KR20140109249A - 극저온 냉동장치, 및 극저온 냉동장치의 제어방법 - Google Patents

극저온 냉동장치, 및 극저온 냉동장치의 제어방법 Download PDF

Info

Publication number
KR20140109249A
KR20140109249A KR1020140005085A KR20140005085A KR20140109249A KR 20140109249 A KR20140109249 A KR 20140109249A KR 1020140005085 A KR1020140005085 A KR 1020140005085A KR 20140005085 A KR20140005085 A KR 20140005085A KR 20140109249 A KR20140109249 A KR 20140109249A
Authority
KR
South Korea
Prior art keywords
pressure
compressor
refrigerator
working gas
control
Prior art date
Application number
KR1020140005085A
Other languages
English (en)
Inventor
카케루 다카하시
타카아키 마츠이
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Publication of KR20140109249A publication Critical patent/KR20140109249A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/002Gas cycle refrigeration machines with parallel working cold producing expansion devices in one circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

멀티운전을 가능하게 하는 극저온 냉동장치에 있어서 복수의 냉동기의 냉동능력을 개별적으로 조정한다.
극저온 냉동장치(10)는, 압축기(12)와, 복수의 냉동기(14)와, 복수의 냉동기(14)의 각각과 압축기(12)와의 사이에서 작동가스를 순환시키도록 압축기(12)에 복수의 냉동기(14)를 병렬로 접속하는 가스라인(16)을 구비한다. 가스라인(16)은, 복수의 냉동기(14) 중 대응하는 냉동기(14)의 작동가스흐름의 압력손실을 개별적으로 제어 가능한 유량제어밸브(54)를 구비한다. 유량제어밸브(54)는, 대응하는 냉동기(14)에 직렬로 설치되어 있다.

Description

극저온 냉동장치, 및 극저온 냉동장치의 제어방법{Extremely low temperature refrigerative apparatus and method for controlling the same}
본 출원은 2013년 3월 4일에 출원된 일본 특허출원 제2013-041438호에 근거하여 우선권을 주장한다. 그 출원의 전체 내용은 이 명세서 중에 참고로 원용되어 있다.
본 발명은, 극저온 냉동장치, 및 극저온 냉동장치의 제어방법에 관한 것이다.
압축기로 압축한 고압 헬륨가스를 냉동기로 공급하고, 냉동기에서 팽창하여 압력이 저하된 저압 헬륨가스를 다시 압축기로 되돌리도록 구성된 축냉식 냉동기에 있어서, 냉동기측에 온도센서를 설치하고, 그 온도센서에 의한 신호로 제어되는 유량제어밸브를 구비한 바이패스 통로를 설치하며, 작동가스의 고압력측과 저압력측의 압력차를 제어함으로써, 냉동기의 온도를 제어할 수 있도록 한 축냉식 냉동장치가 알려져 있다.
선행기술문헌
(특허문헌)
특허문헌 1: 일본 특허공개공보 평11-281181호
상술의 냉동장치에는 1대의 압축기에 대해 1대의 냉동기가 설치되어 있다. 이 대신에 최근에는, 에너지 절약이나 비용저감을 위하여, 1대의 압축기에 대해 복수대의 냉동기가 설치되는 경우가 있다. 복수대의 냉동기는, 예를 들면, 어느 대형장치의 복수의 장소에 장착되거나, 혹은 복수의 동종의 장치의 각각에 장착된다. 이러한 극저온 냉동장치에 있어서는, 그 공통의 압축기를 사용하여 복수대의 냉동기를 동시에 운전하는, 이른바 멀티운전이 행해진다.
본 발명의 일 양태의 예시적인 목적 중 하나는, 멀티운전을 가능하게 하는 극저온 냉동장치에 있어서 복수의 냉동기의 냉동능력을 개별적으로 조정하는 것에 있다.
본 발명의 일 양태에 의하면, 작동가스원과, 복수의 냉동기와, 상기 복수의 냉동기의 각각과 상기 작동가스원과의 사이에서 작동가스를 순환시키도록 상기 작동가스원에 상기 복수의 냉동기를 병렬로 접속하는 가스라인을 구비하고, 상기 가스라인은, 상기 복수의 냉동기 중 대응하는 냉동기의 작동가스흐름의 압력손실을 개별적으로 제어 가능한 제어요소를 구비하며, 상기 제어요소는, 상기 대응하는 냉동기에 직렬로 설치되어 있는 것을 특징으로 하는 극저온 냉동장치가 제공된다.
본 발명의 일 양태에 의하면, 공통의 작동가스원을 사용하여 복수의 냉동기를 동시에 운전하는 것과, 상기 작동가스원과 상기 복수의 냉동기와의 사이의 작동가스흐름의 압력손실을 개별적으로 제어하는 것을 구비하는 것을 특징으로 하는 극저온 냉동장치의 제어방법이 제공된다.
다만, 이상의 구성요소의 임의의 조합이나 본 발명의 구성요소나 표현을, 방법, 장치, 시스템 등의 사이에서 서로 치환한 것도 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 멀티운전을 가능하게 하는 극저온 냉동장치에 있어서 복수의 냉동기의 냉동능력을 개별적으로 조정할 수 있다.
도 1은 본 발명의 일 실시형태에 관한 극저온 냉동장치의 전체 구성을 개략적으로 나타내는 도이다.
도 2는 본 발명의 일 실시형태에 관한 극저온 냉동장치의 제어방법을 설명하기 위한 플로우차트이다.
도 1은, 본 발명의 일 실시형태에 관한 극저온 냉동장치(10)의 전체 구성을 개략적으로 나타내는 도이다. 이 실시형태에 있어서는, 극저온 냉동장치(10)는, 예를 들면, 초전도기기 또는 그 외의 피냉각물(1)을 구비하는 장치(2)에 설치되어 있다. 이 장치(2)는 예를 들면 핵자기공명 화상장치이며, 그 경우 피냉각물(1)은 초전도 마그넷이다. 장치(2)는 크라이오펌프여도 되고, 그 경우 피냉각물(1)은 크라이오패널이다.
극저온 냉동장치(10)는, 압축기(12)를 구비하는 작동가스원과, 복수의 냉동기(14)를 구비한다. 또, 극저온 냉동장치(10)는, 압축기(12)에 복수의 냉동기(14)를 병렬로 접속하는 가스라인(16)을 구비한다. 가스라인(16)은, 복수의 냉동기(14)의 각각과 압축기(12)와의 사이에서 작동가스를 순환시키도록 구성되어 있다. 작동가스는 예를 들면 헬륨가스이다.
압축기(12)는, 가스라인(16)으로부터 저압작동가스를 받아들이기 위한 흡입포트(18)와, 가스라인(16)에 고압작동가스를 송출하기 위한 토출포트(20)를 구비한다. 압축기(12)는, 작동가스를 압축하기 위한 압축기 본체(도시하지 않음)와, 압축기 본체를 구동하기 위한 압축기모터(21)를 구비한다. 압축기(12)는, 저압작동가스의 압력을 측정하기 위한 제1 압력센서(22)와, 고압작동가스를 측정하기 위한 제2 압력센서(24)를 구비한다. 이들 압력센서는 가스라인(16)의 적절한 장소에 설치되어 있어도 된다.
냉동기(14)는, 예를 들면 기포드·맥마흔식 냉동기(이른바 GM냉동기)나 펄스관 냉동기와 같은 축냉식의 극저온 냉동기이다. 냉동기(14)는, 가스라인(16)으로부터 고압작동가스를 받아들이기 위한 고압포트(26)와, 가스라인(16)에 저압작동가스를 송출하기 위한 저압포트(28)를 구비한다. 냉동기(14)는, 냉동기(14)의 냉각온도를 측정하기 위한 적어도 1개의 온도센서를 구비한다. 냉동기(14)는 예를 들면 2단식의 냉동기이며, 이 경우 냉동기(14)는, 제1단의 저온단의 온도를 측정하기 위한 제1 온도센서(30)와, 제2단의 저온단의 온도를 측정하기 위한 제2 온도센서(32)를 구비한다.
냉동기(14)는, 작동가스의 팽창실(34)을 구비한다. 팽창실(34)에는 축냉기(도시하지 않음)가 수용된다. 냉동기(14)는, 소정의 주파수로 열사이클을 행하기 위한 구동부(36)를 구비한다. 구동부(36)는, 일정한 열사이클 주파수로 냉동기(14)를 운전하도록 구성되어 있다. 이 열사이클에 있어서는, 고압의 작동가스가 고압포트(26)로부터 축냉기를 경유하여 팽창실(34)에 공급되고, 팽창실(34)에서 팽창하여 냉각되며, 그 결과 감압된 작동가스가 팽창실(34)로부터 축냉기를 경유하여 저압포트(28)로 배출된다.
냉동기(14)가 예를 들면 GM냉동기인 경우, 구동부(36)는, 디스플레이서 기구, 유로전환기구, 및 구동원을 구비한다. 디스플레이서 기구는, 고압작동가스를 축냉기를 경유하여 팽창실(34)에 공급하고, 저압작동가스를 축냉기를 경유하여 팽창실(34)로부터 배출하도록 구성되어 있다. 축냉기는 디스플레이서 기구에 장착되어 있다. 유로전환기구는, 팽창실(34)의 접속처를 고압포트(26)와 저압포트(28)로 전환하도록 구성되어 있다. 구동원은, 열사이클(즉 GM사이클)을 실현하기 위하여 디스플레이서 기구 및 유로전환기구를 동기하여 구동하도록 구성되어 있다.
가스라인(16)은, 압축기(12)로부터 복수의 냉동기(14)에 고압작동가스를 공급하기 위한 고압라인(38)과, 복수의 냉동기(14)로부터 압축기(12)에 저압작동가스를 회수하기 위한 저압라인(40)을 구비한다. 고압라인(38)은, 압축기(12)의 토출포트(20)와 냉동기(14)의 고압포트(26)를 접속한다. 저압라인(40)은, 압축기(12)의 흡입포트(18)와 냉동기(14)의 저압포트(28)를 접속한다.
고압라인(38)은, 주고압배관(42), 고압분기부(44), 및 복수의 고압개별배관(46)을 구비한다. 주고압배관(42)은, 압축기(12)의 토출포트(20)를 고압분기부(44)에 접속한다. 고압분기부(44)는, 주고압배관(42)을 복수의 고압개별배관(46)으로 분기한다. 복수의 고압개별배관(46)의 각각은, 대응하는 냉동기(14)의 고압포트(26)에 고압분기부(44)를 접속한다.
마찬가지로, 저압라인(40)은, 주저압배관(48), 저압분기부(50), 및 복수의 저압개별배관(52)을 구비한다. 주저압배관(48)은, 압축기(12)의 흡입포트(18)를 저압분기부(50)에 접속한다. 저압분기부(50)는, 주저압배관(48)을 복수의 저압개별배관(52)으로 분기한다. 복수의 저압개별배관(52)의 각각은, 대응하는 냉동기(14)의 저압포트(28)에 저압분기부(50)를 접속한다.
이와 같이 하여, 주고압배관(42) 및 주저압배관(48)이 가스라인(16)의 메인유로를 구성하고, 고압개별배관(46) 및 저압개별배관(52)이 가스라인(16)의 개별유로를 구성한다. 메인유로에 압축기(12)가 배치되어 있다. 복수의 개별유로 각각에는 대응하는 냉동기(14)가 배치되어 있다. 각 개별유로를 통하여 냉동기(14)가 메인유로에 접속되어 있다. 메인유로 및 개별유로에 의하여, 압축기(12)와 개개의 냉동기(14)와의 작동가스의 순환유로가 형성되어 있다.
가스라인(16)은, 복수의 냉동기(14)와 동일수의 유량제어밸브(54)를 구비한다. 유량제어밸브(54)의 각각은, 대응하는 냉동기(14)에 직렬로 설치되어 있다. 유량제어밸브(54)는, 고압개별배관(46)에 배치되어 있으며, 냉동기(14)의 고압포트(26)의 외측에 인접하고 있다. 이와 같이 냉동기(14)와 유량제어밸브(54)가 1대 1로 대응하도록 복수의 유량제어밸브(54)가 가스라인(16)에 배치되어 있다.
유량제어밸브(54)는, 그 개방도를 조절하여 고압개별배관(46)의 압력손실(ΔP1)을 조정하고, 이에 따라 고압개별배관(46)의 작동가스유량을 제어하도록 구성되어 있다. 유량제어밸브(54)는 예를 들면, 이른바 Cv값 제어를 행한다. 유량제어밸브(54)의 각각은 가스라인(16)의 개별유로에 설치되어 있으므로, 대응하는 냉동기(14)로의 공급가스흐름의 압력손실(ΔP1)을 개별적으로 제어 가능하다.
유량제어밸브(54)를 고압개별배관(46)에 설치하는 것은, 저압개별배관(52)에 설치하는 경우에 비해 유리할지도 모른다. 압력손실(ΔP1)이 냉동기(14)의 고압측에 발생하므로, 냉동기(14)의 운전압력을 내릴 수 있다. 그 결과, 냉동기(14)의 내부에 있어서의 압력손실이 냉동능력에 주는 영향을 작게 할 수 있다.
다만 유량제어밸브(54)는, 냉동기(14)에 장착되어 일체의 냉동기 유닛을 구성하고 있어도 된다. 혹은, 유량제어밸브(54)는, 냉동기(14)에 배관으로 접속되는 별체의 압력손실 제어요소여도 된다.
극저온 냉동장치(10)는, 압축기유닛(56)을 구비한다. 압축기유닛(56)은, 압축기(12)와, 압축기(12)를 제어하기 위한 압축기제어부(58)를 구비한다. 압축기제어부(58)는, 압축기모터(21)의 운전주파수를 변경하기 위한 압축기 인버터(60)를 구비한다. 압축기제어부(58)는, 제1 압력센서(22) 및/또는 제2 압력센서(24)의 측정압력에 근거하여 압축기모터(21)의 운전주파수를 제어하도록 구성되어 있다.
압축기제어부(58)는 예를 들면, 압축기(12)의 고압과 저압과의 차압을 목표압으로 제어한다. 이것을 이하에서는 차압일정제어라고 부르는 경우가 있다. 압축기제어부(58)는, 차압일정제어를 위하여 압축기(12)의 운전주파수를 제어한다. 다만 필요에 따라서, 차압의 목표치는 차압일정제어의 실행 중에 변경되어도 된다.
차압일정제어에 있어서, 압축기제어부(58)는, 제1 압력센서(22)의 측정압력과 제2 압력센서(24)의 측정압력과의 차압을 구한다. 압축기제어부(58)는, 그 차압을 목표치(ΔP)에 일치시키도록 압축기모터(21)의 운전주파수를 결정한다. 압축기제어부(58)는, 그 운전주파수를 실현하도록 압축기 인버터(60)를 제어한다.
또, 극저온 냉동장치(10)는, 복수의 냉동기(14)의 냉각온도를 제어하기 위한 온도제어부(62)를 구비한다. 온도제어부(62)는, 복수의 냉동기(14)의 제1 온도센서(30) 및/또는 제2 온도센서(32)의 측정온도에 근거하여 복수의 유량제어밸브(54)를 개별적으로 제어하도록 구성되어 있다.
온도제어부(62)는, 냉동기(14)의 제1단(또는 제2단)의 냉각온도를 목표온도로 제어한다. 온도제어부(62)는, 어느 냉동기(14)의 제1 온도센서(30)의 측정온도를 목표온도에 일치시키도록, 그 냉동기(14)에 대응하는 유량제어밸브(54)의 개방도를 조절한다. 목표온도는 냉동기(14)의 운전 중에 일정해도 되고 변경되어도 된다. 이러한 온도조정제어는 예를 들면, 냉동기(14)의 정상적인 냉각운전 중에 실행된다.
혹은, 온도제어부(62)는, 냉동기(14)의 제1단(또는 제2단)의 냉각온도를 변화시키도록 유량제어밸브(54)를 제어하여도 된다. 온도제어부(62)는, 어느 냉동기(14)의 운전상태에 따라 그 냉동기(14)에 대응하는 유량제어밸브(54)를 제어하여도 된다. 예를 들면, 냉동기(14)의 기동운전에 있어서는 유량제어밸브(54)는 어느 설정 개방도(예를 들면 전체 개방)로 개방되고, 기동운전에 후속하는 정상운전에 있어서는 유량제어밸브(54)는 그보다 작은 개방도로 제어되어도 된다.
극저온 냉동장치(10)의 동작을 설명한다. 압축기(12)의 운전에 의하여, 가스라인(16)의 주고압배관(42)과 주저압배관(48)과의 사이에는 목표차압(ΔP)에 상당하는 차압이 주어지고 있다. 즉, 압축기(12)의 흡입압력을 P로 나타낼 때, 압축기(12)의 토출압력은 P+ΔP로 나타난다. 따라서, 압력 P+ΔP를 가지는 고압작동가스가 압축기(12)로부터 고압라인(38)으로 송출된다. 고압작동가스는, 압축기(12)로부터 주고압배관(42)을 통하여 고압분기부(44)에서 고압개별배관(46)으로 분배된다. 냉동기(14)의 팽창실(34)이 고압개별배관(46)에 접속되어 있을 때, 고압라인(38)으로부터 팽창실(34)에 고압작동가스가 공급된다.
이 때 고압작동가스는, 고압개별배관(46)의 유량제어밸브(54)를 지나 대응하는 냉동기(14)에 공급된다. 유량제어밸브(54)는 고압개별배관(46)의 작동가스흐름에 압력손실(ΔP1)을 준다. 따라서, 냉동기(14)의 팽창실(34)에는, 압력 P+ΔP-ΔP1을 가지는 작동가스가 공급된다.
팽창실(34)이 저압개별배관(52)에 접속되었을 때, 팽창실(34)에 있어서 고압작동가스가 팽창하여 PV일(work)이 행해지고, 냉동기(14)에 냉열이 발생한다. 작동가스는 압력 P+ΔP-ΔP1로부터 압력 P로 감압된다. 즉 팽창실(34)의 흡기압력과 배기압력과의 차압은 ΔP-ΔP1이며, 이것을 이하에서는 ΔP2로 나타낸다(즉, ΔP2=ΔP-ΔP1).
팽창실(34)로부터 저압라인(40)으로 저압작동가스가 배출된다. 저압작동가스는, 냉동기(14)로부터 저압개별배관(52)을 통하여 저압분기부(50)에서 합류한다. 저압작동가스는, 주저압배관(48)을 통하여 압축기(12)로 되돌아온다. 이렇게 하여, 압력 P를 가지는 저압작동가스가 저압라인(40)으로부터 압축기(12)로 회수된다. 압축기(12)는, 회수한 작동가스를 압축하고, 압력 P+ΔP로 승압한다. 이렇게 하여 얻어진 고압작동가스는 다시 압축기(12)로부터 냉동기(14)로 공급된다.
일반적으로, 냉동기의 냉동능력은, 팽창실의 흡기압력과 배기압력과의 차압과 팽창실의 용적과의 곱, 즉 PV일에 상관한다(이상적으로는 일치한다). 전형적인 냉동기에 있어서는, 열사이클 주파수를 변화시킴으로써 냉동능력이 제어되고, 냉각온도가 조절된다. 이것은, 냉동기의 PV일 중 팽창실용적(V)을 조정하는 것에 개념적으로 상당한다.
이에 반하여, 본 실시형태는, 냉동기(14)의 PV일 중 차압(P)을 조정한다는 착상에 근거한다. 냉동기(14)의 냉동능력은, 팽창실(34)의 흡기압력과 배기압력과의 차압(ΔP2)과 팽창실(34)의 용적(V)의 곱 ΔP2·V에 상관한다. 팽창실(34)의 차압(ΔP2)은 상술과 같이, 압축기(12)의 차압(ΔP)과 유량제어밸브(54)의 압력손실(ΔP1)에 따라 정해진다. 따라서, 압력손실(ΔP1)을 변화시킴으로써, 냉동기(14)의 냉동능력을 제어하여, 냉각온도를 조절할 수 있다.
어느 유량제어밸브(54)의 개방도를 작게 하면, 압력손실(ΔP1)은 커진다. 따라서, 그 유량제어밸브(54)에 대응하는 냉동기(14)의 팽창실(34)의 차압(ΔP2)(=ΔP-ΔP1)은 상보적으로 작아지고, 그 냉동기(14)의 PV일이 작아진다. 따라서, 냉동기(14)의 냉동능력은 작아져, 냉동기(14)는 승온된다. 반대로, 유량제어밸브(54)의 개방도를 크게 하면, 압력손실(ΔP1)은 작아진다. 따라서, 팽창실(34)의 차압(ΔP2)은 상보적으로 커져, 냉동기(14)의 PV일이 커진다. 따라서, 냉동기(14)의 냉동능력이 커지고, 냉동기(14)는 강온된다.
압축기(12)는 복수의 냉동기(14)에 공통인 가스원이기 때문에, 압축기(12)의 차압(ΔP)도 역시 복수의 냉동기(14)와 공통이다. 따라서 압축기차압의 조정은, 냉동기(14)의 개별적인 온도제어를 초래하지 않는다. 그러나, 본 실시형태에 의하면, 냉동기(14)마다 유량제어밸브(54)의 압력손실(ΔP1)을 제어할 수 있으므로, 복수의 냉동기(14)의 냉동능력을 개별적으로 제어할 수 있다.
본 실시형태에 의하면, 냉동기의 열사이클 주파수를 변화시킨다는 기존의 온도조정제어를 대체하는 새로운 온도조정 제어방식을 제공할 수 있다. 이 새로운 방식은, 가스라인(16)에 유량제어밸브(54)를 설치한다는 심플한 구성으로 실현할 수 있으므로, 기존의 방식에 비해 비용면에서 유리해질 가능성이 있다.
또, 본 실시형태에 의하면, 냉동기(14)의 열사이클 주파수를 변화시킬 필요가 없으므로, 인버터가 없는 냉동기(14)를 구비하는 극저온 냉동장치(10)를 제공할 수 있다. 냉동기(14)가 인버터를 가지지 않음으로써, 인버터에 기인하는 노이즈가 없어진다. 따라서, 극저온 냉동장치(10)는, 노이즈 저감이 요청되는 장치, 예를 들면 핵자기공명 화상장치의 냉각에 적합하다.
본 실시형태에 있어서는, 가스라인(16)의 유량 제어가 압축기의 차압일정제어에 조합되어 있다. 이것은 극저온 냉동장치(10)의 에너지 절약 성능의 향상에 도움이 된다. 유량제어밸브(54)의 개방도가 작을 때 작동가스가 가스라인(16)을 흐르기 어려워지고, 따라서 압축기(12)의 차압이 확대된다. 따라서, 차압을 목표치로 되돌리기 위하여 압축기(12)의 운전주파수는 저하된다. 이렇게 하여 압축기(12)의 소비전력은 저감된다. 이와 같이 하여, 냉동기(14)의 잉여의 냉동능력을 저감하기 위하여 유량제어밸브(54)를 조일 때, 압축기(12)의 소비전력도 억제할 수 있다. 반대로, 필요에 따라서 유량제어밸브(54)를 개방함으로써, 냉동기(14)의 냉동능력을 증강함과 함께 압축기(12)의 운전주파수를 높게 할 수 있다. 압축기(12)를 정상적으로 고주파수로 운전하는 경우에 비해, 압축기(12)의 소비전력을 저감할 수 있다.
압축기의 고압측과 저압측과의 사이에 바이패스 통로를 설치하는 경우에는, 바이패스 통로에 흐르는 고압가스의 압축을 위하여 소비된 에너지는 냉동기의 냉동능력에 기여하지 않는다. 이에 비하여, 본 실시형태에 의하면, 극저온 냉동장치(10)는 그러한 바이패스 통로를 가지지 않아, 바이패스에 의한 에너지 소비가 없다. 이것도 에너지 절약에 유리하다.
도 2는, 본 발명의 일 실시형태에 관한 극저온 냉동장치(10)의 제어방법을 설명하기 위한 플로우차트이다. 이 방법은, 예를 들면 온도제어부(62)에 의하여 실행된다. 도시되는 바와 같이, 극저온 냉동장치(10)의 운전이 개시된다(S10). 공통의 압축기(12)를 사용하여, 복수의 냉동기(14)가 동시에 운전된다.
이 제어방법은, 복수의 냉동기(14)의 전체제어(S12)와, 냉동기(14)의 개별제어(S14)를 구비한다. 전체제어는, 복수의 냉동기(14)의 냉각온도를 각각 감시하면서 초기온도(예를 들면 실온)로부터 목표온도에 근접시키는 것을 포함한다. 전체제어에 있어서는 유량제어밸브(54)는 모두 소정의 개방도(예를 들면 전체 개방)로 설정되어 있다. 어느 냉동기(14)가 목표온도에 이르렀을 때, 온도제어부(62)는 전체제어를 종료하여 개별제어로 이행한다. 개별제어는, 복수의 냉동기(14) 각각에 대응하는 개별유로의 압력손실을 개별적으로 제어하는 것을 포함한다. 개별제어에 있어서는 유량제어밸브(54)가 제어된다. 말하자면, 전체제어는 대략적인 온도조정이며, 개별제어는 정밀한 온도조정이다. 다만, 온도제어부(62)는, 극저온 냉동장치(10)의 운전 개시부터 개별제어를 실행하여도 된다.
예를 들면, 전체제어에 있어서는, 복수의 냉동기(14) 모두가 목표온도 이하로 냉각된다. 가장 고온의 냉동기(14)가 목표온도로 냉각되었을 때, 온도제어부(62)는 전체제어를 종료하고 개별제어로 이행한다. 이 때, 그 외의 냉동기(14)는 목표온도보다 저온으로 냉각되어 있다. 개별제어에 있어서는, 유량제어밸브(54)의 개방도를 작게 함으로써, 대응하는 냉동기(14)의 냉각온도가 목표온도로 승온된다. 이렇게 하여, 복수의 냉동기(14)의 각각을 목표온도로 냉각할 수 있다.
냉동기(14)의 개체차나 압축기(12)와 냉동기(14)와의 위치 관계 등의 요인에 따라, 냉동기(14)의 거동에는 편차가 발생할 수 있다. 예를 들면, 냉동기(14) 간에서 냉각온도에 차이가 발생할 수 있다. 냉동기(14)의 개별제어에 의하여, 이러한 거동의 편차를 경감시킬 수 있다.
이상, 본 발명을 실시예에 근거하여 설명하였다. 본 발명은 상기 실시형태에 한정되지 않고, 다양한 설계 변경이 가능하며, 다양한 변형예가 가능한 것, 또 그러한 변형예도 본 발명의 범위에 있는 것은, 당업자에게 이해되는 바이다.
상술의 실시형태에 있어서는, 극저온 냉동장치(10)는, 1대의 압축기(12)를 구비한다. 그러나, 극저온 냉동장치(10)는, 복수의 압축기(12)를 구비하는 작동가스원을 구비하여도 된다. 이 경우, 복수의 압축기(12)는, 복수의 냉동기(14)에 대해 병렬로 접속되어 있어도 된다. 즉, 복수의 냉동기(14) 중 어느 냉동기에도 복수의 압축기(12)가 병렬로 접속되도록 가스라인(16)이 구성되어 있어도 된다. 예를 들면, 가스라인(16)은, 압축기(12)마다 주고압배관(42) 및 주저압배관(48)을 구비하고, 주고압배관(42) 및 주저압배관(48)이 각각 고압분기부(44) 및 저압분기부(50)에 접속되어 있어도 된다. 따라서 가스라인(16)은, 복수의 주고압배관(42) 및 주저압배관(48)과, 고압분기부(44) 및 저압분기부(50)와, 복수의 고압개별배관(46) 및 저압개별배관(52)을 구비하여도 된다.
상술의 실시형태에 있어서는, 가스라인(16)은, 작동가스흐름의 압력손실을 제어하기 위하여 유량제어밸브(54)를 구비한다. 그러나, 작동가스흐름의 압력손실 제어요소는 유량제어밸브(54)에는 한정되지 않는다. 가스라인(16)은, 작동가스의 유량을 제어하기 위한 예를 들면 개폐밸브나 가변 스로틀과 같은 유량 제어 기구, 혹은 그 외의 압력손실 제어요소를 구비하여도 된다. 가변 스로틀은 예를 들면, 유량제어밸브(54), 가변 오리피스를 포함한다.
이러한 압력손실 제어요소는, 가스라인(16)의 개별유로의 임의의 장소(예를 들면 저압개별배관(52))에 설치되어 있어도 되고, 냉동기(14) 중에 설치되어 있어도 된다. 복수의 압력손실 제어요소가 1개의 냉동기에 설치되어 있어도 된다. 예를 들면, 복수의 유량제어밸브(54) 또는 가변 스로틀이, 고압개별배관(46) 및/또는 저압개별배관(52)에 직렬로 설치되어도 된다.
압력손실 제어요소는, 복수의 분기유로를 구비하여도 된다. 예를 들면, 압력손실 제어요소는, 가스라인(16)의 개별유로의 일부를 형성하는 제1 분기유로와, 제1 분기유로에 병렬로 설치되어 있는 제2 분기유로를 구비한다. 제1 분기유로는 개방되고, 제2 분기유로에는 유량제어밸브 등의 가변 스로틀이 설치되어 있다. 이와 같이 하면, 제1 분기유로에 의하여 개별유로에 흐름을 확보할 수 있다. 필요에 따라서 제2 분기유로의 유량을 변화시켜, 개별유로의 유량을 제어할 수 있다.
또, 극저온 냉동장치(10)는, 냉동기(14)보다 소수의 압력손실 제어요소를 구비하여도 된다. 이 경우, 복수의 냉동기(14) 중 일부의 냉동기(14)가 압력손실 제어요소와 1대 1로 대응하고 있어도 된다. 그들 일부의 냉동기(14)의 냉동능력은 압력손실 제어요소를 사용하여 제어되고, 그 외의 냉동기(14)에는 압력손실 제어요소는 사용되지 않는다. 이들 그 외의 냉동기(14)에 있어서는 열사이클 주파수 제어 또는 그 외의 냉동능력 제어가 행해져도 된다.
혹은, 복수의 냉동기(14)가 몇 개의 그룹으로 구분되고, 그룹 마다 1개의 압력손실 제어요소가 설치되며, 그 압력손실 제어요소를 사용하여 당해 그룹의 냉동기(14)의 냉동능력이 제어되어도 된다.
상술의 실시형태에 있어서는, 냉동기(14)의 구동부(36)는, 일정한 열사이클 주파수로 냉동기(14)를 운전하도록 구성되어 있다. 그러나, 구동부(36)는, 열사이클 주파수를 변경 가능하게 구성되어 있어도 된다. 냉동기(14)의 열사이클 주파수 제어와 가스라인(16)의 유량 제어를 조합함으로써, 냉동기(14)의 냉동능력의 제어 범위를 확대할 수 있다.
냉동기(14)는, 히터를 구비하여도 된다. 이 경우, 개별제어에 있어서 냉동기(14)를 승온하기 위하여 히터가 사용되어도 된다.
10: 극저온 냉동장치
12: 압축기
14: 냉동기
16: 가스라인
42: 주고압배관
46: 고압개별배관
48: 주저압배관
52: 저압개별배관
54: 유량제어밸브
58: 압축기제어부
62: 온도제어부

Claims (7)

  1. 작동가스원과,
    복수의 냉동기와,
    상기 복수의 냉동기의 각각과 상기 작동가스원과의 사이에서 작동가스를 순환시키도록 상기 작동가스원에 상기 복수의 냉동기를 병렬로 접속하는 가스라인을 구비하고,
    상기 가스라인은, 상기 복수의 냉동기 중 대응하는 냉동기의 작동가스흐름의 압력손실을 개별적으로 제어 가능한 제어요소를 구비하며,
    상기 제어요소는, 상기 대응하는 냉동기에 직렬로 설치되어 있는 것을 특징으로 하는 극저온 냉동장치.
  2. 제 1 항에 있어서,
    상기 작동가스원은, 적어도 1개의 압축기를 구비하고,
    상기 극저온 냉동장치는, 상기 압축기의 고압과 저압과의 차압을 목표압으로 제어하도록 상기 압축기의 운전주파수를 제어하기 위한 압축기제어부를 더 구비하는 것을 특징으로 하는 극저온 냉동장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 대응하는 냉동기의 냉각온도를 목표온도로 제어하도록 상기 제어요소를 제어하기 위한 온도제어부를 더 구비하는 것을 특징으로 하는 극저온 냉동장치.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 가스라인은, 상기 작동가스원에 접속되어 있는 메인유로와, 상기 메인유로에 상기 대응하는 냉동기를 접속하기 위한 개별유로를 구비하고,
    상기 제어요소는, 상기 개별유로에 설치되어 있는 가변 스로틀을 구비하는 것을 특징으로 하는 극저온 냉동장치.
  5. 제 1 항 또는 제 2 항에 기재된 극저온 냉동장치를 구비하는 크라이오펌프.
  6. 제 1 항 또는 제 2 항에 기재된 극저온 냉동장치를 구비하는 핵자기공명 화상장치.
  7. 공통의 작동가스원을 사용하여 복수의 냉동기를 동시에 운전하는 것과,
    상기 작동가스원과 상기 복수의 냉동기와의 사이의 작동가스흐름의 압력손실을 개별적으로 제어하는 것을 구비하는 것을 특징으로 하는 극저온 냉동장치의 제어방법.
KR1020140005085A 2013-03-04 2014-01-15 극저온 냉동장치, 및 극저온 냉동장치의 제어방법 KR20140109249A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013041438A JP6067423B2 (ja) 2013-03-04 2013-03-04 極低温冷凍装置、クライオポンプ、核磁気共鳴画像装置、及び極低温冷凍装置の制御方法
JPJP-P-2013-041438 2013-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160050176A Division KR101990519B1 (ko) 2013-03-04 2016-04-25 극저온 냉동장치, 및 극저온 냉동장치의 제어방법

Publications (1)

Publication Number Publication Date
KR20140109249A true KR20140109249A (ko) 2014-09-15

Family

ID=51420205

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020140005085A KR20140109249A (ko) 2013-03-04 2014-01-15 극저온 냉동장치, 및 극저온 냉동장치의 제어방법
KR1020160050176A KR101990519B1 (ko) 2013-03-04 2016-04-25 극저온 냉동장치, 및 극저온 냉동장치의 제어방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020160050176A KR101990519B1 (ko) 2013-03-04 2016-04-25 극저온 냉동장치, 및 극저온 냉동장치의 제어방법

Country Status (5)

Country Link
US (1) US9470436B2 (ko)
JP (1) JP6067423B2 (ko)
KR (2) KR20140109249A (ko)
CN (1) CN104034078B (ko)
TW (1) TWI583903B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927152B2 (en) * 2014-11-04 2018-03-27 Goodrich Corporation Multi-dewar cooling system
JP2016142468A (ja) * 2015-02-03 2016-08-08 大陽日酸株式会社 希釈冷凍装置
JP6632917B2 (ja) 2016-03-16 2020-01-22 住友重機械工業株式会社 可動テーブル冷却装置及び可動テーブル冷却システム
KR102347055B1 (ko) 2017-10-29 2022-01-03 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 상이한 제어 메커니즘을 필요로 하는 극저온 장비를 단일 운영 플랫폼에 통합하기 위한 범용 제어기
JP6886412B2 (ja) * 2018-01-29 2021-06-16 住友重機械工業株式会社 極低温冷却システム
JP6975077B2 (ja) * 2018-03-07 2021-12-01 住友重機械工業株式会社 極低温冷凍機および極低温冷凍機の給電系統
JP2020007986A (ja) * 2018-07-10 2020-01-16 住友重機械工業株式会社 クライオポンプシステム
JP7201447B2 (ja) * 2019-01-15 2023-01-10 住友重機械工業株式会社 極低温冷凍機の起動方法
KR102038415B1 (ko) * 2019-09-04 2019-10-30 현민지브이티 주식회사 크라이오제닉 워터펌프의 제어 방법
CN112728821B (zh) * 2019-10-14 2022-07-08 广东芬尼克兹节能设备有限公司 压缩机超低温安全运行控制方法、装置、设备及存储介质
JP2022076206A (ja) * 2020-11-09 2022-05-19 住友重機械工業株式会社 極低温冷凍機および極低温冷凍機の起動方法
CN112856873A (zh) * 2021-01-18 2021-05-28 苏州龙雨电子设备有限公司 一种精准控制气体温度的设备
KR20220104414A (ko) 2021-01-18 2022-07-26 경남정보대학교 산학협력단 냉동기용 차압 유지 장치
US20220397322A1 (en) * 2021-06-15 2022-12-15 Applied Materials, Inc. Cryogenic Cooling System

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640082A (en) * 1970-06-08 1972-02-08 Hughes Aircraft Co Cryogenic refrigerator cycle
US4471625A (en) * 1982-12-07 1984-09-18 Kabushiki Kaisha Suzuki Shokan Gas cycle refrigerator
JP2926853B2 (ja) 1989-03-30 1999-07-28 アイシン精機株式会社 マルチヘツドクライオポンプ
JPH0315676A (ja) * 1989-06-13 1991-01-24 Daikin Ind Ltd マルチ式極低温冷凍機
JP2927064B2 (ja) 1991-08-08 1999-07-28 ダイキン工業株式会社 マルチ形極低温冷凍機
JP3573384B2 (ja) * 1996-02-20 2004-10-06 住友重機械工業株式会社 極低温冷凍装置
JPH11281181A (ja) 1998-03-31 1999-10-15 Sumitomo Heavy Ind Ltd 蓄冷式冷凍装置
JP2000161802A (ja) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd マルチ型パルス管冷凍機
JP2001248927A (ja) * 2000-03-07 2001-09-14 Sumitomo Heavy Ind Ltd パルス管冷凍機を用いた低温装置
US7127901B2 (en) * 2001-07-20 2006-10-31 Brooks Automation, Inc. Helium management control system
JP3754992B2 (ja) 2001-08-03 2006-03-15 住友重機械工業株式会社 マルチシステム冷凍機の運転方法、装置及び冷凍装置
JP2003090639A (ja) * 2001-09-17 2003-03-28 Sumitomo Heavy Ind Ltd 複数台の極低温冷凍機の運転装置
JP2007303815A (ja) 2002-04-18 2007-11-22 Sumitomo Heavy Ind Ltd 極低温冷凍機の運転方法
DE10393146B4 (de) 2002-08-20 2015-07-02 Sumitomo Heavy Industries, Ltd. Tieftemperaturkühlvorrichtung
JP3976649B2 (ja) * 2002-08-26 2007-09-19 住友重機械工業株式会社 極低温冷凍装置、及び、その運転方法
DE502004007169D1 (de) * 2003-08-20 2008-06-26 Oerlikon Leybold Vacuum Gmbh Vakuumvorrichtung
TWI338768B (en) * 2007-11-14 2011-03-11 Ind Tech Res Inst Frequency conversion control method and device thereof
WO2010038415A1 (ja) 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 真空排気システム、真空排気システムの運転方法、冷凍機、真空排気ポンプ、冷凍機の運転方法、二段式冷凍機の運転制御方法、クライオポンプの運転制御方法、二段式冷凍機、クライオポンプ、基板処理装置、電子デバイスの製造方法

Also Published As

Publication number Publication date
JP6067423B2 (ja) 2017-01-25
US9470436B2 (en) 2016-10-18
CN104034078B (zh) 2017-03-22
KR20160054439A (ko) 2016-05-16
JP2014169813A (ja) 2014-09-18
KR101990519B1 (ko) 2019-06-18
US20140245754A1 (en) 2014-09-04
TW201435285A (zh) 2014-09-16
CN104034078A (zh) 2014-09-10
TWI583903B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
KR101990519B1 (ko) 극저온 냉동장치, 및 극저온 냉동장치의 제어방법
TWI512195B (zh) Cryogenic pump system, cryopump system operation method and compressor unit
US6655154B2 (en) Operation method and operation apparatus for multi-system refrigerators, and refrigerating apparatus
CN104653434B (zh) 低温泵***及低温泵***的运行方法
KR20050058363A (ko) 극저온 냉동기
EP2729705B1 (en) Gas balanced brayton cycle cold water vapor cryopump
CN108474371B (zh) 双氦气压缩机
JP4445187B2 (ja) 極低温冷凍機
US20190011169A1 (en) Movable platen cooling apparatus and movable platen cooling system
JP2007303815A (ja) 極低温冷凍機の運転方法
JP2008138979A (ja) 冷凍装置
JP3573384B2 (ja) 極低温冷凍装置
JP2012202590A (ja) 冷凍装置
US20060272338A1 (en) Vacuum device
JP2004301445A (ja) パルス管冷凍機
JP2017214936A (ja) クライオポンプシステム、及びクライオポンプシステムの運転方法
KR20220164842A (ko) 극저온 펌프 시스템 및 극저온 펌프 시스템 제어방법
JP2017122524A (ja) 冷凍システム
JP2016121829A (ja) 冷凍装置及びその制御方法
KR20230071991A (ko) 크라이오펌프시스템 및 크라이오펌프시스템의 운전방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment