KR20210103032A - 3-dimensional graphene-metal composite and manufacturing method of the same - Google Patents

3-dimensional graphene-metal composite and manufacturing method of the same Download PDF

Info

Publication number
KR20210103032A
KR20210103032A KR1020200017064A KR20200017064A KR20210103032A KR 20210103032 A KR20210103032 A KR 20210103032A KR 1020200017064 A KR1020200017064 A KR 1020200017064A KR 20200017064 A KR20200017064 A KR 20200017064A KR 20210103032 A KR20210103032 A KR 20210103032A
Authority
KR
South Korea
Prior art keywords
carbon
metal
metal composite
composite material
fine powder
Prior art date
Application number
KR1020200017064A
Other languages
Korean (ko)
Other versions
KR102529034B1 (en
Inventor
이상현
노호균
류혜수
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020200017064A priority Critical patent/KR102529034B1/en
Publication of KR20210103032A publication Critical patent/KR20210103032A/en
Application granted granted Critical
Publication of KR102529034B1 publication Critical patent/KR102529034B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Abstract

The present invention relates to a three-dimensional carbon-metal composite and a manufacturing method thereof, and more specifically, to a multifunctional three-dimensional carbon-metal composite having electromagnetic wave shielding and excellent heat dissipation functions by increasing an electromagnetic wave absorption capacity and a heat transfer rate by forming a porous structure through the fusion of carbon and metal fine powder, and a manufacturing method thereof.

Description

3차원 탄소-금속 복합소재 및 이의 제조방법{3-DIMENSIONAL GRAPHENE-METAL COMPOSITE AND MANUFACTURING METHOD OF THE SAME} Three-dimensional carbon-metal composite material and manufacturing method thereof

본 발명은 3차원 탄소-금속 복합소재 및 이의 제조방법에 관한 것으로써, 보다 상세하게는, 탄소와 금속 미세분말의 융합을 통하여 다공성 구조 형성에 의한 전자파 흡수능 및 열전달율을 증가시켜 전자파 차폐와 우수한 방열기능을 갖는 다기능 3차원 탄소-금속 복합소재 및 이의 제조방법에 관한 것이다. The present invention relates to a three-dimensional carbon-metal composite material and a method for manufacturing the same, and more particularly, by increasing the electromagnetic wave absorption capacity and heat transfer rate by forming a porous structure through the fusion of carbon and metal fine powder, electromagnetic wave shielding and excellent heat dissipation It relates to a multifunctional three-dimensional carbon-metal composite material having a function and a method for manufacturing the same.

전자제품의 소형화와 정보통신기기의 발전으로 일상생활 중 전자파로 인한 공해가 점점 증가해가고 있다. 이러한 전자파는 주변기기의 오작동 혹은 시스템 오류를 야기시키며 인체에 질병을 유발시킬 수 있어 직접적인 피해를 주고 있고 이로 인해 전자파 차폐 기술의 개발은 매우 중요해지고 있다. With the miniaturization of electronic products and the development of information and communication devices, the pollution caused by electromagnetic waves in daily life is increasing. These electromagnetic waves cause malfunctions or system errors of peripheral devices, and can cause diseases in the human body, thereby causing direct damage.

따라서, 전자제품의 부착되어 전자파를 차폐하는 전자파 차폐필름에 대한 수요가 증대되고 있으며, 이러한 전자파 차폐 필름의 전자파 차폐 능력은 전자파 차폐의 효율로 표현될 수 있으며, 구체적으로 전자기파의 내부흡수, 전자기파의 표면반사, 다반사를 통한 손실들의 합으로 표현될 수 있다. Therefore, the demand for an electromagnetic wave shielding film that is attached to electronic products to shield electromagnetic waves is increasing, and the electromagnetic wave shielding ability of such an electromagnetic wave shielding film can be expressed as the efficiency of electromagnetic wave shielding, and specifically, internal absorption of electromagnetic waves, It can be expressed as the sum of losses through surface reflection and polyreflection.

종래 전자파 차폐 소재로 사용되는 3차원 나노 네트워크 구조의 다공성 탄소계 재료는 에너지 저장 시스템, 태양 전지, 연료 전지 및 독성 유기 용제의 흡수재를 비롯한 다양한 분야에서의 잠재성으로 인해 많은 주목을 받고 있다. 이들 다공성 탄소계 재료는 다양한 치수로 가공되어 앞서 언급한 나노기술 분야에서 우수한 전기 전도도, 화학적 안정성, 높은 표면적 등의 성능을 발휘할 수 있다. 또한 다공성 탄소계 재료는 다양한 기공 크기 분포와 1000 m2/g 초과의 표면적을 가짐으로써 전기화학 소자 등의 다양한 분야에 유용하게 활용될 수 있다. A porous carbon-based material having a three-dimensional nano-network structure, which is conventionally used as an electromagnetic wave shielding material, has attracted much attention due to its potential in various fields including energy storage systems, solar cells, fuel cells, and absorbers of toxic organic solvents. These porous carbon-based materials can be processed into various dimensions to exhibit excellent electrical conductivity, chemical stability, and high surface area performance in the aforementioned nanotechnology field. In addition, the porous carbon-based material can be usefully used in various fields such as electrochemical devices by having various pore size distributions and a surface area of more than 1000 m 2 /g.

이러한 종래 다공성 카본계 재료는 기공벽에 의한 접촉만으로 이뤄져 있어 열전달율이 떨어질 뿐만 아니라 열적 특성에 의해 탄소 구조의 배향성이 이방성을 갖게 되며, 5G 또는 6G와 같은 차세대 통신 및 전자 기기에 활용을 위한 전자파 차폐 및 방열 특성을 동시에 구현하는 것에 한계가 있다. This conventional porous carbon-based material consists only of contact with the pore wall, so the heat transfer rate is lowered, and the orientation of the carbon structure is anisotropic due to thermal properties, and electromagnetic wave shielding for use in next-generation communication and electronic devices such as 5G or 6G And there is a limit in implementing the heat dissipation characteristics at the same time.

따라서, 다공성 카본계 재료 사이 접촉면적을 증가시켜 열전달율을 증가시키고 두 가지 이상의 기능이 포함된 복합소재가 필요한 실정이다. Therefore, there is a need for a composite material that increases the contact area between the porous carbon-based materials to increase the heat transfer rate and includes two or more functions.

한국등록특허 제10-1912908호Korean Patent No. 10-1912908

본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 탄소/금속 자체의 높은 전자파 차폐 특성과 다공성 구조의 융합을 통해 효율적으로 전자파 차폐 특성을 구현하는 3차원 탄소-금속 복합소재 및 이의 제조방법을 제공하는 것이다. 또한, 고결정의 탄소 구조인 그래핀(또는 탄소나노튜브)과 금속입자의 복합화에 따라 열전달율 증가시켜 우수한 방열 기능을 갖는 다기능 3차원 탄소-금속 복합소재 및 이의 제조방법을 제공하는 것이다. The present invention has been devised to solve the above problems, and an object of the present invention is a three-dimensional carbon-metal composite that efficiently implements electromagnetic wave shielding properties through the fusion of high electromagnetic wave shielding properties of carbon/metal itself and a porous structure. To provide a material and a method for manufacturing the same. In addition, it is to provide a multifunctional three-dimensional carbon-metal composite material having an excellent heat dissipation function by increasing the heat transfer rate according to the complexation of graphene (or carbon nanotube), which is a highly crystalline carbon structure, and metal particles, and a method for manufacturing the same.

본 발명의 일 실시예에 따른 3차원 탄소-금속 복합소재는 다수의 기공을 포함하는 탄소기재 폼(foam); 및 상기 다수의 기공에 위치되는 금속 미세분말(micropowder);을 포함하는 것을 특징으로 한다. A three-dimensional carbon-metal composite material according to an embodiment of the present invention includes a carbon-based foam including a plurality of pores; and a metal micropowder positioned in the plurality of pores.

일 실시예에서, 상기 탄소기재 폼은, 결정성 탄소, 그래핀, 탄소나노튜브 및 다이아몬드 중 어느 하나로 형성되는 것을 특징으로 한다. In one embodiment, the carbon-based foam is characterized in that it is formed of any one of crystalline carbon, graphene, carbon nanotubes and diamond.

일 실시예에서, 상기 금속 미세분말은, 구리(Cu), 니켈(Ni), 금(Au), 은(Ag) 및 알루미늄(Al) 중 어느 하나의 미세분말(micropowder)을 포함하는 것을 특징으로 한다. In one embodiment, the metal micropowder comprises a micropowder of any one of copper (Cu), nickel (Ni), gold (Au), silver (Ag), and aluminum (Al). do.

일 실시예에서, 상기 금속 미세분말의 크기는, 50nm 내지 500㎛인 것을 특징으로 한다. In one embodiment, the size of the metal fine powder, it is characterized in that 50nm to 500㎛.

일 실시예에서, 상기 탄소기재 폼은, 3차원 네트워크(network) 형태로 제공되는 것을 특징으로 한다. In one embodiment, the carbon-based foam is characterized in that it is provided in the form of a three-dimensional network (network).

본 발명의 일 실시예에 따른 3차원 탄소-금속 복합소재의 제조방법은 탄소기재 폼과 금속 미세분말을 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 화학기상증착(Chemical Vapor Deposition, CVD)시켜 복합체를 제조하는 단계;를 포함하는 것을 특징으로 한다. A three-dimensional carbon-metal composite material manufacturing method according to an embodiment of the present invention comprises the steps of: preparing a mixture by mixing a carbon-based foam and a metal fine powder; and preparing a composite by chemical vapor deposition (CVD) of the mixture.

일 실시예에서, 상기 복합체를 제조하는 단계는, 상기 혼합물을 금속 미세분말 녹는점의 70% 내지 100%의 온도에서 열화학기상증착(Thermal Chemical Vapor Deposition, TCVD)시켜 상기 복합체를 제조하는 것을 특징으로 한다. In one embodiment, the step of preparing the composite is characterized in that the composite is prepared by thermal chemical vapor deposition (TCVD) at a temperature of 70% to 100% of the melting point of the metal fine powder. do.

일 실시예에서, 상기 복합체를 제조하는 단계는, 상기 혼합물을 5시간 이하의 시간 동안 열화학기상증착(Thermal Chemical Vapor Deposition, TCVD)시켜 상기 복합체를 제조하는 것을 특징으로 한다. In one embodiment, the step of preparing the composite is characterized in that the composite is prepared by thermal chemical vapor deposition (TCVD) for 5 hours or less.

일 실시예에서, 상기 화학기상증착은, 수소, 메탄 및 불활성 가스 중 어느 하나의 가스 분위기에서 이루어지는 것을 특징으로 한다. In one embodiment, the chemical vapor deposition is characterized in that it is made in a gas atmosphere of any one of hydrogen, methane, and an inert gas.

일 실시예에서, 상기 복합체를 제조하는 단계는, 상기 탄소기재 폼의 기공에 인입된 상기 금속 미세분말이 소결(sintering)되어, 표면용융에 의해 상기 금속 미세분말 사이에 네트워크를 형성하는 것을 특징으로 한다. In one embodiment, in the step of preparing the composite, the metal fine powder introduced into the pores of the carbon-based foam is sintered, and a network is formed between the metal fine powder by surface melting, characterized in that do.

본 발명에 따르면, 3차원 구조의 그래핀 폼에 구리 미세분말이 위치되어 구성물 사이 접촉 부위 및 면적이 증가됨으로써, 열전달율이 증가하고 그에 따라 방열기능이 증가되는 효과가 발생하게 된다. According to the present invention, copper micropowder is positioned on the graphene foam having a three-dimensional structure to increase the contact area and area between the constituents, thereby increasing the heat transfer rate and thus increasing the heat dissipation function.

또한, 복합체의 표면이 그래핀 폼과 구리 입자로 형성된 기공에 의해 내부 반사 및 흡수율이 높아져 전자파 차폐 효과가 발생하게 된다. In addition, the internal reflection and absorption rate are increased due to the pores formed on the surface of the composite by the graphene foam and copper particles, thereby generating an electromagnetic wave shielding effect.

도 1(a)는 본 발명에 따른 탄소기재 폼을 도시한 도면이고, 도 1(b)는 본 발명에 따른 금속 미세분말을 도시한 도면이고, 도 1(c)는 본 발명에 따른 3차원 탄소-금속 복합체를 도시한 도면이다.
도 2(a)는 실시예에서 얻은 다공성 탄소 폼 사진이고, 도 2(b)는 실시예에서 얻은 3차원 탄소-금속 복합소재의 사진이고, 도 2(c)는 본 발명에 따른 3차원 탄소-금속 복합소재의 주사형 전자 현미경상(SEM)을 나타내는 도면이다.
도 3은 실시예의 전자파 차폐 효율을 나타낸 그래프이다.
Figure 1 (a) is a view showing a carbon-based foam according to the present invention, Figure 1 (b) is a view showing a metal fine powder according to the present invention, Figure 1 (c) is a three-dimensional view according to the present invention It is a diagram showing a carbon-metal composite.
Figure 2 (a) is a photograph of the porous carbon foam obtained in the Example, Figure 2 (b) is a photograph of the three-dimensional carbon-metal composite material obtained in the Example, Figure 2 (c) is a three-dimensional carbon according to the present invention - It is a diagram showing a scanning electron microscope image (SEM) of a metal composite material.
3 is a graph showing the electromagnetic wave shielding efficiency of the embodiment.

본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다. The present invention will be described in detail with reference to the accompanying drawings as follows. Here, repeated descriptions and detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. The embodiments of the present invention are provided in order to completely explain the present invention to those of ordinary skill in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clearer description.

명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for better understanding of the present invention, and the content of the present invention is not limited by the examples.

<3차원 탄소-금속 복합체> <3D Carbon-Metal Composite>

도 1(a)는 본 발명에 따른 탄소기재 폼(10)을 도시한 도면이고, 도 1(b)는 본 발명에 따른 금속 미세분말(20)을 도시한 도면이고, 도 1(c)는 본 발명에 따른 3차원 탄소-금속 복합체(100)를 도시한 도면이다. Figure 1 (a) is a view showing a carbon-based foam 10 according to the present invention, Figure 1 (b) is a view showing a metal fine powder 20 according to the present invention, Figure 1 (c) is It is a view showing the three-dimensional carbon-metal composite 100 according to the present invention.

도 1(a)를 참고하면, 본 발명에 따른 탄소기재 폼(10)은 3차원 탄소-금속 복합체(100)의 외형을 결정하는 구성이다. 탄소기재 폼(10)은 다수의 기공을 포함하고, 3차원 네트워크(network) 형태로 제공된다. 그리고, 탄소기재 폼(10)은 결정성 탄소, 그래핀, 탄소나노튜브(CNT) 및 다이아몬드 중 어느 하나로 형성될 수 있다. Referring to FIG. 1( a ), the carbon-based foam 10 according to the present invention is a configuration that determines the external shape of the three-dimensional carbon-metal composite 100 . The carbon-based foam 10 includes a plurality of pores, and is provided in the form of a three-dimensional network. And, the carbon-based foam 10 may be formed of any one of crystalline carbon, graphene, carbon nanotubes (CNT), and diamond.

여기서, 다수의 기공을 포함한다는 것은 탄소기재 폼(10)이 기공 및 탄소 물질을 함유하는 기공 벽으로 구성되는 것을 의미한다. Here, including a plurality of pores means that the carbon-based foam 10 is composed of pores and pore walls containing a carbon material.

그리고, 3차원 네트워크는 나노미터(㎚) 내지 마이크로미터(㎛)의 두께를 가지는 2차원 평면상의 탄소기재들이 서로 연결되어 수개층을 이루는 구조를 의미한다. 즉, 탄소기재 폼(10)은 2차원 평면상의 탄소기재들이 3차원 네트워크로 서로 연결된 구조를 갖고, 3차원 탄소기재 네트워크로 인해 형성된 기공을 가지며, 기공들 간에 서로 연결되어 연속적인 채널을 이룬다. In addition, the three-dimensional network refers to a structure in which carbon substrates on a two-dimensional plane having a thickness of nanometers (nm) to micrometers (㎛) are connected to each other to form several layers. That is, the carbon-based foam 10 has a structure in which carbon substrates on a two-dimensional plane are connected to each other in a three-dimensional network, has pores formed by the three-dimensional carbon-based network, and is connected to each other between the pores to form a continuous channel.

본 발명에 따른 탄소기재 폼(10)이 다수의 기공을 포함하는 3차원 네트워크 구조로 제공됨으로써, 다공성 구조에 의해 전자파를 흡수하여 전자파 차폐 효과가 발생될 수 있다. Since the carbon-based foam 10 according to the present invention is provided in a three-dimensional network structure including a plurality of pores, an electromagnetic wave shielding effect may be generated by absorbing electromagnetic waves by the porous structure.

금속 미세분말(20)은 구형, 선형, 판형 등 다양한 형태로 제공될 수 있으나, 도 1(b)를 참고하면, 미세분말(20)은 구형으로 제공되는 것이 바람직하다. 그리고, 본 발명에 따른 미세분말(20)은 구리(Cu), 니켈(Ni), 금(Au), 은(Ag) 및 알루미늄(Al) 중 어느 하나의 미세분말(micropowder)을 포함할 수 있다. The metal fine powder 20 may be provided in various shapes such as a spherical shape, a linear shape, and a plate shape. Further, the fine powder 20 according to the present invention may include any one of copper (Cu), nickel (Ni), gold (Au), silver (Ag), and aluminum (Al) fine powder (micropowder). .

본 발명에 따른 금속 미세분말은 50nm 내지 500㎛로 형성될 수 있다. 미세분말의 크기 조절로 기공 크기를 조절할 수 있는데, 50nm 이하의 크기라면 미세분말이 낮은 온도에서 완전히 녹아 기공이 형성되지 않을 수 있는 문제가 있다. 더불어, 금속 미세분말이 탄소기재 폼의 기공 안으로 침투하지 못하는 문제가 발생할 수 있다. 그리고, 미세분말의 크기가 500μm 이상일 경우, 미세분말끼리의 접촉면적이 작기 때문에 결합이 약하고, 이로 인해 충분한 물리적 강도를 갖지 못할 수 있다. The metal fine powder according to the present invention may be formed in a range of 50 nm to 500 μm. The pore size can be adjusted by adjusting the size of the fine powder, but if the size is less than 50 nm, there is a problem that the fine powder completely melts at a low temperature and pores may not be formed. In addition, there may be a problem that the fine metal powder does not penetrate into the pores of the carbon-based foam. And, when the size of the fine powder is 500 μm or more, the bonding is weak because the contact area between the fine powders is small, and thus, it may not have sufficient physical strength.

그리고, 도 2(a)는 실시예에서 얻은 다공성 탄소 폼 사진이고, 도 2(b)는 실시예에서 얻은 3차원 탄소-금속 복합소재의 사진이고, 도 2(c)는 본 발명에 따른 3차원 탄소-금속 복합소재의 주사형 전자 현미경상(SEM)을 나타내는 도면이다. And, Figure 2 (a) is a photograph of the porous carbon foam obtained in Example, Figure 2 (b) is a photograph of the three-dimensional carbon-metal composite material obtained in Example, Figure 2 (c) is a 3 according to the present invention It is a diagram showing a scanning electron microscope image (SEM) of a dimensional carbon-metal composite material.

도 1(c) 및 도 2(c)를 참고하면, 3차원 탄소-금속 복합소재(100)의 표면은 탄소기재 폼(10)에 형성된 기공에 금속 미세분말(20)이 채워진 형태로 제공될 수 있다. 이때, 금속 미세분말(20)이 탄소기재 폼(10)에 형성된 모든 기공에 위치되지 않고, 금속 미세분말(20)이 위치되지 않는 기공이 형성될 수 있다. 그리고, 금속 미세분말(20)도 다공성의 구조를 갖는 것을 알 수 있다. 1 ( c ) and 2 ( c ), the surface of the three-dimensional carbon-metal composite material 100 is provided in a form in which the pores formed in the carbon-based foam 10 are filled with the metal fine powder 20 . can At this time, the metal fine powder 20 is not located in all the pores formed in the carbon-based foam 10, pores in which the metal fine powder 20 is not located may be formed. And, it can be seen that the metal fine powder 20 also has a porous structure.

따라서, 본 발명에 따른 복합소재(100)의 표면은 다수의 기공이 형성된 탄소기재 구조 또는 탄소-금속 구조로 제공될 수 있습니다. 복합소재(100)의 표면이 다공성 구조의 탄소기재로 형성됨으로써, 전자파 반사율이 감소되어 본 발명에 따른 3차원 탄소-금속 복합소재(100)의 전자파 차폐율은 증가하는 효과가 발생하게 된다.Therefore, the surface of the composite material 100 according to the present invention may be provided with a carbon-based structure or a carbon-metal structure in which a plurality of pores are formed. Since the surface of the composite material 100 is formed of a carbon substrate having a porous structure, the electromagnetic wave reflectance is reduced, and thus the electromagnetic wave shielding rate of the three-dimensional carbon-metal composite material 100 according to the present invention is increased.

<3차원 탄소-금속 복합체의 제조방법><Manufacturing method of three-dimensional carbon-metal composite>

본 발명에 따른 3차원 탄소-금속 복합소재의 제조방법은 혼합물을 제조하는 단계(S100) 및 복합체를 제조하는 단계(S200)를 포함한다. The three-dimensional carbon-metal composite material manufacturing method according to the present invention includes the step of preparing a mixture (S100) and the step of preparing the composite (S200).

혼합물을 제조하는 단계(S100)는 탄소기재 폼과 금속 미세분말을 혼합하는 단계이다. 여기서, 탄소기재 폼과 금속 미세분말은 진동기에 의해 혼합되는데, 진동에 의해 금속 미세분말이 탄소기재 폼 기공으로 인입될 수 있다. The step of preparing the mixture (S100) is a step of mixing the carbon-based foam and the metal fine powder. Here, the carbon-based foam and the metal fine powder are mixed by a vibrator, and the metal fine powder may be introduced into the pores of the carbon-based foam by vibration.

탄소기재 폼의 기공 지름은 수십 내지 수백 마이크로미터인데 반해, 금속 미세분말은 나노미터 내지 마이크로미터의 지름으로 형성된다. 따라서, 탄소기재 폼에 금속 미세분말을 도포하면 금속 미세분말은 탄소기재 폼의 기공을 통해 2차원 형상의 탄소기재가 이루는 층 사이로 삽입되어 위치하게 된다. The pore diameter of the carbon-based foam is tens to hundreds of micrometers, whereas the fine metal powder is formed to have a diameter of nanometers to micrometers. Therefore, when the fine metal powder is applied to the carbon-based foam, the metal fine powder is inserted and positioned between the layers of the carbon-based material having a two-dimensional shape through the pores of the carbon-based foam.

진동기는 5분 내지 15분 동안 작동시킬 수 있는데, 5분 미만 혼합하면 기공에 인입되지 않은 금속 미세분말의 양이 많고, 혼합시간이 15분을 초과할 경우, 증가되는 효과가 미비하다. The vibrator can be operated for 5 to 15 minutes. When mixing for less than 5 minutes, the amount of fine metal powder not introduced into the pores is large, and when the mixing time exceeds 15 minutes, the increasing effect is insufficient.

복합체를 제조하는 단계(S200)는 혼합물을 화학기상증착(Chemical Vapor Deposition, CVD)시키는 단계이다. 화학기상증착은 TCVD(Thermal CVD), APCVD(Atmospheric pressure CVD), LPCVD(Low-pressure CVD), UHVCVD(Ultrahigh vaccum CVD), AACVD(Aerosol assisted CVD), DLICVD(Direct liquid injection CVD), MPCVD(Microwave plasma-assisted CVD), PECVD(Plasma Enhanced CVD), RPECVD(Remote plasma-enhanced CVD), ALCVD(Atomic layer CVD), HWCVD(Hot wire CVD), CatCVD(Catalytic CVD), HFCVD(hot filament CVD), MOCVD(Metalorganic CVD), HPCVD(Hybrid Physical-CVD), RTCVD(Rapid thermal CVD), 및 VPE(Vapor phase epitaxy)로 구성되는 군으로부터 한가지 선택될 수 있다. The step of preparing the composite (S200) is a step of chemical vapor deposition (CVD) of the mixture. Chemical vapor deposition is TCVD (Thermal CVD), APCVD (Atmospheric pressure CVD), LPCVD (Low-pressure CVD), UHVCVD (Ultrahigh vacuum CVD), AACVD (Aerosol assisted CVD), DLICVD (Direct liquid injection CVD), MPCVD (Microwave) plasma-assisted CVD), PECVD (Plasma Enhanced CVD), RPECVD (Remote plasma-enhanced CVD), ALCVD (Atomic layer CVD), HWCVD (Hot wire CVD), CatCVD (Catalytic CVD), HFCVD (hot filament CVD), MOCVD One may be selected from the group consisting of (Metalorganic CVD), Hybrid Physical-CVD (HPCVD), Rapid Thermal CVD (RTCVD), and Vapor phase epitaxy (VPE).

일 실시예에서, 본 발명에 따른 3차원 탄소-금속 복합소재의 제조방법은 열화학기상증착(TCVD)을 이용하여 혼합물을 소결(sintering)할 수 있다. In one embodiment, the three-dimensional carbon-metal composite material manufacturing method according to the present invention may sinter the mixture using thermochemical vapor deposition (TCVD).

복합체를 제조하는 단계(S200)는 금속 미세분말 녹는점의 70% 내지 100% 범위의 온도에서 5시간 이하의 시간 동안 열화학기상증착시켜 상기 복합체를 제조할 수 있다. 이때, 열화학기상증착 장치는 수소, 메탄 및 불활성가스 중 어느 하나의 가스 분위기에서 이루어지는 것을 특징으로 하고, 일 실시예에 있어서, 불활성가스는 아르곤가스, 질소가스 등이 있다. In the step of preparing the composite (S200), the composite may be prepared by thermochemical vapor deposition at a temperature ranging from 70% to 100% of the melting point of the metal fine powder for 5 hours or less. At this time, the thermochemical vapor deposition apparatus is characterized in that it is made in a gas atmosphere of any one of hydrogen, methane, and an inert gas, and in one embodiment, the inert gas includes argon gas, nitrogen gas, and the like.

따라서, 혼합물을 제조하는 단계(S100)에서 탄소기재 폼의 기공에 인입된 금속 미세분말이 소결되면서 표면용융에 의해 금속 미세분말 사이에 기공(혹은 네트워크)이 형성될 수 있다. Therefore, while the metal fine powder introduced into the pores of the carbon-based foam is sintered in the step of preparing the mixture (S100), pores (or networks) may be formed between the metal fine powders by surface melting.

열화학기상증착 장치의 온도가 금속 미세분말 녹는점의 70% 미만이면, 금속 미세분말의 표면이 용융되지 않아 결합이 형성되지 않기에 다공성 구조가 형성되지 않을 수 있고, 금속 미세분말 녹는점의 100%를 초과한다면 금속 미세분말의 상이 액체로 변화하여 다공성 구조가 형성되지 않을 수 있다. If the temperature of the thermochemical vapor deposition apparatus is less than 70% of the melting point of the metal fine powder, a porous structure may not be formed because the surface of the metal fine powder is not melted and a bond is not formed, and 100% of the metal fine powder melting point If it exceeds, the phase of the metal micropowder may change to a liquid, and a porous structure may not be formed.

<실시예><Example>

그래핀 폼을 제조한 후, 본 발명의 3차원 탄소-금속 복합체의 제조방법에 따라 복합체를 제조한다. After preparing the graphene foam, the composite is prepared according to the method for preparing the three-dimensional carbon-metal composite of the present invention.

그래핀 폼의 제조는 10*50*1㎛ 크기의 다공성 니켈 폼을 열화학증착(Thermal Chemical Vapor Deposition, TCVD) 장치에 투입한 후, 수소와 메탄가스 분위기에서 1000℃의 온도로 30분간 반응시켜 다공성 니켈 폼 표면에 그래핀을 합성한다. 그리고, 그래핀이 합성된 다공성 니켈 폼을 질산 40% 용액에 니켈을 에칭하여 다공성 그래핀 폼을 제조한다. Graphene foam was prepared by putting a porous nickel foam of 10*50*1㎛ size into a Thermal Chemical Vapor Deposition (TCVD) device, and then reacting it in a hydrogen and methane gas atmosphere at a temperature of 1000°C for 30 minutes to make it porous. Graphene is synthesized on the surface of the nickel foam. Then, the porous nickel foam in which graphene is synthesized is etched with nickel in a 40% nitric acid solution to prepare a porous graphene foam.

다음으로 탄소-금속 복합체 제조는 우선 보트에 다공성 그래핀 폼 및 1㎛의 구리 파우더를 담고 진동기를 이용하여 10분간 혼합한다. 혼합된 다공성 그래핀 폼 및 구리 파우더를 수소와 메탄가스 분위기의 열화학증착 장치에 넣어 1000℃에서 30분간 반응시킨 후 자연냉각 시켜 탄소-금속 복합체를 수득한다. Next, to prepare the carbon-metal composite, porous graphene foam and copper powder of 1 μm are placed in a boat and mixed for 10 minutes using a vibrator. The mixed porous graphene foam and copper powder were put into a thermochemical vapor deposition apparatus in an atmosphere of hydrogen and methane gas, reacted at 1000° C. for 30 minutes, and then cooled naturally to obtain a carbon-metal composite.

<실험예><Experimental example>

도 3은 실시예의 전자파 차폐 효율을 나타낸 그래프이고, 하기 표 1은 도 3의 차폐율을 퍼센테이지(%)로 변환한 변환표이다. 3 is a graph showing the electromagnetic wave shielding efficiency of the example, and Table 1 below is a conversion table in which the shielding rate of FIG. 3 is converted into a percentage (%).

도 3을 참고하면, 주파수 0~20GHz에서 평균 80dB의 전자파 차폐율을 보이고 있다. Referring to FIG. 3 , an average electromagnetic wave shielding rate of 80 dB is shown at a frequency of 0 to 20 GHz.

Shielding Effectiveness (dB)Shielding Effectiveness (dB) Shielding Efficiency (Shielding Efficiency ( %% )) 00 00 1010 9090 2020 9999 3030 99.3999.39 4040 99.9999.99 5050 99.99999.999 6060 99.999999.9999 7070 99.9999999.99999 8080 99.99999999.999999 9090 99.999999999.9999999

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it can be done.

100: 3차원 탄소-금속 복합체
10: 폼(form)
20: 미세분말
100: three-dimensional carbon-metal composite
10: form
20: fine powder

Claims (10)

다수의 기공을 포함하는 탄소기재 폼(foam); 및
상기 다수의 기공에 위치되는 금속 미세분말(micropowder);을 포함하는,
3차원 탄소-금속 복합소재.
Carbon-based foam (foam) including a plurality of pores; and
Containing; metal micropowder positioned in the plurality of pores
3D carbon-metal composite material.
제1항에 있어서,
상기 탄소기재 폼은,
결정성 탄소, 그래핀, 탄소나노튜브 및 다이아몬드 중 어느 하나로 형성되는 것을 특징으로 하는, 3차원 탄소-금속 복합소재.
According to claim 1,
The carbon-based foam,
A three-dimensional carbon-metal composite material, characterized in that it is formed of any one of crystalline carbon, graphene, carbon nanotubes, and diamond.
제1항에 있어서,
상기 금속 미세분말은,
구리(Cu), 니켈(Ni), 금(Au), 은(Ag) 및 알루미늄(Al) 중 어느 하나의 미세분말(micropowder)을 포함하는 것을 특징으로 하는, 3차원 탄소-금속 복합소재.
According to claim 1,
The metal fine powder is
A three-dimensional carbon-metal composite material comprising a micropowder of any one of copper (Cu), nickel (Ni), gold (Au), silver (Ag), and aluminum (Al).
제1항에 있어서,
상기 금속 미세분말의 크기는,
50nm 내지 500㎛인 것을 특징으로 하는, 3차원 탄소-금속 복합소재.
According to claim 1,
The size of the metal fine powder is,
A three-dimensional carbon-metal composite material, characterized in that 50nm to 500㎛.
제1있어서,
상기 탄소기재 폼은,
3차원 네트워크(network) 형태로 제공되는 것을 특징으로 하는, 3차원 탄소-금속 복합소재.
The method of claim 1,
The carbon-based foam,
A three-dimensional carbon-metal composite material, characterized in that it is provided in the form of a three-dimensional network.
탄소기재 폼과 금속 미세분말을 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 화학기상증착(Chemical Vapor Deposition, CVD)시켜 복합체를 제조하는 단계;를 포함하는,
3차원 탄소-금속 복합소재의 제조방법.
preparing a mixture by mixing carbon-based foam and metal fine powder; and
Containing; to prepare a composite by chemical vapor deposition of the mixture (Chemical Vapor Deposition, CVD)
A method for manufacturing a three-dimensional carbon-metal composite material.
제6항에 있어서,
상기 복합체를 제조하는 단계는,
상기 혼합물을 금속 미세분말 녹는점의 70% 내지 100%의 온도에서 열화학기상증착(Thermal Chemical Vapor Deposition, TCVD)시켜 상기 복합체를 제조하는 것을 특징으로 하는, 3차원 탄소-금속 복합소재의 제조방법.
7. The method of claim 6,
The step of preparing the complex,
A method of manufacturing a three-dimensional carbon-metal composite material, characterized in that the composite is prepared by thermal chemical vapor deposition (TCVD) at a temperature of 70% to 100% of the melting point of the metal fine powder.
제6항에 있어서,
상기 복합체를 제조하는 단계는,
상기 혼합물을 5시간 이하의 시간 동안 열화학기상증착(Thermal Chemical Vapor Deposition, TCVD)시켜 상기 복합체를 제조하는 것을 특징으로 하는, 3차원 탄소-금속 복합소재의 제조방법.
7. The method of claim 6,
The step of preparing the complex,
A method for producing a three-dimensional carbon-metal composite material, characterized in that the composite is prepared by thermal chemical vapor deposition (TCVD) of the mixture for a time period of 5 hours or less.
제6항에 있어서,
상기 화학기상증착은,
수소, 메탄 및 불활성 가스 중 어느 하나의 가스 분위기에서 이루어지는 것을 특징으로 하는, 3차원 탄소-금속 복합소재의 제조방법.
7. The method of claim 6,
The chemical vapor deposition is
A method of manufacturing a three-dimensional carbon-metal composite material, characterized in that it is made in a gas atmosphere of any one of hydrogen, methane, and an inert gas.
제6항에 있어서,
상기 복합체를 제조하는 단계는,
상기 탄소기재 폼의 기공에 인입된 상기 금속 미세분말이 소결(sintering)되어, 표면용융에 의해 상기 금속 미세분말 사이에 네트워크를 형성하는 것을 특징으로 하는, 3차원 탄소-금속 복합소재의 제조방법.
7. The method of claim 6,
The step of preparing the complex,
The three-dimensional carbon-metal composite material manufacturing method, characterized in that the metal fine powder introduced into the pores of the carbon-based foam is sintered, and a network is formed between the metal fine powder by surface melting.
KR1020200017064A 2020-02-12 2020-02-12 3-dimensional graphene-metal composite and manufacturing method of the same KR102529034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200017064A KR102529034B1 (en) 2020-02-12 2020-02-12 3-dimensional graphene-metal composite and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200017064A KR102529034B1 (en) 2020-02-12 2020-02-12 3-dimensional graphene-metal composite and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20210103032A true KR20210103032A (en) 2021-08-23
KR102529034B1 KR102529034B1 (en) 2023-05-03

Family

ID=77499515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200017064A KR102529034B1 (en) 2020-02-12 2020-02-12 3-dimensional graphene-metal composite and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR102529034B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549351B1 (en) * 2023-01-18 2023-06-30 웰텍 주식회사 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof
CN117286364A (en) * 2023-11-24 2023-12-26 中铝科学技术研究院有限公司 Graphene reinforced metal matrix composite material with three-dimensional network structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160125171A (en) * 2015-04-21 2016-10-31 삼성전자주식회사 Electrode material, secondary battery including the same and manufacturing methods thereof
KR20170050951A (en) * 2015-11-02 2017-05-11 정택균 Porous metal based heat radiating material and method for producing the same
KR20180103086A (en) * 2016-01-11 2018-09-18 나노텍 인스트러먼츠, 인코포레이티드 Supercapacitors with highly conductive graphene foam electrodes
KR101912908B1 (en) 2016-11-18 2018-10-29 울산과학기술원 Method for preparing high performance nanoporous graphene foams with versatile usages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160125171A (en) * 2015-04-21 2016-10-31 삼성전자주식회사 Electrode material, secondary battery including the same and manufacturing methods thereof
KR20170050951A (en) * 2015-11-02 2017-05-11 정택균 Porous metal based heat radiating material and method for producing the same
KR20180103086A (en) * 2016-01-11 2018-09-18 나노텍 인스트러먼츠, 인코포레이티드 Supercapacitors with highly conductive graphene foam electrodes
KR101912908B1 (en) 2016-11-18 2018-10-29 울산과학기술원 Method for preparing high performance nanoporous graphene foams with versatile usages

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549351B1 (en) * 2023-01-18 2023-06-30 웰텍 주식회사 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof
CN117286364A (en) * 2023-11-24 2023-12-26 中铝科学技术研究院有限公司 Graphene reinforced metal matrix composite material with three-dimensional network structure and preparation method thereof
CN117286364B (en) * 2023-11-24 2024-04-12 中铝科学技术研究院有限公司 Graphene reinforced metal matrix composite material with three-dimensional network structure and preparation method thereof

Also Published As

Publication number Publication date
KR102529034B1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US9705136B2 (en) High capacity energy storage
KR102529034B1 (en) 3-dimensional graphene-metal composite and manufacturing method of the same
CN103367275A (en) Interface conducting strip, preparation method thereof and heat dissipating system
JP2006144030A (en) High thermal conductivity composite material and manufacturing method therefor
CN108430919B (en) Carbon nanotube bonding sheet and method for producing carbon nanotube bonding sheet
CN103794552A (en) Carbon nanotube growth on copper substrates
JP2010171431A (en) Metal bonded nanotube array
US20230340647A1 (en) Bonding structure and method of manufacturing bonding structure
JP2018067581A (en) Carbon nanotube structure, heat dissipation sheet, and method for producing carbon nanotube structure
CN111826542B (en) Copper-based diamond gradient heat dissipation material and preparation method thereof
KR20170131930A (en) Composition and composite sheet for dissipating heat and shielding emi
JP2003124410A (en) Multi-layer heat sink and method for producing it
KR101874150B1 (en) A Highly-Oriented Graphite Sheet
JP2011057466A (en) Carbon nanotube sheet structure and method for producing the same, semiconductor device
US20160146556A1 (en) High specific area composite foam and an associated method of fabrication
KR101473708B1 (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101779668B1 (en) 3-dimensional carbon composite and preparing method thereof
KR101331910B1 (en) Metal-carbon composite and manufacturing method thereof, and paste made with the same
JP3834643B2 (en) Method for producing copper nanorods or nanowires
Atthipalli et al. Ferrocene and Inconel assisted growth of dense carbon nanotube forests on copper foils
KR101400163B1 (en) Carbon nanotree and Synthesizing method of carbon nanotree
WO2012147610A1 (en) Heat dissipating substrate
Luxa et al. Freestanding Foils of NbSe2 and Carbon Nanotubes for Efficient Electromagnetic Shielding
KR20170046537A (en) Carbide composite and power strage divice
US9078337B2 (en) Plasma-generating device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant