KR20190009849A - Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화 - Google Patents

Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화 Download PDF

Info

Publication number
KR20190009849A
KR20190009849A KR1020197002033A KR20197002033A KR20190009849A KR 20190009849 A KR20190009849 A KR 20190009849A KR 1020197002033 A KR1020197002033 A KR 1020197002033A KR 20197002033 A KR20197002033 A KR 20197002033A KR 20190009849 A KR20190009849 A KR 20190009849A
Authority
KR
South Korea
Prior art keywords
cells
cell
tgf
inhibitor
human
Prior art date
Application number
KR1020197002033A
Other languages
English (en)
Other versions
KR102036780B1 (ko
Inventor
알리레자 레자니아
Original Assignee
얀센 바이오테크 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 얀센 바이오테크 인코포레이티드 filed Critical 얀센 바이오테크 인코포레이티드
Publication of KR20190009849A publication Critical patent/KR20190009849A/ko
Application granted granted Critical
Publication of KR102036780B1 publication Critical patent/KR102036780B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/395Thyroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Abstract

본 발명은 만능 줄기세포에서 PDX1, NKX6.1 및 HB9을 발현하는 췌장 내배엽 세포로의 분화를 촉진하는 방법을 제공한다. 특히, 본 방법은 4기 내지 6기 세포를 갑상선 호르몬(예를 들어, T3), ALK5 저해제 또는 둘 모두와 함께 배양하는 것을 포함한다.

Description

HB9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화{DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS INTO PANCREATIC ENDOCRINE CELLS USING HB9 REGULATORS}
관련 출원과의 상호 참조
본 출원은 전체적으로 참고로 포함된 미국 가출원 제61/747,672호(2012년 12월 31일자로 출원됨)를 우선권으로 주장한다.
본 발명은 세포 분화 분야이다. 보다 특히, 본 발명은 췌장 내배엽 및 내분비 세포에서 HB9의 조절제로서의 특정한 갑상선 호르몬 또는 이의 유사체 및 ALK5 저해제의 용도에 관한 것이다.
I형 진성 당뇨병 및 이식가능한 랑게르한스섬의 부족에 대한 세포-대체 치료법의 진전은 생착(engraftment)에 적절한 인슐린-생산 세포 또는 β 세포의 공급원을 개발하는데 관심을 집중하여 왔다. 한 가지 접근법은 배아 줄기세포와 같은 만능 줄기세포(pluripotent stem cell)로부터 기능적 β 세포를 생성시키는 것이다.
척추동물 배아 발생에서, 만능 세포는 낭배형성(gastrulation)으로 알려진 과정에서 삼배엽층(외배엽, 중배엽, 및 내배엽)을 포함하는 세포군을 생성한다. 갑상선, 흉선, 췌장, 소화관, 및 간과 같은 조직은 중간 단계를 통해 내배엽으로부터 발생할 것이다. 이 과정에서 중간 단계는 완성 내배엽의 형성이다.
낭배형성 마지막까지, 내배엽은 내배엽의 전방, 중간 및 후방 영역을 독특하게 표시하는 인자들의 패널의 발현에 의해 인식될 수 있는 전방-후방 도메인(anterior-posterior domain)으로 나누어진다. 예를 들어, HHEX 및 SOX2는 내배엽의 전방 영역을 확인시켜 주는 반면에, CDX1, 2 및 4는 내배엽의 후방 영역을 확인시켜 준다.
내배엽 조직의 이동은, 내배엽이 상이한 중배엽 조직들과 아주 근접해지게 하며 이는 장관의 국지화를 돕는다. 이는 FGF, WNT, TGF-β, 레티노산(RA) 및 BMP 리간드 및 이들의 길항제와 같은 과잉의 분비형 인자들에 의해 달성된다. 예를 들어, FGF4 및 BMP는 추정 후장 내배엽에서의 CDX2 발현을 촉진하며 전방 유전자 HHEX 및 SOX2의 발현을 억제한다(문헌[2000 Development, 127:1563-1567]). 또한 WNT 신호전달(signaling)은 후장(hindgut) 발생을 촉진하고 전장(foregut) 운명을 저해하도록 FGF 신호전달과 병행하여 작동하는 것으로 밝혀졌다(문헌[2007 Development, 134:2207-2217]). 마지막으로, 중간엽에 의해 분비된 레티노산은 전장-후장 경계를 조절한다(문헌[2002 Curr Biol, 12:1215-1220]).
특정 전사 인자들의 발현 수준을 이용하여 조직의 아이덴티티(identity)를 지정할 수 있다. 완성 내배엽의 원시 장관(primitive gut tube)으로의 형질전환 동안, 장관은 제한된 유전자 발현 패턴에 의해 분자 수준에서 관찰될 수 있는 넓은 도메인들 내로 국지화되게 된다. 장관 내의 국지화된 췌장 도메인은 매우 높은 PDX1 발현 및 매우 낮은 CDX2와 SOX2 발현을 나타낸다. PDX1, NKX6.1, PTF1A, 및 NKX2.2는 췌장 조직에서 고도로 발현되며 CDX2의 발현은 장 조직에서 높다.
췌장의 형성은 완성 내배엽의 췌장 내배엽으로의 분화로부터 야기된다. 배측(dorsal) 및 복측(ventral) 췌장 도메인은 전장 상피에서 발생한다. 전장은 또한 식도, 기관, 폐, 갑상선, 위, 간, 췌장 및 담관계가 생성되도록 한다.
췌장 내배엽의 세포는 췌장-십이지장 호메오박스(homeobox) 유전자 PDX1을 발현한다. PDX1의 부재 하에, 췌장은 복측 원기(bud) 및 배측 원기의 형성 이상으로는 발달하지 못한다. 따라서, PDX1 발현은 췌장 기관형성에서 중요한 단계를 나타낸다. 성숙한 췌장은 췌장 내배엽의 분화로부터 생성되는 외분비 조직 및 내분비 조직 둘 모두를 함유한다.
드'아무르(D'Amour) 등은 고농도의 액티빈과 저 혈청의 존재 하에 인간 배아 줄기세포-유래 완성 내배엽의 농축 배양물의 생산을 기술한다(문헌[Nature Biotechnology 2005, 23:1534-1541]; 미국 특허 제7,704,738호). 보고에 의하면, 마우스의 신장 피막 하에 이들 세포를 이식하면 내배엽 조직의 특성을 갖는 더욱 성숙한 세포로 분화되었다(미국 특허 제7,704,738호). 인간 배아 줄기세포-유래된 완성 내배엽 세포는 FGF10 및 레티노산의 첨가 후에 PDX1 양성 세포로 추가로 분화될 수 있다(미국 특허출원 공개 제2005/0266554호). 면역 결핍 마우스의 지방 패드 내에 이들 췌장 전구세포를 후속적으로 이식하면 3 내지 4개월의 성숙기 후에 기능성 췌장 내분비 세포의 형성이 유발되었다(미국 특허 제7,993,920호 및 미국 특허 제7,534,608호).
피스크(Fisk) 등은 인간 배아 줄기세포로부터의 췌장 섬세포의 생성 시스템을 보고한다 (미국 특허 제7,033,831호). 이 경우에, 분화 경로를 세 단계로 나누었다. 먼저 인간 배아 줄기세포를 부티르산나트륨과 액티빈 A의 배합물을 이용하여 내배엽으로 분화시켰다 (미국 특허 제7,326,572호). 이어서 이 세포를 EGF 또는 베타셀룰린과 배합된 노긴(Noggin)과 같은 BMP 길항제와 함께 배양하여PDX1 양성 세포를 생성하였다. 마지막 분화는 니코틴아미드에 의해 유도되었다.
또한 소분자 저해제는 췌장 내분비 전구 세포의 유도에 사용되었다. 예를 들어, TGF-β 수용체 및 BMP 수용체의 소분자 저해제(문헌[Development 2011, 138:861-871]; 문헌[Diabetes2011, 60:239-247])가 사용되어 췌장 내분비 세포의 수를 현저하게 향상시켰다. 게다가, 소분자 활성화제가 완성 내배엽 세포 또는 췌장 전구 세포의 생성에 또한 사용되었다 (문헌[Curr Opin Cell Biol2009, 21:727-732]; 문헌[Nature Chem Biol 2009, 5:258-265]).
HB9(HlXB9 및 MNX1로도 공지됨)는 대략 배발생 8일에서 시작하여 췌장 발달에서 조기에 발현되는 bHLH 전사 활성화제 단백질이다. HB9는 또한 척삭 및 척수에서 발현된다. HB9의 발현은 일시적이며 췌장 상피에서 약 10.5일에 최고치이며, 이는 PDX1 및 NKX6.1 발현 세포에서 발현된다. 약 12.5일에, HB9 발현은 감소되고, 후기 단계에서 이는 오직 β 세포로만 제한된다. HlXB9의 널 돌연변이(null mutation)에 동종접합인 마우스에서, 췌장의 배측 분엽(dorsal lobe)은 발달하지 못한다(문헌[Nat Genet 23:67-70, 1999]; 문헌[Nat Genet 23:71-75, 1999]). HB9-/- β-세포는 글루코스 수송체, GLUT2 및 NKX6.1을 낮은 수준으로 발현한다. 게다가, HB9 -/- 췌장은 인슐린 양성 세포의 수의 현저한 감소를 나타내는 반면에, 다른 췌장 호르몬의 발현에는 현저하게 영향을 미치지 않는다. 따라서, HB9 의 시간적 제어는 정상적 β 세포 발달 및 기능에 필수적이다. β 세포에서 HB9 발현을 조절하는 인자에 관해 많은 것이 공지되어 있지 않지만, 제브라피시에서의 최근 연구는 레티노산이 HB9의 발현을 긍정적으로 조절할 수 있음을 제시한다(문헌[Development, 138, 4597-4608, 2011]).
갑상선 호르몬인 타이록신("T4") 및 트리요오도타이로닌("T3")은 갑상선에 의해 생산되는 타이로신계 호르몬이며 주로 대사작용의 조절을 책임지고 있다. 혈중 갑상선 호르몬의 주요 형태는 T4로서 이는 T3보다 더 긴 반감기를 갖는다. 혈중으로 방출되는 T4 대 T3의 비는 대략 20 대 1이다. T4는 세포 내에서 데이오디나제(deiodinase)에 의해 보다 활성인 (T4보다 3배 내지 4배 더 강력한) T3으로 전환된다.
T3은 갑상선 호르몬 수용체 TRα1 및 TRβ1(TR)에 결합한다. TR은 레티노이드 X 수용체와 함께 이종이량체화되는 핵 호르몬 수용체이다. 이 이량체는 리간드의 부재하에 갑상선 반응 요소(TRE)에 결합하고 전사 억제인자로서 작용한다. TR에 대한 T3의 결합은 TRE 의존적 유전자의 억제를 감소시키고 각종 표적 유전자의 발현을 유도한다. 수많은 연구가, β 세포 증식의 증가, 아폽토시스(apoptosis)의 감소 및 인슐린 분비의 개선에 있어 T3의 역할을 제시하였지만, 세포 분화에서의 이의 역할은 규정되지 않았다.
형질전환 성장 인자 β (TGF-β)는 성장 제어, 분화, 이동, 세포 생존, 섬유화 및 발생 운명의 특정을 포함하는 많은 생물학적 과정에 관여하는 다면발현성 사이토카인의 큰 패밀리의 구성원이다. TGF-β 슈퍼패밀리 구성원은 II형 및 I형 수용체를 포함하는 수용체 복합체를 통해서 신호를 전달한다. TGF-B 리간드(예를 들어, 액티빈 및 GDF(성장 분화 인자)는 II형 수용체를 I형 수용체와 화합하도록 한다. II형 수용체는 복합체 내에서 I형 수용체를 인산화시키고 활성화시킨다. 하기와 같은 5종의 포유동물 II형 수용체 및 7종의 I형 수용체(ALK 1 내지 7)가 있다: TβR-II, ActR-II, ActR-IIB, BMPR-II 및 AMHR-II. 액티빈 및 관련 리간드는 ActR-II 또는 ActR-IIB 및 ALK4 또는 ALK5의 조합을 통해 신호를 전달하고, BMP는 ALK2, ALK3 및 ALK6과 함께 ActR-II, ActR-IIB 또는 BMPR-II의 조합을 통해 신호를 전달한다. AMH는 AMHR-II와 ALK6의 복합체를 통해 신호를 전달하고, 결절(nodal)은 최근에 ActR-IIB와 ALK7의 복합체를 통해 신호를 전달하는 것으로 나타났다(문헌[Cell. 2003,113(6):685-700]). TGF-B 리간드가 적절한 수용체에 결합한 후, 후속적 신호는 주로 Smad의 복합체의 활성화를 통해 핵으로 전달된다. 활성화시, I형 수용체는 Smad의 수용체-조절형 서브패밀리의 구성원들을 인산화시킨다. 이것은 상기 구성원들을 활성화시켜 이들이 공통의 매개체 Smad인 Smad4와 복합체를 형성할 수 있도록 한다. Smad 1, 5 및 8은 ALK 1, 2, 3 및 6에 대한 기질인 반면, Smad 2 및 3은 ALK 4, 5 및 7에 대한 기질이다(문헌[FASEB J 13:2124-2105]). 활성화된 Smad 복합체는 핵 내에 축적되고, 여기서 이들은 통상 다른 특이적 DNA-결합 전사 인자들과 연합하여 표적 유전자의 전사에 직접적으로 관여한다. TGF-β에 대한 수용체를 선택적으로 저해하는 화합물이 치료적 적용을 위해 그리고 각종 줄기세포 집단으로부터 분화 및 재프로그래밍 범주에서 세포 운명을 조절하기 위해 개발되었다.특히, ALK5 저해제는 배아 줄기세포의 분화를 내분비 운명으로 유도하기 위해 이미 사용된 바 있다(문헌[Diabetes, 2011, 60(1):239-47]).
일반적으로, 선조세포(progenitor cell)의 기능적 β 세포로의 분화 과정은 다양한 단계를 거친다. 그러나, 인간 배아 줄기("hES") 세포를 시험관 내에서 계속해서 단계들을 통해 β-세포와 유사한 세포로 결정되도록 유도하는 것은 도전과제이며 hES 세포로부터 기능적 β-세포의 생산은 간단한 과정이 아닌 것으로 인정되고 있다. 선조세포의 분화 과정에서의 각 단계는 특별한 과제를 제시한다. 인간 만능 줄기세포와 같은 선조세포로부터 췌장 세포를 생성시키기 위한 프로토콜의 개선에 있어서 발전이 이루어졌음에도 불구하고, 기능성 내분비 세포 및 특히 β 세포를 유발하는 프로토콜을 생성시킬 필요성이 여전히 존재한다.
도 1a 내지 도 1c는 실시예 1에 개요된 바와 같이 췌장 내배엽/내분비 전구세포로 분화된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다: PDX1 (도 1a); NKX6.1 (도 1b); 및 HB9 (도 1c).
도 2a 내지 도 2c는 다음에 대해서 실시예 1에 개요된 바와 같이 췌장 내배엽/내분비 전구세포로 분화된 인간 배아 줄기세포주 H1의 FACS 분석 결과를 도시한 것이다:PDX1 (도 2a), NKX6.1(도 2b), HB9(도 2c).
도 3a 및 도 3b는 NXK6.1, 인슐린 또는 HB9에 대해 면역염색된 세포의 영상을 도시한 것이다. 세포는 실시예 1에 개요된 바와 같이 췌장 내배엽/내분비 전구세포로 분화시켰다. 도 3a는 NKX6.1 (좌측 창) 및 인슐린 (우측 창)에 대한 면역염색을 도시한 것이다. 도 3b는 HB9 (좌측 창) 및 인슐린(우측 창)에 대한 면역염색을 도시한 것이다.
도 4a, 도 4b 및 도 4c는 실시예 2에 개요된 바와 같이 4기 내지 6기로 분화된 배아 줄기세포주 H1의 4기의 3일째(패널 A), 5기의 4일째 (패널 B) 및 6기의 3일째(패널 C)에서 PDX1, NKX6.1 및 HB9의 발현율%의 FACS 데이타를 도시한 것이다.
도 5a는 실시예 2에 개요된 바와 같이 분화된 세포에 대한 2기 내지 6에서의 HB9의 mRNA 발현을 인간 섬세포와 비교하여 도시한 것이다.
도 5b는 NXK6.1(좌측 창) 및 HB9(우측 창)에 대해 면역염색된, 실시예 2에 개요된 바와 같이 분화된 4기의 3일째 세포의 영상을 도시한 것이다.
도 6a 내지 도 6j는 실시예 2에 개요된 바와 같이 4기로 분화되고 이어서 오직 4기, 4기 내지 5기 또는 4기 내지 6기에서 처리된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다. 도 6a 내지 도 6j는 다음에 대한 데이타를 도시한 것이다: NKX6.1 (도 6a); PDX1 (도 6b); NKX2.2 (도 6c) 글루카곤(도 6d); 인슐린(도 6e); 소마토스타틴 (도 6f); CDX2 (도 6g); 알부민 (도 6h); 가스트린 (도 6i); 및 SOX2 (도 6j).
도 7a 및 도 7b는 대조군(도 7a) 및 실시예 2에 개요된 바와 같이 처리된 배양물(도 7b)의 면역염색 결과를 도시한다. 6기에서 대조군 (도 7a) 및 처리된 배양물(도 7b)의 면역염색은 6기에서 대조군(도 7a)과 비교하여T3 처리군(도 7b)에서 HB9 양성 세포 수의 현저한 증가를 나타냈다.
도 8a 및 도 8b는 실시예 3에 개요된 바와 같이 6기로 분화된 세포에 대한 6기의 7일째에서의 NKX6.1 및 HB9의 면역염색을 도시한 것이다. 도 8c는 실시예 3에 개요된 바와 같이 6기로 분화된 인간 배아 줄기세포주 H1의 세포에서 HB9의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다.
도 9a 및 도 9b는 실시예 3에 개요된 바와 같이 6기로 분화된 인간 배아 줄기세포주 H1의 세포에서 각각 6기의 5일째 및 15일째에서의 HB9의 FACS 데이타를 도시한 것이다.
도 10a 내지 도 10e는 실시예 4에 개요된 프로토콜에 따라서 분화된 세포에 대한 6기의 6일째에서의 NKX6.1 및 HB9의 면역염색을 도시한 것이다. T3은 NKX6.1 양성 췌장 내배엽 전구 세포 중에서 HB9 양성 세포의 수를 용량 의존적 방식으로 현저하게 향상시켰다.
도 11a 내지 도 11l은 실시예 4에 개요된 바와 같이 6기로 분화된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다: SOX2 (도 11a); NKX6.1 (도 11b); NKX2.2 (도 11c); 가스트린 (도 11d); PDX1 (도 11e); NGN3 (도 11f); PAX6 (도 11g); PAX4 (도 11h); 인슐린(도 11i); 글루카곤 (도 11j); 그렐린 (도 11k); 및 소마토스타틴 (도 11l).
하기 본 발명의 상세한 설명은 첨부 도면과 함께 읽을 때 더 잘 이해될 것이다. 도면은 본 발명의 특정 실시형태를 예시하기 위한 목적으로 제공된다. 그러나, 본 발명은 제시된 정확한 배열, 예 및 수단에 한정되지 않는다. 개시 내용의 명확함을 위하여, 그리고 제한하지 않고서, 발명을 실시하기 위한 구체적인 내용은 본 발명의 소정의 특징, 실시형태, 또는 응용을 설명하거나 예시하는 세부 항목으로 나뉘어진다.
본 발명은 특정 갑상선 호르몬 또는 이의 유사체 및 ALK5(TGFβ I형 수용체 키나제) 저해제를 특수한 배양 순서로 사용하는 것을 통한 NKX6.1, PDX1 및 HB9에 대해 양성인 췌장 내배엽 세포의 생성에 관한 것이다. 따라서, 본 발명은 만능 줄기세포로부터 유래된 세포를 NKX6.1, PDX1 및 HB9를 발현하는 β 세포 계통의 특징적인 마커를 발현하는 세포로 분화시키기 위한 시험관내 세포 배양물을 제공한다. 본 발명은 시험관내 세포 배양을 통해 이러한 세포를 수득하는 방법을 추가로 제공한다. 특정 실시형태에서, 본 발명은 T3, T4 또는 이의 유사체의 포함이 세포를 분화시키는데 있어서 HB9 단백질 발현의 유도제로서 작용하여 β 세포로의 분화를 촉진한다는 발견에 기초한다. HB9는 3기 또는 4기에서 단백질 수준에서 발현되지 않는다. 따라서, 본 발명은 HB9 단백질 발현을 조절함으로써 줄기세포를 분화시키는 방법을 제공한다. 특히, 본 발명은 T3 또는 T4, 또는 이의 유사체 및 ALK5 억제를 특수한 배양 순서로 사용하는 것을 통한 NKX6.1, PDX1 및 HB9에 대해 양성인 췌장 내배엽 세포의 생성을 제공한다.
정의
줄기세포는 단일 세포 수준에서 이의 자가-재생 및 분화 능력 둘 모두에 의해 규정되는 미분화된 세포이다. 줄기세포는 자가 재생 선조세포, 비-재생 선조세포, 및 최종 분화된 세포를 포함하는 자손 세포를 생성할 수 있다. 또한 줄기세포는 시험관 내에서 다수의 배엽층 (내배엽, 중배엽 및 외배엽)으로부터 다양한 세포 계통의 기능성 세포로 분화하는 이의 능력을 특징으로 한다. 또한 줄기세포는 이식 후 다수의 배엽층의 조직을 생성시키며, 배반포 내로의 주사 후, 비록 전부는 아니더라도, 사실상 대부분의 조직에 기여한다.
줄기세포는 이들의 발생 능력에 의해 분류된다. 만능 줄기세포는 모든 배아 세포 유형을 생성시킬 수 있다.
분화는 특화되지 않은("미결된") 또는 덜 특화된 세포가 예를 들어, 신경 세포 또는 근육 세포와 같은 특화된 세포의 특징을 획득하는 과정이다. 분화된 세포는 세포의 계통 내에서 보다 특수화된("결정된(committed)") 위치를 차지하는 것이다. 분화 과정에 적용될 때, 용어 "결정된"은 분화 경로에서, 정상 환경 하에 특정 세포 유형 또는 세포 유형의 서브셋으로 계속 분화할 것이며, 정상 환경 하에 다른 세포 유형으로 분화할 수 없거나 덜 분화된 세포 유형으로 돌아갈 수 없는 시점까지 진행된 세포를 말한다. "탈분화"(de-differentiation)는 세포가 세포의 계통 내의 덜 특화된 (또는 결정된) 위치로 되돌아가는 과정을 말한다. 본 명세서에 사용되는 바와 같이, 세포의 "계통"은 세포의 유전, 즉, 어느 세포로부터 유래되었는지 그리고 어떤 세포를 발생시킬 수 있는지를 규정한다. 세포의 계통은 세포를 발생과 분화의 유전적 체계 내에 둔다. 계통 특이적 마커는 관심있는 계통의 세포의 표현형과 특이적으로 관련되는 특징을 말하며, 미결정 세포가 관심있는 계통으로 분화하는지를 평가하기 위해 사용될 수 있다.
본 명세서에 사용되는 바와 같이, "마커"는 관심있는 세포에서 차등적으로 발현되는 핵산 또는 폴리펩티드 분자이다. 이러한 맥락에서, 차등 발현(differential expression)은 미분화 세포에 비교하여 양성 마커에 대한 증가된 수준 및 음성 마커에 대한 감소된 수준을 의미한다. 마커 핵산 또는 폴리펩티드의 검출가능한 수준은 다른 세포에 비하여 관심있는 세포에서 충분히 더 높거나 더 낮음으로써, 관심있는 세포가 당업계에 공지된 다양한 방법 중 어떠한 것을 사용하더라도 다른 세포로부터 확인되어 구별될 수 있도록 한다.
본 명세서에 사용되는 바와 같이, 세포는 특정 마커가 그 세포에서 충분히 검출될 때 특정 마커에 "대해 양성"이거나 또는 "양성"이다. 이와 유사하게, 세포는 특정 마커가 그 세포에서 충분히 검출되지 않을 때 특정 마커에 "대해 음성"이거나 또는 "음성"이다. 특히, FACS에 따른 양성은 통상 2% 초과인 반면, FACS에 따른 음성 역치는 통상 1% 미만이다. PCR에 따른 양성은 통상 34회 사이클(Cts) 미만인 반면, PCR에 따른 음성은 통상 34.5회 사이클 초과이다.
만능 줄기세포를 정지(static) 상태 시험관내 세포 배양물 중에서 기능적 췌장 내분비 세포로의 분화를 복제하고자 하는 시도로, 분화 과정은 흔히 수많은 연속적 단계들을 통한 처리로서 여겨진다. 특히, 분화 과정은 통상적으로 여섯 단계를 통한 처리로서 여겨진다. 이러한 단계적 진행에서, "1기"는 만능 줄기세포에서 완성 내배엽 세포의 특징적인 마커를 발현하는 세포 (이하, 대안적으로 "1기 세포"로도 지칭됨)로의 분화인 분화 과정의 제1 단계를 말한다. "2기"는 완성 내배엽 세포의 특징적인 마커를 발현하는 세포에서 장관 세포의 특징적인 마커를 발현하는 세포 (이하, 대안적으로 "2기 세포"로도 지칭됨)로의 분화인 제2 단계를 말한다. "3기"은 장관 세포의 특징적인 마커를 발현하는 세포에서 전장 내배엽 세포의 특징적인 마커를 발현하는 세포 (이하, 대안적으로 "3기 세포"로도 지칭됨)로의 분화인 제3 단계를 말한다. "4기"는 전장 내배엽 세포의 특징적인 마커를 발현하는 세포에서 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포(이하, 대안적으로 "4기 세포"로도 지칭됨)로의 분화인 제4 단계를 말한다. "5기"는 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포에서 췌장 내배엽 세포 및/또는 췌장 내분비 전구세포의 특징적인 마커를 발현하는 세포(이하, "췌장 내배엽/내분비 전구세포" 또는 대안적으로 "5기 세포"로도 총칭됨)로의 분화인 제5 단계를 말한다. "6기"은 췌장 내배엽/내분비 전구세포의 췌장 내분비 세포에서 특징적인 마커를 발현하는 세포 (이하, 대안적으로 "6기 세포"로도 지칭됨)로의 분화를 말한다.
그러나, 특정 집단의 모든 세포가 이러한 단계들을 통해 동일한 속도로 진행되지 않는다는 것이 주지되어야 한다. 따라서, 시험관내 세포 배양물 중에서, 특히 후기 분화 단계에서 집단에 존재하는 대다수의 세포보다 분화 경로를 따라 덜 또는 보다 많이 진행된 세포의 존재를 검출하는 것은 드문 일이 아니다. 예를 들어, 5기에서 세포 배양 동안 췌장 내분비 세포의 특징적인 마커의 출현을 보는 것은 드문 일이 아니다. 본 발명을 설명하기 위한 목적으로, 상기 언급된 단계들과 연관된 각종 세포 유형의 특징이 본 명세서에 기재된다.
본 명세서에 사용되는 바와 같이, "완성 내배엽 세포"는 낭배의 외피(epiblast)로 인한 세포의 특징을 갖고 위장관로 및 이의 유도체를 형성하는 세포를 말한다. 완성 내배엽 세포는 하기 마커들 중 적어도 하나를 발현한다: FOXA2 (간세포 핵 인자 3-β ("HNF3β")로도 공지됨), GATA4, SOX17, CXCR4, 브라츄리(Brachyury), 세르베루스(Cerberus), OTX2, 구스코이드, C-Kit, CD99 및 MIXL1. 완성 내배엽 세포의 특징적인 마커는 CXCR4, FOXA2 및 SOX17를 포함한다. 따라서, 완성 내배엽 세포는 이의 CXCR4, FOXA2 및 SOX17의 발현을 특징으로 할 수 있다. 또한, 세포가 1기에서 유지되는 것이 허용되는 시간 길이에 따라서 HNF4α의 증가가 관찰될 수 있다.
본 명세서에 사용되는 바와 같이, "장관 세포"는 폐, 간, 췌장, 위 및 창자와 같은 모든 내배엽 기관을 발생시킬 수 있는 완성 내배엽 세포로부터 유래된 세포를 말한다. 장관 세포는 완성 내배엽 세포에 의해 발현된 HNF4α보다 사실상 증가된 이의 HNF4α 발현을 특징으로 할 수 있다. 예를 들어, HNF4α의 mRNA 발현의 10배 내지 40배 증가가 2기 동안 관찰될 수 있다.
본 명세서에 사용되는 바와 같이, "전장 내배엽 세포"는 식도, 폐, 위장, 간, 췌장, 담낭 및 십이지장의 일부분을 발생시킬 수 있는 내배엽 세포를 말한다. 전장 내배엽 세포는 하기 마커들 중 적어도 하나를 발현한다: PDX1, FOXA2, CDX2, SOX2 및 HNF4α. 전장 내배엽 세포는 장관 세포와 비교해서 PDX1 발현의 증가를 특징으로 할 수 있다. 예를 들어, 3기 배양에서 50% 초과의 세포가 전형적으로 PDX1을 발현한다.
본 명세서에 사용되는 바와 같이, "췌장 전장 전구세포"는 하기 마커들 중 적어도 하나를 발현하는 세포를 말한다: PDX1, NKX6.1, HNF6, NGN3, SOX9, PAX4, PAX6, ISL1, 가스트린, FOXA2, PTF1a, PROX1 및 HNF4α. 췌장 전장 전구세포는 PDX1, NKX6.1 및 SOX9의 발현에 대해 양성인 것을 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "췌장 내배엽 세포"는 하기 마커들 중 적어도 하나를 발현하는 세포를 말한다: PDX1, NKX6.1, HNF1 β, PTF1 α, HNF6, HNF4α, SOX9, NGN3; 가스트린 HB9 또는 PROX1. 췌장 내배엽 세포는 이의 사실상 CDX2 또는 SOX2 발현의 결여를 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "췌장 내분비 전구세포"는 췌장 호르몬 발현 세포가 될 수 있는 췌장 내배엽 세포를 말한다. 췌장 내분비 전구세포는 하기 마커들 중 적어도 하나를 발현한다: NGN3; NKX2.2; NeuroD1; ISL1; PAX4; PAX6; 또는 ARX. 췌장 내분비 전구세포는 이의 NKX2.2 및 NeuroD1 발현을 특징으로 할 수 있다.
본 명세서에 사용되는 바와 같이, "췌장 내분비 세포"는 하기 호르몬들 중 적어도 하나를 발현할 수 있는 세포를 말한다: 인슐린, 글루카곤, 소마토스타틴, 그렐린, 및 췌장 폴리펩티드. 이들 호르몬 외에도, 췌장 내분비 세포의 특징적인 마커는NGN3, NeuroD1, ISL1, PDX1, NKX6.1, PAX4, ARX, NKX2.2 및 PAX6 중 하나 이상을 포함한다. β 세포의 특징적인 마커를 발현하는 췌장 내분비 세포는 이의 인슐린 및 하기 전사 인자들 중 적어도 하나의 발현을 특징으로 할 수 있다. PDX1, NKX2.2, NKX6.1, NeuroD1, ISL1, HNF3β, MAFA 및 PAX6.
본 명세서에서 "d1", "1d" 및 "1일"; "d2", "2d" 및 "2일" 등은 상호교환적으로 사용된다. 이들 수와 문자의 조합은 본 출원의 단계적 분화 프로토콜 동안 상이한 단계에서의 특정 항온처리일을 지칭한다.
"글루코스"는 본 명세서에서 천연에서 통상 발견되는 당인 덱스트로스를 지칭하기 위해 사용된다.
"NeuroD1"는 본 명세서에서 췌장 내분비 선조세포에서 발현되는 단백질 및 이를 코딩하는 유전자를 확인하기 위해 사용된다.
"LDN-193189"는 미국 마이애미 캠브리지 소재의 스템젠트 인코포레이티드(Stemgent, Inc.)로부터 상표명 STEMOLECULE™ㅤ하에 입수가능한 BMP 수용체 저해제인((6-(4-(2-(피페리딘-1-일)에톡시)페닐)-3-(피리딘-4-일)피라졸로[1,5-a]피리딘, 하이드로클로라이드 DM-3189))를 말한다.
만능 줄기세포의 특징규명, 공급원, 증폭 및 배양
A. 만능 줄기세포의 특징규명
만능 줄기세포는 단계-특이적 배아 항원(SSEA: stage-specific embryonic antigen) 3 및 4, 및 Tra-1-60 및 Tra-1-81 항체를 사용하여 검출가능한 마커 중 하나 이상을 발현시킬 수 있다(문헌[Thomson et al. 1998, Science 282:1145-1147]). 시험관 내에서 만능 줄기세포의 분화는 Tra-1-60 및 Tra-1-81 발현의 손실을 야기한다. 미분화된 만능 줄기세포는 전형적으로 알칼리 포스파타제 활성을 가지며, 이 활성은 상기 세포를 4% 파라포름알데히드로 고정시키고 이어서 제조업자(미국 캘리포니아주 소재의 벡터 래보러토리즈(Vector Laboratories®))에 의해 기재된 바와 같이, 기질로서 VECTOR® Red를 이용하여 발색시킴으로써 검출될 수 있다. 미분화된 만능 줄기세포는 또한 전형적으로 RT-PCR로 검출되는 바와 같이 OCT4 및 TERT를 발현한다.
증식된 만능 줄기세포의 다른 바람직한 표현형은 모든 삼배엽층: 내배엽, 중배엽 및 외배엽 조직의 세포로 분화하는 잠재력이다. 줄기세포의 만능성은 예를 들어, 세포를 중증 복합형 면역결핍증(SCID) 마우스에게 주사하고, 형성되는 기형종을 4% 파라포름알데히드를 이용하여 고정하고, 이어서 이러한 삼배엽층으로부터의세포 유형의 증거에 대해 조직학적으로 검사함으로써 확인할 수 있다. 대안적으로, 만능성은 배양체 (embryoid body)를 형성시키고 삼배엽층과 관련된 마커들의 존재에 대해 이 배양체를 평가함으로써 결정될 수 있다.
증식된 만능 줄기세포주는 표준 G-밴딩 기술을 이용하여 핵형을 결정하고 상응하는 영장류 종의 공개된 핵형과 비교할 수 있다. "정상 핵형"을 가진 세포를 수득하는 것이 바람직하며, 이는 세포가 모든 인간 염색체가 존재하며 두드러지게 변경되지 않은 정배수체임을 의미한다.
B. 만능 줄기세포의 공급원
사용될 수 있는 만능 줄기세포의 예시적 유형은 전-배아 조직(예를 들어, 배반포), 배아 조직, 또는 임신 동안 임의의 시점에서, 필수적은 아니나 전형적으로 약 10 내지 12주의 임신 전에 취해진 태아 조직을 포함하는 확립된 만능 세포주를 포함한다. 비제한적인 예로는 예를 들어 인간 배아 줄기세포주 H1, H7, 및 H9 (미국 위스콘신주 매디슨 소재의 와이셀 리서치 인스티튜트(WiCell Research Institute))와 같은 확립된 인간 배아 줄기세포 또는 인간 배아 생식 세포주가 있다. 영양세포(feeder cell)의 부재 하에서 이미 배양된 만능 줄기세포 집단으로부터 취한 세포가 또한 적합하다. OCT4, NANOG, SOX2, KLF4 및 ZFP42와 같은 다수의 만능성 관련 전사 인자들의 강제 발현을 사용하여 성체 체세포로부터 유도한 유도성 만능 세포(IPS) 또는 재프로그래밍된 만능 세포가 또한 사용될 수 있다(문헌[Annu Rev Genomics Hum Genet 2011, 12:165-185]; 또한 문헌[IPS, Cell, 126(4): 663-676] 참조). 본 발명의 방법에서 사용되는 인간 배아 줄기세포는 또한 톰슨(Thomson) 등에 의해 기재된 바와 같이 제조될 수 있다(미국 특허 제5,843,780호 문헌[Science, 1998, 282:1145-1147]; 문헌[Curr Top DevBiol 1998, 38:133-165]; 문헌[Proc Natl Acad Sci U.S.A. 1995, 92:7844-7848]). BG01v (조지아주 애선스 소재의 브레사젠(BresaGen))와 같은 돌연변이 인간 배아 줄기세포주 또는 문헌[Takahashi et al ., Cell 131: 1-12 (2007)]에 개시된 세포와 같은 성인 체세포로부터 유래된 세포를 사용할 수 있다. 특정 실시형태에서, 본 발명에서 사용하기에 적합한 만능 줄기세포는 문헌[ Li et al . (Cell Stem Cell 4: 16-19, 2009)]; 문헌[Maherali et al. (Cell Stem Cell1: 55-70, 2007)]; 문헌[Stadtfeld et al . (Cell Stem Cell 2: 230-240)]; 문헌[Nakagawa et al . (Nature Biotechnol 26: 101-106, 2008)]; 문헌[Takahashi et al . (Cell 131: 861-872, 2007)]; 및 미국 특허출원 공개 제2011/0104805호에 기재된 방법에 따라서 유래될 수 있다. 특정 실시형태에서, 만능 줄기세포는 비-배아 기원의 것일 수 있다. 이들 모든 참조문헌, 특허 및 특허원은 특히 만능 세포의 분리, 배양, 증폭 및 분화에 관한 것인 경우 본 명세서에서 그 전문이 참조로 인용된다.
C. 만능 줄기세포의 증폭 및 배양
일 실시형태에서, 만능 줄기세포는 전형적으로 다양한 방식으로 만능 줄기세포를 지지하는 영양세포 층 상에서 배양된다. 대안적으로, 만능 줄기세포는 본질적으로 영양세포가 없지만, 그럼에도 불구하고 사실상 분화를 거치지 않고 만능 줄기세포의 증식을 지지하는 배양 시스템에서 배양된다. 영양세포가 없는 배양에서 분화 없는 만능 줄기세포의 성장은 이미 다른 세포 유형을 이용하여 배양함으로써 조건화된 배지를 이용하여 지지된다. 대안적으로, 영양세포가 없는 배양에서 분화 없는 만능 줄기세포의 성장은 화학적 규명 배지를 이용하여 지지된다.
다양한 영양세포 층을 사용하거나 매트릭스 단백질 코팅된 용기를 사용함으로써 배양물 중에서 만능 세포를 용이하게 증폭시킬 수 있다. 대안적으로, 세포의 일상적 증폭을 위해, mTesr®1 배지(캐나다 밴쿠버 소재의 스템셀 테크놀로지스(StemCell Technologies))와 같은 한정 배지와 조합된 화학적으로 한정된 표면을 사용할 수 있다. 만능 세포는 효소적 분해, 기계적 분리 또는 EDTA(에틸렌디아민테트라아세트산)와 같은 다양한 칼슘 킬레이터를 이용하여 배양 플레이트로부터 용이하게 제거될 수 있다. 대안적으로, 만능 세포는 임의의 매트릭스 단백질 또는 영양세포층의 부재 하에 현탁액 중에서 증폭될 수 있다.
만능 줄기세포의 많은 상이한 증폭 및 배양 방법을 청구된 본 발명에서 사용할 수 있다. 예를 들어, 본 발명의 방법은 문헌[Reubinoff et al ., Thompson et al., Richard et al .] 및 미국 특허출원 공개 제2002/0072117호의 방법을 사용할 수 있다. 루비노프(Reubinoff) 등 (문헌[Nature Biotechnology 18: 399-404 (2000)] 및 톰슨(Thompson) 등 (문헌[Science 282: 1145-1147 (1998)])은 마우스 배아 섬유아세포 영양세포 층을 사용하여 인간 배반포로부터 만능 줄기세포주를 배양하는 것을 개시한다. 리차드(Richards) 등 (문헌[Stem Cells21: 546-556, 2003])은 11종의 상이한 인간 성체, 태아 및 신생아 영양세포 층의 패널을 인간 만능 줄기세포 배양을 지지하는 이들의 능력에 대해 평가하였으며, 성체 피부 섬유아세포 영양세포에서 배양된 인간 배아 줄기세포주가 인간 배아 줄기세포 형태를 보유하고 만능성을 유지함을 주목하였다. 미국 특허출원 공개 제2002/0072117호는 영양세포-비함유 배양물에서 영장류 만능 줄기세포의 성장을 지지하는 배지를 생산하는 세포주를 개시하고 있다. 이용된 세포주는 배아 조직으로부터 수득되거나 배아 줄기세포로부터 분화된 중간엽 및 섬유아세포-유사 세포주이다. 미국 특허출원 공개 제2002/072117호는 또한 1차 영양세포 층으로서의 상기 세포주의 용도를 개시하고 있다.
만능 줄기세포를 증폭 및 배양하는 다른 적합한 방법은 예를 들어 문헌[Wang et al ., Stojkovic et al ., Miyamotoet al. 및 Amit et al .]에 개시되어 있다. 왕(Wang) 등(문헌[Stem Cells23: 1221-1227, 2005])은 인간 배아 줄기세포로부터 유래된 영양세포 층에서 인간 만능 줄기세포를 장기간 성장시키는 방법을 개시하고 있다. 스토이코비치(Stojkovic) 등(문헌[Stem Cells 2005 23: 306-314, 2005])은 인간 배아 줄기세포의 자발적 분화로부터 유래된 영양세포 시스템을 개시하고 있다. 미야모토(Miyamoto) 등(문헌[Stem Cells 22: 433-440, 2004])은 인간 태반으로부터 수득된 영양세포의 공급원을 개시하고 있다. 아미트(Amit) 등(문한[Biol. Reprod 68: 2150-2156, 2003])은 인간 포피로부터 유래된 영양세포층을 개시한다.
다른 실시형태에서, 만능 줄기세포를 증폭 및 분화시키는 다른 적합한 방법은 예를 들어, 인준자(Inzunza) 등, 미국 특허 제6,642,048호, 국제 특허 공개 제 2005/014799호, 쉬(Xu) 등 및 미국 특허출원 공개 제 2007/0010011호에 개시되어 있다. 인준자 등 (문헌[Stem Cells 23: 544-549, 2005])은 인간 출생후 포피 섬유아세포로부터의 영양세포 층을 개시하고 있다. 미국 특허 제6,642,048호는 영양세포-비함유 배양물에서의 영장류 만능 줄기세포의 성장을 지지하는 배지 및 이러한 배지의 생산에 유용한 세포주를 개시한다.미국 특허 제6,642,048호는 배아 조직으로부터 얻어지거나 배아 줄기세포로부터 분화된 중간엽 및 섬유아세포-유사 세포주 뿐만 아니라 이러한 세포주를 유도하는 방법, 배지의 처리 방법 및 이러한 배지를 이용하여 줄기세포를 성장시키는 방법을 개시한다. 국제 특허 공개 제2005/014799호는 포유동물 세포의 유지, 증식 및 분화를 위한 조건화된 배지를 개시한다. 국제 특허 공개 제2005/014799호는 명세서를 통해 생산된 배양 배지가 쥐 세포, 특히 MMH (Met 쥐 간세포)로 명명된 분화되고 불멸화된 유전자이식(transgenic) 간세포의 세포 분비 활성에 의해 조건화됨을 보고한다. 쉬 등(문헌[Stem Cells 22: 972-980, 2004])은 인간 텔로머라제 역전사효소를 과발현하도록 유전적으로 변형된 인간 배아 줄기세포로부터 수득된 조건화된 배지를 개시한다. 미국 특허출원 공개 제2007/0010011호는 만능 줄기세포의 유지를 위한 화학적 한정 배양 배지를 개시한다.
대안적인 배양 시스템은 배아 줄기세포의 증식을 촉진할 수 있는 성장 인자로 보충된 무-혈청 배지를 이용한다. 이러한 배양 시스템의 예는 천(Cheon) 등, 레벤슈타인(Levenstein) 등 및 미국 특허 공개 제2005/0148070호를 포함하나 이에 한정되지 않는다. 천 등(문헌[BioReprod DOI:10.1095/biolreprod.105.046870, October 19, 2005])은 배아 줄기세포가 배아 줄기세포의 자가 재생을 유발할 수 있는 상이한 성장 인자가 보충된 비조건화된 혈청 대체물(SR) 배지 중에서 유지되는 무-영양세포, 무-혈청 배양 시스템을 개시한다. 레벤슈타인 등(문헌[Stem Cells 24: 568-574, 2006])은 bFGF로 보충된 배지를 이용하여 섬유아세포 또는 조건화된 배지의 부재 하에서 인간 배아 줄기세포의 장기간 배양하는 방법을 개시한다. 미국 특허 출원 공개 제 2005/0148070호는 혈청을 함유하지 않고 섬유아세포 영양세포를 함유하지 않는 한정 배지에서 인간 배아 줄기세포를 배양하는 방법을 개시하며, 이 방법은 알부민, 아미노산, 비타민, 미네랄, 적어도 하나의 트랜스페린 또는 트랜스페린 대체물, 적어도 하나의 인슐린 또는 인슐린 대체물을 함유한 배양 배지에서 줄기세포를 배양하는 단계를 포함하며, 상기 배양 배지는 본질적으로 포유동물 태아 혈청이 없으며 적어도 약 100 ng/mL의 섬유아세포 성장 인자 신호전달 수용체를 활성화시킬 수 있는 섬유아세포 성장 인자를 함유하며, 여기서 성장 인자는 단지 섬유아세포 영양세포 층 이외의 공급원으로부터 공급되며, 배지는 영양세포 또는 조건화된 배지 없이 미분화된 상태의 줄기세포의 증식을 지지한다.
만능 줄기세포를 증폭 및 배양하는 다른 적합한 방법은 미국 특허출원 공개 제 2005/0233446호, 미국 특허 제6,800,480호, 미국 특허출원 공개 제2005/0244962호 및 국제 특허 공개 제2005/065354호에 개시되어 있다. 미국 특허출원 공개 제2005/0233446호는 미분화된 영장류 원시 줄기세포를 포함하는 줄기세포를 배양하는데 유용한 한정 배지를 개시한다. 용액에서, 배지는 배양되는 줄기세포와 비교할 때 사실상 등장성이다. 정해진 배양에서, 특정 배지는 원시 줄기세포의 미분화 성장을 사실상 지지하는데 필요한 양의 기본 배지 및 각각의 bFGF, 인슐린 및 아스코르브산을 포함한다. 미국 특허 제6,800,480호는 사실상 미분화된 상태의 영장류 유래의 원시 줄기세포를 성장시키기 위한 세포 배양 배지가 제공됨을 보고하며, 이 배지는 영장류 유래의 원시 줄기세포의 성장을 지지하기에 효과적인 낮은 삼투압의 낮은 내독소 기본 배지를 포함한다. 특허 제6,800,480호의 개시내용은 추가로 기본 배지가 영장류 유래의 원시 줄기세포의 성장을 지지하기에 효과적인 영양 혈청과, 영양세포 및 영양세포로부터 유래된 세포외 매트릭스 성분으로 이루어진 군으로부터 선택된 기재와 조합된다고 보고한다. 상기 배지는 또한 비필수 아미노산, 항산화제와, 뉴클레오사이드 및 피루베이트 염으로 이루어진 군으로부터 선택된 제1 성장 인자를 포함한다는 것이 주지된다. 미국 특허출원 공개 제2005/0244962호는, 명세서의 일 태양이 영장류 배아 줄기세포를 배양하는 방법을 제공하고, 배양물 중의 줄기세포가 포유동물 태아 혈청이 본질적으로 없고(바람직하게는 본질적으로 어떠한 동물 혈청도 없고) 단지 섬유아세포 영양세포 층 이외의 공급원으로부터 공급된 섬유아세포 성장 인자의 존재 하에 있음을 보고하고 있다.
국제 특허 공개 제2005/065354호는 본질적으로 무-영양세포 및 무혈청의 한정된 등장성 배양 배지를 개시하며, 이 배지는 기본 배지 bFGF; 인슐린 및 아스코르브산을 포함한다. 게다가, 국제 특허 공개 제2005/086845호에는 미분화 줄기세포의 유지 방법이 개시되어 있는데, 상기 방법은 줄기세포를 원하는 결과를 성취하기에 충분한 양의 시간 동안 미분화된 상태로 유지하기에 충분한 양의 형질전환 성장 인자-β (TGF-β) 패밀리 단백질의 구성원, 섬유아세포 성장 인자 (FGF) 패밀리 단백질의 구성원 또는 니코틴아미드 (NIC)에 줄기세포를 노출시키는 것을 포함한다.
만능 줄기세포는 적합한 배양 기재 상에 도말될 수 있다. 일 실시형태에서, 적합한 배양 기재는 기저막으로부터 유래된 것들 또는 부착 분자 수용체-리간드 커플링의 일부를 형성할 수 있는 것들과 같은 세포외 매트릭스 성분이다. 일 실시형태에서, 적합한 배양 기재는 마트리겔™(MATRIGEL™)(벡튼 디켄슨(Becton Dickenson))이다. 마트리겔™은 실온에서 겔화되어 재구성된 기저막을 형성하는 엔젤브레스-홀름-스왐(Engelbreth-Holm Swarm) 종양 세포 유래의 가용성 제제이다.
다른 세포외 매트릭스 성분 및 성분 혼합물이 대안으로서 적합하다. 증식될 세포 유형에 따라, 이것은 라미닌, 피브로넥틴, 프로테오글리칸, 엔탁틴, 헤파란 설페이트 등을 단독으로 또는 다양한 조합으로 포함할 수 있다.
만능 줄기세포는 적합한 분포로 그리고 세포 생존, 번식 및 바람직한 특징의 유지를 촉진하는 배지의 존재 하에 기재상에 도말될 수 있다. 모든 이러한 특징들은 접종 분포에 세심한 주의를 기울임으로써 이익을 얻으며, 당업자에 의해 용이하게 결정될 수 있다. 적합한 배양 배지는 예를 들어 하기 성분들로부터 제조될 수 있다: 상표명 Gibco™(제품 번호 11965-092) 하에 라이프 테크놀로지스 코포레이션(뉴욕주 그랜드 아일랜드 소재)에 의해 시판되는 둘베코 변형 이글 배지(DMEM); 상표명 Gibco™(제품 번호 10829-018) 하에 라이프 테크놀로지스 코포레이션(뉴욕주 그랜드 아일랜드 소재)에 의해 시판되는 넉아웃(Knockout) 둘베코 변형 이글 배지(KO DMEM); 햄 (Ham's) F12/50% DMEM 기본 배지 상표명 Gibco™(제품 번호 15039-027) 하에 라이프 테크놀로지스 코포레이션(뉴욕주 그랜드 아일랜드 소재)에 의해 시판되는 200 mM L-글루타민 상표명 Gibco™(제품 번호 11140-050) 하에 라이프 테크놀로지스 코포레이션(뉴욕주 그랜드 아일랜드 소재)에 의해 시판되는 비필수 아미노산 용액 미주리주 세인트 루이스 소재의 시그마-알드리치 컴퍼니 엘엘씨(Sigma-Aldrich Company, LLC)에 의해 시판되는 β-머캅토에탄올(제품 번호 M7522); 및 상표명 Gibco™(제품 번호 13256-029) 하에 라이프 테크놀로지스 코포레이션(뉴욕주 그랜드 아일랜드 소재)에 의해 시판되는 인간 재조합 염기성 섬유아세포 성장 인자(bFGF).
만능 줄기세포의 분화
만능 세포가 β 세포로 분화되는 동안, 이들은 각각이 특정 마커의 존재 또는 부재를 특징으로 할 수 있는 다양한 단계들을 거쳐 분화된다. 세포의 이들 단계로의 분화는 배양 배지에 첨가되는 특정 인자의 존재 또는 결여를 포함하는 특수한 배양 조건에 의해 달성된다. 일반적으로, 이러한 분화는 만능 줄기세포의 완성 내배엽 세포로의 분화를 수반할 수 있다. 이어서 이들 완성 내배엽 세포는 장관 세포로 추가 분화될 수 있고 이는 이어서 전장 내배엽 세포로 분화될 수 있다. 전장 내배엽 세포는 췌장 전장 전구세포로 분화될 수 있고, 이는 다시 췌장 내배엽 세포, 췌장 내분비 전구세포 또는 둘 모두로 분화될 수 있다. 이어서, 이들 세포는 췌장 호르몬 생산 세포(예를 들어, β 세포)로 분화될 수 있다.
본 발명은 갑상선 호르몬(예를 들어, T3, T3 유사체, T4, T4 유사체 또는 이들의 조합(본 명세서에서 "T3/T4"로서 총칭됨)) 및 ALK5 저해제를 사용하는 만능 줄기세포의 췌장 내분비 세포로의 단계적 분화를 제공한다. 본 발명은 또한 갑상선 호르몬(예를 들어, T3/T4) 또는 ALK5 저해제를 사용하는 만능 줄기세포의 췌장 내분비 세포로의 단계적 분화를 제공한다. 적합한 갑상선 호르몬 유사체는 다음을 포함할 수 있다: 알&디 시스템즈 인코포레이티드(R & D Systems, Inc.)로부터 입수가능한 GC-1(소베르티롬(Sobertirome)), 카탈로그# 4554; DITPA (3,5-디요오도타이로프로피온산); 문헌[J. Steroid Biochem. Mol. Biol. 2008, 111: 262-267] 및 문헌[Proc. Natl. Acad. Sci. US 2003, 100: 10067-10072]에 논의된 KB-141; 문헌[Proc. Natl. Acad. Sci. US 2007, 104: 15490-15495]에 논의된 MB07344; 문헌[PLoS One, 2010, 5e8722] 및 문헌[J. Lipid Res. 2009, 50: 938-944]; 및 문헌[PLoS One, 2010 e8722 and Endocr. Pract. 2012, 18(6): 954-964, 이의 개시내용은 그 전문이 본 명세서에서 참조로 인용된다]에 논의된 GC-24. 유용한 ALK5 저해제는 다음을 포함한다: ALK5 저해제 II (뉴욕주 파밍데일 소재의 엔조(Enzo)); ALK5i (캘리포니아주 샌 디에고 소재의 악소라(Axxora)); SD208 (알& 디 시스템즈(미네소타주)); TGF-B 저해제 SB431542 (엑세스 바이오사이언시즈(Xcess Biosciences)(캘리포니아주 샌 디에고)); ITD-1 (엑세스 바이오사이언시즈(캘리포니아주 샌 디에고)); LY2109761 (엑세스 바이오사이언시즈 (캘리포니아주 샌 디에고)); A83-01 (엑세스 바이오사이언시즈 (캘리포니아주 샌 디에고)); LY2157299 (엑세스 바이오사이언시즈 (캘리포니아주 샌 디에고)); TGF-β 수용체 저해제 V (이엠디 케미칼스(EMD Chemicals), 뉴저지주 깁스타운); TGF-β 수용체 저해제 I (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 IV (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 VII (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 VIII (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 II (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 VI (이엠디 케미칼스, 뉴저지주 깁스타운); TGF-β 수용체 저해제 III (이엠디 케미칼스, 뉴저지주 깁스타운).
췌장 내분비 세포의 특징적인 마커를 발현하는 세포로의 만능 줄기세포의 분화
만능 줄기세포의 특징은 당업자에게 널리 공지되어 있으며, 만능 줄기세포의 추가의 특징은 계속 확인되고 있다. 만능 줄기세포 마커는 예를 들어, 다음 중 하나 이상의 발현을 포함한다: ABCG2; 크립토(cripto); FOXD3; CONNEXIN43; CONNEXIN45; OCT4; SOX2; NANOG; hTERT; UTF1; ZFP42; SSEA-3; SSEA-4; TRA-1-60; 및 TRA-1-81.
예시적 만능 줄기세포는 인간 배아 줄기세포주 H9 (NIH 코드: WA09), 인간 배아 줄기세포주 H1 (NIH 코드: WA01), 인간 배아 줄기세포주 H7(NIH 코드: WA07) 및 인간 배아 줄기세포주 SA002(스웨덴 소재의 셀라르티스(Cellartis))를 포함한다. 또한, 만능 세포의 특징적인 하기 마커들 중 적어도 하나를 발현하는 세포가 적합하다: ABCG2, 크립토, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, TRA-1-60 및 TRA-1-81.
또한 완성 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 본 발명에서 사용하기에 적합하다. 본 발명의 일 실시형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 원시선조 전구세포이다. 대안적 실시형태에서,완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 중내배엽 세포이다. 대안적 실시형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 완성 내배엽 세포이다.
또한, 췌장 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 본 발명에 사용하기에 적합하다. 본 발명의 일 실시형태에서, 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 췌장 내배엽 세포이며, 여기서 PDX1 및 NKX6.1의 발현은 CDX2 및 SOX2의 발현보다 사실상 더 높다. PDX1 및 NKX6.1의 발현이 CDX2 또는 SOX2의 발현보다 적어도 2배 높은 세포가 특히 유용하다.
일 실시형태에서, 하기 호르몬들 중 적어도 하나를 발현할 수 있는 췌장 내분비 세포가 생성된다: 인슐린, 글루카곤, 소마토스타틴 또는 췌장 폴리펩티드. 췌장 내분비 계통의 특징적인 마커들 중 적어도 하나를 발현하는 전구세포가 본 발명에서 사용하기에 또한 적합하다. 본 발명의 일 실시형태에서, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포는 췌장 내분비 세포이다. 바람직한 실시형태에서, 췌장 내분비 세포는 인슐린-생산 β 세포이다.
본 발명의 특정 실시형태에서, 췌장 내분비 세포의 특징적인 마커를 발현하는 세포에 도달하기 위해, 만능 줄기세포 또는 유도성 만능 세포, 바람직하게는 만능 줄기세포로 시작하는 프로토콜을 이용한다. 상기 프로토콜은 하기 단계들을 포함한다:
1기: 세포 배양주로부터 수득된 배아 줄기세포와 같은 만능 줄기세포를 적절한 인자로 처리하여 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화를 유도한다.
2기: 1기로부터 생성된 세포를 적절한 인자로 처리하여 장관 세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
3기: 2기로부터 생성된 세포를 적절한 인자로 처리하여 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
4기: 3기로부터 생성된 세포를 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도하기에 적절한 인자(특정 실시형태에서 T3/T4를 포함)로 처리한다.
5기: 4기로부터 생성된 세포를 적절한 인자(특정 실시형태에서, (i) T3/T4; (ii) ALK5 저해제 또는 (iii) T3/T4와 ALK 5 저해제 둘 모두)로 처리하여 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
6기: 5기로부터 생성된 세포를 적절한 인자(특정 실시형태에서, T3/T4, ALK5 저해제 또는 둘 모두를 포함)로 처리하여 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로의 추가 분화를 유도한다.
본 발명은 특정 실시형태에서 만능 줄기세포를 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함하나, 본 발명은 다른 중간 단계로부터 생성된 세포를 췌장 내분비 세포로 분화시키는 것도 포함한다. 특히, 본 발명은 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포를 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함한다. 게다가, 본 과정은 별개의 단계로 기재되며, 처리 뿐만 아니라 분화 과정을 통한 세포의 진행은 순차적이거나 연속적일 수 있다.
배양되거나 단리된 세포에서 단백질 및 핵산 마커의 발현을 평가하는 방법은 당업계에서의 표준이다. 이러한 방법들은RT-PCR, 노던 블롯, 원위치(in situ) 하이브리드화(예를 들어, 문헌[Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)]참고) 및 면역검정법(예를 들어, 절단된 재료의 면역조직화학적 분석, 웨스턴 블롯팅 및 온전한 세포에서 접근가능한 마커의 경우 FACS) (예를 들어, 문헌[Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)] 참고)을 포함한다. 또한, 분화 효율은 관심대상의 세포 유형의 특징적인 마커를 발현하는 세포에 의해 발현되는 단백질 마커를 특이적으로 인식하는 제제(예를 들어, 항체)에 처리 세포 집단을 노출시킴으로써 결정할 수 있다.
분화된 세포는 추가 정제할 수도 있다. 예를 들어, 만능 줄기세포를 본 발명의 방법으로 처리한 후, 정제될 분화된 세포에 의해 특징적으로 발현된 단백질 마커를 특이적으로 인식하는 제제(예를 들어, 항체)에 처리된 세포 집단을 노출시켜 분화된 세포를 정제할 수 있다.
1기: 만능 줄기세포의 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화
만능 줄기세포는 당업계에 공지된 임의의 적합한 방법에 의해 또는 본 발명에서 제안된 임의의 방법에 의해 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시킬 수 있다. 만능 줄기세포를 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시키는 적합한 방법은 하기에 개시되어 있다: 미국 특허출원 공개 제2007/0254359호 미국 특허출원 공개 제2009/0170198호 미국 특허출원 공개 제2009/0170198호 미국 특허출원 공개 제2011/0091971호 미국 특허출원 공개 제2010/0015711호 미국 특허출원 공개 제2010/0015711호 미국 특허출원 공개 제2012/0190111호 미국 특허출원 공개 제2012/0190112호 미국 특허출원 공개 제2012/0196365호 미국 특허출원 공개 제20100015711호 미국 특허출원 공개 제2012/0190111호 미국 특허출원 공개 제2012/0190112호 미국 특허출원 공개 제2012/0196365호 미국 특허출원 공개 제20100015711호 미국 특허출원 공개 제2012/0190111호 미국 특허출원 공개 제2012/0190112호 미국 특허출원 공개 제2012/0196365호 미국 가특허 출원 제61/076,900호 미국 가특허 출원 제61/076,908호 및 미국 가특허 출원 제61/076,915호(이들은 만능 줄기세포 및 만능 줄기세포에서 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화에 관한 것인 경우 그 전문이 참조로 인용된다).
본 발명의 일 실시형태에서, 만능 줄기세포를 액티빈 A 및 Wnt3A가 보충된 배지로 처리하여 완성 내배엽 세포의 특징적인 마커를 발현하는 세포를 생성시킨다. 처리는 만능 줄기세포를 약 50 ng/ml 내지 약 150 ng/ml, 대안적으로 약 75 ng/ml 내지 약 125 ng/ml, 대안적으로 약 100 ng/ml의 액티빈 A를 함유하는 배지와 접촉시키는 것을 포함한다. 처리는 또한 세포를 약 10 ng/ml 내지 약50 ng/ml, 대안적으로 약 15 ng/ml 내지 약 30 ng/ml, 대안적으로 약 20 ng/ml의 Wnt3A와 접촉시키는 것을 포함할 수 있다. 만능 세포는 이들의 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화를 촉진하기 위해 약 2일 내지 5일, 바람직하게는 2일 내지 3일 동안 배양할 수 있다. 일 실시형태에서, 만능 세포를 1일 동안 액티빈 A 및 Wnt3A의 존재 하에 배양한 다음, 액티빈 A (Wnt3A 존재 없이)의 존재 하에 배양한다.
본 발명의 다른 실시형태에서, 만능 줄기세포는 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화를 유도하기 위해 성장 분화 인자 8 ("GDF8") 및 글리코겐 신타제 키나제-3 β ("GSK3β") 저해제(예를 들어, 미국 특허출원 공개 제2010/0015711에 기재된 사이클릭 아닐린-피리디노트리아진 화합물 이는 전문이 본 명세서에서 참조로 인용된다)가 보충된 배지로 처리한다. 바람직한 GSK3β 저해제는 본 명세서에서 "MCX 화합물"로서 지칭되는 14-프로프-2-엔-1-일-3,5,7,14,17,23,27-헵타아자테트라사이클로 [19.3.1.1~2,6~.1~8,12~]헵타코사-1(25),2(27),3,5,8(26),9,11,21,23-노나엔-16-온이다. 처리는 만능 줄기세포를 약 50 ng/ml 내지 약 150 ng/ml, 대안적으로 약 75 ng/ml 내지 약 125 ng/ml, 대안적으로 약 100 ng/ml의 GDF8가 보충된 배지와 접촉시키는 것을 포함할 수 있다. 처리는 또한 세포를 약 0.1 to 5 μM, 대안적으로 약 0.5 내지 약 2.5 μM, 바람직하게는 약 1 μM의 MCX 화합물과 접촉시키는 것을 포함할 수 있다. 만능 세포는 이들의 완성 내배엽 세포로의 분화를 촉진하기 위해 약 2일 내지 5일, 바람직하게는 약 3일 내지 4일 동안 배양할 수 있다. 일 실시형태에서, 만능 세포를 GDF8 및 MCX 화합물의 존재 하에 1일 동안 배양한 다음, GDF8과 낮은 농도의 MCX 화합물의 존재 하에 1일 동안 배양한 다음, GDF8의 존재 하에 MCX 화합물의 부재하에 1일 동안 배양한다. 특히, 세포를 GDF8과 약 1 μM MCX 화합물의 존재 하에 1일 동안 배양한 다음, GDF8과 약 0.1 μM의 MCX 화합물의 존재 하에 1일 동안 배양한 다음, GDF8의 존재 하에 MCX 화합물의 부재 하에 1일 동안 배양할 수 있다. 대안적 실시형태에서, 세포를 GDF8과 약 1 μM MCX 화합물의 존재 하에 1일 동안 배양한 다음, GDF8과 약 0.1 μM MCX 화합물의 존재 하에 1일 동안 배양할 수 있다.
완성 내배엽 세포의 특징적인 마커를 발현하는 세포의 생성은 특정 프로토콜을 따르기 전과 후의 마커의 존재에 대해 시험함으로써 결정할 수 있다. 만능 줄기세포는 전형적으로 이러한 마커를 발현하지 않는다. 따라서, 만능 세포의 분화는 이 세포가 완성 내배엽 세포의 특징적인 마커를 발현하기 시작할 때 검출할 수 있다.
2기: 완성 내배엽 세포의 특징적인 마커를 발현하는 세포에서 장관 세포의 특징적인 마커를 발현하는 세포로의 분화
완성 내배엽 세포의 특징적인 마커를 발현하는 세포는 장관 세포의 특징적인 마커를 발현하는 세포로 추가 분화될 수 있다. 일 실시형태에서, 장관 세포의 특징적인 마커를 발현하는 세포의 형성은 완성 내배엽 세포의 특징적인 마커를 발현하는 세포를 섬유아세포 증식인자("FGF")7 또는 FGF10을 함유하는 배지와 함께 배양하여 이들 세포를 분화시키는 것을 포함한다. 예를 들어, 배양 배지는 약 25 ng/ml 내지 약 75 ng/ml, 대안적으로 약 30 ng/ml 내지 약60 ng/ml, 대안적으로 약 50 ng/ml의 FGF7 또는 FGF10, 바람직하게는 FGF7를 포함할 수 있다. 세포는 이러한 조건들하에 약 2일 내지 3일, 바람직하게는 약 2일 동안 배양할 수 있다.
다른 실시형태에서, 장관 세포의 특징적인 마커를 발현하는 세포로의 분화는 완성 내배엽 세포의 특징적인 마커를 발현하는 세포를 FGF7 또는 FGF10 및 아스코르브산 (비타민 C)과 함께 배양하는 것을 포함한다. 배양 배지는 약 0.1 mM 내지 약 0.5 mM 아스코르브산, 대안적으로 약 0.2 mM 내지 약 0.4 mM, 대안적으로 약 0.25 mM의 아스코르브산을 포함할 수 있다. 배양 배지는 또한 약 10 ng/ml 내지 약 35 ng/ml, 대안적으로 약 15 ng/ml 내지 약 30 ng/ml, 대안적으로 약 25 ng/ml의 FGF7 또는 FGF10, 바람직하게는 FGF7을 포함할 수 있다. 예를 들어, 배양 배지는 약 0.25 mM의 아스코르브산 및 약 25 ng/ml의 FGF-7을 포함할 수 있다. 일 실시형태에서, 완성 내배엽 세포의 특징적인 마커를 발현하는 세포는 2일 동안 FGF7 및 아스코르브산으로 처리한다.
3기: 장관 세포의 특징적인 마커를 발현하는 세포에서 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화
장관 세포의 특징적인 마커를 발현하는 세포는 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로 추가 분화될 수 있다. 일 실시형태에서 2기 세포는 이들 세포를 스무슨드(Smoothened; "SMO") 수용체 저해제 (예를 들어, 사이클로파민 또는 MRT10 (N-[[[3-벤조일아미노)페닐]아미노]티옥소메틸]-3,4,5-트리메톡시벤즈아미드) 또는 소닉 헤지호그(Sonic Hedgehog; "SHH") 신호전달 경로 길항제(예를 들어, 스무슨드 길항제 1("SANT-1") ((E)-4-벤질-N-((3,5-디메틸-1-페닐-1H-피라졸-4-일) 메틸렌-피페라진-1-아민)) 또는 헤지호그 경로 경로 저해제1("HPI-1") (2-메톡시에틸 1,4,5,6,7,8-헥사하이드로-4-(3-하이드록시페닐)-7-(2-메톡시페닐)-2-메틸-5-옥소-3-퀴놀린카복실레이트), 레티노산 및 노긴(Noggin)이 보충된 배양 배지에서 배양함으로써 3기 세포로 추가 분화시킨다. 대안적으로, 배지는 SMO 저해제, SHH 신호전달 경로 길항제, 레티노산 및 노긴으로 보충될 수 있다. 상기 세포는 대략 2일 내지 4일, 바람직하게는 약 2일 동안 배양할 수 있다. 일 실시형태에서, 배지는 약 0.1 μM 내지 약 0.3 μM의 SANT-1, 약 0.5 μM 내지 약 3 μM의 레티노산 및 약 75 ng/ml 내지 약 125 ng/ml의 노긴으로 보충된다. 다른 실시형태에서, 배지는 약 0.25 μM의 SANT-1, 약 2 μM의 레티노산 및 약 100 ng/ml의 노긴으로 보충된다.
대안적 실시형태에서, 2기 세포는 이 2기 세포를 FGF7 또는 FGF10, 레티노산, SMO 수용체 저해제(예를 들어, MRT10 또는 사이클로파민) 또는 SHH 신호전달 경로 길항제 (예를 들어, SANT-1 또는 HPI-1), 단백질 키나제 C ("PKC") 활성화제(예를 들어, ((2S,5S)-(E,E)-8-(5-(4-(트리플루오로메틸)페닐)-2,4-펜타디에노일아미노)벤조락탐)("TPB"); 뉴저지주 깁스타운 소재의 이엠디 케미칼스 인코포레이티드(EMD Chemicals Inc.)), 포르볼-12,13-디부티레이트("PDBu"), 포르볼-12-미리스테이트-13-아세테이트("PMA") 또는 인돌락탐 V ("ILV"), 골 형성 단백질(bone morphogenic protein; "BMP") 저해제(예를 들어, LDN-193189, 노긴 또는 코딘(Chordin)) 및 아스코르브산이 보충된 배지로 처리함으로써 3기 세포로 추가 분화된다. 다른 실시형태에서, 배지는 FGF7 또는 FGF10, 레티노산, SMO 저해제, SHH 신호전달 경로 길항제(예를 들어, SANT-1), PKC 활성화제(예를 들어, TPB), BMP 저해제(예를 들어, LDN-193189) 및 아스코르브산으로 보충될 수 있다. 세포는 이러한 성장 인자, 소분자 작용제 및 길항제의 존재 하에 약 2일 내지 3일 동안 배양할 수 있다.
일 실시형태에서, 배지는 약 15 ng/ml 내지 약 35 ng/ml의 FGF7, 약 0.5 μM 내지 약 2 μM의 레티노산, 약 0.1 μM 내지 약 0.4 μM의 SANT-1, 약 100 nM 내지 약 300 nM의 TPB, 약 50 nM 내지 약 200 nM의LDN- nM193189 및 약 0.15 mM 내지 약 0.35 mM의 아스코르브산으로 보충된다. 다른 실시형태에서, 배지에는 약 25 ng/ml의 FGF7, 약 1 μM의 레티노산, 약 0.25 μM의 SANT-1, 약 200 nM의 TPB, 약 100 nM의 LDN-193189 및 약 0.25 mM의 아스코르브산이 보충된다.
4기 내지 6기: 갑상선 호르몬 T3/T4 또는 ALK5 저해제, 또는 T3/T4와 ALK5 저해제 둘 모두가 보충된 배양 배지로의 처리에 의한 전장 내배엽 세포의 특징적인 마커를 발현하는 세포에서 췌장 내배엽 세포의 특징적인 마커를 발현하는 세포로의 분화
본 발명은 갑상선 호르몬 T3/T4 또는 ALK5 저해제 또는 T3/T4 및 ALK5 저해제 둘 모두가 보충된 배양 배지로의 처리에 의한 전장 내배엽 세포의 특징적인 마커를 발현하는 세포의 추가 분화를 제공한다. 일부 실시형태에서, 본 발명은 4기 내지 6기 중 하나 이상에서 (a) T3, (b) ALK5 저해제 또는 (c) T3 및 ALK5 저해제가 보충된 배양 배지로 처리하는 것에 의한 4기 내지 6기에서 이러한 세포의 추가 분화를 제공한다.
일 실시형태에서, 본 발명은 만능 줄기세포로부터 췌장 내분비 세포의 특징적인 마커를 발현하는 세포를 생산하는 방법을 제공하며, 이는 다음을 포함한다:
a. 만능 줄기세포를 배양하는 단계
b. 만능 줄기세포를 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시키는 단계 및
c. 전장 내배엽 세포의 특징적인 마커를 발현하는 세포를 (i) T3/T4, (ii) ALK5 저해제 또는 (iii) T3/T4와 ALK5 저해제 둘 모두가 보충된 배지로 처리하여 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로 분화시키는 단계.
일 실시형태에서, 췌장 내분비 세포의 특징적인 마커를 발현하는 세포는 β 세포이다. 다른 실시형태에서, 생성된 세포는 NKX6.1, PDX1 및 HB-9에 대해 양성이다. 본 방법은 NKX6.1 양성 췌장 내배엽 전구세포에서 HB9 양성 세포의 수를 향상시킬 수 있다. 본 방법은 또한 NKX2.2 또는 SOX2 또는 둘 모두의 발현 뿐만 아니라 알부민 발현을 감소시킬 수 있다. 본 방법은 또한 T3/T4가 보충된 배지에서 췌장 내배엽/내분비 세포의 특징적인 마커를 발현하는 세포를 배양함으로써 β 세포를 포함하는 췌장 내분비 세포의 특징적인 마커를 발현하는 세포를 제공할 수 있다. 만능 줄기세포로부터 췌장 내분비 세포의 특징적인 마커를 발현하는 세포를 생산하는 방법은 표 I 내지 III에 제시되었거나 본 명세서에 기재된 배양 조건을 이용할 수 있다. 일 실시형태에서, ALK 5 저해제는 SD208 (2-(5-클로로-2-플루오로페닐)프테리딘-4-일]피리딘-4-일-아민)이다. 다른 실시형태에서, ALK5 저해제 II ((2-(3-(6-메틸피리딘-2-일)-1H-피라졸-4-일)-1,5-나프티리딘), ALX-270-445, 엔조(ENZO), 뉴욕주 파밍데일 소재)도 또한 사용될 수 있다.
4기 내지 6기에서 세포를 T3/T4, ALK5 저해제 또는 둘 모두가 보충된 배양 배지로 처리하는 것은 몇가지 장점을 제공한다. 예를 들어, 4기 내지 6기에서 갑상선 호르몬의 첨가는 글루카곤, 소마토스타틴 및 그렐린을 현저하게 하향조절하는 한편, 5기에서는 인슐린 발현을 중간정도로 증가시킨다. 4기 내지 6기에서 T3/T4의 첨가는 또한 NKX6.1 및 PDX1 발현에 영향을 주지 않으면서 NKX2.2 발현을 현저하게 감소시키는 것으로 보인다. 게다가, 4기 내지 6기에서 T3/T4 첨가는 CDX2 (창자 마커) 발현에 영향을 주지 않으면서 SOX2 (위 마커) 및 알부민(간 마커) 발현을 억제한다. 또한, 미처리된 대조군과 비교하여, 4기에서 T3 처리는 6기에서 HB9 양성 세포의 수를 증가시킨다. 게다가, T3 처리는 HB9를 발현하는 NKX6.1 양성 세포의 수를 증가시켰다. ALK5 저해제와 T3/T4 둘 모두에 대한 연장된 노출은 NKX6.1의 강력한 발현을 유지하면서 HB9 발현을 현저하게 향상시키는 것으로 보인다. 배양 배지 중에 T3/T4의 포함은 NKX6.1 양성 췌장 내배엽 전구세포에서 용량 의존적 방식으로 HB9 양성 세포의 수를 현저하게 향상시키는 것으로 보인다.
따라서, 특정 실시형태에서, 본 발명은 적어도 갑상선 호르몬 T3/T4이 보충된 배지로 처리함으로써, 4기 내지 6기에 제공된 분화된 세포에서 글루카곤, 소마토스타틴 및 그렐린을 하향조절하는 방법을 제공한다. 또한, 본 발명은 적어도 갑상선 호르몬 T3/T4가 보충된 배지로 처리함으로써, NKX6.1 및 PDX1을 발현하는 4기 내지 6기에서 제공된 분화된 세포에서 NKX 2.2 발현을 감소시키는 방법을 제공한다. 또한, 본 발명은 갑상선 호르몬 T3/T4 및 임의로 ALK5 저해제를 함유한 배지에서 배양함으로써 HB9를 발현하는 NKX6.1 양성 세포를 증가시키는 방법을 제공한다. 특정 실시형태에서, 본 방법은 표 I 내지 III에 제시된 배양 조건을 사용한다.
본 발명의 일 실시형태는 갑상선 호르몬T3/T4, ALK5 저해제 또는 둘 모두(예를 들어, T3 및 ALK5 저해제)가 보충된 배지로 처리함으로써 전장 내배엽의 특징적인 마커를 발현하는 세포를 β 세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함하는 β 세포의 특징적인 마커를 발현하는 세포의 형성 방법이다. 생성된 세포는 NKX6.1, PDX1 및 Hb-9에 대해 양성이다. 본 방법을 사용하여 NKX6.1 양성 췌장 내배엽 전구세포에서 HB9 양성 세포의 수를 향상시킬 수 있다. 본 방법을 또한 사용하여 NKX2.2의 발현을 감소시킬 수 있다. 추가로, 본 방법을 사용하여 SOX2 및 알부민 발현을 억제할 수 있다. 갑상선 호르몬은 T3일 수 있다. 또한 본 방법을 사용하여, HB9 발현을 T3 및 ALK5 저해제가 보충된 배지로 배양되지 않은 세포와 비교하여 향상시킬 수 있다. 게다가, 본 방법은 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포를 T3/T4가 보충된 배지에서 배양함으로써 T3/T4가 보충된 배지에서 β 세포의 특징적인 마커를 발현하는 세포를 형성시키는 것을 포함한다. 본 방법은 표 I 내지 III에 제시되었거나 본 명세서에 기재된 배양 조건을 이용할 수 있다.
본 발명의 또 다른 실시형태는 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포, 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포 또는 췌장 내분비 세포의 특징적인 마커를 발현하는 세포를 T3/T4 및 ALK5 저해제가 보충된 배지에서 배양함으로써 상기 세포에서 글루카곤, 소마토스타틴 및 그렐린을 하향조절하는 방법이다. 배지는 SMO 저해제, SHH 신호전달 경로 길항제(예를 들어, SANT-1), 레티노산 및 아스코르브산으로 추가 보충될 수 있다. 대안적으로, 배지는 SMO 저해제, SHH 신호전달 경로 길항제 또는 레티노산 및 아스코르브산으로 추가 보충될 수 있다. 배지는 특히 4기에서 사용되는 경우, 바람직하게는 FGF7로 보충될 수 있다. 특정 실시형태에서, 본 방법은 표 I 내지 III에 제시되었거나 본 명세서에 기재된 배양 조건을 이용한다.
구체적으로, 특정 실시형태에서, 세포는 4기 내지 6기에서(즉, 4기 및 5기 및 6기에서, 또는 4기 및 5기에서, 또는 5기 및 6기에서, 또는 4기 및 6기에서) 본 발명의 방법에서 사용하기에 적합한 예시적 배양 조건을 나타내는 하기 표 I에 개요된 바와 같이 처리될 수 있다. 특정 실시형태에서, 하나의 단계(예를 들어, 4기)에서의 임의의 하나의 처리는 다른 단계(예를 들어, 5기)에서의 임의의 하나의 처리와 병용될 수 있다.
대안적 실시형태에서, 본 발명은 만능 줄기세포로부터 유래된 세포를 췌장 내분비 β 세포의 특징적인 마커 뿐만 아니라 PDX1, NKX6.1 및 HB9를 발현하는 세포로 분화시키기 위한 시험관내 세포 배양물을 제공한다. 세포 배양물은 배양 용기, 분화 배지 및 만능 줄기세포로부터 유래된 분화된 세포 집단을 포함한다. 세포 배양물은 분화된 세포 집단의 적어도 10%가 PDX1, NKX6.1 및 HB9를 발현하는 분화된 세포 집단을 제공한다. 상기 세포 배양물에서 유용한 배지는 표 I 내지 III에 제시되어 있으며 바람직하게는 T3/T4 또는 ALK5 저해제 또는 둘 모두를 함유한다.
[표 I]
Figure pat00001
T3이 일반적으로 바람직하지만, T3 대신에 다른 갑상선 호르몬을 사용할 수 있다. 특히, T3 대신에 T4 뿐만 아니라 T3 및 T4의 적합한 유사체를 사용할 수 있다. 적합한 갑상선 호르몬 유사체는 다음을 포함할 수 있다: 알&디 시스템즈 인코포레이티드(R & D Systems, Inc.)로부터 입수가능한 GC-1(Sobertirome), 카탈로그 # 4554; DITPA (3,5-디요오도타이로프로피온산); 문헌[J. Steroid Biochem. Mol. Biol. 2008, 111: 262-267] 및 문헌[Proc. Natl. Acad. Sci. US 2003, 100: 10067-10072]에 논의된 KB-141; 문헌[Proc. Natl. Acad. Sci. US 2007, 104: 15490-15495]에 논의된 MB07344; 문헌[PLoS One, 2010, 5e8722] 및 문헌[J. Lipid Res. 2009, 50: 938-944]에 논의된 T0681; 및 문헌[PLoS One, 2010 e8722] 및 문헌[Endocr. Pract. 2012, 18(6): 954-964, 이의 개시내용은 그 전문이 본 명세서에서 참조로 인용된다]에 논의된 GC-24. T3, ALK5 저해제, SANT-1, 레티노산, 아스코르브산, FGF7, LDN-193189 및 TPB의 양은 각 단계에서 달라질 수 있다. 이들 성분의 예시적인 적합 범위는 하기 표 II에 제시되어 있다.
[표 II]
Figure pat00002
Figure pat00003
Figure pat00004
일 실시형태에서, 본 발명의 방법은 전장 내배엽 세포의 특징적인 마커를 발현하는 세포를 SANT-1, 레티노산 ("RA"), FGF7, LDN-193189, 아스코르브산 및 TPB가 보충된 배지로 약 2일 내지 4일, 바람직하게는 약 3일 동안 처리하여, 이를 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함한다. 특히, 3기 세포는 약 0.25 μM SANT-1; 약 100 nM RA; 약 2 ng/ml FGF7; 약 100 nM LDN-193189; 및 약 0.25 mM 아스코르브산 및 약 100 nM TPB가 보충된 배지로 3일 동안 처리될 수 있다. 일 실시형태에서, 배지는 약 1 μM의 T3과 같은 T3으로 추가 보충된다. 다른 실시형태에서, 배지는 약 1 μM의 ALK5 저해제와 같은 ALK5 저해제로 보충될 수 있다.
대안적 실시형태에서, 본 발명의 방법은 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포를SANT-1, RA, 아스코르브산 및 ALK5 저해제가 보충된 배지로 약 2일 내지 3일 동안 처리하여 상기 세포를 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함한다. 특정 실시형태에서, 배지는 T3으로 추가 보충될 수 있다. 일 실시형태에서, 4기 세포는 이 세포를 약 0.25 μM SANT-1, 약 50 nM RA, 약0.25 mM 아스코르브산 및 약 500 nM ALK5 저해제가 보충된 배지로 처리함으로써 5기 세포로 분화시킨다. 다른 실시형태에서, 4기 세포는 이 세포를 약 0.25 μM SANT-1, 약 50 nM RA, 약 0.25 mM 아스코르브산, 약 1 μM ALK5 저해제 및 0 내지 1000 (예를 들어, 100) nM T3/T4이 보충된 배지로 약 2일 내지 4일, 바람직하게는 약 3일 동안 처리함으로써 5기 세포로 추가 분화시킨다. 일 실시형태에서, 본 발명의 실시형태에 따라 유도된 4기 세포는 이용되어 5기 세포로 분화되는 한편, 다른 실시형태에서는 다른 프로토콜에 따라 유도된 4기 세포를 이용할 수 있다.
본 발명의 일 실시형태에서, 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포는 이를 SANT-1, RA, 아스코르브산 및 (1) T3/T4 또는 (2) T3/T4와 ALK5 저해제가 보충된 배지로 약 2일 내지 4일, 바람직하게는 약 3일 동안 처리함으로써 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로 분화시킨다. 예를 들어, 5기 세포를 약 0.25 μM SANT-1, 약 50 nM RA, 약0.25 mM 아스코르브산 및 약 1 μM의 T3/T4가 보충된 배지로 약 3일 동안 처리하여 6기 세포로 분화시킬 수 있다. 대안적으로, 5기 세포를 약 0.25 μM SANT-1, 약 50 nM RA, 약 0.25 mM 아스코르브산, 약 500 nM ALK5 저해제 및 10 nM T3/T4가 보충된 배지로 약 3일 동안 처리하여 6기 세포로 분화시킬 수 있다. 대안적으로, 5기 세포를 약 0.25 μM SANT-1, 약 50 nM RA, 약0.25 mM 아스코르브산, 약 1 μM of ALK5 저해제 및 0 내지 1000 nM T3/T4가 보충된 배지로 약 3일 동안 처리하여 6기 세포로 분화시킬 수 있다. 세포는 경우에 따라 이러한 배지에서 예를 들어, 총 약 15일 동안 추가로 배양할 수 있다.
일 실시형태에서는 본 발명의 실시형태에 따라 유도된 5기 세포를 이용하여 6기 세포로 분화시키는 한편, 다른 실시형태에서는 다른 프로토콜에 따라 유도된 5기 세포를 이용할 수 있다.
본 발명의 일 태양은 4기 내지 6기 세포를 T3/T4 또는 ALK5 저해제 또는 이들의 조합을 포함하는 배지에서 처리하여 HB9의 발현을 향상시키는 방법을 제공한다. 4기, 5기 및 6기 세포는 각각 췌장 전장 전구세포, 췌장 내배엽/내분비 전구세포 및 췌장 내분비 세포일 수 있다. 일부 실시형태에서, 처리된 세포 집단은 미처리된 배양물보다 적어도 2배 많은 HB9 단백질을 발현한다. 다른 실시형태에서, 인슐린의 발현 수준은 미처리된 배양물과 비교해서 처리된 배양물에서 긍정적으로 영향을 받는다. 그러나, 소마토스타틴, 그렐린 및 글루카곤의 발현은 미처리된 배양물에 비해서 처리된 배양물에서 감소된다. 추가의 실시형태에서, 5기 세포는 사실상 CDX2 또는 SOX2를 발현하지 않는다.
추가의 실시형태에서, 본 발명은 NKX6.1, PDX1 및 HB9 단백질에 대해 양성인 췌장 내배엽 계통 세포 집단을 생성시키기에 충분한 양의 T3/T4 또는 ALK5 저해제 또는 이들의 조합을 포함하는 배지에서 4기 내지 6기 세포를 배양하는 것을 포함하는, 만능 세포의 단계적 분화 방법에 관한 것이다. 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 5%는 HB9 단백질을 발현한다. 또 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 10%는 HB9 단백질을 발현한다. 대안적 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 20%는 HB9 단백질을 발현한다. 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 30%는 HB9 단백질을 발현한다. 대안적 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 40%는 HB9 단백질을 발현한다. 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 50%는 HB9 단백질을 발현한다. 또 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 60%는 HB9 단백질을 발현한다. 대안적 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 70%는 HB9 단백질을 발현한다. 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 80%는 HB9 단백질을 발현한다. 또 다른 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 90%는 HB9 단백질을 발현한다. 대안적 실시형태에서, PDX1 및 NKX6.1 공동양성 세포의 적어도 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%는 HB9 단백질을 발현한다.
일부 실시형태에서, PDX1, NKX6.1 및 HB9 단백질 양성 세포로 이루어진 췌장 내배엽 계통 세포 집단은 추후의 기능적 췌장 내분비 세포로의 생체 내 성숙을 위해 당뇨병 동물에게 이식된다. 다른 실시형태에서, 본 발명은 또한 본 발명의 방법에 의해 생성된 인슐린 및 NKX6.1 발현 세포를 포함한다. 또 다른 실시형태에서, 본 발명은 만능 줄기세포와 같은 전구 세포를 HB9를 발현하는 췌장 내배엽 계통의 세포로 단계적 분화시키는 방법을 포함한다. 본 발명의 방법은 이들 단계 중 하나 이상을 포함한다. 특히, 본 방법은 만능 줄기세포를 완성 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시키는 단계를 포함한다. 상기 단계는 약 3일이 소요될 수 있다. 이어서 이들 세포를 적절한 조건하에 배양하여 이들 세포를 장관 세포의 특징적인 마커를 발현하는 세포로 분화시킨다. 일 실시형태에서, 세포는 약 2일 동안 배양할 수 있다. 이어서, 장관 세포의 특징적인 마커를 발현하는 세포를 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시킨다. 이러한 분화는 세포를 약 2일 동안 배양함으로써 달성할 수 있다. 추가의 실시형태에서, 만능 줄기세포는 인간 배아 만능 줄기세포이다.
이어서, 이들 세포는 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포로 분화되고, 이는 다시 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포로 분화될 수 있고, 이는 이어서 췌장 내분비 세포의 특징적인 마커를 발현하는 세포로 분화될 수 있다. HB9를 발현하는 췌장 내배엽 계통 세포로의 분화를 달성하기 위해, 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포 및 췌장 내배엽/내분비 전구세포를 액티빈 수용체 저해제(바람직하게는, ALK5 저해제) 및/또는T3/T4 갑상선 호르몬 중 하나 이상과 함께 배양할 수 있다. 일 실시형태에서, 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포 및 췌장 내배엽/내분비 전구세포는 T3/T4와 함께 배양된다. 다른 실시형태에서, 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포 및 췌장 내배엽/내분비 전구세포는 액티빈 수용체 저해제와 함께 배양된다. 대안적 실시형태에서, 세포는 액티빈 수용체 저해제와 T3/T4 둘 모두와 함께 배양된다. 본 발명의 방법은 HB9를 발현하는 췌장 내배엽 계통의 세포로 분화될 수 있는 어떠한 세포에라도 적합하다. 표 III은 본 발명의 방법의 실시형태에서 사용하기에 적합한 예시적 배양 조건을 제시한다. 하기 표 III에서 사용되는 바와 같이, "MCX"는 MXC 화합물이고, "AA"는 액티빈이고, "ALK5 inh."는 ALK5 저해제이고, "RA"는 레티노산, "Vit. C"는 아스코르브산이고, "inh."는 저해제이고, "act."는 활성화제이다. 특정 실시형태에서, 하나의 단계(예를 들어, 1기, 2기, 3기, 4기, 5기 또는 6기 중 어느 하나)에서의 처리 중 어느 하나는 다른 단계(예를 들어, 1기, 2기, 3기, 4기, 5기 또는 6기 중 어느 하나)에서의 처리 중 어느 하나와 병용될 수 있다.
[표 III]
Figure pat00005
일 실시형태에서, 본 발명은 T3을 포함하는 배지에서 췌장 내배엽 계통 세포 집단을 배양함으로써 HB9 발현을 향상시키는 방법을 제공한다. 일부 실시형태에서, 췌장 내배엽 계통 세포 집단은 사실상 CDX2 또는 SOX2를 발현하지 않는다. 다른 실시형태에서, 췌장 내배엽 계통 세포 집단은 만능 세포의 단계적 분화에 의해 수득된다. 추가의 실시형태에서, 만능 세포는 인간 배아 만능 세포이다.
일 실시형태에서, 본 발명은 ALK5 저해제를 포함하는 배지에서 췌장 내배엽 계통 세포 집단을 배양함으로써 HB9 발현을 향상시키는 방법을 제공한다. 일부 실시형태에서, 췌장 내배엽 계통 세포 집단은 만능 세포의 단계적 분화에 의해 수득된다. 일부 실시형태에서, 만능 세포는 인간 배아 만능 세포이다.
바람직한 실시형태에서, 본 발명은 ALK5 저해제 및 T3을 포함하는 배지에서 췌장 내배엽 계통 세포 집단을 배양함으로써 HB9 발현을 향상시키는 방법에 관한 것이다. 일부 실시형태에서, 췌장 내배엽 계통 세포 집단은 만능 세포의 단계적 분화에 의해 수득된다. 추가의 실시형태에서, 만능 세포는 인간 배아 만능 세포이다.
다른 실시형태에서, 본 발명은 PDX1 및 NKX6.1 공동발현 세포를 충분한 양의 T3, ALK5 저해제 또는 이들의 조합을 포함하는 배지로 처리함으로써 이러한 세포에서 HB9의 발현을 향상시키는 방법을 제공한다.
본 발명의 일 실시형태는 하기 단계들을 포함하는, 만능 줄기세포로부터 β 세포의 특징적인 마커를 발현하는 세포를 생산하는 방법이다: (a) 만능 줄기세포를 배양하는 단계 (b) 만능 줄기세포를 전장 내배엽 세포의 특징적인 마커를 발현하는 세포로 분화시키는 단계 및 (c) 전장 내배엽 세포의 특징적인 마커를 발현하는 세포를T3/T4, ALK5 저해제 또는 둘 모두가 보충된 배지로 처리하여 β 세포의 특징적인 마커를 발현하는 세포로 분화시키는 단계. 생성된 세포는 NKX6.1, PDX1 및 Hb-9에 대해 양성일 수 있다. 본 방법을 사용하여, 췌장 내배엽 전구세포의 특징적인 마커를 발현하는 NKX6.1 양성 세포 중에서 HB9 양성 세포의 수를 향상시킬 수 있다. 또한 본 방법을 사용하여 NKX2.2의 발현을 감소시킬 수도 있다. 더욱이, 본 방법은 SOX2 및 알부민 발현을 억제한다. 게다가, 본 방법을 사용하여, 인슐린을 발현하는 세포의 수율을 증가시킬 수 있다.
일 실시형태에서, T3이 사용된다. 본 방법은 T3 및 ALK5 저해제가 보충된 배지에서 세포를 배양하는 것을 포함할 수 있다. 또한 본 방법은 T3 및 ALK5 저해제가 보충된 배지로 배양되지 않은 세포와 비교하여HB9 발현을 향상시킬 수 있다. 배지는 또한 SMO 저해제, SHH 신호전달 경로 길항제(예를 들어, SANT-1), 레티노산 및 아스코르브산 중 하나 이상(예를 들어, 1개, 2개, 3개 또는 모두)으로 추가 보충될 수 있다. 일 실시형태에서, 본 방법은 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포를 T3이 보충되고 또한 ALK5 저해제가 추가 보충될 수 있는 배지에서 배양함으로써 β 세포의 특징적인 마커를 발현하는 세포를 제공한다.
본 발명의 또 다른 실시형태는 전장 내배엽 세포의 특징적인 마커를 발현하는 세포를T3/T4, ALK5 저해제 또는 둘 모두가 보충된 배지로 처리함으로써 β 세포의 특징적인 마커를 발현하는 세포로 분화시키는 것을 포함하는, β 세포의 특징적인 마커를 발현하는 세포의 생산 방법이다. 특정 실시형태에서, 배지는 BMP 수용체 저해제 및 PKC 활성화제로 추가 보충된다. 생성된 세포는 바람직하게는 NKX6.1, PDX1 및 Hb-9에 대해 양성이다. 본 방법을 사용하여, NKX6.1 양성 췌장 내배엽 전구세포 중에서 HB9 양성 세포의 수를 향상시키고/시키거나, NKX2.2 발현을 감소시키고/시키거나, SOX2 및 알부민 발현을 억제할 수 있다. 바람직한 실시형태에서, T3이 사용된다. 본 방법은 또한 T3 및 ALK5 저해제가 보충된 배지에서 세포를 배양하는 것을 포함할 수 있다. 또한 본 방법은 HB9 발현을 T3 및 ALK5 저해제가 보충된 배지로 배양되지 않은 세포와 비교하여 HB9 발현을 향상시킬 수 있다. 게다가, 본 방법은 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포를 T3 및 임의로 ALK5 저해제가 보충된 배지에서 배양함으로써 β 세포의 특징적인 마커를 발현하는 세포를 형성시키는 것을 포함할 수 있다.
본 발명의 또 다른 실시형태는 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포를 T3/T4 및 ALK5 저해제가 보충된 배지에서 배양함으로써 HB9 발현을 증가시키고 SOX2 및 알부민 발현을 억제하는 방법이다. 본 발명의 대안적 실시형태는 T3/T4 및 ALK5 저해제가 보충된 배지에서 세포를 배양하는 단계를 포함하는 췌장 전장 전구세포의 특징적인 마커를 발현하는 세포, 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포 또는 내분비 세포의 특징적인 마커를 발현하는 세포 내에서 글루카곤, 소마토스타틴 및 그렐린의 하향조절 방법이다. 배지는 SMO 저해제, SHH 신호전달 경로 길항제(예를 들어, SANT-1), 레티노산 및 아스코르브산 중 하나 이상으로 추가 보충될 수 있다. 일 실시형태에서, 세포는 4기 세포이고, 배지는 FGF7로 추가 보충된다.
본 발명은 또한 본 발명의 방법에 의해 수득 가능한 세포 또는 세포 집단을 제공한다. 본 발명은 또한 본 발명의 방법에 의해 수득된 세포 또는 세포 집단을 제공한다.
본 발명은 치료 방법을 제공한다. 특히, 본 발명은 당뇨병을 앓고 있거나 당뇨병의 발병 위험에 처한 환자의 치료 방법을 제공한다.
본 발명은 또한 치료 방법에서 사용하기 위한 본 발명의 방법에 의해 수득 가능한 또는 수득된 세포 또는 세포 집단을 제공한다. 특히, 본 발명은 당뇨병을 앓고 있거나 당뇨병의 발병 위험에 처한 환자의 치료 방법에서 사용하기 위한 본 발명의 방법에 의해 수득 가능한 또는 수득된 세포 또는 세포 집단을 제공한다.
당뇨병은 1형 또는 2형 당뇨병일 수 있다.
일 실시형태에서, 치료 방법은 본 발명의 방법에 의해 수득 가능한 또는 수득된 세포를 환자에게 이식하는 것을 포함한다.
일 실시형태에서, 치료 방법은
만능 줄기세포를 예를 들어 본 명세서에서 기재한 바와 같이 시험관 내에서 1기, 2기, 3기, 4기, 5기 또는 6기 세포로 분화시키는 단계 및
분화된 세포를 환자에게 이식하는 단계를 포함한다.
일 실시형태에서, 본 방법은 만능 줄기세포의 분화 단계 전에 만능 줄기세포를 예를 들어 본 명세서에서 기재한 바와 같이 배양하는 단계를 추가로 포함한다.
일 실시형태에서, 본 방법은 이식 단계 후에 세포를 생체 내에서 분화시키는 단계를 추가로 포함한다.
일 실시형태에서, 환자는 포유동물, 바람직하게는 인간이다.
일 실시형태에서, 세포는 분산된 세포로서 이식될 수 있거나, 간문맥 내로 주입될 수 있는 클러스터(cluster)로 형성될 수 있다. 대안적으로, 세포는 생체적합성 분해성 중합체성 지지체, 다공성 비분해성 장치로 제공되거나 또는 캡슐화되어 숙주 면역 반응으로부터 보호될 수 있다. 세포는 수용체의 적절한 부위에 이식될 수 있다. 이식 부위는 예를 들어, 간, 천연 췌장, 신장 피막하 공간, 장막, 복막, 장막하 공간, 장, 위, 또는 피하 주머니를 포함한다.
생체 내 이식된 세포의 추가 분화, 생존 또는 활성을 향상시키기 위해, 성장 인자, 항산화제 또는 소염제와 같은 추가의 인자를 세포 투여 전에, 세포 투여와 동시에, 또는 세포 투여 후에 투여할 수 있다. 이들 인자는 내인성 세포에 의해 분비되어 원위치에서(in situ) 투여된 세포에 노출될 수 있다. 이식된 세포는 내인성 및 외부 투여된 당업계에 공지된 성장 인자의 임의의 조합에 의해 분화되도록 유도될 수 있다.
이식에 사용되는 세포의 양은 환자의 상태 및 치료법에 대한 반응을 비롯한 다양한 많은 인자에 의존하며, 당업자에 의해 결정될 수 있다.
일 실시형태에서, 치료 방법은 세포를 이식 전에 3차원 지지체에 혼입하는 것을 추가로 포함한다. 세포는 환자 내로 이식되기 전에 이 지지체 상에서 시험관 내에서 유지될 수 있다. 대안적으로, 세포를 함유한 지지체는 추가의 시험관내 배양 없이 환자에서 직접 이식될 수 있다. 지지체에는 이식된 세포의 생존과 기능을 촉진하는 적어도 하나의 약학 제제가 선택적으로 혼입될 수 있다.
본 명세서 전체에 걸쳐 인용된 간행물은 본 명세서에 이의 전문이 참고로 포함된다. 본 발명을 하기 실시예에 의해 추가로 예시하지만 하기 실시예에 의해 한정되지는 않는다.
실시예
실시예 1
인간 만능 세포로부터 유래된 췌장 내배엽 집단을 생성시키는 이미 공개된 프로토콜은 사실상 HB9 단백질을 발현하지 않는다.
본 실시예는 본 실시예에서 기재된 바와 같이 만능 줄기세포로부터 유래된 세포에서의 HB9의 발현 패턴의 동정에 관한 것이다. 인간 배아 줄기세포주 H1의 세포(계대 40)를 단일 세포로서 1 X 105개 세포/㎠ 로 10 μM의 Y27632(Rock 저해제, 카탈로그 번호 Y0503, 미주리주 세인트 루이스 소재의 시그마-알드리치)가 보충된 MTESR®1 배지(캐나다 밴쿠버 소재의 스템셀 테크놀로지스) 에서 마트리겔™ (1:30 희석액 뉴저지주 소재의 비디 바이오사이언시스(BD Biosciences))-코팅된 접시 상에 접종하였다. 접종 후 48시간째에, 배양물을 불완전 PBS(Mg 또는 Ca가 없는 포스페이트 완충 식염수) 중에서 세척하였다. 이어서 배양물을 문헌[Diabetes, 61, 2016, 2012]에 이미 기재된 바와 같이 췌장 내배엽/내분비 전구세포로 분화시켰다. 사용된 분화 프로토콜은 다음과 같았다:
a. 1:30 마트리겔™ 코팅된 표면에 도말된 미분화 H1 세포의 60 내지 70% 컨플루언트(confluent) 부착성 배양물을 0.2% 소 태아 혈청 (FBS) (유타주 소재의 하이클론(Hyclone)), 100 ng/ml 액티빈-A (AA; 페프로-테크 뉴저지주 록키 힐 소재) 및 20 ng/ml의 Wnt3A (알&디 시스템즈)가 보충된 RPMI 1640 배지(인비트로겐(Invitrogen))에 오직 1일 동안만 노출시켰다 그 다음 2일 동안, 세포를 0.5% FBS 및 100 ng/ml AA를 함유한 RPMI에서 배양하였다.
b. (a)로부터 생성된 세포를 3일 동안 2% FBS 및 50 ng/ml의 FGF7(페프로-테크)가 보충된 DMEM-F12 배지(인비트로겐)에 노출시켰다.
c. (b)로부터 생성된 배양물을 0.25 μM SANT-1(시그마-알드리치 미주리주 세인트 루이스 소재), 2 μM 레티노산(시그마-알드리치), 100 ng/ml의 노긴(알&디 시스템즈) 및 1% (v/v)의 보충제(상표명 B27®하에 시판)(카탈로그 번호 17504044, 뉴욕주 그랜드 아일랜드 소재의 라이프 테크놀로지스)가 보충된 DMEM-HG 배지(인비트로겐)에서 4일 동안 지속시켰다.
d. (c)로부터 생성된 세포를 1 μM ALK5 저해제(ALK5i; 뉴욕주 파밍데일 소재), 100 ng/ml의 노긴, 50 nM TPB ((2S,5S)-(E,E)-8-(5-(4-(트리플루오로메틸)페닐)-2,4-펜타디에노일아미노)벤조락탐 이엠디 케미칼스 인코포레이티드, 뉴저지주 깁스타운 소재) 및 1% B27가 보충된 DMEM-HG 배지에서 단층 방식으로 3일 동안 배양하였다. 배양 마지막날 동안, 세포를 5 mg/mL 디스파제로 5분 동안 처리한 다음, 조심스럽게 피펫팅하여 혼합하고 세포괴(cell clump)(< 100 μm)로 파괴하였다. 상기 세포 클러스터(cell cluster)를 일회용 폴리스티렌 125 ml 스피너 플라스크(코닝(Corning))로 이전하고, 1 μM ALK5 저해제, 100 ng/ml의 노긴 및 1% B27이 보충된 DMEM-HG를 함유한 현탁액 중에서 80 내지 100 rpm으로 밤새 회전시켰다.
(d)의 마지막에, mRNA를 관련 췌장 내배엽/내분비 유전자의 PCR 분석을 위해 수거하였다. 총 RNA를 RNeasy® 미니 키트(퀴아젠(Qiagen); 캘리포니아주 발렌시아 소재)로 추출했고, 고성능 cDNA 역전사 키트 (캘리포니아주 포스터 시티 소재의 어플라이드 바이오시스템즈(Applied Biosystems))를 제조업자의 지침에 따라서 사용하여 역전사시켰다. cDNA는 주문 제작식 태크먼® 어레이즈(Taqman® Arrays) (어플라이드 바이오시스템즈) 위로 미리 부하된 태크먼® 유니버설 마스터 믹스(Taqman® Universal Master Mix) 및 태크먼® 유전자 발현 검정법(Taqman® Gene Expression Assays)을 이용하여 증폭시켰다. 데이타를 시퀀스 디텍션 소프트웨어(Sequence Detection Software)(어플라이드 바이오시스템즈)를 사용하여 분석하고, ΔΔCt 방법 (즉, 내부 통제(internal control)로 수정된 qPCR 결과(ΔΔCt = ΔCt샘플 - ΔCt기준))을 사용하여 미분화된 인간 배아 줄기(hES) 세포에 대해 정규화시켰다. 모든 프라이머는 어플라이드 바이오시스템즈로부터 구매하였다. FACS 및 면역형광 분석을 이전에 기재된 바와 같이 수행하였다(문헌[Diabetes, 61, 20126, 2012]). HB9 항체를 발달 연구 하이브리도마 은행(Developmental Studies Hybridoma Bank)(아이오와주 소재의 아이오와 대학교)으로부터 수득하였다. 본 실시예에서 사용되는 바와 같이, Y27632 ((1R,4r)-4-((R)-1-아미노에틸)-N-(피리딘-4-일)사이클로헥산카복스아미드)는 세포-투과성 소분자 Rho 연관 키나제(ROCK) 저해제이다.
도 1a 내지 도 1c는 실시예 1에 개요된 바와 같이 췌장 내배엽/내분비 전구세포로 분화된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다:: PDX1 (도 1a), NKX6.1(도 1b), 및 HB9 (도 1c). 도 1에 도시된 바와 같이, PDX1, NKX6.1 및 HB9의 강력한 mRNA 발현은 이들 배양물에서 검출되었다. 또한, HB9의 mRNA 발현은 인간 사체 섬세포와 비교해서 이들 세포에서 동등하거나 높았다. 그러나, 도 2에 도시된 바와 같이, PDX1 및 NKX6.1의 유전자 발현 데이타는 FACS 분석으로 측정된 바와 같은 상응하는 단백질의 높은 발현과 일치하는 반면, HB9의 mRNA 발현은 HB9의 단백질 발현과 불일치하였다. (d)의 완료 이튿날, 즉 5일째에, 세포의 약 1%가 HB9에 대해 양성인 반면, 세포의 약 50%는 NKX6.1 양성이였고 약 90%는 PDX1 양성이였다. 세포괴의 면역염색도 또한 FACS 데이타를 확인시켜 주었다. 도 3a 및 도 3b에 도시된 바와 같이, 상당 수의 NKX6.1 양성 세포 및 적은 인슐린 양성 세포가 세포괴 내에 존재하였다. 그러나, 면역염색으로 HB9 양성 세포는 검출되지 않았다(도 3b).
실시예 2
4기 내지 6기에서 T3 첨가는 HB9 양성 세포의 수를 향상시킨다
본 실시예는 HB9 양성 세포의 수를 현저하게 향상시키는 4기 내지 6기에서 T3 첨가에 관한 것이다.
인간 배아 줄기세포주 H1의 세포(계대 40)를 단일 세포로서 1 X 105개 세포/㎠ 로 10 μM의 Y27632가 보충된 mTeSR®1 배지에서 마트리겔™ (1:30 희석액 뉴저지주 소재의 BD 바이오사이언시즈)-코팅된 접시 상에 접종하였다. 접종 후 48시간째에, 배양물을 불완전 PBS(Mg 또는 Ca가 없는 포스페이트 완충 식염수) 중에서 세척하였다. 배양물을 하기 개요된 프로토콜에 의해 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포로 분화시켰다.
a. 1기 (3일): 줄기세포를 2% 무지방산 BSA (프롤리언트(Proliant) 카탈로그 번호 68700), 0.0012 g/ml 중탄산나트륨(시그마-알드리치, 카탈로그 번호 S3187), 1X 글루타맥스™(GlutaMax™)(인비트로겐, 카탈로그 번호 35050-079), 4.5 mM D-글루코스(시그마-알드리치, 카탈로그 번호 G8769), 100 ng/ml GDF8 (알&디 시스템즈) 및 1 μM의 MCX 화합물이 보충된 MCDB-131 배지(인비트로겐 카탈로그 번호 10372-019)에서 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스, 100 ng/ml GDF8 및 0.1 μM MCX 화합물이 보충된 MCDB-131 배지에서 추가로 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스 및 100 ng/ml GDF8이 보충된 MCDB-131 배지에서 추가로 1일 동안 배양하였다.
b. 2기 (2일): 이어서, 1기 세포를 2% 무지방산 BSA; 0.0012 g/ml의 중탄산나트륨 1X 글루타맥스™ 4.5 mM의 D-글루코스 0.25 mM의 아스코르브산(미주리주 소재의 시그마) 및 25 ng/mL의 FGF7(미네소타주 소재의 알&디 시스템즈)가 보충된 MCDB-131 배지로 2일 동안 처리하였다.
c. 3기 (2일): 이어서, 2기 세포를 ITS-X(Gibco® 인슐린,-트랜스페린-셀레늄-에탄올아민 캘리포니아주 소재의 인비트로겐)의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1(미주리주 소재의 시그마); 1 μM의 RA(미주리주 소재의 시그마); 25 ng/mL의 FGF7; 0.25 mM의 아스코르브산 200 nM의 TPB(PKC 활성화제 카탈로그 번호 565740; 뉴저지주 깁스타운 소재의 이엠디 케미칼스); 및 100 nM의 LDN (BMP 수용체 저해제 카탈로그 번호 04-0019; 스템젠트)가 보충된 MCDB-131 배지로 2일 동안 처리하였다.
d. 4기 (3일): 이어서, 3기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 100 nM의 RA; 2 ng/mL의 FGF7; 100 nM의 LDN-193189; 0.25 mM의 아스코르브산 및 100 nM TPB가 보충된 MCDB-131 배지로 3일 동안 처리하였다.
e. 5기 (3일): 이어서, 4기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 50 nM의 RA; 0.25 mM의 아스코르브산 및 500 nM of ALK5 저해제 SD208가 보충된 MCDB-131로 3일 동안 처리하였다. SD208은 문헌[Molecular Pharmacology 2007, 72:152-161]에 개시된 하기 화학식 I의 구조를 갖는 2-(5-클로로-2-플루오로페닐)프테리딘-4-일]피리딘-4-일-아민)이다. SD208은 TGF-βR I 키나제의 ATP-경쟁적 저해제인 2,4-이치환된 프테리딘이다.
[화학식 (I)]
Figure pat00006
f. 6기 (3일 내지 15일): 5기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 50 nM의 RA; 0.25 mM 아스코르브산이 보충된 MCDB-131 배지로 3일 동안 처리하였다.
일부 배양물에서, 1 μM T3 (T6397, 미주리주 소재의 시그마)를 4기 내지 6기에서 첨가하였다. 4기 내지 6기의 마지막에, 대조군 및 처리군 배양물을 FACS 및 면역염색으로 분석하였다. 게다가, 2기 내지 6기에서 대조군 및 처리군 배양물에 대한 mRNA를 수거하였다.
도 4는 PDX1, NKX6.1 및 HB9에 대한 4기(도 4a), 5기(도 4b) 및 6기(도 4c)에서의 FACS 데이타를 도시한다. 4기 내지 6기에서 상당한 수의 PDX1 및 NKX6.1 양성 세포가 있었지만, 실시예 1의 데이타와 일치하여 HB9의 발현은 훨씬 낮았다. HB9의 발현은 5기에서 최고치였으며 6기에서 감소되었다. 종합적으로, 실시예 2에 개요된 프로토콜을 사용하여 생성시킨 세포에 대한 HB9 발현은 실시예 1에 개요된 프로토콜을 사용하여 생성시킨 세포와 비교하여 보다 높았다. 도 5a는 2기 내지 6기에서 인간 섬세포와 비교한 HB9의 mRNA 발현을 도시한다. 실시예 1과 유사하게, 3기 내지 4기에서의 HB9의 mRNA 발현 수준은 인간 섬세포와 동등하였지만, HB9 단백질 발현은 4기에서 매우 낮았다(도 5b).
도 6a 내지 도 6j는 실시예 2에 개요된 바와 같이 4기로 분화되고 오직 4기, 4기 내지 5기 또는 4기 내지 6기에서 처리된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한다: NKX6.1 (도 6a); PDX1 (도 6b); NKX2.2 (도 6c); 글루카곤 (도 6d); 인슐린(도 6e); 소마토스타틴 (도 6f); CDX2 (도 6g); 알부민 (도 6h); 가스트린 (도 6i); 및 SOX2 (도 6j). 4기 내지 6기에서의 T3 첨가는 5기에서 인슐린 발현을 중간정도로 증가시키면서 글루카곤, 소마토스타틴 및 그렐린을 현저하게 하향조절하였다. 4기 내지 6기에서의 T3 첨가는 명백하게 NKX6.1 및 PDX1 발현에 영향을 주지 않으면서 NKX2.2 발현을 현저하게 감소시킨 것으로 보인다. 게다가, T3 첨가는 CDX2 (창자 마커) 발현에 영향을 주지 않으면서 SOX2 (위 마커) 및 알부민(간 마커) 발현을 억제하였다. 6기에서 대조군 및 처리군 배양물의 면역염색으로 6기에서 대조군(도 7a)와 비교하여 T3 처리군(도 7b)에서 HB9 양성 세포의 수가 현저하게 증가된 것으로 나타났다. 또한, 증가된 수의 NKX6.1 양성 세포는 T3 처리된 배양물에서 HB9 발현을 나타냈다.
실시예 3
6기에서 T3 및 ALK5 저해제의 병용 처리는 HB9의 발현을 향상시킨다
본 실시예는 6기에서 배지에서 ALK5 저해제와 T3의 병용이 HB9의 발현을 현저하게 증가시킨다는 것을 입증한다.
인간 배아 줄기세포주 H1의 세포(계대 40)를 단일 세포로서 1 X 105개 세포/㎠ 로 10 μM의 Y27632가 보충된 mTeSR®1 배지에서 마트리겔™ (1:30 희석액 뉴저지주 소재의 BD 바이오사이언시즈)-코팅된 접시 상에 접종하였다. 접종 후 48시간째에, 배양물을 불완전 PBS(Mg 또는 Ca가 없는 포스페이트 완충 식염수) 중에서 세척하였다. 배양물을 하기 개요된 프로토콜에 의해 췌장 내배엽/내분비 계통으로 분화시켰다.
a. 1기 (3일): 세포를 2% 무지방산BSA (프롤리언트(Proliant) 카탈로그 번호 68700), 0.0012 g/ml 중탄산나트륨(시그마-알드리치 카탈로그 번호 S3187), 1X 글루타맥스™ (인비트로겐 카탈로그 번호35050-079), 4.5 mM D-글루코스(시그마-알드리치 카탈로그 번호G8769), 100 ng/ml GDF8 (알&디 시스템즈) 및 1 μM MCX 화합물이 보충된 MCDB-131 배지(인비트로겐 카탈로그 번호10372-019)에서 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스, 100 ng/ml GDF8 및 0.1 μM MCX 화합물이 보충된 MCDB-131 배지에서 추가로 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스 및 100 ng/ml GDF8이 보충된 MCDB-131 배지에서 추가로 1일 동안 배양하였다.
b. 2기 (2일): 이어서, 1기 세포를 2% 무지방산 BSA; 0.0012 g/ml의 중탄산나트륨 1X 글루타맥스™ 4.5 mM의 D-글루코스 0.25 mM의 아스코르브산(미주리주 소재의 시그마) 및 25 ng/mL의 FGF7(미네소타주 소재의 알&디 시스템즈)가 보충된 MCDB-131 배지로 2일 동안 처리하였다.
c. 3기 (2일): 2기 세포를 ITS-X(캘리포니아주 소재의 인비트로겐)의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2% 무지방산 BSA; 0.25 μM SANT-1(미주리주 소재의 시그마); 1 μM RA(미주리주 소재의 시그마); 25 ng/mL FGF7; 0.25 mM 아스코르브산 200 nM TPB(PKC 활성화제 카탈로그 번호 565740; 뉴저지주 깁스타운 소재의 이엠디 케미칼스); 및 100 nM의LDN (BMP 수용체 저해제 카탈로그 번호 04-0019; 스템젠트)가 보충된 MCDB-131 배지로 2일 동안 처리하였다.
d. 4기 (3일): 3기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 100 nM의 RA; 2 ng/mL의 FGF7; 100 nM의 LDN-193189; 0.25 mM의 아스코르브산 100 nM TPB 및 1 μM T3이 보충된 MCDB-131 배지로 3일 동안 처리하였다.
e. 5기 (3일): 4기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 50 nM의 RA; 0.25 mM의 아스코르브산 1 μM ALK5 저해제 SD208 및 100 nM T3이 보충된 MCDB-131 배지로 3일 동안 처리하였다.
f. 6기 (3 내지 15일): 5기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 500 nM ALK5 저해제, 50 nM RA; 0.25 mM 아스코르브산 및 10 nM T3이 보충된 MCDB-131 배지로 3일 동안 처리하였다.
도 8a 및 도 8b는 6기 7일째에서 NKX6.1 및 HB9에 대한 면역염색을 도시한다. 도 8c는 실시예 3에 개요된 바와 같이 6기로 분화된 인간 배아 줄기세포주 H1의 세포에서 HB9 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다. 면역염색 영상과 함께 HB9의 mRNA 발현은 ALK5 저해제 및 T3에의 연장된 노출이 NKX6.1의 강력한 발현을 유지하면서 HB9의 발현을 현저하게 향상시키는 것 같음을 나타낸다. 도 9a 및 도 9b는 각각 6기 5일째 및 15일째에서의 FACS 데이타를 도시한다. 6기 세포의 상당 부분은 6기 15일째 배양물에서 HB9의 발현을 나타낸다.
실시예 4
T3은 용량 의존적 방식으로 HB9의 발현을 향상시킨다
본 실시예는 T3을 용량 의존적 방식으로 사용하여 6기에서 NKX6.1의 발현을 유지하면서 HB9 발현을 향상시킬 수 있다는 것을 나타낸다. 인간 배아 줄기세포주 H1의 세포(계대 40)를 단일 세포로서 1 X 105개 세포/㎠ 로 10 μM의 Y27632가 보충된 mTeSR®1 배지에서 마트리겔™ (1:30 희석액 뉴저지주 소재의 BD 바이오사이언시즈)-코팅된 접시 상에 접종하였다. 접종 후 48시간째에, 배양물을 불완전 PBS(Mg 또는 Ca가 없는 포스페이트 완충 식염수) 중에서 세척하였다. 배양물을 하기 개요된 프로토콜에 의해 췌장 내배엽/내분비 전구세포의 특징적인 마커를 발현하는 세포로 분화시켰다.
a. 1기 (3일): 세포를 2% 무지방산 BSA (프롤리언트 카탈로그 번호 68700), 0.0012 g/ml 중탄산나트륨(시그마-알드리치 카탈로그 번호 S3187), 1X 글루타맥스™(인비트로겐 카탈로그 번호 35050-079), 4.5 mM D-글루코스(시그마-알드리치 카탈로그 번호 G8769), 100 ng/ml GDF8 (알&디 시스템즈) 및 1 μM MCX 화합물이 보충된 MCDB-131 배지(인비트로겐 카탈로그 번호 10372-019)에서 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스, 100 ng/ml GDF8 및 0.1 μM MCX 화합물이 보충된 MCDB-131 배지에서 추가로 1일 동안 배양하였다. 이어서, 세포를 2% 무지방산 BSA, 0.0012 g/ml 중탄산나트륨, 1X 글루타맥스™, 4.5 mM D-글루코스 및 100 ng/ml GDF8이 보충된MCDB-131 배지에서 추가로 1일 동안 배양하였다.
b. 2기 (2일): 이어서, 1기 세포를 2% 무지방산 BSA; 0.0012 g/ml의 중탄산나트륨 1X 글루타맥스™ 4.5 mM의 D-글루코스 0.25 mM의 아스코르브산(미주리주 소재의 시그마) 및 25 ng/mL의 FGF7(미네소타주 소재의 알&디 시스템즈)가 보충된MCDB-131 배지로 2일 동안 처리하였다.
c. 3기 (2일): 이어서 2기 세포를 ITS-X(캘리포니아주 소재의 인비트로겐)의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1(미주리주 소재의 시그마); 1 μM의 RA(미주리주 소재의 시그마); 25 ng/mL의 FGF7; 0.25 mM의 아스코르브산 200 nM의 TPB(PKC 활성화제 카탈로그 번호 565740; 뉴저지주 깁스타운 소재의 이엠디 케미칼스); 및 100 nM의 LDN (BMP 수용체 저해제 카탈로그 번호 04-0019; 스템젠트)가 보충된 MCDB-131 배지로 2일 동안 처리하였다.
d. 4기 (3일): 이어서, 3기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0017 g/mL의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 100 nM의 RA; 2 ng/mL의 FGF7; 100 nM의 LDN-193189; 0.25 mM의 아스코르브산 100 nM TPB가 보충된 MCDB-131 배지로 3일 동안 처리하였다.
e. 5기 (3일): 이어서, 4기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 50 nM의 RA; 0.25 mM의 아스코르브산 1 μM ALK5 저해제 SD208 및 0 내지1000 nM T3이 보충된 MCDB-131 배지로 3일 동안 처리하였다.
f. 6기 (6일): 이어서, 5기 세포를 ITS-X의 1:200 희석액 4.5 mM의 글루코스 1X 글루타맥스™ 0.0015 g/ml의 중탄산나트륨 2%의 무지방산 BSA; 0.25 μM의 SANT-1; 500 nM ALK5 저해제 50 nM의 RA; 0.25 mM 아스코르브산 및 0 내지1000 nM T3이 보충된 MCDB-131 배지로 6일 동안 처리하였다.
도 10a 내지 도 10e는 6기의 6일째에서 NKX6.1 및 HB9에 대한 면역염색을 도시한다. T3은 NKX6.1 양성 췌장 내배엽 전구세포 중에서 HB9 양성 세포의 수를 용량 의존적 방식으로 현저하게 향상시켰다. 도 11a 내지 도 11l은 실시예 4에 개요된 바와 같이 6기로 분화된 인간 배아 줄기세포주 H1의 세포에서 하기 유전자들의 발현의 실시간 PCR 분석으로부터의 데이타를 도시한 것이다: SOX2 (도 11a); NKX6.1 (도 11b); NKX2.2 (도 11c); 가스트린(도 11d); PDX1 (도 11e); NGN3 (도 11f); PAX6 (도 11g); PAX4 (도 11h); 인슐린(도 11i); 글루카곤 (도 11j); 그렐린 (도 11k); 및 소마토스타틴 (도 11l).
본 발명을 다양한 특정한 재료, 절차 및 실시예를 참고로 하여 본 명세서에서 설명하고 예시하였지만, 본 발명은 이 목적용으로 선택된 재료 및 절차의 특정한 조합에 제한되지 않음이 이해된다. 당업자에 의해 인지될 바와 같이, 이러한 상세 사항에 대한 다양한 변화가 암시될 수 있다. 본 명세서 및 실시예는 단지 예시적인 것으로 간주되는 것으로 의도되며, 이때 본 발명의 실제 범주 및 사상은 하기 특허청구범위에 의해 나타난다. 본 출원에서 언급되는 모든 참고 문헌, 특허 및 특허 출원은 전체적으로 본 명세서에 참고로 포함된다.

Claims (17)

  1. 인간 만능 줄기세포로부터 유래된 PDX1 발현 췌장 세포를 갑상선 호르몬 트리요오도타이로닌(T3)이 보충되고 ALK5 저해제는 없는 제1 성장 배지에서 배양하여 인간 세포 집단을 생성하는 단계;
    상기 수득된 인간 세포 집단을 갑상선 호르몬 T3 및 ALK5 저해제 양자 모두가 보충된 추가의 성장 배지에서 배양하는 단계; 및
    임의로, 상기 수득된 인간 세포 집단을 갑상선 호르몬 T3은 포함하되 ALK5 저해제는 없는 배지에서 추가로 배양하는 단계를 포함하는,
    인간 췌장 내분비 세포를 생성하는 방법.
  2. 제1항에 있어서, 인간 만능 줄기세포로부터 유래된 PDX1 발현 췌장 세포를 갑상선 호르몬 T3이 보충되고 ALK5 저해제는 없는 제1 성장 배지에서 2일 내지 3일 간 배양하는 것을 특징으로 하는 방법.
  3. 제1항 또는 제2항에 있어서, 수득된 인간 세포 집단을 갑상선 호르몬 T3 및 ALK5 저해제 양자 모두가 보충된 추가의 성장 배지에서 3일 내지 6일간 배양하는 것을 특징으로 하는 방법.
  4. 제1항 또는 제2항에 있어서, 수득된 인간 세포 집단을 갑상선 호르몬 T3은 포함하되 ALK5 저해제는 없는 배지에서 3일의 기간동안 추가로 배양하는 것을 특징으로 하는 방법.
  5. 제1항 또는 제2항에 있어서, ALK5 저해제가 ALK5 저해제 II인 것을 특징으로 하는 방법.
  6. 제1항 또는 제2항에 있어서, ALK5 저해제가 ALK5i, SD208, TGF-B 저해제 SB431542, ITD-1, LY2109761, A83-01, LY2157299, TGF-β 수용체 저해제 V, TGF-β 수용체 저해제 I, TGF-β 수용체 저해제 IV, TGF-β 수용체 저해제 VII, TGF-β 수용체 저해제 VIII, TGF-β 수용체 저해제 II, TGF-β 수용체 저해제 VI, 또는 TGF-β 수용체 저해제 III인 것을 특징으로 하는 방법.
  7. 제1항 또는 제2항에 있어서, 인간 췌장 내분비 세포가 인슐린을 생성하는 것을 특징으로 하는 방법.
  8. a. T3 및 ALK5 저해제가 보충된 성장 배지를 포함하는 분화 배지; 및
    b. 인간 만능 줄기세포로부터 유래된 인간 췌장 내분비 세포의 집단을 포함하는,
    시험관내 세포 배양물.
  9. 제8항에 있어서, 세포 집단의 적어도 10%가 PDX1, NKX6.1 및 HB9를 공동발현하는 것을 특징으로 하는 시험관내 세포 배양물.
  10. 제8항 또는 제9항에 있어서, 성장 배지가 MCDB131인 것을 특징으로 하는 시험관내 세포 배양물.
  11. 제8항 또는 제9항에 있어서, 성장 배지가 하나 이상의 하기 성분으로 추가로 보충되는 것을 특징으로 하는 시험관내 세포 배양물:
    a. MRT10 또는 사이클로파민으로부터 선택된 스무슨드 수용체(smoothened receptor) 저해제;
    b. SANT-1 또는 HPI-1로부터 선택된 SHH 신호전달 경로 길항제;
    c. LDN-193189, 노긴 또는 코딘으로부터 선택된 BMP 수용체 저해제;
    d. TPB, PDBu, PMA 및 ILV로부터 선택된 PKC 활성화제;
    e. FGF7 또는 FGF10으로부터 선택된 섬유아세포 증식인자;
    f. 레티노산;
    g. 아스코르브산;
    h. 헤파린; 및
    i. 황산아연.
  12. 제8항 또는 제9항에 있어서, 성장 배지가 SANT-1, 레티노산 및 아스코르브산으로 추가로 보충되는 것을 특징으로 하는 시험관내 세포 배양물.
  13. 제8항 또는 제9항에 있어서, 인간 췌장 내분비 세포의 집단이 인슐린을 발현하는 세포를 포함하는 것을 특징으로 하는 시험관내 세포 배양물.
  14. 제8항 또는 제9항에 있어서, ALK5 저해제가 ALK5 저해제 II인 것을 특징으로 하는 시험관내 세포 배양물.
  15. 제8항 또는 제9항에 있어서, ALK5 저해제가 ALK5i, SD208, TGF-B 저해제 SB431542, ITD-1, LY2109761, A83-01, LY2157299, TGF-β 수용체 저해제 V, TGF-β 수용체 저해제 I, TGF-β 수용체 저해제 IV, TGF-β 수용체 저해제 VII, TGF-β 수용체 저해제 VIII, TGF-β 수용체 저해제 II, TGF-β 수용체 저해제 VI, 또는 TGF-β 수용체 저해제 III인 것을 특징으로 하는 시험관내 세포 배양물.
  16. 제1항 또는 제2항에 따른 방법에 의해 수득된, 인간 만능 줄기세포로부터 유래된 인간 췌장 내분비 세포의 집단을 포함하는 시험관내 세포 배양물.
  17. 제16항에 있어서, 인간 췌장 내분비 세포의 적어도 10%가 PDX1, NKX6.1 및 HB9를 발현하는 것을 특징으로 하는 시험관내 세포 배양물.
KR1020197002033A 2012-12-31 2013-12-18 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화 KR102036780B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261747672P 2012-12-31 2012-12-31
US61/747,672 2012-12-31
PCT/US2013/075959 WO2014105546A1 (en) 2012-12-31 2013-12-18 Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157020570A Division KR101942769B1 (ko) 2012-12-31 2013-12-18 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화

Publications (2)

Publication Number Publication Date
KR20190009849A true KR20190009849A (ko) 2019-01-29
KR102036780B1 KR102036780B1 (ko) 2019-10-25

Family

ID=51017619

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157020570A KR101942769B1 (ko) 2012-12-31 2013-12-18 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화
KR1020197002033A KR102036780B1 (ko) 2012-12-31 2013-12-18 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157020570A KR101942769B1 (ko) 2012-12-31 2013-12-18 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화

Country Status (17)

Country Link
US (3) US10138465B2 (ko)
EP (2) EP4219683A1 (ko)
JP (4) JP6557147B2 (ko)
KR (2) KR101942769B1 (ko)
CN (2) CN111394298A (ko)
AR (1) AR094348A1 (ko)
AU (4) AU2013368224B2 (ko)
BR (1) BR112015015701A2 (ko)
CA (1) CA2896658C (ko)
DK (1) DK2938723T3 (ko)
ES (1) ES2942484T3 (ko)
HK (1) HK1217109A1 (ko)
MX (1) MX2015008578A (ko)
PH (1) PH12015501450A1 (ko)
RU (1) RU2684215C2 (ko)
SG (2) SG10201707811XA (ko)
WO (1) WO2014105546A1 (ko)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
RU2473685C2 (ru) 2007-07-31 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
RU2473684C2 (ru) 2007-11-27 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
KR102026622B1 (ko) 2008-02-21 2019-09-30 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
WO2010002846A1 (en) 2008-06-30 2010-01-07 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
EP2350265B1 (en) * 2008-10-31 2019-04-17 Janssen Biotech, Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
MX356756B (es) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Células madre pluripotentes en microportadores.
EP2366022B1 (en) 2008-11-20 2016-04-27 Janssen Biotech, Inc. Methods and compositions for cell attachment and cultivation on planar substrates
KR102058901B1 (ko) 2009-07-20 2019-12-24 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP6013196B2 (ja) 2010-03-01 2016-10-25 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞から誘導した細胞を精製するための方法
SG10201506855RA (en) 2010-08-31 2015-10-29 Janssen Biotech Inc Differentiation of human embryonic stem cells
KR102203056B1 (ko) 2011-12-22 2021-01-14 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화
CN108103006A (zh) 2012-06-08 2018-06-01 詹森生物科技公司 人胚胎干细胞向胰腺内分泌细胞的分化
KR101942769B1 (ko) 2012-12-31 2019-01-28 얀센 바이오테크 인코포레이티드 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화
RU2658488C2 (ru) 2012-12-31 2018-06-21 Янссен Байотек, Инк. Способ получения клеток, экспрессирующих маркеры, характерные для панкреатических эндокринных клеток
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
EP4039798A1 (en) 2012-12-31 2022-08-10 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells
KR102580225B1 (ko) 2013-06-11 2023-09-20 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 SC-β 세포 및 조성물 그리고 그 생성 방법
DK3143127T3 (da) * 2014-05-16 2021-09-13 Janssen Biotech Inc Anvendelse af små molekyler til at forstærke mafa-ekspression i endokrine pankreasceller
WO2016038038A1 (en) * 2014-09-08 2016-03-17 Fundacion Publica Andaluza Progreso Y Salud Method for obtaining pancreatic beta cell surrogates by increasing pancreatic and duodenal homeobox 1 (pdx-1) expression
US9371516B2 (en) 2014-09-19 2016-06-21 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US10190096B2 (en) 2014-12-18 2019-01-29 President And Fellows Of Harvard College Methods for generating stem cell-derived β cells and uses thereof
CN107614678B (zh) 2014-12-18 2021-04-30 哈佛学院校长同事会 干细胞来源的β细胞的产生方法及其使用方法
US10443042B2 (en) 2014-12-18 2019-10-15 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof
KR20230050478A (ko) * 2014-12-19 2023-04-14 얀센 바이오테크 인코포레이티드 만능성 줄기 세포의 현탁 배양
CA2971901C (en) * 2014-12-24 2022-06-21 Neuorphan Pty Ltd Improvements in oligodendroglial cell culturing methods and in methods for treating neurodegenerative disorders by using thyroid hormones or analogues
US11332716B2 (en) 2015-07-27 2022-05-17 The Regents Of The University Of California Methods and compositions for producing pancreatic beta cells
WO2017144695A1 (en) 2016-02-24 2017-08-31 Novo Nordisk A/S Generation of functional beta cells from human pluripotent stem cell-derived endocrine progenitors
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
MA45502A (fr) 2016-06-21 2019-04-24 Janssen Biotech Inc Génération de cellules bêta fonctionnelles dérivées de cellules souches pluripotentes humaines ayant une respiration mitochondriale glucose-dépendante et une réponse en sécrétion d'insuline en deux phases
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
EP3710021A4 (en) 2017-11-15 2021-08-11 Semma Therapeutics, Inc. COMPOSITIONS FOR THE MANUFACTURE OF ISLAND CELLS AND METHODS OF USE
CA3108275A1 (en) 2018-08-10 2020-02-13 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
WO2020243668A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. Cell encapsulation devices with controlled oxygen diffusion distances
CN114206407A (zh) 2019-05-31 2022-03-18 W.L.戈尔及同仁股份有限公司 生物相容性膜复合材料
AU2020282355B2 (en) 2019-05-31 2023-11-02 Viacyte, Inc. A biocompatible membrane composite
JP2022534545A (ja) 2019-05-31 2022-08-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 生体適合性メンブレン複合体
CN114375300A (zh) 2019-09-05 2022-04-19 克里斯珀医疗股份公司 通用供体细胞
CA3150233A1 (en) 2019-09-05 2021-03-11 Alireza Rezania UNIVERSAL DONOR CELLS
US20230399607A1 (en) * 2020-11-20 2023-12-14 Orizuru Therapeutics, Inc. Maturation agent
AU2021414617A1 (en) 2020-12-31 2023-08-10 Crispr Therapeutics Ag Universal donor cells
CN115011544B (zh) * 2022-05-30 2023-11-17 广州国家实验室 体外诱导获得胰岛δ细胞的方法及其应用
WO2024070494A1 (ja) * 2022-09-26 2024-04-04 国立大学法人京都大学 膵内胚葉細胞の製造方法

Family Cites Families (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
SU1767433A1 (ru) 1989-11-27 1992-10-07 Пермский государственный медицинский институт Способ определени инсулинорезистентности имунного генеза у больных сахарным диабетом I типа
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
ES2134212T3 (es) 1991-04-25 1999-10-01 Chugai Pharmaceutical Co Ltd Anticuerpo humano reconstituido contra el receptor de la interleuquina 6 humano.
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
JP2813467B2 (ja) * 1993-04-08 1998-10-22 ヒューマン・セル・カルチャーズ・インコーポレーテッド 細胞培養法および培地
US5523226A (en) * 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (ko) 1993-11-19 1995-09-21 Ciba Geigy
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
KR100252743B1 (ko) 1994-12-29 2000-09-01 나가야마 오사무 Il-6 안타고니스트를 함유하는 항종양제의 작용증강제
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
US5681561A (en) 1995-06-07 1997-10-28 Life Medical Sciences, Inc. Compositions and methods for improving autologous fat grafting
JP2001508302A (ja) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド 胚性幹細胞血清置換
EP1028954B1 (en) 1997-04-24 2003-07-02 Ortho-McNeil Pharmaceutical, Inc. Substituted imidazoles useful in the treatment of inflammatory diseases
AU8476698A (en) 1997-07-03 1999-01-25 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
AU9393398A (en) 1997-09-16 1999-04-05 Egea Biosciences, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
CA2307807C (en) 1997-10-23 2008-09-02 Andrea G. Bodnar Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
ZA9811898B (en) 1997-12-29 2000-06-28 Ortho Mcneil Pharm Inc Anti-Inflammatory Compounds.
AU755888B2 (en) 1998-03-18 2003-01-02 Mesoblast International Sarl Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
AU2515600A (en) 1999-01-21 2000-08-07 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
CA2385628A1 (en) 1999-09-27 2001-04-05 Ammon B. Peck Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
EP1240518A4 (en) 1999-12-13 2006-05-17 Scripps Research Inst MARKERS FOR THE IDENTIFICATION AND INSULATION OF PRE-GENERIC CELLS OF A AND B PANCREAS ISOLATED CELLS
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
WO2002000849A1 (fr) 2000-06-26 2002-01-03 Renomedix Institute Inc. Fraction cellulaire contenant des cellules capables de se differencier en cellules du systeme nerveux
CA2426654C (en) 2000-10-23 2010-12-21 Smithkline Beecham Corporation 2,4,8-trisubstituted-8h-pyrido[2,3-d}pyrimidin-7-one compounds
PT1362047E (pt) 2000-12-08 2006-09-29 Ortho Mcneil Pharm Inc Compostos de pirrolina substituidos com indazolilo como inibidores de cinase
EP1345946B1 (en) 2000-12-08 2005-08-10 Ortho-McNeil Pharmaceutical, Inc. Macroheterocylic compounds useful as kinase inhibitors
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US20040121460A1 (en) 2001-01-24 2004-06-24 Lumelsky Nadya L Differentiation of stem cells to pancreatic endocrine cells
EP3078667B1 (en) 2001-01-25 2018-11-21 The United States of America, represented by the Secretary, Department of Health and Human Services Formulation of boronic acid compounds
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
DE10290025T1 (de) 2001-04-19 2003-10-09 Develogen Ag Verfahren zur Differenzierung von Stammzellen in Insulin-produzierende Zellen
ATE421991T1 (de) 2001-04-24 2009-02-15 Ajinomoto Kk Stammzellen und verfahren zu deren trennung
CA2447015A1 (en) 2001-05-15 2002-11-21 Rappaport Family Institute For Research In The Medical Sciences Insulin producing cells derived from human embryonic stem cells
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
CA2456981C (en) 2001-08-06 2012-02-28 Bresagen, Inc. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
US20030138951A1 (en) 2001-10-18 2003-07-24 Li Yin Conversion of liver stem and progenitor cells to pancreatic functional cells
DE60233248D1 (de) 2001-11-15 2009-09-17 Childrens Medical Center Verfahren zur isolierung, expansion und differenzierung fötaler stammzellen aus chorionzotte, fruchtwasser und plazenta und therapeutische verwendungen davon
IL162131A0 (en) 2001-12-07 2005-11-20 Geron Corp Islet cells from human embryonic stem cells
CN1630526B (zh) 2001-12-07 2010-05-05 马克罗珀尔生物外科公司 用加工的脂肪抽吸细胞来治疗患者的***和方法
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
IL162663A0 (en) 2001-12-28 2005-11-20 Cellartis Ab A method for the establishment of apluripotent human blastocyst-derived stem cell line
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
AU2003231358A1 (en) 2002-04-17 2003-10-27 Otsuka Pharmaceutical Co., Ltd. METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
WO2003095452A1 (en) 2002-05-08 2003-11-20 Janssen Pharmaceutica N.V. Substituted pyrroline kinase inhibitors
US20060003446A1 (en) * 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
AU2003273573A1 (en) 2002-05-28 2003-12-19 Becton, Dickinson And Company Expansion and transdifferentiation of human acinar cells
KR20050008787A (ko) 2002-06-05 2005-01-21 얀센 파마슈티카 엔.브이. 키나제 저해제로서의 비스인돌릴-말레이미드 유도체
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
EP1539930A4 (en) 2002-07-29 2006-08-09 Es Cell Int Pte Ltd METHOD IN MULTIPLE STAGES OF DIFFERENTIATION OF POSITIVE INSULIN-SENSITIVE CELLS, GLUCOSE
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
WO2004023100A2 (en) 2002-09-06 2004-03-18 Amcyte Inc. Cd56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
EP1567639A4 (en) 2002-12-05 2005-12-21 Technion Res & Dev Foundation CULTURE OF HUMAN PANCREATIC ISLANDS AND USES THEREOF
CN100549163C (zh) 2002-12-16 2009-10-14 技术研究及发展基金有限公司 制备无饲养细胞、无异源的人胚胎干细胞的方法以及使用该方法制备的干细胞培养物
US20050118148A1 (en) 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
RU2359671C2 (ru) 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Способ получения препарата с покрытием
KR101114808B1 (ko) 2003-01-29 2012-02-15 다케다 야쿠힌 고교 가부시키가이샤 피복 제제의 제조법
WO2005045001A2 (en) 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
US20070020242A1 (en) 2003-03-27 2007-01-25 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
CA2530533C (en) 2003-06-27 2015-02-10 Ethicon, Incorporated Postpartum cells derived from umbilical cord tissue, and methods of making and using the same
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
WO2005017117A2 (en) 2003-08-14 2005-02-24 Martin Haas Multipotent amniotic fetal stem cells (mafsc) and banking of same
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
CA2536067A1 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
JP2007515433A (ja) 2003-12-17 2007-06-14 アラーガン インコーポレイテッド Cyp26aおよびcyp26bの選択的阻害剤を使用するレチノイド反応性障害の処置方法
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
MX2009009225A (es) 2003-12-23 2009-09-28 Cythera Inc Endodermo definitivo.
CN1946838A (zh) 2003-12-23 2007-04-11 赛瑟拉公司 定形内胚层
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US20050233446A1 (en) 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
US20080241107A1 (en) 2004-01-23 2008-10-02 Copland Iii John A Methods and Compositions For Preparing Pancreatic Insulin Secreting Cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
AU2005221095A1 (en) 2004-03-09 2005-09-22 John J. O'neil Methods for generating insulin-producing cells
CA2558486A1 (en) 2004-03-10 2005-09-22 Alberto Hayek Compositions and methods for growth of embryonic stem cells
SG150567A1 (en) 2004-03-23 2009-03-30 Akaike Toshihiro Pluripotent stem cell growing method
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
WO2005097977A2 (en) 2004-04-01 2005-10-20 Wisconsin Alumni Research Foundation Differentiation of stem cells to endoderm and pancreatic lineage
KR101278421B1 (ko) 2004-04-27 2013-07-15 비아싸이트, 인크. Pdx1 발현 내배엽
CA2966883A1 (en) 2004-07-09 2006-02-16 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
EP1791952A4 (en) 2004-08-13 2008-06-11 Univ Georgia Res Found COMPOSITIONS AND METHODS OF SELF-RENEWAL AND DIFFERENTIATION IN HUMAN EMBRYONAL STEM CELLS
US20080268533A1 (en) 2004-08-25 2008-10-30 University Of Georgia Research Foundation, Inc. Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
JP2008518585A (ja) 2004-09-08 2008-06-05 ウイスコンシン アラムニ リサーチ ファンデーション ヒト胚幹細胞の培養
AU2005282510B2 (en) 2004-09-08 2010-12-02 Wisconsin Alumni Research Foundation Medium and culture of embryonic stem cells
AU2006208944A1 (en) 2005-01-28 2006-08-03 Imperial College Innovations Limited Methods for embryonic stem cell culture
AU2006210955A1 (en) 2005-01-31 2006-08-10 Es Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
SG160373A1 (en) 2005-03-04 2010-04-29 John Oaeneil Adult pancreatic derived stromal cells
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
ATE553198T1 (de) 2005-04-15 2012-04-15 Geron Corp Behandlung von krebs durch die kombinierte hemmung der proteasom- und telomeraseaktivitäten
US20080208351A1 (en) 2005-04-26 2008-08-28 Aarhus Universitet Biocompatible Material for Surgical Implants and Cell Guiding Tissue Culture Surfaces
JP5092124B2 (ja) 2005-05-24 2012-12-05 国立大学法人 熊本大学 Es細胞の分化誘導方法
AU2006202209B2 (en) 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
CA2610598A1 (en) 2005-06-10 2006-12-21 Irm Llc Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
WO2006137787A1 (en) 2005-06-21 2006-12-28 Ge Healthcare Bio-Sciences Ab Method for cell culture
EP1910516B1 (en) 2005-06-22 2019-06-19 Asterias Biotherapeutics, Inc. Suspension culture of human embryonic stem cells
JP5345388B2 (ja) 2005-06-30 2013-11-20 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 環式アニリノ−ピリジノトリアジン
GB2443370A (en) 2005-07-29 2008-04-30 Australian Stem Cell Ct Ltd Compositions and methods for growth of pluripotent cells
WO2007016485A2 (en) 2005-07-29 2007-02-08 Athersys, Inc. Use of a gsk-3 inhibitor to maintain potency of cultured cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
EP1962719A4 (en) 2005-08-29 2011-05-04 Technion Res And Dev Of Foundation Ltd MEDIA FOR BREEDING STEM CELLS
WO2007027156A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells
WO2007030870A1 (en) 2005-09-12 2007-03-22 Es Cell International Pte Ltd Cardiomyocyte production
JP2009508650A (ja) * 2005-09-21 2009-03-05 ダスク テクノロジーズ, エルエルシー 臓器および組織機能のための方法および組成
EP1941032A2 (en) 2005-10-14 2008-07-09 Regents Of The University Of Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
US7732202B2 (en) 2005-10-21 2010-06-08 International Stem Cell Corporation Oxygen tension for the parthenogenic activation of human oocytes for the production of human embryonic stem cells
ES2743202T3 (es) 2005-10-27 2020-02-18 Viacyte Inc Endodermo de intestino proximal dorsal y ventral que expresa PDX1
EP4223769A3 (en) 2005-12-13 2023-11-01 Kyoto University Nuclear reprogramming factor
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
CN101410509B (zh) 2006-02-23 2016-05-18 维亚赛特公司 用于培养可分化细胞的组合物和方法
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
WO2007103282A2 (en) * 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
EP3527658A1 (en) 2006-04-28 2019-08-21 Lifescan, Inc. Differentiation of human embryonic stem cells
US20070259423A1 (en) 2006-05-02 2007-11-08 Jon Odorico Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
WO2007136673A2 (en) 2006-05-19 2007-11-29 Medistem Laboratories, Inc. Treatment of disc degenerative disease and compositions for same
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
CA2654196A1 (en) 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
WO2007149182A2 (en) 2006-06-19 2007-12-27 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
ES2610812T3 (es) 2006-06-26 2017-05-03 Lifescan, Inc. Cultivo de células madre pluripotentes
GB2454386B (en) 2006-07-06 2011-07-06 Es Cell Int Pte Ltd Method for embryonic stem cell culture on a positively charged support surface
WO2008013664A2 (en) 2006-07-26 2008-01-31 Cythera, Inc. Methods of producing pancreatic hormones
DK2733203T3 (en) 2006-08-02 2019-02-04 Technion Res & Dev Foundation PROCEDURES FOR EXPANSION OF EMBRYONAL STEM CELLS IN A SUSPENSION CULTURE
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008039521A2 (en) 2006-09-26 2008-04-03 Nmt Medical, Inc. Method for modifying a medical implant surface for promoting tissue growth
WO2008048647A1 (en) 2006-10-17 2008-04-24 Cythera, Inc. Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
CN101611016B (zh) 2006-10-17 2012-01-25 斯蒂菲尔实验室公司 他拉罗唑代谢物
CA2666789C (en) 2006-10-18 2016-11-22 Yong Zhao Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2008056779A1 (fr) 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire
WO2008086005A1 (en) 2007-01-09 2008-07-17 University Of South Florida Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
CN101641436A (zh) 2007-01-30 2010-02-03 佐治亚大学研究基金会 用于产生内胚层和中胚层细胞系及多能游走细胞(mmc)的早期中胚层细胞即稳定的中内胚层细胞群
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
WO2008148105A1 (en) 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
DK2173863T3 (en) 2007-06-29 2019-01-21 Fujifilm Cellular Dynamics Inc Automated method and apparatus for embryonic stem cell culture
KR101555824B1 (ko) 2007-07-18 2015-09-25 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
RU2473685C2 (ru) 2007-07-31 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
RU2010107181A (ru) 2007-07-31 2011-09-20 Лайфскен, Инк. (Us) Дифференцировка плюрипотентных стволовых клеток с использованием питающих клеток человека
WO2009027644A2 (en) 2007-08-24 2009-03-05 Stichting Het Nederlands Kanker Instituut Composition
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
RU2473684C2 (ru) * 2007-11-27 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
GB0800524D0 (en) 2008-01-14 2008-02-20 Univ Brighton Cell culture system
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
KR102026622B1 (ko) 2008-02-21 2019-09-30 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
WO2009110215A1 (ja) 2008-03-03 2009-09-11 独立行政法人 科学技術振興機構 繊毛細胞の分化誘導方法
WO2009116951A2 (en) 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
RU2359030C1 (ru) 2008-03-19 2009-06-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты)
DK2727998T3 (da) 2008-04-21 2019-08-26 Viacyte Inc Fremgangsmåder til oprensning af pancreatiske endodermceller afledt fra humane embryoniske stamceller
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
US8728812B2 (en) 2008-04-22 2014-05-20 President And Fellows Of Harvard College Compositions and methods for promoting the generation of PDX1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) * 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
DK2993226T3 (da) 2008-06-03 2021-02-22 Viacyte Inc Vækstfaktorer til fremstilling af en definitiv endoderm
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
MX2011000123A (es) 2008-06-30 2011-02-25 Centocor Ortho Biotech Inc Diferenciacion de las celulas madre pluripotentes.
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
WO2010002846A1 (en) 2008-06-30 2010-01-07 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
WO2010022395A2 (en) 2008-08-22 2010-02-25 President And Fellows Of Harvard College Methods of reprogramming cells
EP2350265B1 (en) * 2008-10-31 2019-04-17 Janssen Biotech, Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
CN102272291B (zh) 2008-10-31 2018-01-16 詹森生物科技公司 人胚胎干细胞向胰腺内分泌谱系的分化
WO2010053472A1 (en) 2008-11-04 2010-05-14 Novocell, Inc. Stem cell aggregate suspension compositions and methods for differentiation thereof
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
MX356756B (es) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Células madre pluripotentes en microportadores.
US20110229441A1 (en) 2008-12-05 2011-09-22 Association Francaise Contre Les Myopathies Method and Medium for Neural Differentiation of Pluripotent Cells
RU2540016C2 (ru) * 2009-07-20 2015-01-27 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека
KR102058901B1 (ko) 2009-07-20 2019-12-24 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
AR078805A1 (es) 2009-10-29 2011-12-07 Centocor Ortho Biotech Inc Celulas madre pluripotentes
FI20096288A0 (fi) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and methods for culturing stem cells
KR101841271B1 (ko) 2009-12-23 2018-03-22 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
CN102858958A (zh) 2010-02-03 2013-01-02 日本国立癌症研究中心 诱导肝干细胞及其制造方法、以及该细胞的用途
US20120322152A1 (en) 2010-03-02 2012-12-20 Michael Raghunath Culture Additives To Boost Stem Cell Proliferation And Differentiation Response
US9234170B2 (en) * 2010-04-25 2016-01-12 Mount Sinai School Of Medicine Generation of anterior foregut endoderm from pluripotent cells
EP2569419B1 (en) * 2010-05-12 2019-03-20 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
WO2011160066A1 (en) 2010-06-17 2011-12-22 Regents Of The University Of Minnesota Production of insulin producing cells
EP2601288B1 (en) 2010-08-05 2016-04-06 Wisconsin Alumni Research Foundation Simplified basic media for human pluripotent cell culture
CA2807935C (en) 2010-08-09 2018-09-18 Takeda Pharmaceutical Company Limited Method of producing pancreatic hormone-producing cells
BR112013004514A2 (pt) 2010-08-31 2016-06-07 Janssen Biotech Inc diferenciação das células-tronco embrionárias humanas
CA2809305C (en) * 2010-08-31 2019-06-11 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
MY177150A (en) 2011-02-28 2020-09-08 Stempeutics Res Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
WO2013055834A2 (en) * 2011-10-11 2013-04-18 The New York Stem Cell Foundation Er stress relievers in beta cell protection
EP2766474B1 (en) 2011-10-14 2020-10-07 Children's Medical Center Corporation Inhibition and enhancement of reprogramming by chromatin modifying enzymes
KR102203056B1 (ko) 2011-12-22 2021-01-14 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
CN108103006A (zh) 2012-06-08 2018-06-01 詹森生物科技公司 人胚胎干细胞向胰腺内分泌细胞的分化
CN104903440B (zh) 2012-09-03 2018-04-06 诺和诺德股份有限公司 使用小分子从多能干细胞产生胰内胚层
KR101942769B1 (ko) 2012-12-31 2019-01-28 얀센 바이오테크 인코포레이티드 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
US20140329704A1 (en) 2013-03-28 2014-11-06 President And Fellows Of Harvard College Markers for mature beta-cells and methods of using the same
KR102580225B1 (ko) 2013-06-11 2023-09-20 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 SC-β 세포 및 조성물 그리고 그 생성 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Diabetes, 2012, Vol. 61, p. 2016~2029 (2012.08.published) *
JOURNAL OF CELLULAR PHYSIOLOGY, 2005, VOl. 204, p.286~296 *
Nature Biotechnology, 2006, Vol. 24, No.11, p.1392~1401 (2006) *

Also Published As

Publication number Publication date
MX2015008578A (es) 2015-09-07
JP6557147B2 (ja) 2019-08-07
CN105073979B (zh) 2020-03-06
JP2020141704A (ja) 2020-09-10
RU2684215C2 (ru) 2019-04-04
JP6792652B2 (ja) 2020-11-25
AU2018282310B2 (en) 2020-11-26
PH12015501450A1 (en) 2015-09-14
AU2023285720A1 (en) 2024-01-18
BR112015015701A2 (pt) 2017-07-11
SG11201505112SA (en) 2015-07-30
DK2938723T3 (da) 2023-02-20
JP2016503654A (ja) 2016-02-08
US20190211309A1 (en) 2019-07-11
ES2942484T3 (es) 2023-06-01
AU2013368224A1 (en) 2015-07-09
JP7278990B2 (ja) 2023-05-22
EP4219683A1 (en) 2023-08-02
AU2013368224B2 (en) 2018-09-27
WO2014105546A1 (en) 2014-07-03
AU2021200941C1 (en) 2024-01-11
KR101942769B1 (ko) 2019-01-28
SG10201707811XA (en) 2017-11-29
HK1217109A1 (zh) 2016-12-23
JP2019088316A (ja) 2019-06-13
JP2022130564A (ja) 2022-09-06
KR102036780B1 (ko) 2019-10-25
AR094348A1 (es) 2015-07-29
CN111394298A (zh) 2020-07-10
US10947511B2 (en) 2021-03-16
CA2896658C (en) 2021-06-22
RU2015131838A (ru) 2017-02-06
CA2896658A1 (en) 2014-07-03
EP2938723A4 (en) 2016-07-27
EP2938723A1 (en) 2015-11-04
EP2938723B1 (en) 2023-02-01
US20210171916A1 (en) 2021-06-10
US20140186953A1 (en) 2014-07-03
CN105073979A (zh) 2015-11-18
AU2021200941A1 (en) 2021-03-11
US10138465B2 (en) 2018-11-27
AU2021200941B2 (en) 2023-09-21
KR20150101467A (ko) 2015-09-03
AU2018282310A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US10947511B2 (en) Differentiation of human embryonic stem cells into pancreatic endocrine cells using thyroid hormone and/or alk5, an inhibitor of tgf-beta type 1 receptor
JP5882226B2 (ja) ヒト胚性幹細胞の分化
KR101836850B1 (ko) 인간 배아 줄기 세포의 분화
US20170327793A1 (en) Differentiation of human embryonic stem cells
KR101867369B1 (ko) 인간 배아 줄기 세포의 분화
JP2017515507A (ja) 膵内分泌細胞内のmafa発現を強化するための小分子の使用
KR20150103182A (ko) 췌장 내분비 세포로의 분화를 위한 공기-액체 계면에서의 인간 배아 줄기세포의 배양

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant