KR20090102464A - Electroless plating solution and plating method using the same - Google Patents

Electroless plating solution and plating method using the same

Info

Publication number
KR20090102464A
KR20090102464A KR1020080027928A KR20080027928A KR20090102464A KR 20090102464 A KR20090102464 A KR 20090102464A KR 1020080027928 A KR1020080027928 A KR 1020080027928A KR 20080027928 A KR20080027928 A KR 20080027928A KR 20090102464 A KR20090102464 A KR 20090102464A
Authority
KR
South Korea
Prior art keywords
electroless plating
plating solution
sulfate
copper
accelerator
Prior art date
Application number
KR1020080027928A
Other languages
Korean (ko)
Inventor
김재정
이창화
김애림
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080027928A priority Critical patent/KR20090102464A/en
Publication of KR20090102464A publication Critical patent/KR20090102464A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde

Abstract

PURPOSE: An electroless plating solution and a plating method using the same are provided to performing electrodeposition using a first and second plating solution on patterns having different sizes each other and fill without the amount of electroposition. CONSTITUTION: A method for plating with electroless plating solution comprises: a step (S110) of removing a natural oxidation film of a substrate by dipping a pattern substrate in hydrofluoric acid solution; a step (S130) of activating the surface of substrate with palladium catalyst; and a step (S140) of performing electrodeposition with electrodeposition solution.

Description

무전해 도금용액 및 이를 이용한 도금 방법{Electroless Plating Solution and Plating method Using the Same} Electroless Plating Solution and Plating Method {Electroless Plating Solution and Plating method Using the Same}

본 발명은 반도체에 배선을 형성하기 위한 무전해 도금용액에 관한 것으로서, 보다 구체적으로는 농도가 다른 가속제를 포함한 도금용액을 1회 또는 2회에 걸쳐 사용하여 초등각 전착시키는 무전해 도금용액 및 이를 이용한 도금방법에 관한 것이다.The present invention relates to an electroless plating solution for forming a wiring in a semiconductor, and more particularly, to an electroless plating solution for electrodepositing the plating solution using a plating solution containing an accelerator having a different concentration once or twice. It relates to a plating method using the same.

최근 전자산업이 급격히 발전함에 따라, 부품의 경량화, 박막화가 이루어지고 있으며, 아울러 부품에 적용되는 도금막의 경량화, 박막화가 요구되고 있다. With the rapid development of the electronics industry in recent years, weight reduction and thinning of components have been made, and in addition, weight reduction and thinning of plating films applied to components have been required.

여기서 박막은 일반적으로 수백 nm에서 수십 ㎛이내의 두께를 말하며, 박막 자체는 기계적인 강도를 가질 수 없기 때문에 기재에 표면처리 기술, 주로 도금을 이용하여 그 특성을 부여한다. 특히, 도금은 기재에 기본적인 장식성, 내식성 등의 기능 외에도 경도, 내마모성, 윤활성, 내구성 등의 기계적인 특성, 전도성, 접촉특성, 자기특성, 고주파특성, 저항특성, 전자파 차폐성 등의 전기적 특성, 광반사성, 선택흡수성 등의 광학특성, 그리고 납땜성, 결합성, 접착성 등과 같은 물리적 특성 등을 부여할 수 있어, 자동차, 전자, 반도체 및 각종 기계류 소자 등에 폭넓게 사용하고 있다.Herein, the thin film generally refers to a thickness of several hundred nm to several tens of micrometers, and since the thin film itself cannot have mechanical strength, the substrate is treated with surface treatment technology, mainly plating. In particular, in addition to the basic decorative and corrosion resistance of the substrate, the plating, mechanical properties such as hardness, abrasion resistance, lubricity, durability, electrical properties such as conductivity, contact properties, magnetic properties, high frequency properties, resistance properties, electromagnetic shielding properties, light reflection properties And optical properties such as selective absorption and physical properties such as solderability, bonding, adhesiveness, and the like, can be imparted, and are widely used in automobiles, electronics, semiconductors, and various machinery elements.

이러한 부품 중에서 최근에는 반도체 소자의 집적도가 증가하고 있으며, 발생하는 신호를 감소시키고 전자이동(electromigration)에 대한 저항성을 향상시키기 위하여 전기적 신호를 전달하는 배선재를 알루미늄에서 구리 등의 금속으로 대체하고 있다.In recent years, the degree of integration of semiconductor devices has increased, and wiring materials for transmitting electrical signals have been replaced by metals such as aluminum and copper in order to reduce generated signals and improve resistance to electromigration.

금속은 건식식각이 어려운점 때문에 다마신공정(damascene process)으로 배선을 형성하는데 이때, 중요한 세부 공정 중 하나가 전해도금을 이용한 초등각 전착이다.Since metals are difficult to dry etch, wiring is formed by a damascene process, and one of the important detailed processes is elemental electrodeposition using electroplating.

이러한 전해도금은 시드층(seed layer)을 필요로 하고 전착속도가 빠르며, 가속제, 억제제 등과 같은 첨가제를 사용하여 트렌치(trench)나 비아(via)와 같은 패턴 구조내에 보이드(void)혹은 씸(seam)과 같은 결함없이 구리 등의 금속을 채워 도금할 수 있다.This electroplating requires a seed layer, has a high electrodeposition rate, and uses additives such as accelerators and inhibitors to form voids or voids in pattern structures such as trenches or vias. Metal plating such as copper can be filled without defects such as seam).

하지만 최근에는 배선의 폭이 줄어드는 경향이 있는데 여기에 전해도금을 하게 되면 전해도금에 사용되는 시드층으로 인해 구리 등의 금속을 채우기 위한 종횡비가 증가하고, 불균일한 시드층의 형성으로 보이드 및 오버행(overhang)이 발생하는 문제점이 있다.However, in recent years, the width of wiring tends to decrease, and electroplating increases the aspect ratio for filling metals such as copper due to the seed layer used for electroplating, and void and overhanging due to the formation of an uneven seed layer. overhang) occurs.

반면에 무전해 도금은 수 nm의 입상형태의 촉매를 이용하여 시드층 없이 초등각 전착을 할 수 있기 때문에 전해도금에서 발생하는 문제점을 극복할 수 있다. On the other hand, the electroless plating can overcome the problems caused by electroplating because it can be subjected to an elemental electrodeposition without a seed layer by using a catalyst having a granular form of several nm.

최근에는 무전해 도금에 가속제 등의 첨가제를 사용하여 시드층 없이 패턴에 구리 등의 금속을 채워 도금을 하지만 미세한 선폭을 갖는 다양한 크기의 패턴에는 전착량의 차이가 있으며, 보이드나 씸과 같은 결함없이 구리를 채워 초등각 전착시키지 못하는 문제점이 있다. In recent years, electroless plating uses additives such as accelerators to plate a pattern without a seed layer by filling metals such as copper, but patterns of various sizes having minute line widths have a difference in electrodeposition amount. There is a problem in that it is not possible to deposit the elementary electrode without filling the copper.

이에, 본 발명은 가속제를 포함한 무전해 도금용액만으로 시드층 없이 초등각 전착시키는 무전해 도금용액 및 도금방법을 제공하는데 있다.Accordingly, the present invention is to provide an electroless plating solution and a plating method for the elementary electrodepositing without a seed layer using only an electroless plating solution including an accelerator.

또한, 본 발명은 기판패턴의 선폭이 300 nm이상이면서 크기가 동일한 패턴에 무전해 도금용액을 이용하여 금속을 전착시킴으로써 보이드(void)나 씸(seam) 등의 결함이 없을 뿐만 아니라, 전착량의 차이 없이 동시에 채울 수 있는 무전해 도금용액 및 도금방법을 제공하는데 있다. In addition, the present invention is not only defects such as voids or seams by electrodepositing a metal using an electroless plating solution in a pattern of which the line width of the substrate pattern is 300 nm or more but the same size. It is to provide an electroless plating solution and a plating method that can be filled at the same time without difference.

또한, 본 발명은 기판패턴의 선폭이 500 nm이하이며 서로 크기가 다른 패턴에 제1, 제2 무전해 도금용액을 이용하여 금속을 전착시킴으로써 보이드(void)나 씸(seam) 등의 결함이 없을 뿐만 아니라, 전착량의 차이 없이 동시에 채울 수 있는 무전해 도금용액 및 도금방법을 제공하는데 있다. In addition, the present invention eliminates defects such as voids and seams by electrodepositing a metal using a first and second electroless plating solution on a pattern having a line width of 500 nm or less and having different sizes. In addition, the present invention provides an electroless plating solution and a plating method that can be simultaneously filled without a difference in electrodeposition amount.

이를 위하여, 본 발명의 무전해 도금용액은 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철, 염화철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS), 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 선택된 어느 하나의 가속제를 포함한다. 이 도금대상물질 중에서 황산구리를 사용한 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-10 mg/L의 가속제를 포함한다. 또한, 이 도금대상물질 중에서 황산구리를 사용한 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜에 각각 1.0-10 mg/L 및 0.01-5 mg/L의 가속제를 포함한다.To this end, the electroless plating solution of the present invention is at least one selected from the group consisting of copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate, iron chloride, and 2-mercapto-5-. Benzimidazole sulfonic acid (MBIS), benzimidazole, 2-mercaptobenzimidazole, and benzotriazole. The electroless plating solution using copper sulfate among these plating targets was 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L Potassium hydroxide, 0.01-1 g / L 2,2-dipyridyl, 0-1 g / L polyethylene glycol, and 0.01-10 mg / L accelerator. In addition, the electroless plating solution using copper sulfate in this plating material was 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 g / L 2,2-dipyridyl, 0-1 g / L polyethylene glycol contains 1.0-10 mg / L and 0.01-5 mg / L accelerator, respectively do.

또한, 본 발명의 무전해 도금용액으로 1단계 전착하는 방법은 확산 방지막 층을 가진 패턴 기판을 불산 또는 질산이 첨가된 불산 수용액에 침지시켜 상기 기판의 자연산화막을 제거하는 제1 단계와, 제1 단계를 거친 기판의 표면을 팔라듐 촉매로 활성화시키는 제2 단계와, 활성화된 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철, 염화철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 무전해 도금용액으로 전착하는 제3 단계를 포함한다. 이 도금대상물질 중에서 황산구리를 사용한 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-10 mg/L의 가속제를 포함한다.In addition, the first step of electrodeposition with an electroless plating solution of the present invention is a first step of immersing the pattern substrate having a diffusion barrier layer in a hydrofluoric acid solution to which hydrofluoric acid or nitric acid is added to remove the natural oxide film of the substrate, and the first step At least one selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate, and iron chloride in the pattern of the activated substrate; And a third step of electrodepositing the electroless plating solution containing the plating target material and the accelerator. The electroless plating solution using copper sulfate among these plating targets was 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L Potassium hydroxide, 0.01-1 g / L 2,2-dipyridyl, 0-1 g / L polyethylene glycol, and 0.01-10 mg / L accelerator.

또한, 본 발명의 무전해 도금용액으로 2단계 전착하는 방법은 확산 방지막 층을 가진 패턴 기판을 불산 또는 질산이 첨가된 불산 수용액에 침지시켜 상기 기판의 자연산화막을 제거하는 제1 단계와, 제1 단계를 거친 기판의 표면을 팔라듐 촉매로 활성화시키는 제2 단계와, 활성화된 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철, 염화철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 제1 무전해 도금용액으로 전착하는 제3 단계와, 제1 무전해 도금용액으로 전착시킨 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철, 염화철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 제2 무전해 도금용액으로 구리를 전착하는 제4 단계를 포함한다. In addition, the two-step electrodeposition method using an electroless plating solution of the present invention comprises the first step of immersing the pattern substrate having a diffusion barrier layer in an aqueous hydrofluoric acid solution to which hydrofluoric acid or nitric acid is added to remove the natural oxide film of the substrate; At least one selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate, and iron chloride in the pattern of the activated substrate; A third step of electrodeposition with a first electroless plating solution containing a plating target material and an accelerator, and copper sulfate, nickel sulfate, nickel chloride, sulfuric acid on a pattern of the substrate electrodeposited with the first electroless plating solution. Agent for electrodepositing copper with a second electroless plating solution containing at least one plating target material and an accelerator selected from cobalt, cobalt chloride, iron sulfate, and iron chloride It includes 4 steps.

이 도금대상물질 중에서 황산구리를 사용한 제1 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 1.0-10 mg/L의 가속제를 포함하며, 제2 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-5 mg/L의 가속제를 포함한다. Among these plating materials, the first electroless plating solution using copper sulfate was 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 g / L 2,2-dipyridyl, 0-1 g / L polyethylene glycol, 1.0-10 mg / L accelerator, second electroless plating solution Silver 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 g / L 2 , 2-dipyridyl, 0-1 g / L polyethylene glycol, 0.01-5 mg / L accelerator.

이때, 사용한 가속제는 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS), 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 선택된 어느 하나를 포함한다.In this case, the accelerator used includes any one selected from 2-mercapto-5-benzimidazolesulphonic acid (MBIS), benzimidazole, 2-mercaptobenzimidazole, and benzotriazole.

제 4단계 이후에 제1 도금용액으로 도금된 구리는 희석된 암모니아수 또는 시트릭산과 과산화수소수의 혼합용액에 의해 식각되어 제1 도금용액의 가속제를 탈착 또는 제거함으로써 제2 무전해 도금용액이 패턴에 잘 채워질 수 있도록 한다.After the fourth step, the copper plated with the first plating solution is etched by dilute ammonia water or a mixed solution of citric acid and hydrogen peroxide solution to desorb or remove the accelerator of the first plating solution so that the second electroless plating solution is patterned. Make sure it fills in well.

이러한 혼합용액은 시트릭산 1-5 g/L, 과산화수소수 1-10 ml/L로 이루어진다. This mixed solution consists of 1-5 g / L citric acid and 1-10 ml / L hydrogen peroxide.

이와 같이, 본 발명의 무전해 도금용액은 시드층 없이 도금용액만으로 초등각 전착이 가능하다.As described above, the electroless plating solution of the present invention is capable of conformal electrodeposition with only the plating solution without a seed layer.

또한, 무전해 도금용액은 선폭이 300 nm이상이고 크기가 동일한 패턴에 1단계 전착법을 수행함으로써 패턴들 간의 전착량 차이를 없앨 뿐만 아니라, 보이드나 씸과 같은 결함을 발생시키지 않는다. In addition, the electroless plating solution not only eliminates the electrodeposition amount difference between the patterns by performing a one-step electrodeposition method on a pattern having a line width of 300 nm or more and the same size, but also does not cause defects such as voids and chips.

또한, 가속제의 농도가 다른 두 종류의 무전해 도금용액은 선폭이 500nm이고 서로 다른 크기로 이루어진 미세패턴에 2단계 전착법으로 수행됨으로써 패턴들 간의 전착량 차이를 없앨 뿐만 아니라, 보이드나 씸과 같은 결함을 발생시키지 않는다.In addition, the two types of electroless plating solutions with different accelerator concentrations are not only eliminated the difference in electrodeposition amount between the patterns by performing a two-step electrodeposition method on the micropatterns having a line width of 500 nm and different sizes. It does not cause the same defect.

또한, 본 발명의 무전해 도금용약을 이용하면 구리의 표면의 거칠기가 줄어든다. In addition, when the electroless plating solution of the present invention is used, the roughness of the surface of copper is reduced.

도 1은 본 발명의 무전해 도금용액을 실시예에 따라 기판의 패턴에 도금하는 방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of plating an electroless plating solution of the present invention on a pattern of a substrate according to an embodiment.

도 2는 본 발명의 무전해 도금용액을 다른 실시예에 따라 기판의 패턴에 도금하는 방법을 나타낸 흐름도이다.2 is a flowchart illustrating a method of plating an electroless plating solution of the present invention on a pattern of a substrate according to another embodiment.

도 3a는 MPSA와 2,2'-디피리딜을 첨가제로 사용하고, 도 3b는 SPS와 2,2'-디피리딜을 첨가제로 사용하며, 도 3c는 2-MBT와 2,2'-디피리딜을 첨가제로 사용하여 1단계 전착법에 따라 전착하여 제조된 구리 막의 단면 SEM사진이다.Figure 3a uses MPSA and 2,2'-dipyridyl as an additive, Figure 3b uses SPS and 2,2'-dipyridyl as an additive, Figure 3c is 2-MBT and 2,2'- SEM image of a cross section of a copper film prepared by electrodeposition using dipyridyl as an additive according to a one-step electrodeposition method.

도 4는 MBIS와 2,2'-디피리딜을 첨가제로 사용하여 1단계 전착법에 따라 전착하여 제조된 구리 막의 단면 SEM사진이다.4 is a cross-sectional SEM photograph of a copper film prepared by electrodeposition according to a one-step electrodeposition method using MBIS and 2,2'-dipyridyl as an additive.

도 5는 MBIS, 2,2'-디피리딜, PEG를 첨가제로 사용하여 1단계 전착법에 따라 전착하여 제조되는 구리 막의 형성과정을 시간에 따라 촬영한 단면 SEM사진이다.FIG. 5 is a cross-sectional SEM photograph of a process of forming a copper film prepared by electrodeposition according to a one-step electrodeposition method using MBIS, 2,2′-dipyridyl, and PEG as an additive.

도 6a는 MBIS, 2,2'-디피리딜, PEG를 첨가제로 사용하여 1단계 전착법에 따라 전착하여 제조된 구리 막의 단면 SEM사진이다.6A is a cross-sectional SEM photograph of a copper film prepared by electrodeposition according to a one-step electrodeposition method using MBIS, 2,2′-dipyridyl, and PEG as an additive.

도 6b는 MBIS, 2,2'-디피리딜, PEG를 첨가제로 사용하되, MBIS의 농도가 다른 무전해 도금용액을 차례로 2단계 전착하고, 도 6c는 도 6b에 구리 식각 과정이 포함된 것이고, 도 6d는 도 6c를 열처리하여 제조된 구리 막의 단면 SEM사진이다.Figure 6b is used as an additive MBIS, 2,2'-dipyridyl, PEG, two-stage electrodeposited electroless plating solution with different concentration of MBIS, Figure 6c is a copper etching process in Figure 6b 6D is a cross-sectional SEM photograph of a copper film prepared by heat treatment of FIG. 6C.

이하, 본 발명의 바람직한 실시예들을 첨부한 도면을 참조하여 상세히 설명한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.

황산구리를 도금대상물질로 이용한 무전해 도금용액은 황산구리(copper sulfate) 5-8 g/L, 에틸렌디아민사아세트산(ethylenediaminetetraacetic acid, EDTA) 14-18 g/L, 환원제로 포름알데히드(formaldehyde) 2-3.5 g/L, pH 조절제로 수산화칼륨(potassium hydroxide) 20-35 g/L, 첨가제 등을 물에 용해시켜 제조한다. 이때, 수산화칼륨은 구리 무전해 도금용액의 pH를 12-14로 유지시켜 준다. The electroless plating solution using copper sulfate as a plating target is copper sulfate 5-8 g / L, ethylenediaminetetraacetic acid (EDTA) 14-18 g / L, formaldehyde 2- It is prepared by dissolving 20-35 g / L of potassium hydroxide, additives and the like in 3.5 g / L, pH adjusting agent. At this time, potassium hydroxide maintains the pH of the copper electroless plating solution to 12-14.

첨가제는 가속제, 안정제로서 2,2'-디피리딜(2,2'-dipyridyl), 표면 거칠기 제어제로서 폴리에틸렌글리콜(polyethylene glycol)을 포함한다. Additives include 2,2'-dipyridyl as an accelerator, stabilizer, and polyethylene glycol as a surface roughness control agent.

가속제로 사용된 물질은 그 농도에 따라 무전해 도금 속도를 빠르게 하거나 느려지게 할 수 있다. 따라서 전착법에 따라 무전해 도금용액의 가속제 농도를 다르게 한다. The material used as an accelerator can speed up or slow the electroless plating rate depending on its concentration. Therefore, the accelerator concentration of the electroless plating solution is changed according to the electrodeposition method.

전착법에는 1단계 전착법과 2단계 전착법이 있는데, 1단계 전착법은 패턴의 선폭이 300 nm이상이며, 패턴의 크기가 동일할 때 사용하는 것으로서, 패턴에 무전해 도금용액을 1회 사용하여 초등각 전착(superconformal deposition)시키는 것이다. 또한, 2단계 전착법은 패턴의 선폭이 500 nm이하이고 서로 다른 크기의 미세패턴이 한 기판에 존재할 때 이용되며, 가속제의 농도에 따라 형성된 두 종류의 구리 무전해 도금용액을 패턴에 각각 1회씩 사용하여 초등각 전착시키는 것이다. The electrodeposition method is a one-step electrodeposition method and a two-step electrodeposition method. The first step electrodeposition method is used when the line width of the pattern is 300 nm or more and the size of the pattern is the same. It is superconformal deposition. In addition, the two-step electrodeposition method is used when the line width of the pattern is 500 nm or less and different sizes of micropatterns exist on one substrate, and each of the two types of copper electroless plating solutions formed according to the concentration of the accelerator is 1 Use it once and make an elementary electrodeposition.

1단계 전착법을 사용할 경우 가속제의 농도는 0.01-10 mg/L이며, 2단계 전착법을 사용할 경우 가속제의 농도는 1.0-10 mg/L과 0.01-5 mg/L이다. 2단계 전착법에서 가속제의 농도가 1.0-10 mg/L인 무전해 도금용액은 제1 무전해 도금용액이라 하며, 가속제의 농도가 0.01-5 mg/L인 무전해 도금용액은 제2 무전해 도금용액이라 한다.Accelerator concentrations are 0.01-10 mg / L when using one-step electrodeposition, and accelerator concentrations are 1.0-10 mg / L and 0.01-5 mg / L when two-step electrodeposition is used. In the two-step electrodeposition method, the electroless plating solution having an accelerator concentration of 1.0-10 mg / L is called the first electroless plating solution, and the electroless plating solution having an accelerator concentration of 0.01-5 mg / L is prepared as the second electrolytic plating solution. It is called electroless plating solution.

2단계 전착법에서 제1 무전해 도금용액의 가속제 농도가 1.0 mg/L 미만일 경우에는 무전해 도금용액으로 패턴을 채울 때 빠른 속도로 인하여 크기가 작은 패턴은 보이드가 발생할 수 있으며, 10 mg/L 초과일 경우에는 무전해 도금용액으로 패턴을 느리게 채우게 됨으로써 패턴을 채우는데 시간이 오래 걸릴 수 있다. If the accelerator concentration of the first electroless plating solution is less than 1.0 mg / L in the two-step electrodeposition method, voids may occur in small patterns due to the high speed when filling the pattern with the electroless plating solution. If it is larger than L, it may take a long time to fill the pattern by slowly filling the pattern with the electroless plating solution.

또한, 제2 무전해 도금용액의 가속제 농도가 0.01 mg/L 미만일 경우에는 패턴을 채울 때 빠른 속도로 인하여 보이드가 발생할 수 있으며, 5 mg/L 초과일 경우에는 1단계에서 구리로 채워지지 않은 상대적으로 크기가 큰 패턴을 느리게 채우게 되므로 시간이 오래 걸린다. In addition, when the accelerator concentration of the second electroless plating solution is less than 0.01 mg / L, voids may occur due to the high speed when filling the pattern, and when the concentration of the second electroless plating solution is greater than 5 mg / L, the copper is not filled with copper in the first step. It takes longer because it fills in relatively large patterns slowly.

가속제의 종류는 2-멀캡토벤조티아졸(2-mercaptobenzothiazole), 2,5-멀캡토-1,3,4-티아디아졸(2,5-dimercapto-1,3,4-thiadiazole), 6-멀캡토퓨린 모노하이드래이트(6-mercaptopurine monohydrate), 2-멀캡토-5-벤즈이미다졸설포닉산(2-mercapto-5-benzimidazolesulfonic acid, MBIS), 2-멀캡토벤즈이미다졸(2-mercapto-benzimidazole), 벤즈이미다졸(benzimidazole), 벤조트리아졸(benzotriazole)이 있으며, 이 중에서 선택된 하나 또는 2종 이상을 사용할 수 있다. 바람직하게는, 가속제로 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS)을 사용하는 것이다. Accelerators include 2-mercaptobenzothiazole, 2,5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, 6-mercaptopurine monohydrate, 2-mercapto-5-benzimidazolesulfonic acid (MBIS), 2-mercaptobenzimidazole (2 -mercapto-benzimidazole), benzimidazole, and benzotriazole, and one or two or more selected from these may be used. Preferably, 2-accelto-5-benzimidazole sulfonic acid (MBIS) is used as an accelerator.

이러한 가속제를 포함한 무전해 도금용액으로 구리를 전착시킬 때 패턴의 바닥부분에서 가속이 일어났다는 증거인 범프(bump)가 형성된다. 이 범프는 바닥부터 구리가 차오르는 것을 의미하는 초등각 전착의 증거이며, 구리가 보이드나 씸과 같은 결함없이 패턴에 전착되었다는 의미를 갖는다.When electrodepositing copper with an electroless plating solution containing such an accelerator, a bump is formed, which is evidence of the acceleration occurring at the bottom of the pattern. This bump is evidence of an isotropic electrodeposition, which means that the copper rises from the bottom, meaning that it has been electrodeposited into the pattern without defects such as voids and fins.

MBIS를 사용하여 도금용액을 제조하면 다른 가속제보다 거칠기를 더 감소시킬 수 있으며, 바닥에서부터 구리전착이 어려운 500 nm이하의 크기가 다른 미세패턴 및 300 nm이상의 크기가 같은 패턴의 바닥부터 결함없이 구리를 전착할 수 있는 점과, 전착량의 차이 없이 구리를 전착할 수 있는 점에서 다른 가속제 보다 더 우수하다. Manufacturing the plating solution using MBIS can reduce the roughness more than other accelerators, and it is possible to reduce copper without defects from the bottom of fine patterns with different sizes of 500 nm or less and patterns with the same size of more than 300 nm that are difficult to electrodeposit copper from the bottom. It is superior to other accelerators in that it can electrodeposit and copper can be electrodeposited without any difference in electrodeposition amount.

2,2-디피리딜은 안정제 역할을 하는 것으로 무전해 도금을 안정화시키고 막내 산화를 방지하며, 단독 또는 폴리에틸렌글리콜과 사용하여 도금 막 표면의 거칠기를 줄일 수 있다. 이때, 2,2-디피리딜의 농도는 0.01-1 g/L이며, 농도가 0.01 g/L 미만일 경우에는 거칠기가 크고 막 내부에 산화구리가 형성될 수 있으며, 농도가 1 g/L 초과일 경우에는 탄소화합물의 흡착 증가로 비저항이 높아질 수 있다.2,2-Dipyridyl acts as a stabilizer to stabilize electroless plating and prevent oxidation in the film, and can be used alone or in combination with polyethylene glycol to reduce the surface roughness of the plating film. At this time, the concentration of 2,2-dipyridyl is 0.01-1 g / L, when the concentration is less than 0.01 g / L, the roughness is large and copper oxide may be formed in the film, the concentration is more than 1 g / L In one case, the specific resistance may increase due to increased adsorption of the carbon compound.

폴리에틸렌글리콜은 전착속도를 조절함으로써 도금 막 표면의 거칠기를 줄인다. 이때, 폴리에틸렌글리콜의 농도는 0-1 g/L이며, 바람직하게는 0.1 mg/L-1 g/L이다. 농도가 1 g/L 초과일 경우에는 급격한 비저항의 증가를 발생할 수 있다.Polyethylene glycol reduces the roughness of the surface of the plating film by controlling the electrodeposition rate. At this time, the concentration of polyethylene glycol is 0-1 g / L, preferably 0.1 mg / L-1 g / L. If the concentration is higher than 1 g / L, a rapid increase in specific resistance may occur.

본 발명의 무전해 도금용액은 2-7배 희석하여 패턴을 도금하는데 이용될 수 있다.The electroless plating solution of the present invention can be used to plate a pattern by diluting 2-7 times.

무전해 도금용액으로 패턴을 초등각 전착시킬 때 도금대상물질로 황산구리를 이용하여 구리를 전착시키는 것에 한정하는 것은 아니고, 도금대상물질로 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나를 이용하여 니켈, 철, 코발트 등을 초등각 전착시킬 수 있다. 이때, 니켈, 철, 코발트 등을 전착시키기 위한 무전해 도금용액은 도금대상물질로 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나와 가속제를 포함한다.It is not limited to electrodepositing copper using copper sulfate as the plating material when elemental electrodepositing the pattern with an electroless plating solution, and selected from nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, and iron sulfate as the plating target material. At least one may be used to make an elementary electrodeposited nickel, iron, cobalt or the like. In this case, the electroless plating solution for electrodepositing nickel, iron, cobalt, etc. includes at least one selected from nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, and iron sulfate as an plating target and an accelerator.

도 1은 본 발명의 무전해 도금용액을 실시예에 따라 기판의 패턴에 도금하는 방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of plating an electroless plating solution of the present invention on a pattern of a substrate according to an embodiment.

도 1은 무전해 도금용액을 1회 사용한 1단계 전착법에 관한 것이며, 1단계 전착법은 기판의 패턴 선폭이 300 nm 이상이고 한 기판에서 패턴의 크기가 동일할 때 사용할 수 있다. 1 relates to a one-step electrodeposition method using an electroless plating solution once, and the one-step electrodeposition method can be used when the pattern line width of the substrate is 300 nm or more and the size of the pattern is the same on one substrate.

도 1을 참조하면, 확산방지막이 형성된 기판 패턴의 자연산화막을 제거하기 위하여 불산 또는 질산이 첨가된 불산 수용액에 침지시킨다(S110). 이때, 기판은 질화타이타늄(TiN) 10 nm/ 타이타늄(Ti)/실리콘(Si) 웨이퍼 또는 탄탈륨(Ta) 7.5 nm/ 질화탄탈륨(TaN) 7.5 nm/실리콘(Si) 웨이퍼이다. Referring to FIG. 1, in order to remove a natural oxide film of a substrate pattern on which a diffusion barrier film is formed, it is immersed in an aqueous hydrofluoric acid solution to which hydrofluoric acid or nitric acid is added (S110). At this time, the substrate is a titanium nitride (TiN) 10 nm / titanium (Ti) / silicon (Si) wafer or tantalum (Ta) 7.5 nm / tantalum nitride (TaN) 7.5 nm / silicon (Si) wafer.

침지된 기판을 빼낸 후 자연산화막이 제거된 기판에 남아있는 잔류물을 이온 제거수로 제거한다(S120). 무전해 도금 방법은 촉매에 의해 환원제가 산화되면, 이때 발생하는 전자를 이용해 금속이온을 금속으로 환원시켜 전착시키는 것이다. 따라서 무전해 도금용액으로 도금하기 전에 팔라듐 촉매로 기판의 표면을 활성화 시켜준다(S130). After removing the immersed substrate, the residue remaining on the substrate from which the natural oxide film is removed is removed with ion removal water (S120). In the electroless plating method, when a reducing agent is oxidized by a catalyst, metal ions are reduced to metals and electrodeposited by using electrons generated at this time. Therefore, before plating with the electroless plating solution, the surface of the substrate is activated with a palladium catalyst (S130).

팔라듐 촉매에 의해 활성화된 기판에서의 패턴은 가속제의 농도가 0.01-10 mg/L인 무전해 도금용액에 의해 금속이 채워짐으로써 도금된다(S140). 이때, 금속은 구리, 니켈, 철, 코발트 중에 하나이며, 이러한 금속으로 도금하기 위하여 무전해 도금용액에 포함된 도금대상물질은 황산구리, 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나이다.The pattern on the substrate activated by the palladium catalyst is plated by filling the metal with an electroless plating solution having an accelerator concentration of 0.01-10 mg / L (S140). At this time, the metal is one of copper, nickel, iron, cobalt, and the plating target material contained in the electroless plating solution for plating with the metal is selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate At least one.

또한, S120단계 이후에 주석(Sn)을 흡착시키는 단계를 더 포함할 수 있다.Also, the method may further include adsorbing tin (Sn) after the step S120.

S140단계와 같이 무전해 도금용액을 패턴에 전착시킬 때는 15-80 ℃의 온도에서 이루어지며, 온도가 15 ℃ 미만일 경우에는 금속이 채워지는 내부에 불순물을 포함하고, 온도가 80 ℃ 초과일 경우에는 무전해 도금용액의 안정성이 떨어진다. When electrodepositing the electroless plating solution to the pattern as in step S140 is made at a temperature of 15-80 ℃, if the temperature is less than 15 ℃ includes the impurities inside the metal filled, if the temperature is above 80 ℃ Poor stability of electroless plating solution.

이러한 도 1의 과정으로 금속이 패턴에 채워짐으로써 초등각 전착되고 보이드나 씸과 같은 결함이 발생하지 않는다. In the process of FIG. 1, the metal is filled in the pattern, and the electrode is conformal electrodeposited, and no defects such as voids or chips are generated.

도 2는 본 발명의 무전해 도금용액을 다른 실시예에 따라 기판의 패턴에 도금하는 방법을 나타낸 흐름도이다.2 is a flowchart illustrating a method of plating an electroless plating solution of the present invention on a pattern of a substrate according to another embodiment.

도 2는 가속제의 농도가 다른 제1, 2 무전해 도금용액을 각각 1회씩 사용한 2단계 전착법에 관한 것으로, 2단계 전착법은 기판 패턴의 선폭이 500 nm이하이며, 서로 다른 크기의 패턴에 이용된다.FIG. 2 relates to a two-step electrodeposition method in which first and second electroless plating solutions having different concentrations of accelerators are used once, respectively, in which the line width of the substrate pattern is 500 nm or less, and patterns having different sizes. Used for

도 2를 참조하면, 도 2는 도 1의 S110단계에서 S130단계까지 동일하므로 설명을 생략한다.Referring to FIG. 2, since FIG. 2 is the same from step S110 to step S130 of FIG. 1, description thereof is omitted.

S130단계에서 팔라듐 촉매에 의해 활성화된 기판에 가속제의 농도가 1-10 mg/L인 제1 도금용액을 사용하여 기판의 패턴에 금속을 전착시켜 도금한다(S140). 제1 도금용액으로 좁은 패턴의 영역을 금속으로 채운 뒤, 금속이 미처 채워지지 않은 상대적으로 넓은 패턴 영역을 제2 도금용액을 사용하여 전착시킴으로써 초등각 전착한다(S150). In step S130, the first plating solution having a concentration of an accelerator of 1-10 mg / L on the substrate activated by the palladium catalyst is electrodeposited and plated with the metal on the pattern of the substrate (S140). After filling the narrow pattern region with the metal with the first plating solution, the electrode is electrodeposited by electrodepositing the relatively wide pattern region without the metal being filled with the second plating solution (S150).

이러한 과정을 거치면 서로 다른 크기의 패턴은 전착량 차이가 없을 뿐만 아니라, 보이드나 씸과 같은 결함이 발생하지 않는다.Through this process, patterns of different sizes have no electrodeposition difference and no defects such as voids or chips are generated.

또한, 패턴을 제1 도금용액으로 채운(S140) 후 흡착된 가속제의 탈착 또는 제거를 위하여 희석된 암모니아수 또는 시트릭산(citric acid)과 과산화수소 수용액을 이용하여 금속표면을 식각하여 제거한다. 만약, 가소제가 충분히 제거되지 않으면 제2 도금용액으로 패턴에 금속을 채울 때 가속제의 흡착이 추가되어 더 이상 전착이 이루어지지 않을 수 있다. In addition, after filling the pattern with the first plating solution (S140), the metal surface is etched and removed using diluted ammonia water or citric acid and aqueous hydrogen peroxide solution for desorption or removal of the adsorbent. If the plasticizer is not sufficiently removed, adsorption of the accelerator may be added when the metal is filled in the pattern with the second plating solution, and thus electrodeposition may no longer be performed.

본 발명의 무전해 도금용액은 시드층 없이 초등각 전착을 이룰 수 있다. The electroless plating solution of the present invention can achieve conformal electrodeposition without a seed layer.

또한, 본 발명의 무전해 도금용액은 이 도금용액으로 금속전착을 시킨 기판을 150-450 ℃의 진공 혹은 질소분위기에서 10-50분 동안 열처리를 하면 그 특성을 형상시킬 수 있다.In addition, the electroless plating solution of the present invention can be characterized by heat-treating the substrate electrodeposited with the plating solution in a vacuum or nitrogen atmosphere at 150-450 ° C. for 10-50 minutes.

이하, 실시예 및 비교예를 통하여 보다 상세히 설명하고자 한다. 이들 실시예 및 비교예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. These examples and comparative examples are only for illustrating the present invention in more detail, it is to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. Will be self explanatory.

비교예1 . 1단계 전착법 Comparative Example 1 . Step 1 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 선형인 멀캡토 화합물인 3-멜캡토-1-프로판설포네이트(3-mercapto-1-propanesulfonate, MPSA) 0.5 mg/L, 2,2-디피리딜 0.1 g/L을 물에 용해시켜 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 3-mercapto-1-propanesulfonate as a linear mercapto compound (3 -mercapto-1-propanesulfonate (MPSA) 0.5 mg / L, 2,2-dipyridyl 0.1 g / L was dissolved in water to prepare a copper electroless plating solution.

그런 후 TiN 웨이퍼 기판 표면의 자연산화막인 산화타이타늄막을 불산(HF) 수용액에 10분간 침지시키고 이온 제거수로 잔류물을 제거한다. 그 후 기판 표면을 이온 제거수 200 mL에 염화팔라듐 (PdCl2) 0.02 g, 50%의 불산 1mL, 35%의 염산(HCl) 0.6 mL가 혼합된 용액에 20초간 침지시켜 기판을 활성화 시킨다. 이렇게 팔라듐으로 활성화된 기판은 제조된 구리 무전해 도금용액에 침지시켜 70 ℃에서 10분간 패턴에 구리 전착을 실시하였다. 구리 전착이 일어난 후 SEM으로 촬영하여 도 3a를 얻었다. The titanium oxide film, which is a natural oxide film on the surface of the TiN wafer substrate, is then immersed in hydrofluoric acid (HF) solution for 10 minutes and the residue is removed by ion removal water. Subsequently, the substrate surface was immersed in a solution containing 0.02 g of palladium chloride (PdCl2), 1 mL of 50% hydrofluoric acid, and 0.6 mL of 35% hydrochloric acid (HCl) in 200 mL of deionized water for 20 seconds to activate the substrate. The palladium-activated substrate was immersed in the prepared copper electroless plating solution and subjected to copper electrodeposition on the pattern at 70 ° C. for 10 minutes. After copper electrodeposition occurred, it was photographed by SEM to obtain Fig. 3a.

도 3a를 보듯이 비교예 1의 결과는 초등각 전착등각의 특성을 보였고, 일부 패턴 내부에서 작은 보이드가 관찰되며, 표면 거칠기가 매우 높은 것을 확인하였다.As shown in Figure 3a, the results of Comparative Example 1 showed the properties of the elementary electrodeposition isometric, small voids were observed in some patterns, it was confirmed that the surface roughness is very high.

비교예 2. 1단계 전착법 Comparative Example 2. First Step Electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2,2-디피리딜 0.1 g/L, 디시아옥탄디술폰산(4,5-dithiaoctane-1,8-disulfonic acid, SPS) 0.5 mg/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2,2-dipyridyl 0.1 g / L, dithiaoctane disulfonic acid ( 4,5-dithiaoctane-1,8-disulfonic acid (SPS) 0.5 mg / L to prepare a copper electroless plating solution.

제조된 무전해 도금용액으로 도금하는 방법은 비교예 1과 동일하므로 생략한다. 비교예 2에서 제조된 무전해 도금용액으로 패턴에 구리 전착을 실시한 후 SEM으로 촬영하여 도 3b를 얻었다.The method of plating with the prepared electroless plating solution is the same as in Comparative Example 1 and is omitted. Copper electrodeposition was performed on the pattern with the electroless plating solution prepared in Comparative Example 2, and then photographed by SEM to obtain FIG. 3b.

도 3b를 보듯이 비교예 2의 결과는 일부 패턴 내부에서 보이드가 관찰되지 않으며, 도 3a에 비하여 표면 거칠기가 다소 감소하였다. 하지만, 가가속제로 MBIS를 사용한 도금용액에 비해서는 표면 거칠기가 좋지 않았다. As shown in FIG. 3B, in the result of Comparative Example 2, no void was observed in some patterns, and the surface roughness was slightly reduced compared to FIG. 3A. However, the surface roughness was not as good as the plating solution using MBIS as the accelerator.

비교예 3. 1단계 전착법 Comparative Example 3. First Step Electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2MBT(2-mercaptobenzothiazole) 1.0 mg/L, 2,2-디피리딜 0.1 g/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2MBT (2-mercaptobenzothiazole) 1.0 mg / L, 2,2-dipyridyl A copper electroless plating solution was prepared at 0.1 g / L.

기판을 처리하는 방식은 비교예 1과 동일하므로 생략한다. 이렇게 팔라듐으로 활성화된 기판은 제조된 구리 무전해 도금용액에 침지되어 70 ℃에서 3분간 패턴에 구리 전착을 실시한 후 SEM으로 촬영하여 도 3b를 얻었다.Since the method of processing a board | substrate is the same as that of the comparative example 1, it abbreviate | omits. The palladium-activated substrate was immersed in the prepared copper electroless plating solution, subjected to copper electrodeposition on the pattern at 70 ° C. for 3 minutes, and photographed by SEM to obtain FIG. 3b.

그 결과 패턴 위의 모서리 부분에서 약간의 전착 억제 효과가 나타났지만, 바닥과 벽면의 전착속도가 거의 비슷한 등각 특성을 보였다. 또한, 내부에는 씸이 발생하였다.As a result, the effect of suppressing the electrodeposition was slightly observed at the corners of the pattern, but the electrodeposition speed of the floor and the wall was almost similar. In addition, the inside generate | occur | produced.

실시예 1. 1단계 전착법 Example 1. First Step Electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS) 1.0 mg/L, 2,2-디피리딜 0.1 g/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercapto-5-benzimidazolesulfonic acid (MBIS) 1.0 mg / A copper electroless plating solution was prepared at 0.1 g / L of L and 2,2-dipyridyl.

제조된 무전해 도금용액으로 도금하는 방법은 비교예 1과 동일하므로 생략한다. 실시예 1에서 제조된 무전해 도금용액으로 패턴에 구리 전착을 실시한 후 SEM으로 촬영하여 도 4를 얻었다.The method of plating with the prepared electroless plating solution is the same as in Comparative Example 1 and is omitted. After electrodepositing copper on the pattern with the electroless plating solution prepared in Example 1, a SEM was photographed to obtain FIG. 4.

도 4를 보듯이 500 nm의 패턴에서는 보이드, 씸 등과 같은 결함없이 구리가 바닥부터 차오른 것을 확인하였으며, 또한 표면 거칠기가 좋은 것을 확인하였다. As shown in FIG. 4, in the 500 nm pattern, it was confirmed that the copper was filled from the bottom without defects such as voids and fins, and the surface roughness was also good.

또한, 1um의 패턴에서는 초등각 전착의 특징인 패턴의 구석에서 전착속도가 높은 선택적 전착(preferential deposition)이 일어남을 확인하였다. 따라서 보이드나 씸 등과 같은 결함이 발생하지 않음을 확인할 수 있었고, 전착량이 균일하게 전착되었음을 확인하였다. In addition, in the pattern of 1um, it was confirmed that selective electrodeposition with high electrodeposition rate occurred at the corners of the pattern characteristic of the elementary electrodeposition. Therefore, it could be confirmed that defects such as voids or splinting did not occur, and that electrodeposition amount was uniformly deposited.

실시예 2. 1단계 전착법 Example 2. First Step Electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토-5-벤즈이미다졸설포닉산 1.0 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(MW 8,000) 3 mg/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercapto-5-benzimidazolesulfonic acid 1.0 mg / L, 2 A copper electroless plating solution was prepared at 0.1 g / L of 2-dipyridyl and 3 mg / L of polyethylene glycol (MW 8,000).

제조된 무전해 도금용액으로 도금하는 방법은 비교예 1과 동일하므로 생략한다. 실시예 2에서 제조된 무전해 도금용액으로 패턴에 구리 전착을 실시하는 과정을 5, 8, 16, 25분에 SEM으로 촬영하여 도 5를 얻었다.The method of plating with the prepared electroless plating solution is the same as in Comparative Example 1 and is omitted. 5, 8, 16, and 25 minutes of photographing the copper electrodeposition on the pattern with the electroless plating solution prepared in Example 2 were obtained by SEM.

도 5에서 보듯이 실시예 1에 폴리에틸렌글리콜이 추가된 도금용액을 이용하면 실시예 1의 결과뿐만 아니라, 실시예 1보다 더욱 표면의 거칠기가 줄어든다는 것을 알 수 있다.As shown in FIG. 5, it can be seen that the use of the plating solution in which polyethylene glycol is added to Example 1 reduces the surface roughness as well as the result of Example 1.

2단계 전착법은 패턴의 선폭이 500 nm 이하이면서 크기가 서로 다른 패턴에 적용한다. The two-step electrodeposition method is applied to patterns of different sizes with a line width of 500 nm or less.

비교예 4. 2단계 전착법과 비교를 위한 1단계 전착법 Comparative Example 4 . Step 1 electrodeposition for comparison with the step 2 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS) 3.0 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercapto-5-benzimidazolesulfonic acid (MBIS) 3.0 mg / A copper electroless plating solution was prepared with L, 2,2-dipyridyl 0.1 g / L, and polyethylene glycol (PEG) 3 mg / L.

먼저 기판 표면을 불산, 질산, 이온제거수(De-Ionized Water)로 이루어진 불산 용액에 10분간 침지시키고 잔류물을 이온제거수로 제거하였다. 그 후 기판 표면을 이온제거수 100 mL, 염화주석(SnCl2) 0.7 g, 염산(HCl) 6 mL의 용액에 2분간 침지하였다. 또한, 팔라듐 활성화를 위해 초순수 200 mL, 염화팔라듐(PdCl2) 0.02 g, 50% 불산 1 mL, 35% 염산(HCl) 0.6 mL가 혼합된 용액에서 20초간 침지시켰다. First, the substrate surface was immersed in a hydrofluoric acid solution consisting of hydrofluoric acid, nitric acid, and de-ionized water for 10 minutes, and the residue was removed with deionized water. Subsequently, the substrate surface was immersed in a solution of 100 mL of deionized water, 0.7 g of tin chloride (SnCl 2), and 6 mL of hydrochloric acid (HCl) for 2 minutes. In addition, 200 seconds of ultrapure water, 0.02 g of palladium chloride (PdCl2), 1 mL of 50% hydrofluoric acid, and 0.6 mL of 35% hydrochloric acid (HCl) were immersed for 20 seconds for palladium activation.

이렇게 팔라듐으로 활성화된 기판은 제조된 구리 무전해 도금용액에 침지되어 70 ℃에서 14분간 패턴에 구리 전착을 실시하였다. 구리 전착이 일어난 후 SEM으로 촬영하여 도 6a를 얻었다.The palladium-activated substrate was immersed in the prepared copper electroless plating solution and subjected to copper electrodeposition on the pattern at 70 ° C. for 14 minutes. After copper electrodeposition took place, it was photographed by SEM to obtain FIG. 6A.

도 6a에서 보듯이 다양한 크기의 패턴에 등각의 전착 형태를 나타내며, 패턴내부에 작은 보이드나 씸과 같은 결함이 없음을 확인하였다.As shown in FIG. 6A, a conformal electrodeposition form is shown in patterns of various sizes, and it is confirmed that there are no defects such as small voids or fins in the patterns.

비교예 5. 2단계 전착법 Comparative Example 5. Step 2 Electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8g/L, 수산화칼륨 27 g/L, DPS (3-N,N-Dimethylaminodithiocarbamoyl-1-propanesulfonic acid) 3.0 mg/L, 2,2-디피리딜 0.1 g/L로 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8g / L, potassium hydroxide 27 g / L, DPS (3-N, N-Dimethylaminodithiocarbamoyl-1-propanesulfonic acid) 3.0 mg / A copper electroless plating solution was prepared at 0.1 g / L of L and 2,2-dipyridyl.

그런 후 기판 표면을 불산, 질산, 이온제거수(De-Ionized Water)로 이루어진 불산 용액에 10분간 침지시키고 잔류물을 이온제거수로 제거하였다. 그 후 기판 표면을 이온제거수 100 mL, 염화주석(SnCl2) 0.7 g, 염산(HCl) 6 mL의 용액에 2분간 침지하였다. 또한, 팔라듐 활성화를 위해 초순수 200 mL, 염화팔라듐(PdCl2) 0.02 g, 50% 불산 1 mL, 35% 염산(HCl) 0.6 mL가 혼합된 용액에서 20초간 침지시켰다. Thereafter, the substrate surface was immersed in a hydrofluoric acid solution consisting of hydrofluoric acid, nitric acid, and de-ionized water for 10 minutes, and the residue was removed with deionized water. Subsequently, the substrate surface was immersed in a solution of 100 mL of deionized water, 0.7 g of tin chloride (SnCl 2), and 6 mL of hydrochloric acid (HCl) for 2 minutes. In addition, 200 seconds of ultrapure water, 0.02 g of palladium chloride (PdCl2), 1 mL of 50% hydrofluoric acid, and 0.6 mL of 35% hydrochloric acid (HCl) were immersed for 20 seconds for palladium activation.

이렇게 팔라듐으로 활성화된 기판은 제조된 구리 무전해 도금용액에 침지되어 70 ℃에서 14분간 패턴에 구리 전착을 실시하였다. The palladium-activated substrate was immersed in the prepared copper electroless plating solution and subjected to copper electrodeposition on the pattern at 70 ° C. for 14 minutes.

그 결과, 이후에 살펴볼 실시예 3-7에서는 범프 형성이 관찰되는 반면에 비교예 5에서는 범프의 형성이 보이지 않음을 확인하였다. As a result, bump formation was observed in Example 3-7, which will be described later, whereas it was confirmed that bump formation was not observed in Comparative Example 5.

실시예 3. 2단계 전착법 Example 3 . Step 2 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 멀캡토-5-벤즈이미다졸설포닉산(MBIS) 3.0 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG, MW 8,000) 3 mg/L로 제1 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, mercapto-5-benzimidazolesulfonic acid (MBIS) 3.0 mg / L, 0.1 g / L of 2,2-dipyridyl and 3 mg / L of polyethylene glycol (PEG, MW 8,000) were prepared to prepare a first copper electroless plating solution.

또한, 황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS) 0.5 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 제2 구리 무전해 도금용액을 제조하였다.In addition, copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercapto-5-benzimidazole sulfonic acid (MBIS) 0.5 A second copper electroless plating solution was prepared at mg / L, 2,2-dipyridyl 0.1 g / L, and polyethylene glycol (PEG) 3 mg / L.

그런 후 기판 표면을 불산, 질산, 이온제거수(De-Ionized Water)로 이루어진 불산 용액에 10분간 침지시키고 잔류물을 이온제거수로 제거하였다. 그 후 기판 표면을 이온제거수 100 mL, 염화주석(SnCl2) 0.7 g, 염산(HCl) 6 mL의 용액에 2분간 침지하였다. 또한, 팔라듐 활성화를 위해 초순수 200 mL, 염화팔라듐(PdCl2) 0.02 g, 50% 불산 1 mL, 35% 염산(HCl) 0.6 mL가 혼합된 용액에서 20초간 침지시킨다. Thereafter, the substrate surface was immersed in a hydrofluoric acid solution consisting of hydrofluoric acid, nitric acid, and de-ionized water for 10 minutes, and the residue was removed with deionized water. Subsequently, the substrate surface was immersed in a solution of 100 mL of deionized water, 0.7 g of tin chloride (SnCl 2), and 6 mL of hydrochloric acid (HCl) for 2 minutes. In addition, 200 seconds of ultrapure water, 0.02 g of palladium chloride (PdCl2), 1 mL of 50% hydrofluoric acid, and 0.6 mL of 35% hydrochloric acid (HCl) are immersed for 20 seconds for palladium activation.

이렇게 팔라듐으로 활성화된 기판은 제조된 제1 구리 무전해 도금용액에 침지시켜 70 ℃에서 4분간 패턴에 구리 채움을 실시하였다. 그런 후 바로 제2 구리 무전해 도금용액으로 70 ℃에서 10분간 구리 채움을 하고 SEM으로 촬영하여 도 6b를 얻었다.The palladium-activated substrate was immersed in the prepared first copper electroless plating solution, and copper was filled in the pattern at 70 ° C. for 4 minutes. Thereafter, copper was immediately filled with a second copper electroless plating solution at 70 ° C. for 10 minutes and photographed by SEM to obtain FIG. 6B.

도 6b를 보듯이 실시예 3은 패턴의 바닥부터 전착이 관찰되었으며, 그 증거물인 범프가 형성되었음을 확인할 수 있었다. 또한, 이를 통하여 보이드, 씸 등과 같은 결함이 발생하지 않았음을 확인할 수 있었으며, 표면 거칠기도 우수한 것을 확인하였다. 다만, 제2 구리 무전해 도금용액으로 전착시 제1 구리 무전해 도금에서 흡착된 MBIS에 의해 제 2구리 무전해 도금시에 추가적인 구리량 및 전착균일성 면에서 다소 충분하지 못함을 확인하였다.As shown in FIG. 6B, in Example 3, electrodeposition was observed from the bottom of the pattern, and it was confirmed that bumps were formed. In addition, it could be confirmed that no defects such as voids and fins were generated through this, and the surface roughness was confirmed to be excellent. However, when the electrodeposited with the second copper electroless plating solution, it was confirmed that MBIS adsorbed in the first copper electroless plating was somewhat insufficient in the amount of additional copper and electrodeposition uniformity during the second copper electroless plating.

실시예 4. 2단계 전착법 Example 4 . Step 2 electrodeposition

실시예 3에서 제조된 제1, 2 구리 무전해 도금용액을 이용하였다.The first and second copper electroless plating solutions prepared in Example 3 were used.

기판 표면을 불산, 질산, 이온제거수(De-Ionized Water)로 이루어진 불산 용액에 10분간 침지시키고 잔류물을 이온제거수로 제거하였다. 그 후 기판 표면을 이온제거수 100 mL, 염화주석(SnCl2) 0.7 g, 염산(HCl) 6 mL의 용액에서 2분간 침지하였다. 또한, 팔라듐 활성화를 위해 초순수 200 mL, 염화팔라듐(PdCl2) 0.02 g, 50% 불산 1 mL, 35% 염산(HCl) 0.6 mL가 혼합된 용액에 20초간 침지시킨다. The substrate surface was immersed in a hydrofluoric acid solution consisting of hydrofluoric acid, nitric acid, and de-ionized water for 10 minutes, and the residue was removed with deionized water. Subsequently, the substrate surface was immersed in a solution of 100 mL of deionized water, 0.7 g of tin chloride (SnCl 2), and 6 mL of hydrochloric acid (HCl) for 2 minutes. In addition, 200 seconds of ultrapure water, 0.02 g of palladium chloride (PdCl2), 1 mL of 50% hydrofluoric acid, and 0.6 mL of 35% hydrochloric acid (HCl) are immersed for 20 seconds for palladium activation.

이렇게 팔라듐으로 활성화된 기판은 제조된 제1 구리 무전해 도금용액에 침지시켜 70 ℃에서 4분간 패턴에 구리를 전착하여 실시하였다. 앞에서 실시한 1차 구리 전착 도금에서 MBIS의 축적을 막기 위하여 시트릭산 3.8 g/L과 과산화수소수 2.5 mL/L의 수용액으로 구리표면을 1분간 식각 시킨다. 그 후 제2 구리 무전해 도금용액으로 70 ℃에서 10분간 구리 채움을 하고 SEM으로 촬영하여 도 6c를 얻었다.The palladium-activated substrate was immersed in the prepared first copper electroless plating solution, followed by electrodeposition of copper on the pattern at 70 ° C. for 4 minutes. In order to prevent the accumulation of MBIS in the first copper electrodeposition plating, the copper surface is etched for 1 minute with an aqueous solution of 3.8 g / L citric acid and 2.5 mL / L hydrogen peroxide solution. Thereafter, copper was filled with a second copper electroless plating solution at 70 ° C. for 10 minutes and photographed by SEM to obtain FIG. 6C.

도 6c를 보듯이 실시예 4는 패턴의 바닥부터 전착이 관찰되었으며, 그 증거물인 범프가 형성되었음을 확인할 수 있었다. 또한, 이를 통하여 보이드, 씸등과 같은 결함이 발생하지 않았음을 확인할 수 있었다. 또한, 패턴크기와 상관없이 전착량이 고르게 초등각 전착형태로 구리가 전착되며 표면 거칠기 특성 또한 향상되었다. As shown in FIG. 6C, in Example 4, electrodeposition was observed from the bottom of the pattern, and it was confirmed that bumps were formed. In addition, it could be confirmed that no defects such as voids and shocks occurred. In addition, regardless of the pattern size, the electrodeposition was evenly deposited in the elemental electrodeposition form, and the surface roughness characteristics were also improved.

실시예 4에 따라 도금된 패턴을 질소 분위기에서 400 ℃에서 30분간 열처리를 수행한 후 SEM으로 촬영하여 도 6d를 얻었다. 그 결과 열처리 후에도 보이드, 씸 및 전착량의 감소가 발생하지 않았음을 확인하였고, 이로써 열처리 전에 내부결함이 없음을 더욱 확실히 확인하였다.The plated pattern according to Example 4 was heat-treated at 400 ° C. for 30 minutes in a nitrogen atmosphere, and then photographed by SEM to obtain FIG. 6d. As a result, it was confirmed that the reduction of voids, chips and electrodeposition amount did not occur even after the heat treatment, thereby more clearly confirming that there were no internal defects before the heat treatment.

실시예 5. 2단계 전착법 Example 5 . Step 2 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 벤즈이미다졸 2.0 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 제1 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, benzimidazole 2.0 mg / L, 2,2-dipyridyl 0.1 g / L and polyethylene glycol (PEG) 3 mg / L to prepare a first copper electroless plating solution.

또한, 황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 벤즈이미다졸 0.3 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 제2 구리 무전해 도금용액을 제조하였다. In addition, copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, benzimidazole 0.3 mg / L, 2,2-dipyridyl 0.1 g / L, polyethylene glycol (PEG) 3 mg / L to prepare a second copper electroless plating solution.

기판 표면을 전처리하고 제1, 제2 구리 무전해 도금용액으로 전착시키는 조건 및 방법은 실시예 4와 동일하다. 이렇게 구리 채움을 한 결과 패턴의 바닥부터 전착이 관찰되었으며, 그 증거물인 범프가 형성되었음을 확인할 수 있었다. 그러므로 보이드, 씸등과 같은 결함이 발생하지 않았음을 확인할 수 있었으며, 패턴에 결함없이 전착량 차이 없이 구리가 전착되었음을 확인하였다. The conditions and methods for pretreatment of the substrate surface and electrodeposition with the first and second copper electroless plating solutions were the same as in Example 4. As a result of the copper filling, electrodeposition was observed from the bottom of the pattern, and it was confirmed that the bump was formed. Therefore, it could be confirmed that no defects such as voids, shatters, and the like did not occur, and copper was electrodeposited without a difference in electrodeposition amount without a defect in a pattern.

실시예 6. 2단계 전착법 Example 6 Step 2 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토벤즈이미다졸 2.0 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 제1 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercaptobenzimidazole 2.0 mg / L, 2,2-dipyri A first copper electroless plating solution was prepared at 0.1 g / L of dill and 3 mg / L of polyethylene glycol (PEG).

또한, 황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 2-멀캡토벤즈이미다졸 0.5 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 2.5 mg/L로 제2 구리 무전해 도금용액을 제조하였다. Moreover, copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, 2-mercaptobenzimidazole 0.5 mg / L, 2,2- A second copper electroless plating solution was prepared at 0.1 g / L dipyridyl and 2.5 mg / L polyethylene glycol (PEG).

기판 표면을 전처리하고 제1, 제2 구리 무전해 도금용액으로 전착시키는 조건 및 방법은 실시예 4와 동일하다. 이렇게 구리 채움을 한 결과 패턴의 바닥부터 전착이 관찰되었으며, 그 증거물인 범프가 형성되었음을 확인할 수 있었다. 또한, 이를 통하여 보이드, 씸등과 같은 결함이 발생하지 않았음을 확인할 수 있었으며, 패턴에 결함없이 전착량 차이 없이 구리가 전착되었음을 확인하였다.The conditions and methods for pretreatment of the substrate surface and electrodeposition with the first and second copper electroless plating solutions were the same as in Example 4. As a result of the copper filling, electrodeposition was observed from the bottom of the pattern, and it was confirmed that the bump was formed. In addition, it was confirmed that no defects such as voids, shatters, etc. occurred, and it was confirmed that copper was electrodeposited without a difference in electrodeposition amount without a defect in a pattern.

실시예 7. 2단계 전착법 Example 7 Step 2 electrodeposition

황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 벤조트리아졸 1 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 3 mg/L로 제1 구리 무전해 도금용액을 제조하였다.Copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, benzotriazole 1 mg / L, 2,2-dipyridyl 0.1 g / L and polyethylene glycol (PEG) 3 mg / L to prepare a first copper electroless plating solution.

또한, 황산구리 6.3 g/L, 포름알데히드 2.9 g/L, 에틸렌디아민사아세트산(EDTA) 15.8 g/L, 수산화칼륨 27 g/L, 벤조트리아졸 0.1 mg/L, 2,2-디피리딜 0.1 g/L, 폴리에틸렌글리콜(PEG) 2.5 mg/L로 제2 구리 무전해 도금용액을 제조하였다. In addition, copper sulfate 6.3 g / L, formaldehyde 2.9 g / L, ethylenediaminetetraacetic acid (EDTA) 15.8 g / L, potassium hydroxide 27 g / L, benzotriazole 0.1 mg / L, 2,2-dipyridyl 0.1 g / L, polyethylene glycol (PEG) 2.5 mg / L to prepare a second copper electroless plating solution.

기판 표면을 전처리하고 제1, 제2 구리 무전해 도금용액으로 전착시키는 조건 및 방법은 실시예 4와 동일하다. 이렇게 구리 채움을 한 결과 패턴의 바닥부터 전착이 관찰되었으며, 그 증거물인 범프가 형성되었음을 확인할 수 있었다. 또한, 이를 통하여 보이드, 씸등과 같은 결함이 발생하지 않았음을 확인할 수 있었으며, 패턴에 결함없이 전착량 차이 없이 구리가 전착되었음을 확인하였다.The conditions and methods for pretreatment of the substrate surface and electrodeposition with the first and second copper electroless plating solutions were the same as in Example 4. As a result of the copper filling, electrodeposition was observed from the bottom of the pattern, and it was confirmed that the bump was formed. In addition, it was confirmed that no defects such as voids, shatters, etc. occurred, and it was confirmed that copper was electrodeposited without a difference in electrodeposition amount without a defect in a pattern.

각 비교예와 실시예에 따른 SEM 사진 및 그 결과를 비교하면 1단계 전착법에서 첨가제로 MBIS, 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 선택된 어느 하나와 2,2-디피리딜, 폴리에틸렌글리콜을 조합하여 사용하면 초등각 전착이 일어나며, 결함이 발생하지 않고 표면 거칠기 특성이 향상된다. When comparing the SEM photographs and the results according to the comparative examples and examples, any one selected from MBIS, benzimidazole, 2-mercaptobenzimidazole, and benzotriazole and 2,2-di as an additive in a one-step electrodeposition method When pyridyl and polyethylene glycol are used in combination, elemental electrodeposition occurs and defects do not occur and surface roughness characteristics are improved.

또한, 크기가 서로 다른 500 nm 이하의 선폭을 가진 미세패턴은 가속제로 MBIS, 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 어느 하나를 이용한 제1, 2 무전해 도금용액으로 2단계 전착법시 초등각 전착이 일어나며, 결함이 발생하지 않고 표면 거칠기 특성이 향상된다. 뿐만 아니라, 2단계 전착법은 1차 도금 후 가속제를 탈착 또는 제거하는 것이 2차 도금 시 1차 도금으로 채워지지 못한 부분을 효과적으로 채운다.In addition, the micropatterns having a line width of 500 nm or less having different sizes are the first and second electroless plating solutions using any one of MBIS, benzimidazole, 2-mercaptobenzimidazole, and benzotriazole as accelerators. In step electrodeposition, elemental electrodeposition occurs and defects do not occur and surface roughness characteristics are improved. In addition, the two-step electrodeposition method effectively removes or removes the accelerator after the first plating, and fills the portion not filled by the first plating during the second plating.

실시예의 황산구리(도금대상물질)와 가속제 외에 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철, 염화철과 같은 도금대상물질 중에서 하나 또는 2종 이상의 물질과 가속제를 사용한 무전해 도금용액으로 1단계 및 2단계 전착법으로 전착 시 니켈 또는 코발트 또는 철 또는 그들의 합금이 패턴의 바닥부터 결함없이 전착되며, 전착량 차이 없이 고르게 형성되었음을 확인하였다. In addition to the copper sulfate (plating material) and the accelerator of the embodiment of the present invention, such as nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate and iron chloride, one or two or more materials and an electroless plating solution using an accelerator. When electrodeposition was carried out by the first and second electrodeposition methods, it was confirmed that nickel or cobalt or iron or their alloys were electrodeposited without defects from the bottom of the pattern and formed evenly without difference in electrodeposition amount.

Claims (10)

황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS), 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 선택된 어느 하나의 가속제를 포함하는 것을 특징으로 하는 무전해 도금용액.At least one plating target material selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate, 2-mercapto-5-benzimidazolesulfonic acid (MBIS), benzimidazole, An electroless plating solution comprising any one of an accelerator selected from 2-mercaptobenzimidazole and benzotriazole. 제 1항에 있어서, 상기 도금대상물질은 황산구리이고;The method of claim 1, wherein the plating target material is copper sulfate; 상기 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-10 mg/L의 가속제를 포함하는 것을 특징으로 하는 무전해 도금용액.The electroless plating solution is 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 An electroless plating solution comprising g / L of 2,2-dipyridyl, 0-1 g / L of polyethylene glycol, and 0.01-10 mg / L of accelerator. 제 1항에 있어서, 상기 도금대상물질은 황산구리이고;The method of claim 1, wherein the plating target material is copper sulfate; 상기 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 1.0-10 mg/L의 가속제를 포함하는 제1 무전해 도금용액과; 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-5 mg/L의 가속제를 포함하는 제2 무전해 도금용액으로 이루어진 것을 특징으로 하는 무전해 도금용액.The electroless plating solution is 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 a first electroless plating solution comprising g / L of 2,2-dipyridyl, 0-1 g / L of polyethylene glycol, and 1.0-10 mg / L of accelerator; 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 g / L 2, An electroless plating solution comprising 2-dipyridyl, 0-1 g / L polyethylene glycol, and a second electroless plating solution containing 0.01-5 mg / L accelerator. 확산 방지막 층을 가진 패턴 기판을 불산 또는 질산이 첨가된 불산 수용액에 침지시켜 상기 기판의 자연산화막을 제거하는 제1 단계;A first step of immersing the pattern substrate having the diffusion barrier layer in a hydrofluoric acid solution to which hydrofluoric acid or nitric acid is added to remove the native oxide film of the substrate; 상기 제1 단계를 거친 기판의 표면을 팔라듐 촉매로 활성화시키는 제2 단계;A second step of activating a surface of the substrate subjected to the first step with a palladium catalyst; 상기 활성화된 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 무전해 도금용액으로 전착하는 제3 단계를 포함하는 것을 특징으로 하는 무전해 도금방법.Electrode plating agent with an electroless plating solution containing at least one of the plating target material and the accelerator selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, iron sulfate on the pattern of the activated substrate Electroless plating method comprising a three step. 제 4항에 있어서,The method of claim 4, wherein 상기 제3 단계의 도금대상물질은 황산구리이고;The plating target material of the third step is copper sulfate; 상기 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-10 mg/L의 가속제를 포함하는 것을 특징으로 하는 무전해 도금방법. The electroless plating solution is 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01-1 An electroless plating method comprising g / L of 2,2-dipyridyl, 0-1 g / L of polyethylene glycol, and 0.01-10 mg / L of accelerator. 확산 방지막 층을 가진 패턴 기판을 불산 또는 질산이 첨가된 불산 수용액에 침지시켜 상기 기판의 자연산화막을 제거하는 제1 단계;A first step of immersing the pattern substrate having the diffusion barrier layer in a hydrofluoric acid solution to which hydrofluoric acid or nitric acid is added to remove the native oxide film of the substrate; 상기 제1 단계를 거친 기판의 표면을 팔라듐 촉매로 활성화시키는 제2 단계;A second step of activating a surface of the substrate subjected to the first step with a palladium catalyst; 상기 활성화된 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 제1 무전해 도금용액으로 전착하는 제3 단계;Electrodeposited with a first electroless plating solution comprising at least one plating target material selected from copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, and iron sulfate and an accelerator in the pattern of the activated substrate. Performing a third step; 상기 제1 무전해 도금용액으로 전착시킨 상기 기판의 패턴에 황산구리(copper sulfate), 황산니켈, 염화니켈, 황산코발트, 염화코발트, 황산철 중에서 선택된 적어도 어느 하나의 도금대상물질 및 가속제를 포함하는 제2 무전해 도금용액으로 구리를 전착하는 제4 단계를 포함하는 것을 특징으로 하는 무전해 도금방법. At least one plating target material selected from the group consisting of copper sulfate, nickel sulfate, nickel chloride, cobalt sulfate, cobalt chloride, and iron sulfate in the pattern of the substrate electrodeposited with the first electroless plating solution. An electroless plating method comprising a fourth step of electrodepositing copper with a second electroless plating solution. 제 6항에 있어서, 상기 제3, 4단계의 도금대상물질은 황산구리이고;The method of claim 6, wherein the third and fourth plating target material is copper sulfate; 상기 제1 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 1.0-10 mg/L의 가속제를 포함하고,The first electroless plating solution is 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01 -1 g / L 2,2-dipyridyl, 0-1 g / L polyethylene glycol, 1.0-10 mg / L accelerator, 상기 제2 무전해 도금용액은 5-8 g/L의 황산구리, 14-18 g/L의 에틸렌디아민사아세트산, 2-3.5 g/L의 포름알데히드, 20-35 g/L의 수산화칼륨, 0.01-1 g/L의 2,2-디피리딜, 0-1 g/L의 폴리에틸렌글리콜, 0.01-5 mg/L의 가속제를 포함하는 것을 특징으로 하는 무전해 도금방법. The second electroless plating solution is 5-8 g / L copper sulfate, 14-18 g / L ethylenediaminetetraacetic acid, 2-3.5 g / L formaldehyde, 20-35 g / L potassium hydroxide, 0.01 An electroless plating method comprising -1 g / L of 2,2-dipyridyl, 0-1 g / L of polyethylene glycol, and 0.01-5 mg / L of accelerator. 제 4항 내지 제 7항 중 어느 한 항에 있어서,The method according to any one of claims 4 to 7, 상기 가속제는 2-멀캡토-5-벤즈이미다졸설포닉산(MBIS), 벤즈이미다졸, 2-멀캡토벤즈이미다졸, 벤조트리아졸 중에서 선택된 어느 하나를 포함하는 것을 특징으로 하는 무전해 도금 방법.The accelerator is an electroless plating method comprising any one selected from 2-mercapto-5-benzimidazolesulphonic acid (MBIS), benzimidazole, 2-mercaptobenzimidazole, and benzotriazole. . 제 6항에 있어서,The method of claim 6, 상기 제 3단계 이후에 상기 제1 무전해 도금용액 가속제의 탈착 또는 제거를 위해 희석된 암모니아수 또는 시트릭산과 과산화수소수의 혼합용액을 사용하는 단계를 추가로 포함하는 무전해 도금 방법.And after the third step, using diluted ammonia water or a mixed solution of citric acid and hydrogen peroxide solution for desorption or removal of the first electroless plating solution accelerator. 제 9항에 있어서,The method of claim 9, 상기 혼합용액은 시트릭산 1-5 g/L와 과산화수소수 1-10 ml/L가 혼합된 무전해 도금 방법. The mixed solution is an electroless plating method of 1-5 g / L citric acid and 1-10 ml / L hydrogen peroxide mixed.
KR1020080027928A 2008-03-26 2008-03-26 Electroless plating solution and plating method using the same KR20090102464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080027928A KR20090102464A (en) 2008-03-26 2008-03-26 Electroless plating solution and plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080027928A KR20090102464A (en) 2008-03-26 2008-03-26 Electroless plating solution and plating method using the same

Publications (1)

Publication Number Publication Date
KR20090102464A true KR20090102464A (en) 2009-09-30

Family

ID=41359925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080027928A KR20090102464A (en) 2008-03-26 2008-03-26 Electroless plating solution and plating method using the same

Country Status (1)

Country Link
KR (1) KR20090102464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036071A (en) * 2014-08-28 2017-03-31 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method and semiconductor device
CN114703517A (en) * 2021-03-19 2022-07-05 南通麦特隆新材料科技有限公司 Copper electroplating solution for filling through holes of IC carrier plate and electroplating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036071A (en) * 2014-08-28 2017-03-31 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method and semiconductor device
CN114703517A (en) * 2021-03-19 2022-07-05 南通麦特隆新材料科技有限公司 Copper electroplating solution for filling through holes of IC carrier plate and electroplating method
CN114703517B (en) * 2021-03-19 2024-02-27 南通麦特隆新材料科技有限公司 Electrolytic copper plating solution for filling through holes of IC carrier plate and electrolytic plating method

Similar Documents

Publication Publication Date Title
US6824665B2 (en) Seed layer deposition
US8138084B2 (en) Electroless Cu plating for enhanced self-forming barrier layers
JP2010507263A (en) Copper deposition to embed features in the fabrication of microelectronic devices
JP2006093357A (en) Semiconductor device and manufacturing method thereof, and processing solution
US7064065B2 (en) Silver under-layers for electroless cobalt alloys
KR101170560B1 (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
EP1020543A1 (en) Deposition of copper on an activated surface of a substrate
KR20150138087A (en) Method for electrochemically depositing metal on a reactive metal film
US20070184652A1 (en) Method for preparing a metal feature surface prior to electroless metal deposition
TWI412631B (en) Copper plating solution for embedding ULSI (Ultra Large-Scale Integration) micro copper wiring
JP4861436B2 (en) Cobalt series alloy electroless plating solution and electroless plating method
KR20150138086A (en) Method for electrochemically depositing metal on a reactive metal film
KR20090102464A (en) Electroless plating solution and plating method using the same
KR101014839B1 (en) Electrochemical polishing and plating method for manufacturing of through via and bumps in 3D SiP
US7198662B2 (en) Electroless plating pre-treatment solution and electroles plating method
KR100788279B1 (en) Leveling method in cu electroless plating
JP2002275639A (en) Deposition of seed layer
US20150322587A1 (en) Super conformal plating
JP6270681B2 (en) Wiring structure manufacturing method, copper displacement plating solution, and wiring structure
KR100752504B1 (en) Fabrication Method of Metal Interconnection by Electroless Plating
KR100426209B1 (en) Fabricating Method of Copper Film for Semiconductor Interconnection
KR101224206B1 (en) Electroless silver plating solution with high stability, electroless plating method using the same and silver coating layer prepared by the same
EP1022355B1 (en) Deposition of copper on an activated surface of a substrate
KR101176221B1 (en) Co-W alloys electroless plating solution, electroless plating method using the same and Co-W alloys coating layer prepared by the same
JP2003178999A (en) Electroless plating method, embedded wiring, and method of forming the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application