KR20130023251A - 온실용 재배 시스템 - Google Patents

온실용 재배 시스템 Download PDF

Info

Publication number
KR20130023251A
KR20130023251A KR1020127030857A KR20127030857A KR20130023251A KR 20130023251 A KR20130023251 A KR 20130023251A KR 1020127030857 A KR1020127030857 A KR 1020127030857A KR 20127030857 A KR20127030857 A KR 20127030857A KR 20130023251 A KR20130023251 A KR 20130023251A
Authority
KR
South Korea
Prior art keywords
heat
greenhouse
heat exchanger
heat storage
accumulator
Prior art date
Application number
KR1020127030857A
Other languages
English (en)
Inventor
아키라 사이토
타카노부 아리타
타카토 나고야
Original Assignee
가부시키가이샤 세이와
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010122536A external-priority patent/JP5830211B2/ja
Application filed by 가부시키가이샤 세이와 filed Critical 가부시키가이샤 세이와
Publication of KR20130023251A publication Critical patent/KR20130023251A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Greenhouses (AREA)

Abstract

저(低)비용으로 에너지 절약과 고수량(高收量)을 달성할 수 있는 온실용 재배 시스템을 제공한다. 온실(10) 내에, 온실 내 공기와 내부에 충전된 축열체와의 사이에서 열교환을 촉진시키는 전열판(32)이 측면에 설치되어 있는 열교환·축열기(30)를 배치함과 함께, 히트 펌프(50)를 배치한 구성이다. 열교환·축열기(30)의 전열판(32)을 통하여, 낮 동안의 온실 내의 잉여열을, 당해 열교환·축열기(30) 내에 충전된 축열체와 온실 내 공기와의 온도차로 효율 좋게 열교환할 수 있다. 이에 따라, 히트 펌프(50)의 가동률을 줄여, 낮 동안의 냉방에 기여할 수 있고, 환기 시간의 단축화에 공헌할 수 있음과 함께, 야간은 축열된 열을 난방에 제공할 수 있어, 냉난방 비용을 크게 삭감할 수 있다.

Description

온실용 재배 시스템{GREENHOUSE CULTIVATION SYSTEM}
본 발명은, 온실용 재배 시스템에 관한 것이다.
온실은, 본래적으로 저온기(低溫期)에 있어서의 식물의 생육 촉진을 목적으로 하여 설치되는 것으로, 태양 에너지를 열로 바꾸는 기능이 매우 높다. 이 때문에, 동계(冬季)라도, 일사(日射)가 강해지는 낮 동안은 난방의 필요는 없으며, 오히려, 천창(天窓)을 개방해 배기하여 환기에 의해 온실 내 온도를 낮추는 것이 행해지고 있다. 그리고, 기온이 저하되는 야간은 난방 설비를 가동해 온실 내를 난방하여, 온도 조절한다. 그러나, 이러한 난방 제어에 관해서는, 경비 절감이나 환경 보전의 요청으로부터, 연료비나 전기세를 저감하는 것이 요구되고 있다. 한편, 작물의 재배에 있어서, 단위 면적당의 작물의 수량(收量) 증가, 수익 개선을 도모하는 것이 항상 요구되고 있다.
이러한 점을 감안하여, 예를 들면, 비특허문헌 1에 기재되어 있는 바와 같이, 네덜란드에서는, 지하 약 100m 전후에 존재하는 거의 움직이지 않는 수역인 대수층(aquifer)을 냉수와 온수의 축열 덩어리로서 이용하는 것이 행해지고 있다. 하계(夏季)의 태양 에너지로 따뜻해진 온실 내의 열을 히트 펌프로 대수층에 축열하여 온실 내를 냉방하고, 동계에는 이 대수층의 열을 사용하여 히트 펌프로 온실 내를 난방한다. 이러한 구성으로 함으로써, 연간을 통하여 생각한 경우에, 난방 설비의 운전 시간의 단축화가 도모되어, 난방 비용을 저감하는 것이 가능해진다. 또한, 히트 펌프에 의해 대수층의 열을 이용함으로써 저비용으로 온도 제어할 수 있기 때문에, 연간을 통하여 환기를 행하는 시간도 짧게 끝나며, 천창이나 측창 등의 환기 설비에 의한 환기를 일절 행하지 않는 폐쇄형, 혹은, 환기 설비에 의한 환기를 필요 최소한으로 억제한 반폐쇄형의 온실로 할 수 있다. 폐쇄형이나 반폐쇄형의 온실로 하여, 이산화탄소를 적극적으로 시용(施用;application)함으로써, 온실 내의 이산화탄소 농도를 대기 중 농도의 2배~4배로 유지할 수 있어, 작물의 광합성 속도가 증가하여, 품질, 수량의 향상을 도모할 수 있다. 이산화탄소 농도를 대기 중 농도보다 높임으로써 광합성 속도가 증가하는 것은, 예를 들면, 비특허문헌 2에도 기재되어 있다.
「환경 보전과 고수량(高收量)을 목표로 하는 네덜란드의 반폐쇄형 하우스」(사이토 아키라), 시설과 원예 144호, p25~31, 2009년 1월 30일 발행 「딸기에 대한 CO2 시용의 이론」(오다 야사부로), 1997년도 딸기 세미나 기요(紀要)와 그 외, p6~10
그러나, 비특허문헌 1의 기술은, 상기와 같은 대수층이 가까이에 존재하는 장소에서밖에 실시할 수 없고, 그러한 대수층이 거의 없는 일본에 있어서는 실용적이지 않다. 또한, 비특허문헌 2에서는, 이산화탄소를 시용하여 이산화탄소 농도를 올려, 일출부터 방열 환기 개시까지의 시간대에 있어서의 광합성을 촉진시킬 수 있지만, 환기 개시 후의 낮 동안에 있어서 이산화탄소 농도를 높게 유지하는 것에 대해서는 언급되어 있지 않다.
본 발명은, 상기를 감안하여 이루어진 것으로, 대수층을 이용하는 일 없이, 냉난방 비용의 저감, 에너지 절약 효과의 향상을 도모할 수 있는 온실용 재배 시스템을 제공하는 것을 과제로 한다. 그리고, 이러한 에너지 절약 효과의 향상에 더하여, 낮 동안에 있어서도 이산화탄소 농도 및 습도를 적절히 유지함으로써 작물의 품질 향상, 수량 향상을 도모할 수 있는 온실용 재배 시스템을 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위해, 본 발명의 온실용 재배 시스템은, 온실 내에 배치되어, 온실 내 공기와 내부에 충전된 축열체와의 사이에서 열교환을 촉진시키는 전열부가 측면에 설치되어 있는 열교환·축열기와, 상기 열교환·축열기 내의 축열체에 열을 수수(授受)하는 히트 펌프를 구비하는 것을 특징으로 한다.
상기 히트 펌프가 온실 내에 설치되는 것인 것이 바람직하다. 상기 전열부는, 단면(斷面)이 파상(波狀)의 판 형상 부재로 이루어지고, 각 산곡부(山谷部)가 바닥면과 대략 수평이 되는 방향으로 배치되어 있는 것이 바람직하며, 게다가, 상기 전열부는, 열전도율 50W/(mk)~300W/(mk)의 범위의 소재로 형성되어 있는 것이 바람직하다.
상기 열교환·축열기는, 단면폭에 대한 높이의 비가 1보다 큰 것이 바람직하다. 상기 열교환·축열기가, 상기 온실 내에, 지표(地表)로부터 소정의 높이에 위치하는 재배 베드(growing bed)의 하방에 설치된 것인 것이 바람직하다. 상기 열교환·축열기는, 단면 폭방향으로 소정 간격을 두고 배치된 한 쌍의 다리 부재 사이의 내측에 배치되어 있음과 함께, 상기 한 쌍의 다리 부재 사이로서, 상기 열교환·축열기의 상방에 빔 부재가 수평으로 걸쳐지고, 이 수평으로 걸쳐진 빔 부재 상에 재배 베드가 지지되는 구조인 것이 바람직하다.
상기 열교환·축열기의 측면에 위치하는 전열부를 피복 가능한 반사 시트가 설치되어 있는 것이 바람직하다. 상기 반사 시트는, 상기 전열부로부터 소정 간격 이간(separation)된 위치에 있어서, 상기 전열부를 덮은 상태와 덮지 않은 상태가 되도록 개폐 가능하게 설치되어 있는 것이 바람직하다. 상기 열교환·축열기와 반사 시트의 사이에, 이산화탄소를 공급 가능한 송풍 도관이 설치되어 있는 것이 바람직하다.
상기 온실 내의 지중에, 지중 축열부가 설치되어 있는 것이 바람직하고, 상기 열교환·축열기는 저면이 지면에 접하여 설치되고, 이 저면이 상기 지중 축열부와의 사이에서 열교환 가능한 전열부를 구성하고 있는 것이 바람직하다.
본 발명은, 온실 내에, 온실 내 공기와 내부에 충전된 축열체와의 사이에서 열교환을 촉진시키는 전열부가 측면에 설치되어 있는 열교환·축열기를 배치한 구성이다. 열교환·축열기의 측면에 전열부가 설치되어 있기 때문에, 예를 들면 재배 베드가 배치되는 상면에 전열부를 설치하는 경우와 비교하여, 온실 내 공기와의 접촉 면적을 넓게 확보할 수 있어, 낮 동안의 온실 내의 잉여열을, 이 전열부를 통하여, 당해 열교환·축열기 내에 충전된 축열체와 온실 내 공기와의 온도차로 효율 좋게 열교환할 수 있다. 이에 따라, 히트 펌프의 가동률을 줄여, 낮 동안의 냉방에 기여할 수 있고, 환기 시간의 단축화에 공헌할 수 있음과 함께, 야간은 축열된 열을 난방에 제공할 수 있어, 냉난방 비용을 크게 삭감할 수 있다.
또한, 본 발명은, 상기 열교환·축열기 내의 축열체에 열을 수수하는 히트 펌프도 갖고 있다. 따라서, 낮 동안의 실온에 따라서, 히트 펌프를 가동시킴으로써, 태양열을 집열하여 축열체에 보존유지(保持)해 둘 수 있고, 축열체에 축열한 열을 야간의 난방에 제공하는 것이 가능해진다. 본 발명은, 히트 펌프뿐만 아니라, 상기한 열교환·축열기를 갖고 있기 때문에, 축열체의 온도가 실온보다 낮은 경우는 자연스럽게 집열한다. 자연 집열만으로는 소정의 실온을 보존유지할 수 없는 경우에만 히트 펌프를 가동시키면 좋고, 또한 난방에 의해 축열체가 저온이 된 경우라도, 전열부의 온도와 주변 공기의 온도와의 열 낙차(落差)에 의해 익일의 자연 집열 효율이 높아지기 때문에, 히트 펌프에 의한 집열(냉방) 시간을 짧게 할 수 있어, 대폭으로 냉난방 비용을 삭감할 수 있다. 또한, 열교환·축열기 및 히트 펌프와의 조합에 의해, 냉방 비용을 억제하면서, 낮 동안의 실온을 소정 온도로 유지할 수 있기 때문에, 냉각을 위한 환기를 불필요로 할 수 있다. 그 결과, 아침뿐만 아니라, 낮 동안에 있어서도, 실내의 이산화탄소 농도, 습도를 적절히 유지하는 것을 가능하게 하여 광합성 속도를 높일 수 있다. 또한, 환기가 불필요해짐으로써 병해충의 진입 방지 효과가 높아져, 농약의 사용량, 살포 시간을 줄일 수 있다.
또한, 열교환·축열기를 재배 베드의 하방에 설치한 구성으로 함으로써, 열교환·축열기를 배치하기 위한 특별한 스페이스를 필요로 하지 않아, 온실 내의 유효 재배 면적을 감소시키는 일이 없다. 또한, 야간에 실온이 축열 온도보다도 저하되면 열교환·축열기의 측면에 위치하는 전열부로부터의 대류와 방사에 의해, 식물을 따뜻하게 한다. 재배 베드의 하방에 배치됨으로써, 열교환·축열기의 축열체의 위치가, 작물의 작부(作付) 위치와 평면적으로 중첩되게 되기 때문에, 실온의 급격한 변화에 의한 작물로의 영향을 완화할 수 있다.
또한, 열교환·축열기가 재배 베드의 하방에 있기 때문에, 열교환·축열기의 중량을 직접 지면에 전달하는 것이 가능해져, 특별한 지지 구조물을 필요로 하지 않는다. 지면 상에 직접 설치되기 때문에, 열교환·축열기의 저부를 통하여 지중과 열교환이 행해진다. 이에 따라, 지중의 온도는 안정되기 때문에, 지중 축열부를 설치한 경우에, 당해 지중 축열부를 피복하는 단열 구조를 설치하지 않아도 되어, 시공 비용의 저감에 이바지한다.
도 1은 본 발명의 온실용 재배 시스템의 일 실시 형태를 나타내는 개념도이다.
도 2는 열교환·축열기의 구성을 나타낸 사시도이다.
도 3(a)는 재배 베드하의 열교환·축열기의 구조의 일 예를 나타내는 단면도이고, 도 3(b)는 결로 물홈통 부근의 구조를 나타낸 확대도이다.
도 4는 재배 베드하에 설치한 열교환·축열기에 더하여, 지중 축열부를 설치한 실시 형태의 일부를 나타낸 도면이다.
도 5는 재배 베드하의 열교환·축열기의 구조의 일 예와 지중 축열부를 나타내는 단면도이다.
도 6은 상기 실시 형태의 온실용 재배 시스템의 1일에 있어서의 재배 환경의 제어 과정을 나타낸 도면이다.
도 7은 상기 실시 형태의 온실용 재배 시스템의 연간을 통한 재배 환경 제어 방법의 일 예를 설명하기 위한 도면이다.
도 8(a), (b)는 히트 펌프를 온실 외에 설치한 실시 형태를 나타낸 도면이다.
(발명을 실시하기 위한 형태)
이하, 본 발명의 온실용 재배 시스템의 실시 형태에 대해서 설명하지만, 본 발명은 이하의 실시 형태에 한정되는 것은 아니다.
도 1의 실시 형태에 나타내는 바와 같이, 본 실시 형태의 온실용 재배 시스템(1)은, 온실(10)의 내부에 설치된다. 온실(10)은, 예를 들면, 강재를 구체(軀體)로 하여, 합성 수지의 필름 또는 유리로 외벽을 피복하여 이루어지고, 천창이나 측창 등이 설치되어, 천창 등을 개폐함으로써 환기할 수 있게 되어 있다.
온실(10) 내에는, 재배 베드(20)가 설치된다. 본 실시 형태에서는, 도 3에 나타낸 바와 같이, 지면으로부터 1~1.5m 정도의 높이로 설치한 가대(架臺;21) 상에 재배 베드(20)를 지지시키고 있다. 가대(21)는, 후술의 열교환·축열기(30)를 사이에 끼우도록, 즉, 열교환·축열기(30)의 폭방향으로 소정 간격을 두고 배치되는 한 쌍의 다리 부재(21a, 21b)와, 이 다리 부재(21a, 21b) 사이에 걸쳐지는 빔 부재(21c)를 갖고, 이들이, 열교환·축열기(30)의 길이 방향으로 소정 간격마다 설치된다. 빔 부재(21c)는, 단면 대략 コ자 형상으로 형성되고, 그 중의 상하에 마주보는 각 판부에 있어서의 각 단부 부근에 상하 방향으로 관통하는 구멍부가 설치되어 있고, 이 구멍부에 다리 부재(21a, 21b)가 삽입 통과된다. 가대(21)가 이러한 구성이기 때문에, 시공시에는, 빔 부재(21c)를 정규로 하여 지면 상에 위치시켜 두고, 그의 구멍부에 다리 부재(21a, 21b)를 삽입 통과시켜 집어넣고, 그 후, 빔 부재(21c)를 상방으로 비켜 놓아, 수준기(도시하지 않음)를 이용하여 빔 부재(21c)를 수평으로 세트한다. 이에 따라, 다리 부재(21a, 21b)를 수직으로 세워 설치할 수 있기 때문에, 용이하게 시공할 수 있음과 함께, 빔 부재(21c)가 단면 대략 コ자 형상이기 때문에, 외력에 대한 저항력이 강하여, 가대(21) 전체가 변형되기 어렵다. 재배 베드(20)는, 이와 같이 하여 배치된 가대(21)의 빔 부재(21c) 상에, 길이 방향을 따라 올려 놓여진다. 이러한 소위 높게 설치된 베드는, 작업자의 자세가 편해지는 등의 메리트가 있음과 함께, 본 실시 형태의 가대(21)는 상기와 같은 간단한 구성이면서, 재배 베드(20)의 중량에 의한 왜곡이나 휨 등의 변형이 발생하기 어렵다.
재배 베드(20)는, 지면으로부터 소정의 높이가 되도록, 온실(10) 내에 매달아 지지해도 좋다. 또한, 본 출원인이 일본공개특허공보 2004-254688호 등에 있어서 제안하고 있는 바와 같이, 작업성, 일조 등을 고려하여 재배 베드(20)를 상하이동 가능하게 매달아 지지한 것이라도 좋다.
본 실시 형태의 온실용 재배 시스템(1)은, 이러한 재배 베드(20)를 갖는 온실(10) 중에 설치되고, 열교환·축열기(30)와 히트 펌프(50)를 구비하여 이루어진다. 열교환·축열기(30)는 온실(10)의 어느 장소에 설치해도 좋지만, 본 실시 형태와 같이, 소정 높이에 설치한 재배 베드(20)의 하방에 설치하는 것이 바람직하다. 즉, 상기한 가대(21)를 구성하는 한 쌍의 다리 부재(21a, 21b)의 내측으로서, 빔 부재(21c)의 하방에 배치하는 것이 바람직하다. 열교환·축열기(30)를 재배 베드(20)의 하방에 배치함으로써, 열교환·축열기(30)를 설치해도, 온실(20) 내에 있어서의 유효 재배 면적을 감소시키는 일이 없어, 공간의 유효 이용을 도모할 수 있다.
열교환·축열기(30)는, 도 3및 도 4에 나타낸 바와 같이, 가대(21)의 하방 공간에 설치되고, 축열체가 충전된 단면 대략 사각형 형상으로 형성되어 있다. 본 실시 형태의 열교환·축열기(30)는, 축열체(열매체)로서 물을 이용하고 있다. 열교환·축열기(30)의 측면에는, 방사열을 산란하기 쉽도록 전열부가 설치되어 있다. 전열부는, 열교환·축열기(30)를 구성하는 틀체 그 자체라도 좋고, 열교환·축열기(30)를 구성하는 틀체와는 별도로, 당해 틀체의 외면을 둘러싸도록 설치한 것이라도 좋다. 본 실시 형태에서는, 열교환·축열기(30)의 측면을 형성하는 부재 자체를 단면 파상의 전열판(heat transfer plate;32)으로 구성하여, 측면 전체를 전열부로서 구성하고 있다.
열교환·축열기(30)는, 폭 0.3~1m, 길이 30~50m, 높이 1~1.5m의 범위로 형성되는 것이 바람직하다. 이에 따라, 온실 면적 1000㎡당에 대해서 10세트 정도를, 예를 들면 병렬로 배치하면, 전체로 100t 이상의 물을 보존유지할 수 있어, 약간의 수온 상승으로도 큰 열에너지를 확보할 수 있다. 이러한 형상이기 때문에, 대향하는 2개의 측면을 전열부로 함으로써, 온실 내 공기와의 열교환에 필요로 하는 접촉 면적을 크게 확보할 수 있다.
단, 열교환·축열기(30)는, 폭에 대한 높이의 비가 1보다 큰 관계, 즉, 높이보다도 폭이 좁은 치수로 형성되어 있는 것이 바람직하다. 폭 쪽이 좁음으로써, 축열체인 물의 자연 대류가 발생하기 쉬워지고, 수온이 편차 없이 균등화되어, 열교환 효율도 높아진다.
전열판(32)은, 단면이 파형 형상으로 형성되어 있는 것이 바람직하고, 그에 따라, 온실 내 공기와의 열교환에 필요로 하는 접촉 면적을 더욱 크게 확보할 수 있다. 이 경우, 전열판(32)은, 각 산곡부가 바닥면(지면)에 대략 수평이 되는 방향으로 배치된다. 상기와 같이 내부에는 다량의 물이 보존유지되지만, 이러한 방향으로 배치함으로써 수압에 의한 전열판의 변형을 억제하고 있다.
전열판(32)으로서는, 열전도율 50W/(mk)~300W/(mk)의 범위인 것이 바람직하다. 열교환·축열기(30)는, 온실 내 공기와 축열체와의 열교환을 촉진시킬 수 있음과 함께, 야간의 난방에 제공하기 위한 축열성과의 밸런스를 도모할 필요가 있으며, 이 범위를 하회하면, 온실 내 공기와의 열교환이 행해지기 어려워지고, 이 범위를 상회하면, 보온 효율이 저하된다. 열교환 효율과 보온 효율과의 밸런스를 고려하면, 상기 열전도율은, 60W/(mk)~100W/(mk)의 범위가 보다 바람직하고, 70W/(mk)~90W/(mk)의 범위가 더욱 바람직하다. 상기 범위의 열전도율의 전열판(32)으로서는, 예를 들면, 철판이나 알루미늄판으로 이루어지는 두께 0.25~1.5㎜의 판 형상 부재 등을 들 수 있다. 단, 수압에 의한 변형 방지에 더하여, 비용을 고려하면, 두께 0.25~0.8㎜의 철판이 바람직하다.
전열판(32)은 또한, 두께 0.25~0.8㎜의 철판으로 구성한 경우, 소망하는 내(耐)수압성을 갖게 하기 위해, 산곡부에 있어서의 인접하는 산부의 정점 간의 간격이 30~80㎜, 산부의 정점과 곡부의 정점(곡저(谷底))과의 거리가 7~20㎜의 범위로 형성된 것이 바람직하다.
열교환·축열기(30)는, 전열판(32)으로 구성되는 측면과, 길이 방향의 양단부에 설치되는 단벽 부재(35)에 의해 둘러싸여 형성되고, 전열판(32)의 내면, 단 벽 부재(35)의 내면 및, 전열판(32) 간에 위치하는 지면은 플라스틱 시트에 의해 피복되어, 그 플라스틱 시트의 내측에, 축열체로서의 물이 충전된다. 따라서, 열교환·축열기(30)의 저면(36)은, 지면 상에 위치하는 플라스틱 시트에 의해 형성되게 된다. 저면(36)이 플라스틱 시트이기 때문에, 열전도율이 높아, 후술하는 지중 축열부(60)와의 사이에서의 열교환이 촉진된다. 즉, 본 실시 형태에서는 저면(36)도 전열부를 구성하고 있다.
또한, 열교환·축열기(30)의 측면을 형성하는 전열판(32)의 하부에는, 당해 열교환·축열기(30)의 측면을 따라 결로 물홈통(40)이 배치되어 있다(도 3(b) 참조). 전열판(32)의 표면 온도가 공기의 이슬점 온도 이하가 되면 수증기가 결로되기 때문에, 전열판(32)을 설치함으로써 제습 작용을 담당하게 할 수 있음과 함께, 결로 물홈통(40)에 의해 결로수를 회수함으로써 재증발을 막아, 결로수의 재이용을 도모할 수 있다.
전열부는, 열교환·축열기(30)의 적어도 측면(전열판(32))에 설치하는 것이 바람직하지만, 이것에 한정되지 않고 상기한 바와 같이 저면(36)을 전열부로서 구성할 수도 있고, 또한, 열교환·축열기(30)의 상면도 전열부로서 구성할 수도 있다. 측면이나 상면을 전열부로 한 경우에는, 그 상부의 재배 베드(20)의 작물에 방사열을 작용시키기 쉬워진다.
전열판(32)의 외측에는, 당해 전열판(32)을 덮는 반사 시트(33)가 설치되어 있다. 예를 들면, 가대(21)를 구성하는 빔 부재(21c)의 측방에, 열교환·축열기(30)에 대략 평행하게 배치한 권취축(33a)을 설치하고, 이 권취축(33a)에 반사 시트(33)의 상연(上緣)을 감아, 당해 권취축(33a)을 회전시켜 감아 올리거나 되감거나 함으로써, 상하 방향으로 개폐 가능하게 설치되어 있다. 반사 시트(33)에 의해 열교환·축열기(30)의 측면을 덮은 상태로 하면, 열교환·축열기(30)의 물이 태양광에 의해 급격하게 온도 상승하거나, 열교환·축열기(30)로부터의 여분의 방사가 이루어지거나 하는 것을 억제할 수 있다.
전열판(32)과 반사 시트(33)와의 사이에는, 송풍 도관(70)이 설치되어 있다. 이 송풍 도관(70)은, 바람직하게는, 이산화탄소 발생기(도시하지 않음)에 연결됨과 함께, 송풍 팬(도시하지 않음)의 구동에 의해 이산화탄소를 공급한다. 반사 시트(33)를 폐쇄 상태(열교환·축열기(30)의 측면을 덮은 상태)로 해 둠으로써, 이산화탄소는, 전열판(32)과 당해 반사 시트(33)와의 극간(gap)을 통하여, 재배 베드(20)측으로 유도되기 쉬워지기 때문에, 작물 근방에 있어서의 이산화탄소 농도를 대기 중 농도보다도 높은 농도로 유지하는 것이 가능하다. 또한, 이산화탄소 농도는, 대기 중 농도의 2배~4배의 농도로 하는 것이 바람직하다. 또한, 송풍 팬을 설치함으로써, 전열판(32)의 방열 촉진, 고온 고습도의 상태에서의 전열판(32)으로의 결로 발생을 촉진하여, 작물의 최적 환경 만들기에 공헌한다.
온실 내의 다른 하나의 집열 장치로서 본 실시 형태의 온실용 재배 시스템(1)에 조립된 히트 펌프(50)는 실내 공기를 저온 열원으로 하고, 열교환·축열기(30)의 축열체(열매체)인 물을 고온측 열원으로 하는 것에 특징이 있다. 열교환·축열기(30)와 히트 펌프(50)의 열교환기(53)는 배관(51)으로 연결되고, 낮 동안의 히트 펌프 집열 작동시는 온실 내를 냉각하여, 제거된 열은 열교환·축열기(30)에 저류된다. 또한, 본 실시 형태에서는, 배관(51) 내를 열교환·축열기(30)의 축열체인 물이 유통되도록 하고 있지만, 배관(51)을, 열교환·축열기(30) 내를 통과하는 루프 형상 브라인 파이프(brine pipe)로서 구성하고, 당해 브라인 파이프 내의 열매체(물)를 열교환기(53)에 있어서 가열하여, 그 열이 열교환·축열기(30) 내의 축열체(물)에 전달되는 구성으로 하는 것도 가능하다.
온실(10)은, 본래적으로 태양 에너지를 열로 변환하는 높은 기능을 구비하고 있으며, 낮 동안에는 설정 온도를 초과한 잉여열이 발생하고, 통상은 환기창으로부터 그 잉여열을 배출함으로써 온실(10) 내의 공기를 환기하여 과도한 온도 상승을 억제하고 있다. 이에 대하여, 본 실시 형태에서는, 설정 온도에 도달할 때까지는 열교환·축열기(30)가 자연 집열하고, 설정 온도를 초과한 잉여열은 히트 펌프(50)를 작동시켜 냉방함으로써, 환기로 배출해야 할 잉여열을 히트 펌프(50)로 집열하고, 또한, 이 열을, 히트 펌프(50)를 통하여 열교환·축열기(30)의 축열체(물)에 축열하고 있다. 난방이 필요한 야간에는, 열교환·축열기(30)로부터의 자연 방열에 의해 난방되고, 또한, 필요한 경우에는, 히트 펌프(50)를 작동시켜, 열교환·축열기(30)로부터 열을 퍼내어, 히트 펌프(50)로부터 따뜻한 공기를 온실(10) 내로 도입하여 난방한다. 특히 야간 난방에서는, 열교환·축열기(30) 내의 축열체(물)가 히트 펌프(50)의 열원인 점에서, 온실 외의 공기를 열원으로 하는 히트 펌프와 같은 증발기의 결상(結霜)에 의한 가온 성능 저하도 없으며, 히트 펌프의 비효율인 제상(除霜) 운전의 필요도 없다. 야간의 난방 부하의 증대는 필연적으로 축열체(물)의 온도 저하가 된다. 이 온도 저하분은 익일의 맑은 날인 경우의 열교환·축열기(30)의 전열판(32)의 전열면 온도와 주변 공기 온도의 열낙차의 증대가 되어, 집열량이 증대하고, 히트 펌프의 부담을 줄이는 연동 효과가 된다. 또한, 본 발명자의 실험에 의하면, 열교환·축열기(30)와 히트 펌프(50)의 축열체(물)를 공용하여 연동시키고 있기 때문에, 시스템에 투입한 에너지와, 시스템에 의해 획득한 에너지의 비(比)로부터, 성적 계수는 개개의 요소를 단독으로 운전한 경우에 비교하여 현저하게 향상되었다. 실시 운전 성적 계수 데이터는 히트 펌프만의 운전의 5에 대하여, 약 11이 되었다.
본 실시 형태의 온실용 재배 시스템(1)은, 열교환·축열기(30)와 히트 펌프(50)를 이용하고 있기 때문에, 온실(10)의 냉방 및 난방에 필요한 전기 에너지를 매우 적게 할 수 있어, 에너지 절약이 된다. 또한, 환기창 등을 개방하여 환기에 의해 온실(10) 내의 온도를 낮추는 경우라도, 환기창 등을 개방하는 타이밍을 늦추거나, 토탈 개방 시간을 짧게 하거나, 또한, 계절(동계)에 따라서는, 1일중, 완전히 폐쇄하거나 할 수도 있다. 이 결과, 종래와 비교하여, 광합성에 필요한 온실 내 이산화탄소 농도 및 습도를 대기 중 농도보다도 높게 유지할 수 있어, 환기창 등으로부터의 병해충의 침입도 적어져, 작물의 품질, 수량의 향상을 도모할 수 있다.
또한, 본 실시 형태에서는, 열교환·축열기(30)가, 상기한 바와 같이, 재배 베드(20)의 하방에 배치되어 있다. 이 때문에, 전열판(32)의 방사 및 대류열이 작물에 작용하기 쉽다. 특히, 반사 시트(33)를 폐쇄 상태로 해 두면, 전열판(32)의 방사 및 대류열을 열교환·축열기(30)의 상방에 위치하는 재배 베드(20)에서 생육하는 작물에 의해 작용시키기 쉽다. 이 결과, 예를 들면, 동계 야간에 있어서, 온실(10) 내 전체가 소정의 온도에 이르고 있지 않아도, 작물 및 그 주변을 직접 온도 제어할 수 있기 때문에, 본 실시 형태의 전열판(32)을 구비한 열교환·축열기(30)를 이용하면, 에너지 절약화의 점에서 바람직함과 함께, 작물의 고품질화, 고수량화의 달성에 더욱 기여한다.
본 실시 형태의 온실용 재배 시스템(1)은, 도 4 및 도 5에 나타낸 바와 같이, 열교환·축열기(30)에 더하여 지중 축열부(60)를 설치한 구성으로 하는 것이 바람직하다. 열교환·축열기(30)를 배치하는 재배 베드(20)의 하방 공간의 설치 스페이스에는 한도가 있기 때문에, 열교환·축열기(30)의 축열량만으로는 용량적으로 불충분한 경우, 본 실시 형태와 같이 지중 축열부(60)를 설치하는 것이 바람직하다. 또한, 하계에 있어서 냉방에 의해 모은 열을 축열할 때에는 그 열이 작물에 작용하지 않도록 지중 축열부(60)에 축열하는 것이 적합하다.
지중 축열부(60)는, 온실(10)의 바닥면(온실(10)의 설치 면적의 범위) 외에 설치하는 것도 가능하지만, 히트 펌프(50)를 온실(10) 내에 설치하고 있고, 배관(51)의 설치 위치 등을 고려하면 온실(10)의 바닥면 내에 설치하는 것이 바람직하며, 도 4 및 도 5에 나타낸 실시 형태에서는, 열교환·축열기(30)의 바로 아래에 설치하고 있다. 온실(10)의 바닥면 내에 설치한 경우, 지중 축열부(60)로부터 온실(10) 내로의 방열도 자연스럽게 작용시킬 수 있다는 이점도 있다. 또한, 본 실시 형태에서는, 열교환·축열기(30)의 저면(36)은, 열전도율이 높은 플라스틱 시트에 의해 형성되어, 저면(36)도 전열부를 구성하고 있다. 따라서, 지중 축열부(60)를 열교환·축열기(30)의 바로 아래에 설치하면, 양자 간에서의 열교환을 촉진할 수 있다. 이 때문에, 지중 축열부(60)에 축열된 열을 열교환·축열기(30)의 축열체가 집열하여 야간 난방 등에 이용할 수 있다.
또한, 열교환·축열기(30)는, 상기와 같이 낮 동안과 야간이라는 일(日) 단위에서의 축열에 이용하고 있지만, 지중 축열부(60)는 그것보다도 긴 사이클(예를 들면, 주(週) 단위)에서의 축열도 가능하다. 지중 축열부(60)로서, 본 실시 형태에서는 토양 축열 방식을 채용하고 있다. 토양 축열은, 토양(지반)을 축열체로 하는 고체 현열(顯熱) 축열이다. 지반은 반무한(semi-infinite) 연속 고체로서, 그대로의 형태로 이용하는 경우도 있고, 단열 덮개를 설치하여 축열 범위를 한정하는 방법을 채용할 수도 있다. 본 실시 형태에서는, 히트 펌프(50)에 브라인 파이프(52)를 접속하여, 이 브라인 파이프(52)를 열교환·축열기(30)의 바로 아래의 지하에 배치하고, 브라인 파이프(52) 내의 열매체(물)와 그 주위의 토양과의 사이에서 열교환할 수 있게 되어 있다. 물론, 축열 방식은 한정되는 것은 아니며, 지하에 수조를 설치하여 물에 축열하도록 해도 좋다. 단, 비용의 점에서는, 토양 축열 방식이 적합하다. 또한, 지중 축열부(60)용의 브라인 파이프(52)는, 열교환·축열기(30)용의 배관(51)과 전환 밸브(55)를 통하여 접속되어 있다.
히트 펌프(50)에 의해 모은 열을 열교환·축열기(30)와 지중 축열부(60)의 어느 것에 축열하는지는, 상기한 전환 밸브(55)에 의해 행한다. 예를 들면, 히트 펌프(50)에 의해 모은 열을, 소정의 온도에 이를때 까지는 열교환·축열기(30)에 축열하고, 소정 온도를 초과한 경우에는, 지중 축열부(60)에 축열하도록 전환한다. 히트 펌프(50)에 의해 온실(10) 내를 난방하는 경우, 열교환·축열기(30)의 수온이 소정의 온도에 이를때 까지는 당해 열교환·축열기(30)의 열을 방출하고, 소정 온도 이하가 되었다면, 지중 축열부(60)의 열을 방출하도록 전환한다. 또한, 전환 밸브(55)의 조작은, 수작업에 의해 행하는 것도 가능하지만, 온실(10) 내의 온도, 열교환·축열기(30)의 축열체(물)의 온도, 지중 축열부(60)의 축열체의 온도를 측정하여, 그들 온도에 기초하여 자동 전환하는 컴퓨터 관리를 행하는 것도 가능하다.
본 실시 형태의 온실용 재배 시스템(1)에 의한 재배 환경 제어 방법의 일 예에 대해서 도 6에 기초하여 설명한다. 우선, 전제로서, 히트 펌프(50)에 의한 냉방 운전 개시 온도를 예를 들면 실온 25℃로 설정해 두는 것으로 한다. 이 상태에서, 낮 동안에 있어서는, 실온 25℃에 이를때 까지는, 열교환·축열기(30)의 전열판(32)을 통하여 온실 내 공기와의 열교환(패시브 집열(passive heat collection))이 행해져, 축열체에 집열된다. 축열체는 서서히 수온이 상승하지만, 이 패시브 집열에 의해, 실온의 상승 속도는, 열교환·축열기(30)를 설치하고 있지 않은 경우보다도 느려진다. 실온이 25℃를 초과했다면, 히트 펌프(50)가 냉방 운전을 개시하여, 집열(액티브 집열(active heat collection))하고, 실온을 가능한 한 25℃로 유지하도록 제어한다. 히트 펌프(50)에 의한 모아진 열은, 열교환·축열기(30)의 축열체에 축열되어, 축열체의 수온이 더욱 상승한다.
실온이 25℃를 하회하면 히트 펌프(50)의 냉방 운전이 정지된다. 야간이 되어, 실온이 열교환·축열기(30)의 축열체의 수온을 하회하면, 축열체에 축열되어 있는 열이 전열판(32)을 통하여 방열된다(패시브 방열). 그에 따라, 실온의 저하 속도가, 열교환·축열기(30)를 설치하고 있지 않은 경우보다도 느려진다. 실온이 미리 설정한 히트 펌프(50)에 의한 난방 운전 개시 온도(예를 들면 15℃)를 하회하면 히트 펌프(50)에 의한 난방 운전이 개시되고, 열교환·축열기(30)로부터 열을 퍼내어, 히트 펌프(50)로부터 따뜻한 공기를 온실(10) 내로 방출하여 난방한다(액티브 방열). 이에 따라, 실온이 소정의 온도로 유지된다. 액티브 방열에 의해, 축열체의 수온은 더욱 저하된다(도 6의 Δt가 액티브 방열에 의해 저하된 수온). 이 온도 저하 Δt가 발생함으로써, 상기와 같이, 열교환·축열기(30)의 전열판(32)의 전열면 온도와 주변 공기 온도의 열낙차에 의한 집열량의 증대를 가져와, 히트 펌프(50)의 부담을 줄인다.
상기한 바와 같이, 낮 동안의 히트 펌프(50)에 의한 냉방 운전에 의해 실온이 소정 온도의 범위로 제어되는 경우에는, 낮 동안의 환기가 불필요해진다. 이에 따라, 폐쇄형 재배를 실행할 수 있기 때문에, 이산화탄소를 공급함으로써, 온실(10) 내의 이산화탄소 농도를 대기 중의 이산화탄소 농도보다도 높게 유지할 수 있고, 천창 등으로부터의 병해충의 침입도 적어져, 작물의 품질 및 수량의 증가를 도모할 수 있다.
한편, 히트 펌프(50)를 가동시켜도 실온을 소정 온도(예를 들면, 30℃)로 제어할 수 없는 경우에는, 이 소정 온도를 초과했다면 천창 등을 개방 동작시켜 환기를 행하도록 설정한다. 본 실시 형태에 의하면, 이러한 환기를 행하는 경우라도, 상기한 바와 같이, 열교환·축열기(30)에 의한 열교환에 의해 실온 제어를 행하고, 다음으로, 히트 펌프(50)를 가동시키고, 그런데도 실온을 소정 온도 이하로 제어할 수 없는 경우에 한하여 환기를 행하는 구성으로, 종래와 비교하여 환기 시간이 적은 소위 반폐쇄형의 재배 환경을 달성할 수 있다.
도 7은, 본 실시 형태의 온실용 재배 시스템(1)을 이용하여 온실의 실내 환경을 제어할 때의 연간을 통한 제어의 구체예를 나타낸 도면이다. 예를 들면, 6월 상순 내지 7월 상순~9월 하순 내지 10월 중순의 더운 계절은, 낮 동안, 냉방만으로는 온도 조절을 완전히 할 수 없기 때문에, 통상의 재배 방법과 동일하게, 천창의 개방 등에 의한 환기를 병용한다. 우선, 열교환·축열기(30)에 의한 열교환에 의해 실내 온도를 낮추어, 소정 온도 이상이 되었다면, 히트 펌프(50)의 냉매를 열교환기(53)를 통하여 브라인 파이프(52)측의 물과 열교환을 하도록 전환 제어한다. 이에 따라, 히트 펌프(50)를 가동시켜 냉방하면, 냉방에 의해 모아지는 열은, 지중 축열부(60)에 축열된다. 딸기 등의 작물의 경우에는, 이 계절에 있어서 야냉(夜冷)을 행한다. 그 때문에, 야간도 냉방을 동작시킨다. 또한, 야냉을 효율적으로 행하기 위해서는, 열교환·축열기(30)의 축열체의 온도는 낮 동안 높게 하지 않는 편이 바람직하다. 그 때문에, 낮 동안의 히트 펌프(50)의 냉방에 수반하여 모아진 열은 지중 축열부(60)에 우선하여 축열시킨다. 야간 냉방을 동작시키면, 열교환·축열기(30) 자체도 식혀지기 때문에, 수온이 내려가 전열판(32)의 표면 온도도 저하된다. 전열판(32)의 표면 온도가 저하되면, 열교환·축열기(30)의 바로 위에 배치된 재배 베드(20)의 작물이 방사 및 대류열에 의해서도 냉각된다. 따라서, 야냉 효과를 높일 수 있다. 또한, 전열판(32)의 방사에 의해 직접 작물을 식힐 수 있기 때문에, 온실(10) 내 전체를 식히기 위한 히트 펌프(50)의 가동 시간을 짧게 하거나, 제어 온도를 종래 행해지고 있는 야냉 제어 온도보다도 높게 설정하거나 할 수 있어, 에너지 절약화에 기여한다. 또한, 열교환·축열기(30)에 충전하고 있는 물을 저수온의 지하수 등과 교체함으로써도 상기와 같은 효과를 얻을 수 있다. 게다가, 열교환·축열기(30)의 전열판(32)의 표면 온도가 이슬점 온도를 하회하는 경우에는, 수증기가 전열판(32) 표면에 응축되고, 물이 결로 물홈통(40)으로 흘러 내려, 물을 회수하여 재이용할 수 있다. 또한, 지중 축열부(60)에 축열된 열은, 이 계절이라도, 이상(異常)한 저온 상태가 된 경우 등, 필요에 따라서 난방의 열원으로서 이용할 수 있다.
한편, 10월 중순~6월 하순의 추운 계절에서는 다음과 같이 제어한다. 우선, 낮 동안은, 온실(10)이 태양 에너지를 열로 바꾸는 높은 기능을 구비하고, 이 계절이라도 실온이 꽤 높아지기 때문에, 특히, 10월 중순~11월 하순 및, 3월 상순~6월 하순에서는, 천창 등을 환기하지 않을 수 없는 시간대가 발생한다.
그러나, 오전 중, 우선은 열교환·축열기(30)에 의한 열교환에 의해 축열체에 온실(10) 내의 열이 집열되고, 그리고 소정 온도를 초과하면, 히트 펌프(50)를 가동시켜 온실(10)의 잉여열을 집열하여 냉방하고, 열교환·축열기(30)에 그 열을 축열시킨다. 열교환·축열기(30)의 열용량만으로는 부족한 경우에는, 구체적으로는, 열교환·축열기(30)의 온도가 일정 온도를 초과한 경우(예를 들면 25℃)에, 배관(51)으로부터 브라인 파이프(52)에 열매체의 유로를 전환하여 지중 축열부(60)로 축열시킨다. 이와 같이 하여, 온실(10) 내를 냉방하고, 열교환·축열기(30) 및 지중 축열부(60)에 축열해 감으로써, 천창 등을 개방하여 환기를 시작하는 시간을 늦춘다. 이에 따라, 이산화탄소를 적극적으로 공급하여, 온실(10) 내의 이산화탄소 농도가 대기 중의 이산화탄소 농도보다도 높게(바람직하게는, 대기 중의 2배~4배) 유지되는 시간, 또한 소정의 습도를 유지하는 시간이 종래보다도 길게 할 수 있다.
한편, 야간은, 열교환·축열기(30)의 전열판(32)로부터의 자연 방열로 온실(10) 내를 난방한다. 실온이 설정 온도 이하가 되면, 히트 펌프(50)를 가동한다. 히트 펌프(50)의 열원은 열교환·축열기(30) 또는 지중 축열부(60)에 축열한 열을 이용하고, 이 열을 온실(10) 내로 방출하여 온실(10) 내를 난방한다. 열교환·축열기(30) 또는 지중 축열부(60)에 축열한 열을 이용하기 때문에, 히트 펌프(50)의 전기 에너지의 소비량은 매우 낮게 할 수 있다. 또한, 열교환·축열기(30)의 전열판(32)의 방사열에 의해, 작물이 직접 따뜻해진다. 따라서, 온실(10) 내 전체를 난방할 때의 온도를 종래보다도 낮게 해도, 작물에 있어서 충분한 온도 환경으로 할 수 있어, 이 점에서도, 히트 펌프(50)의 전기 에너지 소비량은 더욱 낮게 할 수 있다.
또한, 12월 상순~2월 하순의 가장 추운 계절에 있어서는, 열교환·축열기(30)에 의한 열교환에 의한 집열과 히트 펌프(50)에 의한 냉방을 행함으로써, 낮 동안이라도 전혀 환기를 행하지 않게 할 수 있다. 이에 따라, 12월 상순~2월 하순의 가장 추운 계절에 있어서는, 이산화탄소를 적극적으로 공급함으로써, 온실(10) 내의 이산화탄소 농도는, 작물의 광합성이 활발한 일조가 있는 시간대에 있어서도, 대기 중 농도보다도 높은 농도로 유지되게 된다.
즉, 본 실시 형태에 의하면, 12월 상순~2월 하순의 가장 추운 시기는 야간뿐만 아니라 낮 동안도 환기를 전혀 행하지 않는 폐쇄형 환경에서 재배할 수 있고, 그 전후의 시기인 10월 중순~11월 하순 및 3월 상순~6월 하순에서는, 환기 시간을 종래보다도 단축화한 반폐쇄형 환경에서 재배할 수 있으며, 그에 따라, 광합성에 필요한 이산화탄소 농도를 대기 중 농도보다도 고농도로 유지하고, 천창으로부터의 병해충의 침입도 적어져, 작물의 품질 및 수량의 증가를 도모할 수 있다.
또한, 상기 실시 형태에서는, 열교환·축열기(30)뿐만 아니라, 히트 펌프(50)도 온실(10) 내에 설치하고 있다. 이에 따라, 온실(10) 내의 열을 퍼올려 열교환할 수 있기 때문에 열교환 효율의 점에서 우수하다. 그러나, 열교환 효율의 점에서는 떨어지지만, 예를 들면, 도 8(a)에 나타낸 바와 같이, 히트 펌프(50)를 온실(10)의 외부에 설치하고, 송풍부(50a)를 온실(10)에 접속하여 냉방하는 구성으로 할 수도 있다. 또한, 열교환·축열기(30)와 히트 펌프(50)의 열교환부와의 사이는, 상기 실시 형태와 동일하게 배관(51)을 설치하고, 그의 내부를 축열체(물)가 통과할 수 있게 한다. 이 경우, 히트 펌프(50)는, 외기를 집열하여 배관(51) 내의 물에 열을 부여하고, 송풍부(50a)로부터 온실(10) 내에 냉기를 공급한다.
또한, 도 8(b)에 나타낸 바와 같이, 히트 펌프(50)를 온실(10)의 외부에 설치함과 함께, 송풍부(50a)뿐만 아니라 집열부(50b)도 온실(10)에 접속할 수도 있다. 이 경우에는, 집열부(50b)를 통하여 온실(10) 내의 열을 퍼올리는 구성이기 때문에, 열교환 효율의 점에서는, 상기 실시 형태와 동등하지만, 송풍부(50a) 및 집열부(50b)와 온실(10)과의 접속에 수반되는 설비 비용 등이 상기 실시 형태보다도 증가한다.
본 발명의 온실용 재배 시스템은, 온실을 에너지 절약으로 냉난방할 수 있기 때문에, 작물을 수익성 좋게 생산하는 시설 원예 분야에서 이용 가능하다.
1 : 온실용 재배 시스템
10 : 온실
20 : 재배 베드
30 : 열교환·축열기
32 : 전열판
33 : 반사 시트
50 : 히트 펌프
51 : 배관
52 : 브라인 파이프
60 : 지중 축열부
70 : 송풍 도관

Claims (12)

  1. 온실 내에 배치되어, 온실 내 공기와 내부에 충전된 축열체와의 사이에서 열교환을 촉진시키는 전열부가 측면에 설치되어 있는 열교환·축열기와,
    상기 열교환·축열기 내의 축열체에 열을 수수(授受)하는 히트 펌프를 구비하는 것을 특징으로 하는 온실용 재배 시스템.
  2. 제1항에 있어서,
    상기 히트 펌프가 온실 내에 설치되는 것인 온실용 재배 시스템.
  3. 제1항 또는 제2항에 있어서,
    상기 전열부는, 단면(斷面) 파상(波狀)의 판 형상 부재로 이루어지고, 각 산곡부가 바닥면과 대략 수평이 되는 방향으로 배치되어 있는 온실용 재배 시스템.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 전열부는, 열전도율 50W/(mk)~300W/(mk)의 범위의 소재로 형성되어 있는 온실용 재배 시스템.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 열교환·축열기는, 단면폭에 대한 높이의 비가 1보다 큰 온실용 재배 시스템.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 열교환·축열기가, 상기 온실 내에, 지표(地表)로부터 소정의 높이에 위치하는 재배 베드의 하방에 설치된 것인 온실용 재배 시스템.
  7. 제6항에 있어서,
    상기 열교환·축열기는, 단면 폭방향으로 소정 간격을 두고 배치된 한 쌍의 다리 부재 사이의 내측에 배치되어 있음과 함께, 상기 한 쌍의 다리 부재 사이로서, 상기 열교환·축열기의 상방에 빔 부재가 수평으로 걸쳐지고, 이 수평으로 걸쳐진 빔 부재 상에 재배 베드가 지지되는 구조인 온실용 재배 시스템.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 열교환·축열기의 측면에 위치하는 전열부를 피복 가능한 반사 시트가 설치되어 있는 온실용 재배 시스템.
  9. 제8항에 있어서,
    상기 반사 시트는, 상기 전열부로부터 소정 간격 이간된 위치에 있어서, 상기 전열부를 덮은 상태와 덮지 않은 상태가 되도록 개폐 가능하게 설치되어 있는 온실용 재배 시스템.
  10. 제8항 또는 제9항에 있어서,
    상기 열교환·축열기와 반사 시트의 사이에, 이산화탄소를 공급 가능한 송풍 도관이 설치되어 있는 온실용 재배 시스템.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 온실 내의 지중에, 지중 축열부가 설치되어 있는 온실용 재배 시스템.
  12. 제11항에 있어서,
    상기 열교환·축열기는, 저면이 지면에 접하여 설치되고, 이 저면이 상기 지중 축열부와의 사이에서 열교환 가능한 전열부를 구성하고 있는 온실용 재배 시스템.
KR1020127030857A 2010-05-28 2010-08-20 온실용 재배 시스템 KR20130023251A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010122536A JP5830211B2 (ja) 2009-05-29 2010-05-28 温室用栽培システム
JPJP-P-2010-122536 2010-05-28
PCT/JP2010/064110 WO2011148522A1 (ja) 2010-05-28 2010-08-20 温室用栽培システム

Publications (1)

Publication Number Publication Date
KR20130023251A true KR20130023251A (ko) 2013-03-07

Family

ID=45015680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127030857A KR20130023251A (ko) 2010-05-28 2010-08-20 온실용 재배 시스템

Country Status (3)

Country Link
KR (1) KR20130023251A (ko)
CN (1) CN102905514A (ko)
WO (1) WO2011148522A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142156A (ko) * 2014-06-10 2015-12-22 주성엔지니어링(주) 온실
KR20180006420A (ko) * 2015-05-15 2018-01-17 네이쳐다인 가부시키가이샤 식물재배장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201404859QA (en) 2013-03-08 2014-11-27 Panasonic Ip Man Co Ltd Air conditioning apparatus in plant cultivation
DE102013217286B4 (de) * 2013-08-29 2015-04-30 Humboldt-Universität Zu Berlin Wärmetauschereinrichtung für ein Gewächshaus
WO2019111383A1 (ja) * 2017-12-07 2019-06-13 プランツラボラトリー株式会社 植物栽培用ハウス
CN107976098A (zh) * 2017-12-12 2018-05-01 苏州科技大学 一种新型空气循环式相变蓄热装置
WO2021205833A1 (ja) * 2020-04-09 2021-10-14 パナソニック株式会社 温度制御方法、温度制御装置、温度制御プログラム及び温度制御システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224622A (ja) * 1982-06-25 1983-12-27 日立プラント建設株式会社 地中蓄熱温室
JPS63279729A (ja) * 1987-05-11 1988-11-16 Central Res Inst Of Electric Power Ind 温室等の冷暖房システム
US5341925A (en) * 1993-07-30 1994-08-30 Philip Morris Incorporated Cigarette hardpack having rounded corners and lid retaining flaps
JPH0739362U (ja) * 1993-12-28 1995-07-18 株式会社誠和 植物栽培用ベッド
JP3949772B2 (ja) * 1997-04-08 2007-07-25 株式会社北信帆布 蓄熱体シート及び蓄熱体シートを用いた構造物
JP2003232595A (ja) * 2002-02-08 2003-08-22 Daikin Ind Ltd 蓄熱装置
KR20100052427A (ko) * 2008-11-10 2010-05-19 오평원 하우스의 난방장치
CN201450952U (zh) * 2009-07-03 2010-05-12 马革 地温节能恒温温室大棚
CN201718265U (zh) * 2010-06-11 2011-01-26 中国农业科学院农业环境与可持续发展研究所 一种温室热能采集与热能提升***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142156A (ko) * 2014-06-10 2015-12-22 주성엔지니어링(주) 온실
KR20180006420A (ko) * 2015-05-15 2018-01-17 네이쳐다인 가부시키가이샤 식물재배장치

Also Published As

Publication number Publication date
CN102905514A (zh) 2013-01-30
WO2011148522A1 (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
KR20130023251A (ko) 온실용 재배 시스템
Kamal An overview of passive cooling techniques in buildings: design concepts and architectural interventions
JP2020193801A (ja) 太陽熱ルーフィングシステム
KR101319080B1 (ko) 온실 상부 잉여열을 보조열원으로 구비하는 하이브리드형 지열냉난방 시스템
Givoni Cooled soil as a cooling source for buildings
JP5830211B2 (ja) 温室用栽培システム
KR20150084103A (ko) 온실하우스의 하이브리드 냉난방시스템
KR20060089428A (ko) 태양열 및 지열을 이용한 농업용 하우스의 난방시스템
EP2342968B1 (en) Solar greenhouse with energy recovery system
CN205682027U (zh) 玻璃温室
US20110168165A1 (en) Free-convection, passive, solar-collection, control apparatus and method
EP1942720B1 (en) Solar radiator
JP3690605B2 (ja) 温室
EP3645802B1 (en) Geothermal insulation system and method
US20110253129A1 (en) Apparatus for Conditioning Space Under Solar Collectors and Arrays Thereof
CN205431264U (zh) 太阳能植物工厂温室
CA2647230A1 (en) Raised floor heating and cooling system for buildings
JP2007195478A (ja) 茸類栽培用施設
KR20130058820A (ko) 하우스의 잉여열 및 히트펌프를 이용한 지중가온장치
Garzoli Energy efficient greenhouses
KR200460818Y1 (ko) 온실내 잉여열 이용시스템
KR100567450B1 (ko) 난방 시스템
KR20120003806A (ko) 축열, 축냉 재 층을 축열, 축냉 시켜 저장 사용하는 방법.
GB2487540A (en) Condenser apparatus
KR101909992B1 (ko) 태양광 집광 패널의 설치구조

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application