KR102549351B1 - Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof - Google Patents

Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof Download PDF

Info

Publication number
KR102549351B1
KR102549351B1 KR1020230007429A KR20230007429A KR102549351B1 KR 102549351 B1 KR102549351 B1 KR 102549351B1 KR 1020230007429 A KR1020230007429 A KR 1020230007429A KR 20230007429 A KR20230007429 A KR 20230007429A KR 102549351 B1 KR102549351 B1 KR 102549351B1
Authority
KR
South Korea
Prior art keywords
graphite
aluminum
carbon ball
intercalated
carbon
Prior art date
Application number
KR1020230007429A
Other languages
Korean (ko)
Inventor
이성식
조종수
Original Assignee
웰텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웰텍 주식회사 filed Critical 웰텍 주식회사
Priority to KR1020230007429A priority Critical patent/KR102549351B1/en
Application granted granted Critical
Publication of KR102549351B1 publication Critical patent/KR102549351B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/032Powdery paints characterised by a special effect of the produced film, e.g. wrinkle, pearlescence, matt finish
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • E02D5/285Prefabricated piles made of steel or other metals tubular, e.g. prefabricated from sheet pile elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

본 발명은 탄소볼의 제조방법, 그 방법에 의한 탄소볼, 이를 이용한 탄소볼 융합 분체도료 및 이를 코팅한 강관 말뚝에 관한 것으로, 더욱 상세하게는 팽창 층간 그래파이트를 준비하는 단계와, 상기 준비된 팽창 층간 그래파이트를 세정하고 건조하는 단계와, 상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계와, 상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계와, 상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계와, 상기 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 회수가 용이하고, 환경공해를 일으키지 않으며, 내부식성이 우수한 탄소볼을 대량 제조할 수 있으며, 이를 포함하여 내마모성, 내후성 및 내부식성이 우수한 탄소볼 융합 분체도료를 제조할 수 있다는 장점이 있다. 아울러, 표면이 치밀하여 내마모성이 우수하고, 내후성 및 내부식성이 우수한 코팅 강관 말뚝을 제조할 수 있다는 장점도 있다.The present invention relates to a method for manufacturing carbon balls, carbon balls by the method, a carbon ball fusion powder coating using the same, and a steel pipe pile coated with the same, and more particularly, the step of preparing expanded interlayer graphite, and the prepared expanded interlayer graphite. By washing and drying graphite, mixing the dried expanded interlayer graphite with aluminum powder, and heating the mixed mixture at 800 to 1200 ° C, melt-vaporized aluminum particles are formed of the expanded interlayer graphite. A step of intercalating the aluminum particles, cooling the graphite in which the aluminum particles are intercalated to 450 to 620° C. and contacting oxygen to oxidize aluminum to prepare graphite in which aluminum oxide is intercalated; and manufacturing carbon balls by cooling the intercalated graphite. According to the present invention, carbon balls that are easy to recover, do not cause environmental pollution, and have excellent corrosion resistance can be mass-produced, and a carbon ball fusion powder coating having excellent wear resistance, weather resistance, and corrosion resistance can be produced. There are advantages. In addition, there is an advantage that a coated steel pipe pile having a dense surface, excellent wear resistance, and excellent weather resistance and corrosion resistance can be manufactured.

Description

탄소볼의 제조방법, 그 방법에 의한 탄소볼, 이를 이용한 탄소볼 융합 분체도료 및 이를 코팅한 강관 말뚝{Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof}Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated with it}

본 발명은 탄소볼의 제조방법, 그 방법에 의한 탄소볼, 이를 이용한 탄소볼 융합 분체도료 및 이를 코팅한 강관 말뚝에 관한 것으로, 더욱 상세하게는 팽창 그래파이트의 층간에 알루미늄의 용융 증기 입자를 침투시키고, 이를 산화시켜 탄소볼을 제조하고, 이를 이용하여 탄소볼 융합 분체도료를 제조함으로써, 내마모성, 내후성, 내부식성이 우수한 코팅 강관 말뚝을 제조하는 탄소볼의 제조방법, 그 방법에 의한 탄소볼, 이를 이용한 탄소볼 융합 분체도료 및 이를 코팅한 강관 말뚝에 관한 것이다.The present invention relates to a method for manufacturing carbon balls, carbon balls by the method, a carbon ball fusion powder coating using the same, and a steel pipe pile coated therewith, and more particularly, infiltrating molten vapor particles of aluminum between layers of expanded graphite, , A carbon ball manufacturing method for producing a coated steel pipe pile having excellent abrasion resistance, weather resistance, and corrosion resistance by oxidizing the carbon ball and using the same to produce a carbon ball fusion powder coating, carbon ball by the method, It relates to the used carbon ball fusion powder coating and the steel pipe pile coated with it.

강관 말뚝은 일반 토목용, 건축용의 지반 기초부분이 상부 구조체의 지반 지지력이 부족할 때 적용하는 건설자재로서, 통상 바이브레터 해머 등으로 타격식 시공이 이루어지고 있다. Steel pipe piles are construction materials applied when the ground foundation for general civil engineering and construction lacks the ground bearing capacity of the upper structure, and is usually used for hammering with a vibrator hammer.

종래 강관 말뚝은 철제강관을 나관 상태 그대로 사용하거나 또는 일반 수지계 도료를 도장하여 강관 말뚝으로 사용하여왔다.Conventional steel pipe piles have been used as steel pipe piles by using iron steel pipes as they are or by painting general resin-based paints.

그러나 나관 상태의 말뚝은 고수분 상태의 땅속에서 전면에 부식이 빠르게 진행되어 수명이 짧은 문제점이 있었다.However, the naked pipe pile had a problem in that the life span was short because corrosion progressed rapidly in the soil in a high moisture state.

또한, 일반 수지계 도료를 도장한 경우 나관 상태의 말뚝에 비교하여 수명이 연장되었으나, 타격식 시공시 표면에 손쉽게 스크래치가 발생하여 부식이 발생하며, 도막의 밑면으로 부식이 확산(일명 : 언더커트 부식)되므로, 장기 사용성이 좋지 못한 단점이 있었다.In addition, when general resin-based paint is applied, the life span is extended compared to bare pipe piles, but scratches easily occur on the surface during percussion type construction, and corrosion occurs, and corrosion spreads to the bottom of the coating film (aka: undercut corrosion) ), so long-term usability was poor.

이에 본 발명자는 이러한 단점을 해소하기 위하여, 대한민국 등록특허 제10-1825400호를 제안하였다. 상기 선등록 특허는 층간 이완 그래파이트와 타격 비드를 혼합한 후, 이를 압축공기와 함께 타격판에 타격하고, 타격된 입자 중 나노 스케일의 입자를 선별하여 나노 스케일의 그래핀을 대량 제조한 후, 이를 이용하여 그래핀 복합 분체수지를 제조하고, 강관 또는 강관 말뚝을 코팅하는 방법이다.Accordingly, the present inventors proposed Republic of Korea Patent Registration No. 10-1825400 in order to solve these disadvantages. In the prior registered patent, after mixing interlayer relaxed graphite and striking beads, striking them with compressed air on a striking plate, selecting nanoscale particles from among the struck particles to mass-produce nanoscale graphene, It is a method of manufacturing a graphene composite powder resin and coating a steel pipe or a steel pipe pile by using.

그러나 이러한 방법은 타격된 극미세한 나노 스케일의 입자를 공기로부터 회수하기 어려운 것을 물론, 사용된 폐공기를 완전히 정제하기가 어려워 환경공해를 일으킨다는 문제가 있었다. 아울러, 주수지로 사용되는 에폭시는 내광성, 내후성이 낮아 공사기간 중 외부 적재 및 노출 시 황변이 빠르며, 도막 형성 후에도 황변 및 광분해되는 등의 단점이 있었다. However, this method has a problem in that it is difficult to recover the impacted ultrafine nanoscale particles from the air and it is difficult to completely purify the used waste air, causing environmental pollution. In addition, the epoxy used as the main resin has low light resistance and weather resistance, so it yellows quickly when externally loaded and exposed during the construction period, and there are disadvantages such as yellowing and photolysis even after forming a coating film.

KRKR 10-1825400 10-1825400 B1B1

따라서, 본 발명의 목적은 팽창 그래파이트의 층간에 알루미늄 용융 증기 입자를 침투시키고, 이를 산화 및 냉각시켜 층간에 산화알루미늄이 삽입, 융합된 탄소볼을 제조함으로써, 내부식성이 우수하고, 회수가 용이하며, 환경공해를 일으키지 않는 탄소볼의 제조방법 및 그 방법에 의한 탄소볼을 제공하는 데 있다.Therefore, an object of the present invention is to infiltrate aluminum molten vapor particles between layers of expanded graphite, oxidize and cool them to produce carbon balls in which aluminum oxide is inserted and fused between layers, thereby providing excellent corrosion resistance and easy recovery. It is to provide a method for manufacturing carbon balls that do not cause environmental pollution and carbon balls by the method.

본 발명의 다른 목적은 내마모성, 내후성 및 내부식성이 우수한 탄소볼 융합 분체도료를 제공하는 데 있다.Another object of the present invention is to provide a carbon ball fusion powder coating having excellent wear resistance, weather resistance and corrosion resistance.

본 발명의 또 다른 목적은 내마모성, 내후성, 고접착성 및 내부식성이 우수한 코팅 강관 말뚝을 제공하는 데 있다.Another object of the present invention is to provide a coated steel pipe pile with excellent wear resistance, weather resistance, high adhesion and corrosion resistance.

상기한 목적을 달성하기 위한 본 발명의 탄소볼의 제조방법은, 팽창 층간 그래파이트를 준비하는 단계와, 상기 준비된 팽창 층간 그래파이트를 세정하고 건조하는 단계와, 상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계와, 상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계와, 상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계와, 상기 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the method for manufacturing carbon balls of the present invention includes the steps of preparing expanded interlayer graphite, washing and drying the prepared expanded interlayer graphite, and mixing the dried expanded interlayer graphite with aluminum powder. and heating the mixed mixture to 800 to 1200° C. so that melt-vaporized aluminum particles are intercalated between the layers of the expanded interlayer graphite, and the aluminum particles are intercalated at 450 to 620° C. It is characterized in that it comprises the step of producing graphite intercalated with aluminum oxide by oxidizing aluminum by contacting it with oxygen by cooling to ° C, and the step of producing carbon balls by cooling the graphite intercalated with aluminum oxide. .

상기 팽창 층간 그래파이트의 입도 크기는 0.5~70㎛이고, 상기 알루미늄 파우더의 입도 크기는 1~100㎛이며, 상기 제조된 탄소볼의 입도 크기는 0.5~100㎛인 것을 특징으로 한다. The particle size of the expanded interlayer graphite is 0.5 to 70 μm, the aluminum powder has a particle size of 1 to 100 μm, and the prepared carbon balls have a particle size of 0.5 to 100 μm.

상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계는, 상기 건조된 팽창 층간 그래파이트 100중량부에 대하여 알루미늄 파우더 20~50중량부를 혼합하는 것임을 특징으로 한다.The step of mixing the dried expanded interlayer graphite with aluminum powder is characterized in that 20 to 50 parts by weight of aluminum powder is mixed with respect to 100 parts by weight of the dried expanded interlayer graphite.

본 발명에 의한 탄소볼은 상기한 방법으로 제조되는 것을 특징으로 한다.The carbon ball according to the present invention is characterized in that it is manufactured by the above method.

본 발명에 의한 탄소볼 융합 분체도료는, 상기 탄소볼; 폴리에스테르 올리고머; 실록산 올리고머; 폴리에테르설폰; 및 경화제;를 포함하는 원료를 압출 및 분쇄하여서 되는 것을 특징으로 한다.Carbon ball fusion powder coating according to the present invention, the carbon ball; polyester oligomers; siloxane oligomers; polyethersulfone; And a curing agent; characterized in that by extruding and pulverizing the raw material containing.

상기 원료는, 상기 탄소볼 17~45중량%, 실록산 올리고머 1~5중량%, 폴리에테르설폰 2~10중량%, 경화제 5~15중량% 및 잔부의 폴리에스테르 올리고머로 되는 것을 특징으로 한다.The raw material is characterized in that 17 to 45% by weight of the carbon ball, 1 to 5% by weight of siloxane oligomer, 2 to 10% by weight of polyethersulfone, 5 to 15% by weight of curing agent and the balance polyester oligomer.

본 발명에 의한 코팅 강관 말뚝은 상기한 분체수지로 도장된 것임을 특징으로 한다.The coated steel pipe pile according to the present invention is characterized in that it is coated with the above powder resin.

본 발명에 의하면, 회수가 용이하고, 환경공해를 일으키지 않으며, 내부식성이 우수한 탄소볼을 대량 제조할 수 있으며, 이를 포함하여 내마모성, 내후성 및 내부식성이 우수한 탄소볼 융합 분체도료를 제조할 수 있다는 장점이 있다. 아울러, 표면이 치밀하여 내마모성이 우수하고, 내후성 및 내부식성이 우수한 코팅 강관 말뚝을 제조할 수 있다는 장점도 있다.According to the present invention, carbon balls that are easy to recover, do not cause environmental pollution, and have excellent corrosion resistance can be mass-produced, and a carbon ball fusion powder coating having excellent wear resistance, weather resistance, and corrosion resistance can be produced. There are advantages. In addition, there is an advantage that a coated steel pipe pile having a dense surface, excellent wear resistance, and excellent weather resistance and corrosion resistance can be manufactured.

도 1은 본 발명에 의한 팽창 그래파이트 층간 삽입 장치의 개략도이다.
도 2는 본 발명에 의해 제조된 탄소볼의 전자 현미경 사진이다.
1 is a schematic diagram of an expanded graphite interlayer insertion device according to the present invention.
2 is an electron micrograph of a carbon ball manufactured according to the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 가장 큰 특징은 탄소볼의 회수가 용이하고, 환경공해를 일으키지 않으며, 내식성이 현저히 우수한 탄소볼을 제조하고, 이를 내후성이 우수한 결합수지와 융합하여 분체도료를 제조한 후, 강관 말뚝의 도장재로 적용함으로써, 내마모성, 고접착성, 내후성 등의 물성이 우수하다는 데 있다. The biggest feature of the present invention is that carbon balls are easy to recover, do not cause environmental pollution, and produce carbon balls with remarkably excellent corrosion resistance. After fusing them with a bonding resin with excellent weather resistance to produce a powder coating, the steel pipe pile By applying it as a coating material, it has excellent physical properties such as abrasion resistance, high adhesion, and weather resistance.

먼저, 본 발명에 의한 탄소볼의 제조방법을 설명한다.First, a method for manufacturing carbon balls according to the present invention will be described.

본 발명에 의한 탄소볼의 제조방법은, 팽창 층간 그래파이트를 준비하는 단계와, 상기 준비된 팽창 층간 그래파이트를 세정하고 건조하는 단계와, 상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계와, 상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계와, 상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계와, 상기 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계를 포함하는 것을 특징으로 한다.The method for manufacturing carbon balls according to the present invention includes the steps of preparing expanded interlayer graphite, washing and drying the prepared expanded interlayer graphite, mixing the dried expanded interlayer graphite with aluminum powder, and mixing the expanded interlayer graphite. heating the mixture at 800 to 1200° C. so that melt-steamed aluminum particles are intercalated between the layers of the expanded interlayer graphite, and cooling the graphite intercalated with the aluminum particles to 450 to 620° C. to release oxygen. It is characterized in that it includes the steps of oxidizing aluminum by contacting the aluminum oxide to produce graphite intercalated with aluminum oxide, and cooling the aluminum oxide intercalated graphite to produce carbon balls.

이를 단계별로 더욱 구체적으로 설명하면 다음과 같다.This step-by-step description is as follows.

팽창 층간 그래파이트를 준비하는 단계Steps to prepare expanded interlayer graphite

먼저, 팽창 층간 그래파이트를 준비한다. 상기 팽창 층간 그래파이트는 종래 다양한 방법을 통해 제조되어 판매되고 있는바, 상업적으로 구입하여 준비할 수 있다. 통상 팽창 층간 그래파이트는 황산을 이용하여 제조되는바, 황산-흑연 층간화합물(Graphite intercalation compounds)이나, 이를 제한하지 않는다.First, an expanded interlayer graphite is prepared. The expanded interlayer graphite has conventionally been manufactured and sold through various methods, and can be purchased and prepared commercially. In general, expanded intercalation graphite is prepared using sulfuric acid, and is a sulfuric acid-graphite intercalation compound, but is not limited thereto.

본 발명에서 상기 팽창 층간 그래파이트의 입도 크기는 0.5~70㎛의 것을 사용함이 바람직한바, 이는 탄소볼의 제조를 용이하게 하기 위함이다.In the present invention, it is preferable to use a particle size of the expanded interlayer graphite of 0.5 to 70 μm, which is to facilitate the production of carbon balls.

상기 준비된 팽창 층간 그래파이트를 세정하고 건조하는 단계Cleaning and drying the prepared expanded interlayer graphite

다음으로, 준비된 팽창 층간 그래파이트를 초음파 세정기 등을 이용하여 수중에서 세정하여 pH 6.8~7.0이 되도록 중화시키고, 건조한다. 이때, 중화된 상태의 팽창 층간 그래파이트를 준비하더라도 이물질의 세정이 요구되므로, 수중에서 깨끗이 세정하고 건조한다. Next, the prepared expanded interlayer graphite is washed in water using an ultrasonic cleaner or the like, neutralized to a pH of 6.8 to 7.0, and dried. At this time, even if the neutralized expanded interlayer graphite is prepared, cleaning of foreign substances is required, so it is cleaned and dried in water.

상기 팽창 층간 그래파이트의 1개의 층은 그래핀 플레이크의 구조로서 높은 강도의 재료인바, 이를 이용하여 탄소볼을 제조하면 우수한 강도를 갖는다.One layer of the expanded interlayer graphite is a graphene flake structure and is a high-strength material. If a carbon ball is manufactured using this material, it has excellent strength.

상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계Mixing the dried expanded interlayer graphite with aluminum powder

다음으로, 상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합한다 Next, the dried expanded interlayer graphite is mixed with aluminum powder.

상기 알루미늄 파우더는 입도 크기가 1~100㎛이고, 밀도 2.4~2.9g/㎠ 비열 0.896 j/g-℃, 융점 590~660℃인 것이다.The aluminum powder has a particle size of 1 to 100 μm, a density of 2.4 to 2.9 g/cm 2 , a specific heat of 0.896 j/ g- ° C., and a melting point of 590 to 660° C.

상기 건조된 팽창 층간 그래파이트와 알루미늄 파우더의 혼합비는 상기 건조된 팽창 층간 그래파이트 100중량부에 대하여 알루미늄 파우더 20~50중량부를 혼합하는 것이 바람직한데, 알루미늄 파우더가 너무 적으면 알루미늄의 층간 삽입이 어렵고, 과량이 되면 잔부의 알루미늄 파우더가 발생하여 제조 효율이 낮아지고, 비용이 상승하기 때문이다. The mixing ratio of the dried expanded interlayer graphite and aluminum powder is preferably 20 to 50 parts by weight of aluminum powder based on 100 parts by weight of the dried expanded interlayer graphite. If the aluminum powder is too small, intercalation of aluminum is difficult, and excessive This is because the remaining aluminum powder is generated, the manufacturing efficiency is lowered, and the cost is increased.

상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계heating the mixed mixture to 800-1200° C. so that the molten-vaporized aluminum particles are intercalated between the layers of the expanded interlayer graphite;

그리고 상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 혼합물 내 알루미늄 입자를 용융-증기화시킨다. 즉, 상기 알루미늄 입자는 상대적으로 융점이 낮아 고온에서 빠르게 용융-증기화되고, 융점이 높은 그래파이트는 입자 상태 그대로 유지됨으로써, 팽창된 그래파이트의 층간에 용융-증기화된 알루미늄 입자가 삽입되는 것이다. 이러한 용융-증기화된 알루미늄 입자는 그 크기가 1~50nm 정도가 되므로 쉽게 층간에 삽입된다. And by heating the mixed mixture to 800 ~ 1200 ℃, the aluminum particles in the mixture melt-vaporize. That is, the aluminum particles have a relatively low melting point and are quickly melted and vaporized at high temperatures, and the graphite having a high melting point is maintained as a particle, so that the melted and vaporized aluminum particles are inserted between the layers of the expanded graphite. These molten-vaporized aluminum particles are easily intercalated between layers because their size is about 1 to 50 nm.

상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계Manufacturing graphite in which aluminum oxide is intercalated by oxidizing aluminum by cooling the graphite in which the aluminum particles are intercalated to 450 to 620° C. to contact oxygen.

그리고 상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시키고, 이에 산소(O2)를 접촉시킴으로써, 층간 삽입된 상태의 알루미늄(Al)을 산화시켜 산화알루미늄(Al2O3)이 층간 삽입된 그래파이트를 제조한다. Then, the graphite in which the aluminum particles are intercalated is cooled to 450 to 620° C., and oxygen (O 2 ) is contacted thereto to oxidize the intercalated aluminum (Al) so that the aluminum oxide (Al 2 O 3 ) is intercalated. Prepare intercalated graphite.

본 발명에서 상기 알루미늄을 산화시키는 이유는 산화알루미늄은 철의 부식방지재로서의 효과가 크고, 강도가 우수한 세라믹 소재로서 탄소와 융합시킬 경우 내부식성, 충격강도가 매우 뛰어난 탄소볼을 제조할 수 있기 때문이다. The reason why aluminum is oxidized in the present invention is that aluminum oxide is highly effective as an iron corrosion inhibitor and is a ceramic material with excellent strength, and when fused with carbon, carbon balls having excellent corrosion resistance and impact strength can be manufactured. am.

아울러, 상기 산소의 접촉량, 즉 공급량은 제한하지 않는바, 충분한 산화반응이 진행되도록 산소 분위기로 만드는 정도면 족하다.In addition, the contact amount of oxygen, that is, the supply amount is not limited, and it is sufficient to create an oxygen atmosphere so that sufficient oxidation reaction proceeds.

상기 제조된 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계Manufacturing a carbon ball by cooling the graphite in which the prepared aluminum oxide is intercalated.

그리고 상기 제조된 산화알루미늄 층간 삽입된 그래파이트를 냉각함으로써, 탄소볼의 제조를 완료한다. And, by cooling the prepared aluminum oxide intercalated graphite, the production of carbon balls is completed.

이렇게 제조된 탄소볼의 입도 크기는 0.5~100㎛이다.The particle size of the carbon balls thus produced is 0.5 to 100 μm.

한편, 상기 혼합된 혼합물을 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계와, 상기 알루미늄 입자가 층간 삽입된 그래파이트를 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계와, 상기 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계는 도 1과 같은 탄소볼 제조 장치를 통해 제조함이 바람직하다. 다만, 이는 공정의 효율성을 위한 것으로, 이러한 장치의 사용 유무를 한정하는 것은 아니다.On the other hand, by heating the mixed mixture, the melt-vaporized aluminum particles are intercalated between the layers of the expanded interlayer graphite, and the aluminum particles intercalated graphite is cooled and brought into contact with oxygen to oxidize aluminum. It is preferable that the steps of manufacturing graphite in which aluminum oxide is intercalated and cooling the graphite in which aluminum oxide is intercalated to produce carbon balls are performed using a carbon ball manufacturing apparatus as shown in FIG. 1 . However, this is for the efficiency of the process, and does not limit whether or not such a device is used.

즉, 탄소볼 제조 장치는 개략적으로 도 1과 같이 원료탱크; 상기 원료탱크 일측에 구비되며, 가열히터가 구비된 용융탱크; 상기 용융탱크로부터 제조된 입자를 회수하기 위해 인출진공펌프가 구비된 회수탱크;로 구성되며, 상기 원료탱크와 용융탱크는 원료공급관으로 연통되고, 상기 용융탱크와 회수탱크는 배출관을 통해 연통된다. 이때, 상기 원료공급관과 배출관은 필요에 따라 개폐가능하도록 밸브가 구비될 수 있음은 당연하다. 아울러, 상기 배출관의 일측에는 산소공급부가 구비되어 배출관 내로 산소를 공급할 수 있도록 구성된다. That is, the carbon ball manufacturing apparatus schematically includes a raw material tank as shown in FIG. 1; A melting tank provided on one side of the raw material tank and equipped with a heating heater; It consists of; a recovery tank equipped with a withdrawal vacuum pump to recover the particles produced from the melting tank; the raw material tank and the melting tank are communicated through a raw material supply pipe, and the melting tank and the recovery tank are communicated through a discharge pipe. At this time, it is natural that valves may be provided to open and close the raw material supply pipe and the discharge pipe as needed. In addition, an oxygen supply unit is provided at one side of the discharge pipe to supply oxygen into the discharge pipe.

상기 장치를 이용하여 본 발명의 제조단계를 더욱 구체적으로 설명하면, 먼저 원료탱크에 혼합된 건조된 팽창 층간 그래파이트와 알루미늄 파우더를 투입한다. Describing the manufacturing step of the present invention in more detail using the above apparatus, first, the dried expanded interlayer graphite and aluminum powder mixed in the raw material tank are introduced.

그리고 상기 용융탱크 내의 온도를 가열히터를 통해 800~1200℃로 올린 상태에서, 상기 원료탱크 내의 혼합물을 원료공급관을 통해 용융탱크 내로 유입시킨다. 이러면 상기 혼합물 내 알루미늄 입자가 용융-증기화되어 혼합물 내 팽창 층간 그래파이트의 층간에 삽입되게 된다. In a state where the temperature in the melting tank is raised to 800 to 1200° C. through a heating heater, the mixture in the raw material tank is introduced into the melting tank through the raw material supply pipe. This causes the aluminum particles in the mixture to be melt-vaporized and intercalated between the layers of the expanded interlayer graphite in the mixture.

그리고 알루미늄 입자가 층간 삽입된 그래파이트는 배출관을 통해 용융탱크로부터 배출되어 배출탱크로 이송되는데, 이송 과정 중 서서히 냉각되게 된다. In addition, the graphite in which aluminum particles are intercalated is discharged from the melting tank through the discharge pipe and transferred to the discharge tank, where it is gradually cooled during the transfer process.

또한, 이송 중 배출관 일측에 구비된 산소공급부를 통해 배출관 내로 산소를 공급하게 되면 층간 삽입된 알루미늄 입자가 산소와 접촉하게 되고, 알루미늄이 산화되어 산화알루미늄이됨으로써, 산화알루미늄이 층간 삽입된 그래파이트가 제조된다. 이때, 상기 배출관을 통해 이송되는 알루미늄 입자가 층간 삽입된 그래파이트는 산소의 공급 지점에서의 온도가 450~620℃가 되는 것이 바람직한바, 이는 원활한 산화반응을 위함이다. 따라서, 상기 냉각은 배출관을 따라 이송하면서 냉각되도록 적절한 냉각장치를 상기 배출관에 구비시킬 수 있음은 당연하다. 또한, 상기 산소의 공급량은 제한하지 않는데, 예시적으로 0.1~1slm일 수 있다.In addition, when oxygen is supplied into the discharge pipe through the oxygen supply unit provided on one side of the discharge pipe during transport, the intercalated aluminum particles come into contact with oxygen, and aluminum is oxidized to become aluminum oxide, thereby producing graphite intercalated with aluminum oxide. do. At this time, it is preferable that the graphite in which the aluminum particles transported through the discharge pipe are intercalated has a temperature of 450 to 620° C. at the oxygen supply point, which is for smooth oxidation reaction. Therefore, it is natural that an appropriate cooling device may be provided in the discharge pipe to be cooled while being transported along the discharge pipe. In addition, the supply amount of oxygen is not limited, and may be exemplarily 0.1 to 1 slm.

그리고 상기 산화알루미늄이 층간 삽입된 그래파이트는 계속해서 배출관 내로 이송하면서 153~230℃까지 냉각되어 회수탱크로 유입된다. In addition, the graphite in which the aluminum oxide is intercalated is continuously transported into the discharge pipe, cooled to 153 to 230° C., and introduced into the recovery tank.

이때, 상기 입자의 이송 및 흐름은 회수탱크에 구비된 인출진공펌프로 조절되는데, 인출진공펌프의 진공도 조절을 통해 제조된 입자가 상기 용융탱크로부터 배출관, 회수탱크로 유입되며, 배출관 내 공급된 산소 역시 용융탱크로 유입되지 않고 입자의 배출방향을 따라 공급되어 월활한 산화반응이 진행되는 것이다.At this time, the transfer and flow of the particles is controlled by the withdrawal vacuum pump provided in the recovery tank, and the particles produced by adjusting the vacuum level of the withdrawal vacuum pump flow from the melting tank to the discharge pipe and the recovery tank, and oxygen supplied in the discharge pipe Also, it does not flow into the melting tank, but is supplied along the discharge direction of the particles, so that the oxidation reaction proceeds smoothly.

상기와 같은 방법으로 제조된 본 발명의 탄소볼은 앞서 설명된 바와 같이, 회수가 용이하고, 환경공해를 일으키지 않으면서도, 간단한 방법으로 탄소볼을 대량 생산할 수 있으며, 강도, 충격강도 및 내부식성이 현저히 우수하다는 장점이 있다. As described above, the carbon balls of the present invention manufactured by the above method are easy to recover, do not cause environmental pollution, can mass-produce carbon balls by a simple method, and have high strength, impact strength and corrosion resistance. It has the advantage of being remarkably good.

이하, 본 발명에 의한 탄소볼 융합 분체도료에 대하여 설명한다. 다만, 상기 탄소볼에 대해서는 앞서 충분히 설명되었으므로, 이에 대한 추가 설명은 생략한다.Hereinafter, the carbon ball fusion powder coating according to the present invention will be described. However, since the carbon balls have been sufficiently described above, an additional description thereof will be omitted.

본 발명에 의한 탄소볼 융합 분체도료는, 상기 제조된 탄소볼; 폴리에스테르 올리고머; 실록산 올리고머; 폴리에테르설폰; 및 경화제;를 포함하는 원료를 압출 및 분쇄하여서 되는 것을 특징으로 한다.Carbon ball fusion powder coating according to the present invention, the carbon ball prepared above; polyester oligomers; siloxane oligomers; polyethersulfone; And a curing agent; characterized in that by extruding and pulverizing the raw material containing.

즉, 종래 에폭시를 주수지로 사용한 분체도료의 경우 외부 노출 시 황변, 광분해 등이 발생하는 문제가 있었는바, 도막의 황변, 광분해 현상을 방지하기 위하여 에폭시계를 배재하고, 폴리에스테르 올리고머, 실록산 올리고머, 폴리에테르설폰을 사용하는 것이다.That is, in the case of conventional powder coatings using epoxy as the main resin, there was a problem of yellowing and photolysis when exposed to the outside. , using polyethersulfone.

상기 폴리에스테르 올리고머(polyester olygomer)는 접착력의 개선을 위한 것으로, 분자량이 1500~4000Mw인 것을 사용하면 족한바, 그 종류를 한정하지 않는다.The polyester oligomer is for improving adhesion, and it is sufficient to use one having a molecular weight of 1500 to 4000 Mw, and the type is not limited.

상기 실록산 올리고머(Polysiloxane olygomer)는 내후성을 개선해 주는 것으로, 그 종류를 한정하지 않는다.The polysiloxane oligomer improves weatherability, and the type is not limited.

상기 폴리에테르설폰(PES)은 충격강도를 개선해주는 것으로, 분자량이 1500~3500w인 것을 사용한다. The polyethersulfone (PES) is used to improve impact strength and has a molecular weight of 1500 to 3500w.

그리고 경화제로는 통상 허용 가능한 다양한 종류의 것을 모두 적용 가능하며, 예시적으로 엡실론 카프로락탐 블로킹 이소시아네이트(Epsilon Caprolactam Blocking Isocyanate)를 사용할 수 있다.In addition, as the curing agent, all types of generally acceptable types may be applied, and exemplarily, Epsilon Caprolactam Blocking Isocyanate may be used.

본 발명에서 상기 분체도료는 상기 탄소볼 17~45중량%, 실록산 올리고머 1~5중량%, 폴리에테르설폰 2~10중량%, 경화제 5~15중량% 및 잔부의 폴리에스테르 올리고머로 구성되는 것이 바람직한바, 이는 강도, 내후성, 내부식성, 내마모성 등의 물성을 고려한 것이다.In the present invention, the powder coating is preferably composed of 17 to 45% by weight of the carbon balls, 1 to 5% by weight of siloxane oligomer, 2 to 10% by weight of polyethersulfone, 5 to 15% by weight of curing agent and the balance polyester oligomer. Bar, this is in consideration of physical properties such as strength, weather resistance, corrosion resistance, and abrasion resistance.

그리고 본 발명의 분체도료는 이러한 분체도료의 원료를 85~115℃의 온도에서 압출하고, 냉각 스퀴지 롤러로 압착한 후, 30~90㎛ 정도로 분쇄하여서 되는 것이다.And, the powder coating of the present invention is obtained by extruding the raw material of the powder coating at a temperature of 85 to 115 ° C, compressing it with a cooling squeegee roller, and then pulverizing to about 30 to 90 μm.

상기한 탄소볼 융합 분체수지는 우수한 내마모성, 내충격성, 내부식성, 내후성 등의 물성을 갖는다는 장점이 있다.The carbon ball fusion powder resin has the advantage of having excellent wear resistance, impact resistance, corrosion resistance, and weather resistance.

본 발명은 상술한 탄소볼 융합 분체수지로 도장된 강관 말뚝을 제공한다.The present invention provides a steel pipe pile coated with the above-described carbon ball fusion powder resin.

본 발명에서 상기 강관 말뚝의 코팅방법은 종래 개시된 방법을 따르는 것으로, 전처리(샌드블라스트-세정)된 나강관을 160~250℃로 가열하고, 표면에 50~200㎛의 두께로 탄소볼 융합 분체수지를 분사한 후, 경화 및 냉각한다. 즉, 상기 분체수지를 분사하면, 나강관 표면의 열에 의해 상기 분체수지가 용융되는바, 이를 그대로 경화시키면 치밀한 도막이 형성될 뿐 아니라, 강관과 도막 사이에 물리적 접착은 물론, 화학적 결합 역시 이루어지므로, 강력한 접착력을 갖게된다. In the present invention, the coating method of the steel pipe pile follows the conventionally disclosed method, and the pretreated (sandblast-cleaned) thin steel pipe is heated to 160 to 250 ° C, and the carbon ball fused powder resin is applied to the surface with a thickness of 50 to 200 μm. After spraying, it hardens and cools. That is, when the powder resin is sprayed, the powder resin is melted by the heat on the surface of the sheathed steel pipe, and when cured as it is, a dense coating film is formed, as well as physical adhesion between the steel pipe and the coating film, as well as chemical bonding. It has strong adhesion.

상기와 같이 코팅된 강관 말뚝은 우수한 강도, 접착력, 내후성을 가지므로, 타압 시공시 자갈 등의 자반 혼합물에 의한 표면 스크래치가 저감되고, 황변, 광분해 현상이 없으며, 도막의 우수한 밀폐성 및 내부식성으로 강관 말뚝의 부식을 방지 및 지연시킴으로써, 강관 말뚝의 장기 사용성을 개선한다는 장점이 있다.Since the steel pipe piles coated as described above have excellent strength, adhesion, and weather resistance, surface scratches caused by purpura mixtures such as gravel are reduced during pressing, there is no yellowing and photolysis, and the steel pipe has excellent sealing properties and corrosion resistance of the coating film. By preventing and retarding the corrosion of the pile, there is an advantage of improving the long-term usability of the steel pipe pile.

이하, 본 발명을 하기의 실시예를 통해 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail through the following examples.

(실시예 1)(Example 1)

팽창 층간 그래파이트로서 0.5~70㎛ 크기의 황산-흑연 층간화합물(Graphite intercalation compounds)을 준비하였다. 그리고 이를 초음파 세정기로 수중에서 세정하여 pH 7로 중화시키고 건조하였다. As the expanded intercalation graphite, sulfuric acid-graphite intercalation compounds having a size of 0.5 to 70 μm were prepared. Then, it was washed in water with an ultrasonic cleaner, neutralized to pH 7, and dried.

다음으로, 상기 건조된 팽창 층간 그래파이트 100중량부에 알루미늄 파우더(입도 크기 63㎛) 30중량부를 혼합하여 원료탱크에 넣고, 용융탱크의 온도를 1050℃로 가열한 상태에서 혼합원료를 유입시켰다. 상기 용융탱크 내에서 혼합원료의 알루미늄 입자는 용융-증기화되어 팽창 그래파이트 층간에 삽입되었으며, 이 입자는 배출관을 통해 배출되었다. Next, 30 parts by weight of aluminum powder (particle size 63 μm) was mixed with 100 parts by weight of the dried expanded interlayer graphite, put into a raw material tank, and the mixed raw material was introduced while the temperature of the melting tank was heated to 1050 ° C. In the melting tank, aluminum particles of the mixed raw material were melted and vaporized and inserted between layers of expanded graphite, and the particles were discharged through a discharge pipe.

그리고 상기 배출관을 따라 이송되는 입자에 산소를 공급하여 산화반응시킴으로써, 산화알루미늄이 층간에 삽입된 그래파이트, 즉 탄소볼을 제조하였다. 이때, 상기 산소 투입시점에서의 알루미늄이 층간에 삽입된 그래파이트 입자의 온도는 580℃로 냉각된 상태였으며, 회수탱크로 유입된 입자의 온도는 185℃ 정도로 냉각된 상태였다. 그리고 제조된 탄소볼의 입자 크기는 0.5~100㎛ 였다. 도 2는 제조된 탄소볼의 사진이다.In addition, oxygen was supplied to the particles transported along the discharge pipe to cause an oxidation reaction, thereby producing graphite in which aluminum oxide was intercalated, that is, carbon balls. At this time, the temperature of the graphite particles in which aluminum was inserted between the layers at the time of oxygen input was cooled to 580 ° C, and the temperature of the particles introduced into the recovery tank was cooled to about 185 ° C. And the particle size of the produced carbon ball was 0.5 ~ 100㎛. 2 is a photograph of a manufactured carbon ball.

다음으로, 분자량이 2100Mw 폴리에스테르 올리고머(polyester olygomer) 750g, 실록산 올리고머 50g, 분자량이 2300Mw 폴리에테르설폰 150g, 상기 탄소볼 550g, 경화제인 엡실론 카프로락탐 블로킹 이소시아네이트 170g을 혼합하고, 102℃에서 압출하고, 압연, 분쇄하여 입도 크기가 55㎛인 분체수지를 제조하였다.Next, 750 g of polyester oligomer having a molecular weight of 2100 Mw, 50 g of siloxane oligomer, 150 g of polyethersulfone having a molecular weight of 2300 Mw, 550 g of the carbon balls, and 170 g of epsilon caprolactam blocking isocyanate as a curing agent were mixed and extruded at 102 ° C, Powder resin having a particle size of 55 μm was prepared by rolling and pulverizing.

그리고 나관을 전처리(샌드블라스트-세정)하고, 180℃로 가열한 후, 표면에 100㎛ 두께로 상기 분체수지를 분사, 용융시킨 후, 경화, 냉각하여 탄소볼 코팅 강관 말뚝을 제조하였다.In addition, the bare pipe was pretreated (sandblast-cleaned), heated to 180 ° C, sprayed and melted with the powder resin to a thickness of 100 μm on the surface, and then cured and cooled to prepare a carbon ball-coated steel pipe pile.

(실시예 2)(Example 2)

팽창 층간 그래파이트로서 0.5~70㎛ 크기의 황산-흑연 층간화합물(Graphite intercalation compounds)을 준비하였다. 그리고 이를 초음파 세정기로 수중에서 세정하여 pH 7로 중화시키고 건조하였다. As the expanded intercalation graphite, sulfuric acid-graphite intercalation compounds having a size of 0.5 to 70 μm were prepared. Then, it was washed in water with an ultrasonic cleaner, neutralized to pH 7, and dried.

다음으로, 상기 건조된 팽창 층간 그래파이트 100중량부에 알루미늄 파우더(입도 크기 63㎛) 25중량부를 혼합하여 원료탱크에 넣고, 용융탱크의 온도를 1000℃로 가열한 상태에서 혼합원료를 유입시켰다. 상기 용융탱크 내에서 혼합원료의 알루미늄 입자는 용융-증기화되어 팽창 그래파이트 층간에 삽입되었으며, 이 입자는 배출관을 통해 배출되었다. Next, 25 parts by weight of aluminum powder (particle size 63 μm) was mixed with 100 parts by weight of the dried expanded interlayer graphite, put into a raw material tank, and the mixed raw material was introduced while the temperature of the melting tank was heated to 1000 ° C. In the melting tank, aluminum particles of the mixed raw material were melted and vaporized and inserted between layers of expanded graphite, and the particles were discharged through a discharge pipe.

그리고 상기 배출관을 따라 이송되는 입자에 산소를 공급하여 산화반응시킴으로써, 산화알루미늄이 층간에 삽입된 그래파이트, 즉 탄소볼을 제조하였다. 이때, 상기 산소 투입시점에서의 알루미늄이 층간에 삽입된 그래파이트 입자의 온도는 580℃로 냉각된 상태였으며, 회수탱크로 유입된 입자의 온도는 185℃ 정도로 냉각된 상태였다. 그리고 제조된 탄소볼의 입자 크기는 0.5~100㎛ 였다. In addition, oxygen was supplied to the particles transported along the discharge pipe to cause an oxidation reaction, thereby producing graphite in which aluminum oxide was intercalated, that is, carbon balls. At this time, the temperature of the graphite particles in which aluminum was inserted between the layers at the time of oxygen input was cooled to 580 ° C, and the temperature of the particles introduced into the recovery tank was cooled to about 185 ° C. And the particle size of the produced carbon ball was 0.5 ~ 100㎛.

다음으로, 분자량이 2100Mw 폴리에스테르 올리고머(polyester olygomer) 790g, 실록산 올리고머 30g, 분자량이 2300Mw 폴리에테르설폰 120g, 상기 탄소볼 550g, 경화제인 엡실론 카프로락탐 블로킹 이소시아네이트 180g을 혼합하고, 102℃에서 압출하고, 압연 분쇄하여 입도 크기가 52㎛인 분체수지를 제조하였다.Next, 790 g of polyester oligomer having a molecular weight of 2100 Mw, 30 g of siloxane oligomer, 120 g of polyethersulfone having a molecular weight of 2300 Mw, 550 g of the carbon balls, and 180 g of epsilon caprolactam blocking isocyanate as a curing agent were mixed and extruded at 102 ° C, Powder resin having a particle size of 52 μm was prepared by rolling and pulverizing.

그리고 나관을 전처리(샌드블라스트-세정)하고, 180℃로 가열한 후, 표면에 105㎛ 두께로 상기 분체수지를 분사, 용융시킨 후, 경화, 냉각하여 탄소볼 코팅 강관 말뚝을 제조하였다.In addition, the bare pipe was pretreated (sandblast-cleaned), heated to 180 ° C, sprayed and melted with the powder resin to a thickness of 105 μm on the surface, and then cured and cooled to prepare a carbon ball-coated steel pipe pile.

(실시예 3)(Example 3)

팽창 층간 그래파이트로서 0.5~70㎛ 크기의 황산-흑연 층간화합물(Graphite intercalation compounds)을 준비하였다. 그리고 이를 초음파 세정기로 수중에서 세정하여 pH 7로 중화시키고 건조하였다. As the expanded intercalation graphite, sulfuric acid-graphite intercalation compounds having a size of 0.5 to 70 μm were prepared. Then, it was washed in water with an ultrasonic cleaner, neutralized to pH 7, and dried.

다음으로, 상기 건조된 팽창 층간 그래파이트 100중량부에 알루미늄 파우더(입도 크기 63㎛) 25중량부를 혼합하여 원료탱크에 넣고, 용융탱크의 온도를 995℃로 가열한 상태에서 혼합원료를 유입시켰다. 상기 용융탱크 내에서 혼합원료의 알루미늄 입자는 용융-증기화되어 팽창 그래파이트 층간에 삽입되었으며, 이 입자는 배출관을 통해 배출되었다. Next, 25 parts by weight of aluminum powder (particle size 63 μm) was mixed with 100 parts by weight of the dried expanded interlayer graphite, put into a raw material tank, and the mixed raw material was introduced while the temperature of the melting tank was heated to 995 ° C. In the melting tank, aluminum particles of the mixed raw material were melted and vaporized and inserted between layers of expanded graphite, and the particles were discharged through a discharge pipe.

그리고 상기 배출관을 따라 이송되는 입자에 산소를 공급하여 산화반응시킴으로써, 산화알루미늄이 층간에 삽입된 그래파이트, 즉 탄소볼을 제조하였다. 이때, 상기 산소 투입시점에서의 알루미늄이 층간에 삽입된 그래파이트 입자의 온도는 580℃로 냉각된 상태였으며, 회수탱크로 유입된 입자의 온도는 185℃ 정도로 냉각된 상태였다. 그리고 제조된 탄소볼의 입자 크기는 0.5~100㎛ 였다. In addition, oxygen was supplied to the particles transported along the discharge pipe to cause an oxidation reaction, thereby producing graphite in which aluminum oxide was intercalated, that is, carbon balls. At this time, the temperature of the graphite particles in which aluminum was inserted between the layers at the time of oxygen input was cooled to 580 ° C, and the temperature of the particles introduced into the recovery tank was cooled to about 185 ° C. And the particle size of the produced carbon ball was 0.5 ~ 100㎛.

다음으로, 분자량이 2100Mw 폴리에스테르 올리고머(polyester olygomer) 730g, 실록산 올리고머 70g, 분자량이 2300Mw 폴리에테르설폰(PES) 120g, 상기 탄소볼 500g, 경화제인 엡실론 카프로락탐 블로킹 이소시아네이트 130g을 혼합하고, 102℃에서 압출하고, 압연 분쇄하여 입도 크기가 53㎛인 분체수지를 제조하였다.Next, 730 g of polyester oligomer having a molecular weight of 2100 Mw, 70 g of siloxane oligomer, 120 g of polyethersulfone (PES) having a molecular weight of 2300 Mw, 500 g of the carbon balls, and 130 g of epsilon caprolactam blocking isocyanate as a curing agent were mixed at 102 ° C. After extruding, rolling and pulverizing, a powder resin having a particle size of 53 μm was prepared.

그리고 나관을 전처리(샌드블라스트-세정)하고, 200℃로 가열한 후, 표면에 110㎛ 두께로 상기 분체수지를 분사, 용융시킨 후, 경화, 냉각하여 탄소볼 코팅 강관 말뚝을 제조하였다.In addition, the bare pipe was pretreated (sandblast-cleaned), heated to 200 ° C, sprayed and melted the powder resin to a thickness of 110 μm on the surface, and then cured and cooled to prepare a carbon ball-coated steel pipe pile.

(비교예 1)(Comparative Example 1)

입도가 1~500㎛인 층간 이완 그래파이트 분말을 준비하였다. 그리고 지르코늄 소재의 타격 비드(크기:1Ømm)를 준비하였다.Interlayer relaxed graphite powder having a particle size of 1 to 500 μm was prepared. In addition, a zirconium material striking bead (size: 1Ømm) was prepared.

다음으로, 상기 층간 이완 그래파이트 분말과 타격 비드를 1:1 중량비, 즉 각각 10kg씩 혼합하였다. 그리고 공기 압축기의 압력을 350kg/㎠으로 설정하여 공기 압축기를 가동시키고, 목표 압력에 도달시켰다. 그리고 상기 층간 이완 그래파이트 분말과 타격 비드의 혼합물을 호퍼에 투입하고, 이송관의 밸브를 열어 350kg/㎠의 고압축 공기의 추진력을 통해 호퍼 내의 혼합물을 공기에 실어 포집탱크 내의 타격판에 발사시켰다. Next, the interlayer relaxed graphite powder and the striking beads were mixed in a weight ratio of 1:1, that is, 10 kg each. Then, the air compressor was operated by setting the pressure of the air compressor to 350 kg/cm 2 , and the target pressure was reached. In addition, the mixture of the interlayer relaxed graphite powder and the striking beads was put into the hopper, and the valve of the transfer pipe was opened, and the mixture in the hopper was loaded with air through the propulsion force of 350 kg / cm 2 of high-compressed air, and the striking plate in the collection tank was fired.

상기 타격판에 충돌된 혼합물 내 층간 이완 그래파이트는 박리 및 분쇄되었는바, 나노 스케일(두께 0.1~50nm, 면적 0.1nm~30㎛)의 그래핀은 상기 포집탱크 상부의 포집부에 선별 포집되고, 폐공기는 상기 포집부의 상부로 배출되었다. 그리고 타격 비드는 포집 탱크 내에 설치된 하부 여과망을 통과하지 못하고, 비드 회수부로 회수되었으며, 박리되지 않거나 크기가 큰 그래파이트 또는 그래핀의 입자들은 하부 여과망을 통과하여 회수부에서 회수되었다. 이때, 상기 타격판으로는 두께 60mm인 지르코늄 판재를 이용하였다. 이때, 상기 최종 수득된 나노 스케일의 그래핀 입자는 6.12kg이었으며, 회수부에서 회수된 입자는 3.71kg이었다.The interlayer relaxed graphite in the mixture collided with the impact plate was exfoliated and pulverized, and nanoscale (thickness 0.1 to 50 nm, area 0.1 nm to 30 μm) graphene was selectively collected in the collection part of the upper part of the collection tank, and waste Air was exhausted through the upper portion of the collecting unit. The striking beads did not pass through the lower filter net installed in the collection tank and were recovered to the bead recovery unit, and the non-exfoliated or large-sized graphite or graphene particles passed through the lower filter net and were recovered in the recovery unit. At this time, a zirconium plate having a thickness of 60 mm was used as the striking plate. At this time, the finally obtained nano-scale graphene particles were 6.12 kg, and the particles recovered in the recovery unit were 3.71 kg.

분체수지로서 비스페놀 F형 에폭시 수지(에폭시 당량: 1100~1300 g/eq)를 준비하였다. 이때, 에폭시의 입도는 10~50㎛였다. 상기에서 제조된 나노 스케일의 그래핀 입자 5kg과 분말 에폭시 95kg을 혼합하고, 교반하여 그래핀 복합 분체수지를 제조하였다.As a powder resin, a bisphenol F-type epoxy resin (epoxy equivalent: 1100 to 1300 g/eq) was prepared. At this time, the particle size of the epoxy was 10 ~ 50㎛. 5 kg of the nanoscale graphene particles prepared above and 95 kg of powdered epoxy were mixed and stirred to prepare a graphene composite powder resin.

이어서 나관을 전처리(샌드블라스트-세정)하고, 250℃로 가열한 후, 상기 그래핀 복합 분체수지로 정전도장하여 코팅층의 두께가 150㎛가 되도록 하였다. Subsequently, the bare tube was pretreated (sandblast-cleaned), heated to 250° C., and electrostatically coated with the graphene composite powder resin so that the thickness of the coating layer was 150 μm.

(시험예 1)(Test Example 1)

상기 실시예 1 내지 3 및 비교예 1의 내마모성을 테스트하였다. 상기 내마모성은 KS F 2813 및 KS M ISO 9352에 의하여 마모량을 측정하였으며, 그 결과는 하기 표 1에 나타내었다. The abrasion resistance of Examples 1 to 3 and Comparative Example 1 was tested. The abrasion resistance was measured according to KS F 2813 and KS M ISO 9352, and the results are shown in Table 1 below.

내마모성 시험 결과(마모량:mg)Abrasion resistance test result (Abrasion amount: mg) 연마륜polishing wheel 하중weight 마모횟수abrasion count 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 CS17CS17 1,000g1,000 grams 1,000회1,000 times -- -- 8686 1,0471,047 H22H22 500g500g 500회500 times 111111 109109 -- 230230

상기 표 1에서와 같이 실시에 1 내지 3은 비교예 1에 비하여 마모량이 현저히 적어 내마모성이 우수함을 확인할 수 있었다. As shown in Table 1, it was confirmed that Examples 1 to 3 had excellent wear resistance with a significantly smaller amount of wear than Comparative Example 1.

(시험예 2)(Test Example 2)

상기 실시예 1 내지 3 및 비교예 1의 부착강도를 테스트하였다. 상기 부착강도는 KS M ISO 4624에 의하여 2회 측정하였으며, 그 평균치를 하기 표 2에 나타내었다. The adhesion strength of Examples 1 to 3 and Comparative Example 1 was tested. The adhesive strength was measured twice according to KS M ISO 4624, and the average value is shown in Table 2 below.

부착강도 시험 결과(N/㎟)Bond strength test result (N/㎟) 구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 부착강도adhesion strength 18.2218.22 18.7818.78 21.0321.03 10.4010.40

상기 표 2에서와 같이 실시예 1 내지 3은 비교예 1에 비하여 부착강도가 현저히 우수함을 확인할 수 있었다.As shown in Table 2, it was confirmed that Examples 1 to 3 had significantly better adhesion strength than Comparative Example 1.

이상에서는 본 발명의 일실시예에 따라 본 발명을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 변경 및 변형한 것도 본 발명에 속함은 당연하다.In the above, the present invention has been described according to an embodiment of the present invention, but changes and modifications made by those skilled in the art within the scope of the technical spirit of the present invention also belong to the present invention. Of course.

Claims (7)

팽창 층간 그래파이트를 준비하는 단계와,
상기 준비된 팽창 층간 그래파이트를 세정하고 건조하는 단계와,
상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계와,
상기 혼합된 혼합물을 800~1200℃로 가열함으로써, 용융-증기화된 알루미늄 입자가 상기 팽창 층간 그래파이트의 층간에 삽입되도록 하는 단계와,
상기 알루미늄 입자가 층간 삽입된 그래파이트를 450~620℃로 냉각시켜 산소를 접촉시킴으로써, 알루미늄을 산화시켜 산화알루미늄이 층간 삽입된 그래파이트를 제조하는 단계와,
상기 산화알루미늄이 층간 삽입된 그래파이트를 냉각하여 탄소볼을 제조하는 단계를 포함하며,
상기 팽창 층간 그래파이트의 입도 크기는 0.5~70㎛이고,
상기 알루미늄 파우더의 입도 크기는 1~100㎛이며,
상기 제조된 탄소볼의 입도 크기는 0.5~100㎛이고,
상기 건조된 팽창 층간 그래파이트를 알루미늄 파우더와 혼합하는 단계는, 상기 건조된 팽창 층간 그래파이트 100중량부에 대하여 알루미늄 파우더 20~50중량부를 혼합하는 것임을 특징으로 하는 탄소볼 제조방법.
Preparing an expanded interlayer graphite;
washing and drying the prepared expanded interlayer graphite;
mixing the dried expanded interlayer graphite with aluminum powder;
heating the mixed mixture to 800-1200° C. so that the molten-vaporized aluminum particles are intercalated between the layers of the expanded interlayer graphite;
Cooling the graphite in which the aluminum particles are intercalated to 450 to 620 ° C. to contact oxygen to oxidize aluminum to prepare graphite in which aluminum oxide is intercalated;
manufacturing carbon balls by cooling the graphite in which the aluminum oxide is intercalated;
The particle size of the expanded interlayer graphite is 0.5 to 70 μm,
The particle size of the aluminum powder is 1 to 100 μm,
The particle size of the prepared carbon balls is 0.5 to 100 μm,
In the step of mixing the dried expanded interlayer graphite with aluminum powder, 20 to 50 parts by weight of aluminum powder is mixed with 100 parts by weight of the dried expanded interlayer graphite.
삭제delete 삭제delete 제1항의 방법으로 제조되는 것을 특징으로 하는 탄소볼.
A carbon ball, characterized in that produced by the method of claim 1.
제1항의 방법으로 제조되는 탄소볼;
폴리에스테르 올리고머;
실록산 올리고머;
폴리에테르설폰; 및
경화제;
를 포함하는 원료를 압출 및 분쇄하여서 되는 것을 특징으로 하는 탄소볼 융합 분체도료.
A carbon ball manufactured by the method of claim 1;
polyester oligomers;
siloxane oligomers;
polyethersulfone; and
curing agent;
Carbon ball fusion powder coating, characterized in that by extruding and pulverizing raw materials containing.
제5항에 있어서,
상기 원료는,
상기 탄소볼 17~45중량%, 실록산 올리고머 1~5중량%, 폴리에테르설폰 2~10중량%, 경화제 5~15중량% 및 잔부의 폴리에스테르 올리고머로 되는 것을 특징으로 하는 탄소볼 융합 분체도료.
According to claim 5,
The raw material is
Carbon ball fusion powder coating, characterized in that the carbon ball 17 to 45% by weight, siloxane oligomer 1 to 5% by weight, polyethersulfone 2 to 10% by weight, curing agent 5 to 15% by weight and the balance polyester oligomer.
제5항의 분체수지로 도장된 것임을 특징으로 하는 코팅 강관 말뚝.A coated steel pipe pile, characterized in that it is coated with the powder resin of claim 5.
KR1020230007429A 2023-01-18 2023-01-18 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof KR102549351B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230007429A KR102549351B1 (en) 2023-01-18 2023-01-18 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230007429A KR102549351B1 (en) 2023-01-18 2023-01-18 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof

Publications (1)

Publication Number Publication Date
KR102549351B1 true KR102549351B1 (en) 2023-06-30

Family

ID=86959483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230007429A KR102549351B1 (en) 2023-01-18 2023-01-18 Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof

Country Status (1)

Country Link
KR (1) KR102549351B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277103A (en) * 1995-04-03 1996-10-22 Res Dev Corp Of Japan Graphite interlamellar compound and its production
JP2004162021A (en) * 2002-07-26 2004-06-10 Sanyo Chem Ind Ltd Powder coating and slurry coating
JP2005330162A (en) * 2004-05-21 2005-12-02 Japan Science & Technology Agency Method for inserting organometallic species between layers of graphite oxide and synthesis of carbon-containing porous composite material using the same
KR20140087638A (en) * 2012-12-31 2014-07-09 제일모직주식회사 Porous graphene/metal-oxide complex and method for preparing the same
JP2016175814A (en) * 2015-03-23 2016-10-06 株式会社東芝 Graphene wiring structure and method for producing the same
KR101825400B1 (en) 2017-07-31 2018-02-08 웰텍 주식회사 Method of Manufacturing nanoscale graphene, nanoscale graphene by the method, Graphene composite powder resin made from the same, steel pipe pile and steel pipe coated the same and process for preparing the same
KR20200041817A (en) * 2018-10-12 2020-04-22 한양대학교 에리카산학협력단 Complex coating liquid, metal substrate structure, manufactured by using the same, and method of manufacturing the same
KR20210103032A (en) * 2020-02-12 2021-08-23 전남대학교산학협력단 3-dimensional graphene-metal composite and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277103A (en) * 1995-04-03 1996-10-22 Res Dev Corp Of Japan Graphite interlamellar compound and its production
JP2004162021A (en) * 2002-07-26 2004-06-10 Sanyo Chem Ind Ltd Powder coating and slurry coating
JP2005330162A (en) * 2004-05-21 2005-12-02 Japan Science & Technology Agency Method for inserting organometallic species between layers of graphite oxide and synthesis of carbon-containing porous composite material using the same
KR20140087638A (en) * 2012-12-31 2014-07-09 제일모직주식회사 Porous graphene/metal-oxide complex and method for preparing the same
JP2016175814A (en) * 2015-03-23 2016-10-06 株式会社東芝 Graphene wiring structure and method for producing the same
KR101825400B1 (en) 2017-07-31 2018-02-08 웰텍 주식회사 Method of Manufacturing nanoscale graphene, nanoscale graphene by the method, Graphene composite powder resin made from the same, steel pipe pile and steel pipe coated the same and process for preparing the same
KR20200041817A (en) * 2018-10-12 2020-04-22 한양대학교 에리카산학협력단 Complex coating liquid, metal substrate structure, manufactured by using the same, and method of manufacturing the same
KR20210103032A (en) * 2020-02-12 2021-08-23 전남대학교산학협력단 3-dimensional graphene-metal composite and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Zhang et al. A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications
KR101825400B1 (en) Method of Manufacturing nanoscale graphene, nanoscale graphene by the method, Graphene composite powder resin made from the same, steel pipe pile and steel pipe coated the same and process for preparing the same
Wu et al. An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties
KR101433039B1 (en) Method for manufacturing coating concrete block
CN100535162C (en) Tungsten carbide particle enhanced steel/iron-base composite wearable plate and preparation technique thereof
CN101725268B (en) Long-life anti-corrosive layer for transmission tower and method for making same
WO2021027369A1 (en) Wear-resistant polyurea coating, preparation method therefor and use thereof
KR102063965B1 (en) elastic pavement material using cork chip and construction method of elastic pavement
CN108864841B (en) Preparation method of carbon fiber modified polytetrafluoroethylene wear-resistant hydrophobic composite coating
KR102549351B1 (en) Manufacturing Method of carbon ball, carbon ball Manufactured by the method, composite powder resin with carbon ball and steel pipe piles coated thereof
KR102243203B1 (en) Resin composition of concrete structure with superior heat shielding and antistatic function and constructing method using thereof
Bahrami et al. Experimental and numerical studies of polyamide 11 and 12 surfaces modified by atmospheric pressure plasma treatment
Lee et al. 3D‐printed surface‐modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength
KR101811372B1 (en) Method of manufacturing Polyurethane paints comprising carbonized microfiber-reinforced, Method for manufacturing Polyurethane coating steel pipe using the same and Polyurethane coating steel pipe by the same
KR100737344B1 (en) Ceramic coated steel pipe and method for coating the same
KR102536701B1 (en) Manufacturing Method of Graphene flakes, Graphene flakes Manufactured by the method, Manufacturing Method of graphene flakes UV resin using the same and steel pipe piles coated thereof
KR101825170B1 (en) Method for producing floor materials with nano carbon staple fibers and method for painting using the same
Kampa et al. Adhesive properties of an epoxy resin bonding agent modified with waste granite powder
KR101486475B1 (en) Method for preparing composite water-proofing materials with graphene and construction method thereof
CN107267029A (en) A kind of high temperature resistant thermal boundary powdery paints, preparation method and its spraying method
US8389624B2 (en) Intermediates for preparation of polymeric compositions
CN109759962A (en) A kind of heavy load resin wheel and its manufacturing method for steel billet grinding
CN103407227A (en) Novel composite steel belt as well as preparation method and application thereof
CN1248657A (en) Scale shaped resin mortar composite corrosion-resistant ground floor and construction method
KR101967864B1 (en) Method for manufacturing corrugated panel with improved adhesion and resistance to contamination

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant