KR20100129052A - Ni-co-b three-element alloys electroless plating solution, electroless plating method using the same and ni-co-b three-element alloys coating layer prepared by the same - Google Patents

Ni-co-b three-element alloys electroless plating solution, electroless plating method using the same and ni-co-b three-element alloys coating layer prepared by the same Download PDF

Info

Publication number
KR20100129052A
KR20100129052A KR1020090047807A KR20090047807A KR20100129052A KR 20100129052 A KR20100129052 A KR 20100129052A KR 1020090047807 A KR1020090047807 A KR 1020090047807A KR 20090047807 A KR20090047807 A KR 20090047807A KR 20100129052 A KR20100129052 A KR 20100129052A
Authority
KR
South Korea
Prior art keywords
cobalt
plating solution
boron
alloy plating
nickel
Prior art date
Application number
KR1020090047807A
Other languages
Korean (ko)
Other versions
KR101096812B1 (en
Inventor
이홍기
전준미
허진영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020090047807A priority Critical patent/KR101096812B1/en
Publication of KR20100129052A publication Critical patent/KR20100129052A/en
Application granted granted Critical
Publication of KR101096812B1 publication Critical patent/KR101096812B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Abstract

PURPOSE: A Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same are provided to improve the scattering prevention effect and thermal stability of copper in comparison with an anti-diffusion layer. CONSTITUTION: A Ni-Co-B three-element alloys electroless plating solution is made from sulfuric acid nickel, sulfuric acid cobalt and DMAB. The sulfuric acid nickel 20~30g, sulfuric acid cobalt 10~15g and DMAB 2.5~5 g are added in the nickel-cobalt-boron ternary alloy plating liquid 1L. The ternary alloy plating liquid additionally includes the ammonia solution as a Ph controlling agent.

Description

무전해 니켈-코발트-붕소 삼원합금 도금액, 이를 이용한 무전해 도금공정, 이에 의해 제조된 니켈-코발트-붕소 삼원합금 피막{Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same}Electroless nickel-cobalt-boron ternary alloy plating solution, electroless plating process using the same, nickel-cobalt-boron ternary alloy film produced thereby Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same}

본 발명은 무전해 니켈-코발트-붕소 삼원합금 도금액, 이를 이용한 무전해 도금공정, 이에 의해 제조된 니켈-코발트-붕소 삼원합금 피막에 관한 것으로, 보다 상세하게는 황산니켈, 황산코발트 및 디메틸아민 보란을 포함하는 무전해 니켈-코발트-붕소 삼원합금 도금액과, 이 도금액을 사용하여 구리배선소재를 무전해 도금하는 공정 및 이 도금액으로 도금된 다량의 코발트를 포함하는 도금피막에 관한 것이다. The present invention relates to an electroless nickel-cobalt-boron tri-alloy plating solution, an electroless plating process using the same, and a nickel-cobalt-boron tri-alloy film prepared thereby, more specifically nickel sulfate, cobalt sulfate and dimethylamine borane The present invention relates to an electroless nickel-cobalt-boron tri-alloy plating solution comprising a plating solution, an electroless plating process of a copper wiring material using the plating solution, and a plating film containing a large amount of cobalt plated with the plating solution.

반도체 칩의 신호 전달속도는 일반적으로 금속 배선에서 발생하는 저항-축전용량 지연(RC delay)에 의하여 저하된다. 즉, 배선의 저항과 층간 절연막의 축전용량에 의해 야기되는 RC 지연은 향상시키려는 소자의 속도에 부정적인 영향을 미친다. 종래에는 배선 재료로써 알루미늄(Al)을 많이 사용하였으나, 알루미늄보다는 구리(Cu)가 전기이동도(electromigration)에 대한 저항이 커서 반도체 소자의 신뢰성을 향상시킬 수 있고, 비저항이 알루미늄의 1/2 수준이어서 작은 폭으로 형성하여도 신호전달 속도를 증가시킬 수 있기 때문에, 집적 회로에 유용한 배선 재료로 떠오르고 있다. 뿐만 아니라, 구리는 소비전력이 작고 알루미늄에 비하여 저렴하다. 그런데 구리는 식각하기 어려운 물질이라서, 증착한 다음에 원하는 배선 모양으로 패터닝하기가 어렵다. 따라서, 최근에는 층간 절연막으로 배선 모양의 홈을 미리 형성한 다음에 구리로 채우는 다마신(damascene) 구리 배선공정이 이용되고 있다. 특히 비아 트렌치와 그 상부에 중첩되는 배선 트렌치를 형성한 다음, 한번의 구리 증착으로 두 트렌치를 모두 채우는 듀얼 다마신법이 널리 이용되고 있다. 트렌치 내에 구리를 채우는 데에는 스퍼터링이나 CVD가 흔히 사용되는데, 이러한 방법은 비용이 많이 들고, 구리 원료로부터 구리를 얻어내는 데에 많은 에너지가 소요되며 복잡하다는 문제가 있다.The signal transfer speed of the semiconductor chip is generally lowered by the resistance-capacitance delay (RC delay) occurring in the metal wiring. That is, the RC delay caused by the resistance of the wiring and the capacitance of the interlayer insulating film negatively affects the speed of the device to be improved. Conventionally, although aluminum (Al) is used a lot as a wiring material, copper (Cu) has a higher resistance to electromigration than aluminum, so that the reliability of semiconductor devices can be improved, and the specific resistance is about 1/2 of aluminum. Subsequently, the signal transmission speed can be increased even when formed in a small width, which has emerged as a wiring material useful for integrated circuits. In addition, copper consumes less power and is cheaper than aluminum. However, copper is a material that is difficult to etch, and thus it is difficult to pattern into a desired wiring shape after deposition. Therefore, in recent years, a damascene copper wiring process in which an interconnection groove is formed in advance with an interlayer insulating film and then filled with copper has been used. In particular, the dual damascene method of forming a via trench and a wiring trench overlapping the upper trench and then filling both trenches with one copper deposition is widely used. Sputtering or CVD is commonly used to fill copper in trenches, which is expensive, costly and complex to obtain copper from the copper source.

또한, 구리는 기존 배선재료로 사용되던 알루미늄과 달리, 자체 표면 산화막에 의한 보호(passivation) 효과가 크지 않아 표면이 산화되기가 용이하고, 실리콘과의 반응성이 강하여 실리사이드(silicide)를 형성하기 쉽다. 또한, 실리콘 또는 이산화규소 내에서의 구리의 확산계수가 보통의 금속에 비하여 약 100 배 정도가 크므로, 열처리에 의한 반도체 소자의 파괴를 막기 위해서는 신뢰성 있는 확산 방지층이 필요하다. In addition, unlike aluminum, which is conventionally used as a wiring material, copper does not have a large passivation effect due to its own surface oxide film, so that the surface is easily oxidized, and it is easy to form silicide due to its strong reactivity with silicon. In addition, since the diffusion coefficient of copper in silicon or silicon dioxide is about 100 times larger than that of ordinary metals, a reliable diffusion barrier layer is required to prevent destruction of the semiconductor device by heat treatment.

일반적으로 금속은 내부(bulk) 보다 표면 또는 계면(interface)에서의 확산 계수가 큰 특성을 나타내는데, 반도체에서도 금속배선층과 확산방지층간의 계면에서 확산이 잘 일어난다. 또한, 구리가 알루미늄 보다 1.64배 융점이 높아 EM(Electromigration)에 대한 저항성이 클 것이라는 예상과는 달리, 실제 배선에서는 큰 차이를 보이지 않고 있어, 배선재료의 주된 확산경로가 이종재료 사이에 존재하는 계면이라는 것을 알 수 있다.In general, the metal has a larger diffusion coefficient at the surface or interface than the bulk, and diffusion occurs well at the interface between the metal wiring layer and the diffusion barrier layer in the semiconductor. In addition, contrary to the expectation that copper has a 1.64 times higher melting point than aluminum, the resistance to EM (Electromigration) is not significantly different in actual wiring, and the interface where the main diffusion path of wiring material exists between dissimilar materials It can be seen that.

따라서, 배선재료의 EM에 인한 신뢰성 문제를 해결하면서 다마신 구리 배선공정을 최대한 적용하기 위해서는 확산방지층의 대체 재료 및 대체 재료를 사용하여 확산방지층을 용이하게 형성할 수 있는 방법에 대한 연구가 요구된다. 종래에는 기존의 프라즈마 코팅장치를 이용하여 SiN 혹은 SiCN과 같은 하드마스크(hardmask) 타입의 확산방지 피복층(Capping Layer)을 형성하였으나, 유전율(dielectric constant)이 다소 높아 배선 캐퍼시턴스(wiring capacitance)가 증가한다는 문제점이 있었다.Therefore, in order to apply the damascene copper wiring process to the maximum while solving the reliability problem caused by the EM of the wiring material, a study on an alternative material of the diffusion barrier layer and a method of easily forming the diffusion barrier layer using the substitute material is required. . Conventionally, a hardmask type diffusion barrier layer, such as SiN or SiCN, is formed by using a conventional plasma coating apparatus, but the wiring capacitance is high due to a relatively high dielectric constant. There was a problem of increasing.

이를 해결하기 위해, SiN 혹은 SiCN과 같은 하드마스크 타입의 확산방지층보다 낮은 전기적 저항으로 배선의 캐퍼시턴스(wiring capacitance)를 낮출 수 있으면서도, EM 혹은 SM(stressmigration)으로 인한 배선재료의 힐락의 발생을 기계적으로 최대한 억제할 수 있는 기술로서, 무전해 도금으로 형성된 확산방지층이 연구되고 있다. 여기서 무전해 도금(electroless plating)이란, 전기를 사용하지 않고 화학 반응을 통해 도금하는 방식으로, 도금액에 포함된 금속이온이 전자를 받아서 환원되어 도금되는 물체의 표면에 달라붙는 원리를 이용하여 도금된다.To solve this problem, it is possible to lower wiring capacitance with lower electrical resistance than a hard mask diffusion barrier such as SiN or SiCN, but also to prevent the occurrence of high leakage of the wiring material due to EM or stress migration. As a technique that can be suppressed mechanically as much as possible, a diffusion barrier layer formed by electroless plating has been studied. Here, electroless plating refers to plating by chemical reaction without using electricity, in which metal ions contained in a plating solution are plated using the principle that electrons are received and reduced and adhere to the surface of an object to be plated. .

본 발명에서는 고가의 프라즈마 코팅장비를 이용한, 상기와 같은 SiN 또는 SiCN 등 기존의 확산방지 피복층(Capping Layer)을 대체하는 중성타입의 니켈-코발트-붕소 무전해 합금 도금액을 개발하여, 고융점 코발트 금속을 다량으로 도금피막에 합금하여 합금피막에 석출되는 코발트의 함량을 증가시켜 미세한 입자를 형성하고 치밀한 표면조직을 가지는 확산 방지층을 형성하도록 하여, 구리의 확산방지 효과를 증가시키고 열적 안정성을 향상시켜 구리배선이 필요한 각종 반도체 및 패키지, 또한 인쇄회로기판에서의 미세회로의 신뢰성을 확보하고, 높은 온도의 후속공정에 의한 구리배선의 산화에 의한 저항상승의 억제로 열적 안정성을 증대시켜, 종래의 니켈-붕소(Ni-B) 도금피막 또는 소량의 코발트를 포함하는 니켈-코발트-붕소 합금피막에 비해 도금피막으로서 더욱 우수한 특성을 가진 확산방지막을 제조할 수 있음을 확인하여 본 발명을 완성하였다.In the present invention, a high melting point cobalt metal is developed by using an expensive plasma coating equipment and developing a nickel-cobalt-boron electroless alloy plating solution of a neutral type, which replaces the existing diffusion layer such as SiN or SiCN. Alloying the coating film in a large amount to increase the content of cobalt precipitated in the alloy coating to form fine particles and to form a diffusion barrier layer having a dense surface structure, thereby increasing the diffusion prevention effect of copper and improve thermal stability copper It is possible to secure the reliability of microcircuits in various semiconductors and packages and printed circuit boards requiring wiring, and to increase thermal stability by suppressing the increase in resistance caused by oxidation of copper wiring by a subsequent process of high temperature. Compared to the nickel-cobalt-boron alloy coating containing boron (Ni-B) coating or a small amount of cobalt coating As the completion of the present invention confirmed that it is possible to manufacture a diffusion-barrier film with more excellent characteristics.

본 발명의 목적은 종래의 무전해 도금 용액에 의해 형성되는 확산방지층에 비하여 구리의 확산 방지 효과와 열적 안정성을 향상시켜, 구리배선이 필요한 각종 반도체 및 패키지와 인쇄회로기판에서의 미세회로의 신뢰성을 확보할 수 있는 무전해 니켈-코발트-붕소 삼원합금 도금액을 제공하는 것이다.An object of the present invention is to improve the diffusion prevention effect and thermal stability of copper as compared to the diffusion barrier layer formed by the conventional electroless plating solution, and to improve the reliability of microcircuits in various semiconductors, packages, and printed circuit boards requiring copper wiring. It is to provide an electroless nickel-cobalt-boron tertiary alloy plating solution that can be secured.

본 발명의 다른 목적은 비교적 낮은 온도와 pH가 중성인 영역에서 수행됨으로 인해 선택적 도금피막 형성시 다른 소재에 화학적 침식 또는 변형을 감소시킬 수 있는 무전해 도금 공정을 제공하는 것이다.Another object of the present invention is to provide an electroless plating process that can reduce chemical erosion or deformation of other materials when forming a selective plating film because it is performed in a region having a relatively low temperature and pH neutral.

본 발명의 또 다른 목적은 확산 방지 효과가 향상된 무전해 니켈-코발트-붕소 삼원합금 도금액에 의해 구리 표면상에 도금된 니켈-코발트-붕소 삼원합금피막을 제공하는 것이다. It is still another object of the present invention to provide a nickel-cobalt-boron tertiary alloy film plated on a copper surface by an electroless nickel-cobalt-boron tertiary alloy plating solution having an improved diffusion preventing effect.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 황산니켈, 황산코발트 및 디메틸아민 보란을 포함하는 무전해 니켈-코발트-붕소 삼원합금 도금액에 있어서, 상기 무전해 니켈-코발트-붕소 삼원합금 도금액 1 ℓ에 대하여 황산니켈 20 내지 30 g, 황산코발트 10 내지 15 g 및 디메틸아민 보란 2.5 내지 5 g을 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액을 제공한다.As one aspect for achieving the above object, the present invention is an electroless nickel-cobalt-boron terpolymer plating solution containing nickel sulfate, cobalt sulfate and dimethylamine borane, the electroless nickel-cobalt-boron terpolymer plating solution An electroless nickel-cobalt-boron tertiary alloy plating solution comprising 20 to 30 g of nickel sulfate, 10 to 15 g of cobalt sulfate and 2.5 to 5 g of dimethylamine borane per 1 L is provided.

상기 황산니켈은 금속염인 니켈염으로서 사용되며, 황산코발트는 금속염인 코발트염으로서 사용되며, 디메틸아민 보란은 환원제로서 사용된다. 상기 삼원합금 도금액에 있어서, 삼원합금 도금액 1 ℓ에 대하여 황산니켈이 약 20 g 미만이면 도금 속도가 저하되고, 30 g를 초과하는 경우 도금 속도는 증가하지만 도금액의 분해가 일어나기 쉽다. 또한 상기 삼원합금 도금액 1 ℓ에 대하여 디메틸아민 보란은 2.5 내지 5 g으로 하여 도금피막에서의 붕소의 함량이 약 0.5 내지 1.0 중량%로 비정질 피막을 유지할 수 있도록 한다.The nickel sulfate is used as the nickel salt which is a metal salt, cobalt sulfate is used as the cobalt salt which is a metal salt, and dimethylamine borane is used as a reducing agent. In the three-way alloy plating solution, the plating rate decreases when the nickel sulfate is less than about 20 g with respect to 1 L of the three-way alloy plating solution, and when it exceeds 30 g, the plating rate increases, but decomposition of the plating solution is likely to occur. In addition, the dimethylamine borane is 2.5 to 5 g per 1 L of the three-way alloy plating solution so that the boron content in the plating film can be maintained at about 0.5 to 1.0 wt%.

또한, 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액은 상기 삼원합금 도금액 1 ℓ에 대하여 pH 조절제인 암모니아수를 추가로 포함할 수 있다.In addition, the electroless nickel-cobalt-boron three-way alloy plating solution of the present invention may further include ammonia water, which is a pH regulator, for 1 L of the three-way alloy plating solution.

pH 조절제는 도금과정에서의 도금액의 pH 변화를 방지하기 위해 사용되는 물질로, 도금은 pH에 의하여 도금의 정도 및 도금층의 두께 등에 영향을 받기 때문에 도금액의 pH를 조절할 수 있는 물질이 추가되는 것이 바람직하다. The pH adjuster is a material used to prevent the pH change of the plating liquid during the plating process, and since the plating is affected by the degree of plating and the thickness of the plating layer by the pH, it is preferable to add a material capable of adjusting the pH of the plating liquid. Do.

또한, 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액의 pH는 7 내지 8인 것이 바람직하다. In addition, the pH of the electroless nickel-cobalt-boron tertiary alloy plating solution of the present invention is preferably 7 to 8.

pH 범위가 중성영역인 7 내지 8로서 선택적 도금피막 형성시 다른 소지에 화학적 침식 또는 변형 등의 영향을 받지 않도록 하는 특성을 가지며, 이 경우 도금의 속도가 빠르면서 도금이 효과적으로 잘 이루어질 뿐만 아니라, 배선 소자의 화학적 침식 및/또는 부식을 억제할 수 있는 이점이 있다.The pH range is 7 to 8, which is a neutral region, and has a characteristic of not being influenced by chemical erosion or deformation on other substrates when forming a selective plating film. In this case, the plating speed is fast and the plating is effectively performed as well. There is an advantage that can suppress chemical erosion and / or corrosion of the device.

또한, 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액은 필요에 따라 착화제를 추가로 포함할 수 있다. 착화제란 도금속도를 조절하며, 도금이 자발적으로 분해되는 것을 방지하여 용액 안정성이 우수한 조성을 제공하는 것으로, 본 발명에서는 아디핀산, 시트린산 및 락트산으로 구성되는 군으로부터 선택되는 1종 이상의 물질이 착화제로서 바람직하다. In addition, the electroless nickel-cobalt-boron terpolymer plating solution of the present invention may further include a complexing agent as necessary. The complexing agent controls the plating rate and prevents spontaneous decomposition of the plating to provide a composition having excellent solution stability. In the present invention, at least one material selected from the group consisting of adipic acid, citric acid and lactic acid is complexed. Preferred as the agent.

본 발명에서 착화제를 사용하는 경우에는, 상기 무전해 니켈-코발트-붕소 삼원합금 도금액은 삼원합금 도금액 1 ℓ에 대하여 아디핀산 5 내지 20 g, 시트린산 5 내지 10 g 및 락트산 5 내지 20 g을 포함하는 것이 바람직하다.In the case of using the complexing agent in the present invention, the electroless nickel-cobalt-boron tertiary alloy plating solution contains 5 to 20 g of adipic acid, 5 to 10 g of citric acid, and 5 to 20 g of lactic acid based on 1 L of the three-way alloy plating solution. It is preferable to include.

또한, 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액은 필요에 따라 첨가제를 추가로 포함할 수 있다. 본 발명에서는 티오다이글리콜산(Thioglycolic acid)을 첨가제로서 포함하는 것이 바람직하며, 티오다이글리콜산은 삼원합금 도금액이 자기 분해 없이 안정하게 유지되도록 한다. In addition, the electroless nickel-cobalt-boron three-alloy plating solution of the present invention may further include an additive as necessary. In the present invention, thioglycolic acid is preferably included as an additive, and thioglycolic acid allows the three-alloy plating solution to be stably maintained without self-decomposition.

본 발명에서 티오다이글리콜산을 첨가제로서 포함하는 경우에는, 무전해 니켈-코발트-붕소 삼원합금 도금액은 삼원합금 도금액 1 ℓ에 대하여 티오다이글리콜산 2.5 내지 5 ㎎을 포함하는 것이 바람직하다.When thiodiglycolic acid is included as an additive in the present invention, the electroless nickel-cobalt-boron tertiary alloy plating solution preferably contains 2.5 to 5 mg of thiodiglycolic acid per 1 L of the tertiary alloy plating solution.

본 발명의 또 하나의 양태로서, 본 발명은 전술한 본원 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액을 사용하여 구리배선소재에 확산방지층을 형성하는 단계를 포함하는 무전해 도금 공정에 관한 것이다.As still another aspect of the present invention, the present invention relates to an electroless plating process comprising forming a diffusion barrier layer on a copper wiring material by using the electroless nickel-cobalt-boron tertiary alloy plating solution of the present invention described above. .

이때, 상기 무전해 도금 공정은 7.0 내지 8.0의 pH 범위 및 50 내지 70℃의 온도 범위에서 수행되는 것이 바람직하다. pH 범위를 7.0 내지 8.0로 하여 확산방지층이 형성되는 소자에 기계적 또는 화학적 영향을 최소화하고 화학적 침식 또는 부식을 억제시킬 수 있으며, 50 내지 70℃의 비교적 낮은 온도에서 작업을 하여 재료의 변형이나 침식 등이 최소화되며 치밀하고 미세한 합금 피막조직을 형성할 수 있다.In this case, the electroless plating process is preferably carried out at a pH range of 7.0 to 8.0 and a temperature range of 50 to 70 ℃. The pH range is 7.0 to 8.0 to minimize mechanical or chemical effects on the device on which the diffusion barrier layer is formed and to suppress chemical erosion or corrosion, and to work at a relatively low temperature of 50 to 70 ° C to deform or erode materials. This minimizes and can form a dense and fine alloy coating structure.

본 발명의 또 하나의 양태로서, 본 발명은 전술한 본원 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액에 의하여 구리배선소재에 도금된 니켈-코발트-붕소 삼원 합금 피막에 관한 것이다.As another aspect of the present invention, the present invention relates to a nickel-cobalt-boron ternary alloy coating plated on a copper wiring material by the electroless nickel-cobalt-boron tertiary alloy plating solution described above.

상기 삼원합금 피막에서 니켈의 공석량은 15 내지 25 중량%이고, 붕소의 공석량은 0.5 내지 1.0 중량%인 것이 바람직하다. 이는 고융점 코발트를 합금피막에 다량으로 합금화함에 따라 열적 안정성과 확산방지 효과를 더욱 높일 수 있기 때문이다. In the ternary alloy film, the amount of vacancy in nickel is 15 to 25% by weight, and the amount of vacancy in boron is preferably 0.5 to 1.0% by weight. This is because the high melting point cobalt is alloyed in a large amount on the alloy coating to further increase the thermal stability and diffusion prevention effect.

본 발명에 따른 무전해 도금 공정은 낮은 온도와 중성 pH 영역에서 수행됨으로써 선택적인 도금피막 형성시 다른 소재에 화학적 침식 또는 변형을 감소시킬 수 있다. 또한 본 발명에 따른 무전해 니켈-코발트-붕소 삼원합금 도금액은 안정한 도금액 상태에서 치밀한 미세조직을 형성하고, 열적 안정성을 가지며, 화학적, 기계 적인 물성을 향상시키며, 도금피막에 합금시키고자 하는 코발트의 공석량을 적절히 조절할 수 있어, 구리배선이 필요한 각종 반도체 및 패키지와 인쇄회로기판에서 유용하게 사용될 수 있다.The electroless plating process according to the present invention can be performed in a low temperature and neutral pH range, thereby reducing chemical erosion or deformation in other materials when forming a selective coating. In addition, the electroless nickel-cobalt-boron tri-alloy plating solution according to the present invention forms a dense microstructure in a stable plating solution state, has thermal stability, improves chemical and mechanical properties, and improves the alloying properties of the cobalt. Since the amount of vacancy can be properly adjusted, it can be usefully used in various semiconductors, packages, and printed circuit boards requiring copper wiring.

이하, 실시예에 의해 본 발명의 내용을 보다 상세하게 설명한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명은 이러한 실시예에 의해 제한되는 것은 아니다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited by these examples.

제조예Production Example 1: 본 발명에 따른 니켈-코발트-붕소 삼원합금 도금액의 제조 1: Preparation of Nickel-Cobalt-Boron Ternary Alloy Plating Solution According to the Present Invention

금속원인 황산니켈 25 g/ℓ에 황산코발트 12 g/ℓ를 용해시켜 도금액을 제조하였다. 환원제로 디메틸아민 보란을 5 g/ℓ첨가하고, 착화제로 아디핀산 12 g/ℓ, 시트린산 7 g/ℓ, 락트산 10 g/ℓ를 혼합하고, 첨가제로 티오다이글리콜산 10 ㎎/ℓ를 혼합시켰다. 도금액의 온도는 50 내지 70℃로 조절하였으며, 도금액의 pH는 7.0 내지 8.0으로 일정하게 유지시켰다. A plating solution was prepared by dissolving 12 g / l of cobalt sulfate in 25 g / l of nickel sulfate as a metal source. 5 g / l of dimethylamine borane was added as a reducing agent, 12 g / l of adipic acid, 7 g / l of citric acid, and 10 g / l of lactic acid were mixed with a complexing agent, and 10 mg / l of thiodiglycolic acid as an additive. I was. The temperature of the plating liquid was adjusted to 50 to 70 ℃, the pH of the plating liquid was kept constant at 7.0 to 8.0.

비교제조예Comparative Production Example 1: 소량의 코발트를 포함하는 니켈-코발트-붕소 삼원합금 도금액의 제조 1: Preparation of Nickel-Cobalt-Boron Ternary Alloy Plating Solution Containing Small Cobalt

니켈-붕소(Ni-B) 도금액(비교제조예 2)에 황산코발트를 7 g/ℓ 첨가한 용액을 이용하여 니켈-코발트-붕소 도금액을 제조하였다. 또한 착화제로 아디핀산 12 g/ℓ, 시트린산 7 g/ℓ, 락트산 7 g/ℓ을 혼합하고, 도금액의 안정제로 탈륨금속 2ppm과 티오다이글리콜산 12ppm을 혼합하였다. 도금액의 온도는 50 내지 70℃로 조절하였으며, 도금액의 pH는 6.0 내지 7.0으로 일정하게 유지시켰다.A nickel-cobalt-boron plating solution was prepared using a solution in which 7 g / L of cobalt sulfate was added to a nickel-boron (Ni-B) plating solution (Comparative Preparation Example 2). In addition, 12 g / l of adipic acid, 7 g / l of citric acid, and 7 g / l of lactic acid were mixed as a complexing agent, and 2 ppm of thallium metal and 12 ppm of thiodiglycolic acid were mixed as a stabilizer of the plating solution. The temperature of the plating liquid was adjusted to 50 to 70 ℃, the pH of the plating liquid was kept constant at 6.0 to 7.0.

비교제조예Comparative Production Example 2: 니켈-붕소 이원합금 도금액 2: Nickel-Boron Binary Alloy Plating Solution

본 비교제조예에서는 도금액의 조성 중 코발트 염으로 첨가된 황산 코발트를 첨가하지 않은 점을 제외하고는 제조예 1과 동일하게 실시하여 니켈-붕소 도금액을 수득하였다.In this Comparative Preparation Example, a nickel-boron plating solution was obtained in the same manner as in Preparation Example 1, except that cobalt sulfate added as a cobalt salt was not added in the plating solution.

실험예Experimental Example 1: 본 발명에 따른 삼원합금 도금액 및 기존 도금액의 도금 성능 비교 1: Comparison of Plating Performance of Ternary Alloy Plating Solution and Existing Plating Solution According to the Present Invention

제조예 1 및 비교제조예 1과 2에서 제조된 도금액을 사용하여 하기와 같은 도금 공정을 실시하였다.Using the plating liquids prepared in Preparation Example 1 and Comparative Preparation Examples 1 and 2, the following plating process was performed.

1) 25~30℃, 1~2분 산세처리;1) 25 to 30 ° C. for 1 to 2 minutes pickling treatment;

2) 비이온수로 세척;2) washing with non-ionized water;

3) 20~30℃, 1~2분 소프트 에칭 공정 및 수세;3) 20-30 degreeC, 1-2 minutes soft etching process and water washing;

4) 팔라듐 금속촉매에 의한 활성화 처리;4) activation treatment with a palladium metal catalyst;

5) 도금공정5) Plating Process

상기 각 공정 사이에 순수로 두 번의 세정 공정을 거쳐 전 단계에서 표면에 묻은 불순물을 제거하였다.Between each process, two washing steps with pure water were removed to remove impurities on the surface in the previous step.

이러한 공정을 통해 얻은 피막에 공석된 합금의 공석량과 도금피막의 형성속도를 측정하여 하기의 표 1에 나타내었다. 표 1을 참고하면 공석된 붕소의 함량은 0.5 중량%, 니켈의 함량은 20 중량%를 나타냈으며, 도금피막의 형성속도는 5.0 ㎛/hr로서, 용이하게 박막이 형성됨을 확인할 수 있었다.The vacancy of the alloy vaccinated in the film obtained through this process and the formation rate of the plating film were measured and shown in Table 1 below. Referring to Table 1, the content of vaccinated boron was 0.5 wt%, and the content of nickel was 20 wt%. The formation rate of the plating film was 5.0 μm / hr, and it was confirmed that a thin film was easily formed.

합금량(중량%)Alloy weight (% by weight) 니켈nickel 코발트cobalt 붕소boron 제조예 1 (도금속도5.0 ㎛/hr)Preparation Example 1 (Conductive Metal Degree 5.0 µm / hr) 20.020.0 79.579.5 0.50.5 비교제조예 1Comparative Preparation Example 1 90.590.5 9.09.0 0.50.5 비교제조예 2Comparative Production Example 2 99.599.5 -- 0.50.5

제조예 1의 도금액을 사용하여 무전해 니켈-코발트-붕소 삼원합금 도금된 피막의 표면형상과 단면조직을 FE-SEM(전계 방사 주사현미경, Field emission-scanning electromicroscope)을 이용하여 관찰하여, 작업시간을 60초로 하여 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액을 이용하여 얻어진 도금 피막의 표면 형상을 도 1에 도시하였는데, 도금피막의 형성속도는 5.0 ㎛/hr로서 박막형성에 용이한 특성을 가지고 있음을 확인할 수 있다. 또한 제조예 1의 도금액을 이용하여 얻어진 도금 피막의 단면 조직을 도 2에 도시하였는데, 치밀한 미세조직을 갖는 약 40 ㎚ 두께의 도금 피막이 형성된 것을 확인할 수 있다.Using the plating solution of Preparation Example 1, the surface shape and cross-sectional structure of the electroless nickel-cobalt-boron tri-alloy-coated film were observed using FE-SEM (Field emission-scanning electromicroscope), and the working time was observed. The surface shape of the plated film obtained by using the electroless nickel-cobalt-boron ternary alloy plating solution of the present invention at 60 seconds is shown in FIG. 1, and the formation rate of the plated film is 5.0 μm / hr, which is easy to form a thin film. You can see that it has. Moreover, although the cross-sectional structure of the plating film obtained using the plating liquid of manufacture example 1 was shown in FIG. 2, it can be seen that the plating film of about 40 nm thickness with dense microstructure was formed.

한편, 제조예 1의 도금액을 이용하여 얻어진 40 ㎚ 두께의 도금 피막의 확산방지층을 GD-OES를 이용하여 층간 분석을 한 것을 도 3에 도시하였는데, 무전해 피막의 구리와 산소의 함량을 관찰한 결과 확산방지 피복층으로서의 충분한 역할을 수행하는 것을 알 수 있다.On the other hand, it was shown in Figure 3 that the interlayer analysis using the GD-OES of the diffusion barrier layer of the 40 nm thick plating film obtained using the plating solution of Preparation Example 1, the contents of the copper and oxygen of the electroless film was observed As a result, it can be seen that it plays a sufficient role as the anti-diffusion coating layer.

한편, 제조예 1의 도금액을 이용하여 얻어진 40 ㎚ 두께의 도금 피막을 400 ℃에서 열처리한 후 GD-OES를 이용하여 분석한 결과를 도 4 및 도 5에 도시하였는데, 열처리를 한 후에도 구리 피크가 약간 관찰되었으나 피복층으로서의 역할은 충분히 수행할 수 있을 정도임을 확인할 수 있다.On the other hand, after the 40 nm-thick plated film obtained using the plating solution of Preparation Example 1 was heat treated at 400 ℃ and analyzed using GD-OES is shown in Figures 4 and 5, even after the heat treatment, the copper peak Although slightly observed, it can be confirmed that the role as a coating layer can be sufficiently performed.

한편, 제조예 1, 비교제조예 1 및 비교제조예 2의 도금된 피막층의 표면저항값을 측정하여 열처리 전후의 확산방지층으로서의 역할을 분석한 것을 도 6에 도시하였는데, 제조예 1의 도금액을 이용하여 얻어진 피막층은 열처리 온도를 300 ℃로 유지하였을 경우 열처리하지 않았을 경우와 동일한 표면저항값을 나타내었고, 열처리 온도가 400 ℃로 증가할 경우에도 표면저항값이 거의 동일하였으며, 이에 따라 비교제조예 1 및 비교제조예 2의 도금액을 이용하여 얻어진 피막층과 비교하였을 때, 제조예 1의 도금액을 이용하여 얻어진 약 80 중량%의 다량의 코발트가 공석된 피막층이 확산방지층으로서의 역할을 충분히 수행함을 확인할 수 있다.On the other hand, it is shown in Figure 6 to analyze the role of the diffusion barrier layer before and after heat treatment by measuring the surface resistance value of the plated coating layer of Preparation Example 1, Comparative Preparation Example 1 and Comparative Preparation Example 2, using the plating solution of Preparation Example 1 The obtained coating layer exhibited the same surface resistance value as the non-heat treatment when the heat treatment temperature was maintained at 300 ° C., and the surface resistance value was almost the same even when the heat treatment temperature was increased to 400 ° C., and accordingly Comparative Production Example 1 And when compared with the coating layer obtained using the plating solution of Comparative Preparation Example 2, it can be seen that the coating layer obtained with a large amount of cobalt vacancy of about 80% by weight using the plating solution of Preparation Example 1 sufficiently serves as a diffusion barrier layer. .

도 1은 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액을 이용하여 얻어진 도금 피막의 표면 형상을 도시하는 SEM 사진으로, 작업시간은 60초로 하였으며, 도금피막의 형성속도는 5.0 ㎛/h 이다.FIG. 1 is an SEM photograph showing the surface shape of a plating film obtained by using the electroless nickel-cobalt-boron tertiary alloy plating solution of the present invention. The working time was 60 seconds, and the formation rate of the plating film was 5.0 μm / h. .

도 2은 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액을 이용하여 얻어진 도금 피막의 단면 조직을 도시하는 SEM 사진이다.FIG. 2 is an SEM photograph showing the cross-sectional structure of a plated film obtained by using the electroless nickel-cobalt-boron tertiary alloy plating solution of the present invention.

도 3은 본 발명의 무전해 니켈-코발트-붕소 삼원합금 도금액을 이용하여 얻어진 40 ㎚ 두께의 도금 피막의 확산방지층을 GD-OES를 이용하여 층간 분석을 한 것이다.FIG. 3 is an interlayer analysis using GD-OES for a diffusion barrier layer of a 40 nm thick plating film obtained by using the electroless nickel-cobalt-boron ternary alloy plating solution of the present invention.

도 4 및 도 5는 도 3과 동일한 피막을 400 ℃에서 열처리한 후 GD-OES를 이용하여 분석한 것이다.4 and 5 are analyzed by using the GD-OES after the heat treatment of the same film as in Figure 3 at 400 ℃.

도 6은 도금된 피막층의 표면저항값을 측정하여 열처리 전후의 확산방지층으로서의 역할을 분석한 것이다. FIG. 6 analyzes the role of the diffusion barrier layer before and after heat treatment by measuring the surface resistance of the plated coating layer.

Claims (13)

황산니켈, 황산코발트 및 디메틸아민 보란을 포함하는 무전해 니켈-코발트-붕소 삼원합금 도금액에 있어서, 상기 무전해 니켈-코발트-붕소 삼원합금 도금액 1 ℓ에 대하여 황산니켈 20 내지 30 g, 황산코발트 10 내지 15 g 및 디메틸아민 보란 2.5 내지 5 g을 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액. In an electroless nickel-cobalt-boron tert alloy plating solution containing nickel sulfate, cobalt sulfate, and dimethylamine borane, 20 to 30 g of nickel sulfate and cobalt sulfate 10 per 1 L of the electroless nickel-cobalt-boron tert alloy plating solution An electroless nickel-cobalt-boron terpolymer plating solution comprising from 15 g to 2.5 g of dimethylamine borane. 제1항에 있어서, 상기 삼원합금 도금액은 pH 조절제로 암모니아수를 추가로 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 1, wherein the tertiary alloy plating solution further comprises ammonia water as a pH adjusting agent. 제1항에 있어서, 상기 삼원합금 도금액의 pH는 7 내지 8인 것을 특징으로 하는 니켈-코발트-붕소 삼원합금 도금액.The nickel-cobalt-boron tertiary alloy plating solution according to claim 1, wherein the pH of the tertiary alloy plating solution is 7 to 8. 제1항에 있어서, 상기 삼원합금 도금액은 착화제를 추가로 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 1, wherein the tertiary alloy plating solution further comprises a complexing agent. 제4항에 있어서, 상기 착화제는 아디핀산, 시트린산 및 락트산으로 구성되는 군으로부터 선택되는 1종 이상의 물질인 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.5. The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 4, wherein the complexing agent is at least one substance selected from the group consisting of adipic acid, citric acid and lactic acid. 제5항에 있어서, 상기 삼원합금 도금액 1 ℓ에 대하여 아디핀산 5 내지 20 g, 시트린산 5 내지 10 g 및 락트산 5 내지 20 g을 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.6. The electroless nickel-cobalt-boron tertiary alloy solution according to claim 5, comprising 5 to 20 g of adipic acid, 5 to 10 g of citric acid and 5 to 20 g of lactic acid with respect to 1 L of the three-way alloy plating solution. . 제1항에 있어서, 상기 삼원합금 도금액은 첨가제를 추가로 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 1, wherein the tertiary alloy plating solution further comprises an additive. 제7항에 있어서, 상기 첨가제는 티오다이글리콜산인 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액.8. The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 7, wherein the additive is thiodiglycolic acid. 제8항에 있어서, 상기 삼원합금 도금액 1 ℓ에 대하여 티오다이글리콜산 2.5 내지 5 ㎎을 포함하는 것을 특징으로 하는 무전해 니켈-코발트-붕소 삼원합금 도금액9. The electroless nickel-cobalt-boron tertiary alloy plating solution according to claim 8, comprising 2.5 to 5 mg of thiodiglycolic acid per 1 liter of the tertiary alloy plating solution. 제1항 내지 제9항 중 어느 한 항에 기재된 무전해 니켈-코발트-붕소 삼원합금 도금액을 사용하여 구리배선소재에 확산방지층을 형성하는 단계를 포함하는 무전해 도금 공정.An electroless plating process comprising the step of forming a diffusion barrier layer on a copper wiring material using the electroless nickel-cobalt-boron ternary alloy plating solution according to any one of claims 1 to 9. 제10항에 있어서, 상기 무전해 도금 공정은 7.0 내지 8.0의 pH 범위 및 50 내지 70℃의 온도 범위에서 수행되는 것을 특징으로 하는 무전해 도금 공정.The electroless plating process according to claim 10, wherein the electroless plating process is performed at a pH range of 7.0 to 8.0 and a temperature range of 50 to 70 ° C. 제1항 내지 제9항 중 어느 한 항에 기재된 무전해 니켈-코발트-붕소 삼원합금 도금액에 의하여 구리배선소재에 도금된 니켈-코발트-붕소 삼원합금 피막.A nickel-cobalt-boron ternary alloy film plated on a copper wiring material by the electroless nickel-cobalt-boron ternary alloy plating solution according to any one of claims 1 to 9. 제11항에 있어서, 상기 삼원합금 피막에서 니켈의 공석량은 15 내지 25 중량%이고, 붕소의 공석량은 0.5 내지 1.0 중량%인 것을 특징으로 하는 니켈-코발트-붕소 삼원합금 피막. 12. The nickel-cobalt-boron tertiary alloy film of claim 11, wherein the amount of vacancy in the ternary alloy film is 15 to 25% by weight, and the amount of vacancy in boron is 0.5 to 1.0% by weight.
KR1020090047807A 2009-05-29 2009-05-29 Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same KR101096812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090047807A KR101096812B1 (en) 2009-05-29 2009-05-29 Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090047807A KR101096812B1 (en) 2009-05-29 2009-05-29 Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same

Publications (2)

Publication Number Publication Date
KR20100129052A true KR20100129052A (en) 2010-12-08
KR101096812B1 KR101096812B1 (en) 2011-12-22

Family

ID=43505854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090047807A KR101096812B1 (en) 2009-05-29 2009-05-29 Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same

Country Status (1)

Country Link
KR (1) KR101096812B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352522A (en) * 2011-10-31 2012-02-15 哈尔滨工业大学 Electric deposition preparation method of Ni-Co-B alloy substituted hard chromium plating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811543B2 (en) 2000-09-08 2011-11-09 学校法人早稲田大学 Fabrication method of fine pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352522A (en) * 2011-10-31 2012-02-15 哈尔滨工业大学 Electric deposition preparation method of Ni-Co-B alloy substituted hard chromium plating

Also Published As

Publication number Publication date
KR101096812B1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US6605874B2 (en) Method of making semiconductor device using an interconnect
CN100397612C (en) Interconnect structures containing conductive electrolessly deposited etch stop layers, liner layers, and via plugs
EP1346408B1 (en) Method of electroless introduction of interconnect structures
US6323128B1 (en) Method for forming Co-W-P-Au films
KR20010082732A (en) Process for fabricating a semiconductor device
US20050161338A1 (en) Electroless cobalt alloy deposition process
KR101170560B1 (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
US7064065B2 (en) Silver under-layers for electroless cobalt alloys
US6585811B2 (en) Method for depositing copper or a copper alloy
KR20090084848A (en) Plated material having metal thin film formed by electroless plating, and method for production thereof
KR20140100443A (en) Through silicon via metallization
US6998337B1 (en) Thermal annealing for Cu seed layer enhancement
US20050170650A1 (en) Electroless palladium nitrate activation prior to cobalt-alloy deposition
KR101092667B1 (en) Nikel-phosphorus-tungsten three element alloy electroless plating solution, electroless plating method using the same and nikel-phosphorus-tungsten three element alloy coating layer prepared by the same
KR101096812B1 (en) Ni-Co-B three-element alloys electroless plating solution, electroless plating method using the same and Ni-Co-B three-element alloys coating layer prepared by the same
TWI670395B (en) Method for forming through electrode using electroless plating solution
KR101261563B1 (en) Autocatalytic-type Co-P plating solution, electroless plating method using the same and Co-P alloys coating layer prepared by the same
KR101176221B1 (en) Co-W alloys electroless plating solution, electroless plating method using the same and Co-W alloys coating layer prepared by the same
KR20100129053A (en) Ni-co-p three element alloys electroless plating solution, electroless plating method using the same and ni-co-p three element alloys coating layer prepared by the same
KR20110087715A (en) Co-w-p three-element alloys electroless plating solution, electroless plating method using the same and co-w-p three-element alloys coating layer prepared by the same
KR101219586B1 (en) Method for decreasing resistance of copper coating layer using annealing
KR20110095519A (en) Neutral co-w-p three-element alloys electroless plating solution, electroless plating method using the same and co-w-p three-element alloys coating layer prepared by the same
EP1022355B1 (en) Deposition of copper on an activated surface of a substrate
KR20110123021A (en) Co-w alloys electroless plating solution with low temperature, electroless plating method using the same and co-w alloys coating layer prepared by the same
KR101224205B1 (en) Electroless silver plating solution for semiconductor interconnects, electroless plating method using the same and silver coating layer prepared by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151113

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190925

Year of fee payment: 9