN was not formed, and the corrosion resistance was inferior.

비교예5는 MnS가 형성되어 절삭 부하는 낮았으나, B 및 N의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 충분한 BN이 형성되지 못하였고, 내식성이 열위하였다.In Comparative Example 5, MnS was formed and the cutting load was low, but the content of B and N did not reach the lower limit suggested in the present invention, so that sufficient BN was not formed, and the corrosion resistance was inferior.

비교예6은 MnS이 형성되지 않아 공식전위가 1000mV로 내식성은 양호하였으나, B의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 절삭 부하가 열위하였다.In Comparative Example 6, MnS was not formed, so the pitting potential was 1000 mV, and the corrosion resistance was good, but the content of B did not reach the lower limit suggested in the present invention, so the cutting load was inferior.

본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.The present invention is not limited thereto, and those of ordinary skill in the art will understand that various changes and modifications are possible within the scope without departing from the concept and scope of the claims described below.

Claims (6)

중량%로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하고,
BN 석출상이 10개 / 100x100μm2 이상 분포하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.
By weight%, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo : more than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, including the remainder Fe and unavoidable impurities,
Austenitic stainless steel with improved corrosion resistance and machinability with 10 BN precipitated phases distributed over 100x100μm 2 .
제1항에 있어서,
MnS 석출상이 10개 / 100x100 μm2 이하로 분포하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.
According to claim 1,
Austenitic stainless steel with improved corrosion resistance and machinability with 10 MnS precipitated phases distributed less than 100x100 μm 2 .
제2항에 있어서,
MnS 석출상의 장축의 길이가 1μm 이상인 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.
3. The method of claim 2,
Austenitic stainless steel with improved corrosion resistance and machinability with a major axis length of 1 μm or more of the MnS precipitated phase.
제1항에 있어서,
Cu: 0 초과 1%를 더 포함하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.
According to claim 1,
Cu: Austenitic stainless steel with improved corrosion resistance and machinability containing more than 0 and 1% more.
제1항에 있어서,
공식전위는,
300mV이상인 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.
According to claim 1,
The official vanguard is,
Austenitic stainless steel with improved machinability and corrosion resistance of 300 mV or higher.
중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하는 강편을 1,150 내지 1,250℃에서 1시간 30분 이상 가열하는 단계;
상기 가열된 강편을 열간 압연하는 단계; 및
상기 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 제조방법.
In weight %, C: 0.05% or less (excluding 0), Si: greater than 0 2%, Mn: greater than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo : heating the steel piece containing more than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the remaining Fe and unavoidable impurities at 1,150 to 1,250° C. for 1 hour and 30 minutes or more;
hot rolling the heated slab; and
A method of manufacturing austenitic stainless steel with improved corrosion resistance and machinability, comprising: maintaining the rolled rolled material at 1,100 to 1,250° C. for 30 seconds or more.
KR1020200179748A 2020-12-21 2020-12-21 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same KR102570524B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020200179748A KR102570524B1 (en) 2020-12-21 2020-12-21 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same
PCT/KR2021/018701 WO2022139275A1 (en) 2020-12-21 2021-12-10 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing same
CN202180090889.5A CN116848283A (en) 2020-12-21 2021-12-10 Austenitic stainless steel with improved corrosion resistance and machinability and method of making same
JP2023538136A JP2024500905A (en) 2020-12-21 2021-12-10 Austenitic stainless steel with improved corrosion resistance and machinability and its manufacturing method
EP21911342.0A EP4265799A1 (en) 2020-12-21 2021-12-10 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200179748A KR102570524B1 (en) 2020-12-21 2020-12-21 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20220089276A true KR20220089276A (en) 2022-06-28
KR102570524B1 KR102570524B1 (en) 2023-08-24

Family

ID=82159585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200179748A KR102570524B1 (en) 2020-12-21 2020-12-21 Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same

Country Status (5)

Country Link
EP (1) EP4265799A1 (en)
JP (1) JP2024500905A (en)
KR (1) KR102570524B1 (en)
CN (1) CN116848283A (en)
WO (1) WO2022139275A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113144A (en) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd Nonmagnetic stainless steel excellent in surface property and production thereof
JPH07197205A (en) * 1993-12-29 1995-08-01 Nkk Corp Austenitic stainless steel sheet and its production
JP2019130586A (en) * 2018-02-02 2019-08-08 日鉄日新製鋼株式会社 Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209454A (en) * 1989-02-08 1990-08-20 Nkk Corp Free cutting stainless steel
KR102015510B1 (en) * 2017-12-06 2019-08-28 주식회사 포스코 Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113144A (en) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd Nonmagnetic stainless steel excellent in surface property and production thereof
JPH07197205A (en) * 1993-12-29 1995-08-01 Nkk Corp Austenitic stainless steel sheet and its production
JP2019130586A (en) * 2018-02-02 2019-08-08 日鉄日新製鋼株式会社 Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate

Also Published As

Publication number Publication date
CN116848283A (en) 2023-10-03
KR102570524B1 (en) 2023-08-24
JP2024500905A (en) 2024-01-10
WO2022139275A1 (en) 2022-06-30
EP4265799A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
EP3135777B1 (en) Steel for mold and mold
KR102173302B1 (en) Non-magnetic austenitic stainless steel and manufacturing method thereof
KR101177540B1 (en) AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
JP2014136813A (en) Two-phase stainless steel and two-phase stainless steel tube
KR20190041502A (en) River
JP2636816B2 (en) Alloy tool steel
JP2018003139A (en) Stainless steel
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
KR102570524B1 (en) Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same
KR20140131214A (en) Austenitic stainless steel with high age cracking resistance
KR20200075656A (en) High-strength stainless steel
KR20180074322A (en) Austenite stainless steel excellent in corrosion resistance and hot workability
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2010229474A (en) Quench hardened martensitic stainless steel excellent in corrosion resistance
KR20200071212A (en) LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND HIGH TEMPERATURE PROPERTIES AND MANUFACTURING METHOD THEREOF
JP2001131634A (en) Method producing cold tool steel
JPH0717988B2 (en) Ferritic stainless steel with excellent toughness and corrosion resistance
JP4108506B2 (en) Martensitic free-cutting stainless steel
KR19990023274A (en) Fe-Cr-Si steel sheet excellent in corrosion resistance and its manufacturing method
JP7008873B2 (en) Stainless steel plate
KR20170075034A (en) Lean duplex stainless steel and method of manufacturing the same
KR101726075B1 (en) Low-chromium ferritic stainless steel having excellent corrosion resistant and method for manufacturing the same
KR20160079967A (en) Ferritic stainless steel having excellentridging resistance and excellent in surface quality
JPH06172929A (en) Deposition hardening type stainless steel and its production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant