KR20080091883A - High capacity electrode for lithium secondary battery and lithium secondary battery containing the same - Google Patents

High capacity electrode for lithium secondary battery and lithium secondary battery containing the same Download PDF

Info

Publication number
KR20080091883A
KR20080091883A KR1020070034875A KR20070034875A KR20080091883A KR 20080091883 A KR20080091883 A KR 20080091883A KR 1020070034875 A KR1020070034875 A KR 1020070034875A KR 20070034875 A KR20070034875 A KR 20070034875A KR 20080091883 A KR20080091883 A KR 20080091883A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
carbon
metal
lithium
Prior art date
Application number
KR1020070034875A
Other languages
Korean (ko)
Other versions
KR101400994B1 (en
Inventor
이재헌
정희태
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020070034875A priority Critical patent/KR101400994B1/en
Publication of KR20080091883A publication Critical patent/KR20080091883A/en
Application granted granted Critical
Publication of KR101400994B1 publication Critical patent/KR101400994B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0457Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

An electrode for a lithium secondary battery is provided to ensure an excellent charge and discharge lifetime by structural stability upon repetitive charging and discharging while retaining high energy storage capacity. A method for preparing an electrode for a lithium secondary battery includes the steps of: (a) dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) dispersing metal or metalloid nanoparticles capable of forming alloy with lithium in the carbon nanotube or carbon nanofiber dispersion to prepare a composite dispersion; and (c) applying the composite dispersion onto a current collector, and drying the composite dispersion.

Description

고용량 리튬 이차전지용 전극 및 이를 함유하는 리튬 이차전지 {High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same}High capacity lithium secondary battery electrode and lithium secondary battery containing same {High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same}

도 1은 리튬과 합금을 형성할 수 있는 금속 또는 준금속 입자가 포함된 리튬 이차전지 음극의 충전 및 방전시 거동을 나타낸 개략도이다.1 is a schematic view showing the behavior during charging and discharging of a lithium secondary battery negative electrode including metal or metalloid particles capable of forming an alloy with lithium.

도 2는 본 발명에 따른 리튬 이차전지용 음극의 충전 및 방전시의 거동을 나타낸 개략도이다.Figure 2 is a schematic diagram showing the behavior during charging and discharging of the negative electrode for a lithium secondary battery according to the present invention.

도 3은 본 발명에 따른 진공 여과 방식으로 제조된 탄소나노튜브에 주석 나노 입자가 함유된 박막의 주사식 전자현미경 사진을 나타낸 것이다.Figure 3 shows a scanning electron micrograph of a thin film containing tin nanoparticles in the carbon nanotubes prepared by the vacuum filtration method according to the present invention.

도 4는 본 발명에 따른 전기분해 전착장치의 개략도를 나타낸 것이다.Figure 4 shows a schematic view of the electrolytic electrodeposition apparatus according to the present invention.

도 5은 본 발명에 따른 전기분해 전착장치를 이용하여 제조된 박막의 주사식 전자현미경 사진을 나타낸 것으로, (a)는 탄소나노튜브 박막에 주석 나노입자가 전착되기 전의 주사식 전자 현미경 사진이고, (b)는 탄소나노튜브 박막에 주석 나노입자가 전착된 후의 주사식 전자 현미경 사진이다.5 is a scanning electron micrograph of a thin film prepared by using an electrolytic electrodeposition apparatus according to the present invention, (a) is a scanning electron micrograph before the tin nanoparticles are electrodeposited on the carbon nanotube thin film, (b) is a scanning electron micrograph after tin nanoparticles were electrodeposited on a carbon nanotube thin film.

도 6은 본 발명에 따른 실시예 및 비교예 의해 제조된 리튬 이차전지의 총 방전 횟수에 대한 에너지 저장용량을 나타낸 그래프이다.6 is a graph showing an energy storage capacity with respect to the total number of discharges of lithium secondary batteries manufactured by Examples and Comparative Examples according to the present invention.

발명의 분야Field of invention

본 발명은 고용량 리튬 이차전지용 전극 및 이를 함유하는 리튬 이차전지에 관한 것으로, 보다 구체적으로는 충전 및 방전 수명을 향상시키고 높은 에너지 저장 용량을 가지는 리튬 이차전지를 제조하기 위해 탄소나노튜브(carbon nanotube; CNT) 또는 탄소나노파이버(carbon nanofiber; CNF)에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자가 함유된 리튬 이차전지용 음극 및 이를 함유하는 리튬 이차전지에 관한 것이다.The present invention relates to an electrode for a high capacity lithium secondary battery and a lithium secondary battery containing the same, and more particularly, to improve a charge and discharge life and to produce a lithium secondary battery having a high energy storage capacity. CNT) or a carbon nanofiber (CNF) relates to a negative electrode for a lithium secondary battery containing metal or metalloid nanoparticles capable of forming an alloy with lithium, and a lithium secondary battery containing the same.

발명의 배경Background of the Invention

전자 기술의 발전에 따른 휴대 기기의 경량·소형화에 따라 기기의 중량 중 전지의 비율이 상대적으로 증가하는 추세로서 휴대전화의 경우 1988년에 총 중량이 약 800g 이었으나, 1999년에는 약 70g 수준으로 감소하였다. 휴대전화는 2007년 현재 약 70~80g 수준이고, 1999년에 비하여 전자메일, 웹 서핑, MP3 플레이어 등의 다양한 기능이 추가되어 휴대 개인정보 단말기에 근접하는 기능을 갖추는 정도로 발전하였다. 개인정보 통신 단말기인 PDA의 경우 초기 도입단계를 거쳐 2007년 현재 보급이 급속히 확장되고 있다. PDA의 성능은 PDA 기본의 개인정보 통신단말기로 서의 기능과 함께 네비게이션을 포함하는 비디오기능이 통합된 형태의 PDAV(personal digital assistant with video) 기능까지 갖춘 수준으로 기술적인 진보가 있었다. As the weight and size of portable devices increased due to the development of electronic technology, the proportion of batteries in the weight of the devices was relatively increased. For mobile phones, the total weight was about 800g in 1988, but decreased to about 70g in 1999. It was. The mobile phone is about 70 ~ 80g as of 2007. Compared to 1999, it has evolved to be close to the portable personal information terminal by adding various functions such as e-mail, web surfing, and MP3 player. PDA, a personal information communication terminal, is rapidly expanding as of 2007 after the initial introduction stage. The performance of the PDA has been advanced as a personal digital assistant with video (PDAV) function which integrates a video function including navigation with a function as a basic personal information communication terminal.

이에, 이들 고성능 휴대 전자기기의 에너지원도 보다 소형, 경량 및 고에너지의 특성을 갖는 고성능 이차전지가 필요하다. 리튬 이차전지는 3~4V의 높은 전지 전압을 나타내고, 비에너지는 1992년 89Wh/kg에서 2002년 189Wh/kg으로 향상되어 10년 동안 100%의 비약적인 성능향상이 진행되었다. 이러한 발전은 양극 및 음극의 전극 재료와 전지 제조기술이 꾸준히 발전한 결과이다.Accordingly, there is a need for a high performance secondary battery having the characteristics of smaller size, lighter weight, and higher energy than the energy source of these high performance portable electronic devices. Lithium secondary battery shows high battery voltage of 3 ~ 4V, and specific energy has improved from 89Wh / kg in 1992 to 189Wh / kg in 2002, and the performance has improved by 100% for 10 years. This development is the result of the steady development of electrode materials and battery manufacturing technology of the positive and negative electrodes.

일반적으로, 리튬 이차전지는 LiCoO2, LiMn2O4, LiCoxNi1-xO2(0≤x≤1), V2O5 또는 LiFePO4 등 이들의 조성 변화물을 포함하는 전이금속화합물 양극(또는 정극), 리튬염 함유 유기 전해액 및 탄소 음극(또는 부극)으로 구성한다. 리튬 이차전지용 음극은 연구개발의 초창기에는 리튬 금속 및 리튬-알루미늄(Li-Al) 합금에 대하여 진행되었으나, 연구 진행에 따라 수명 및 안전성 문제로 인하여 탄소계 음극개발이 진행되었다. 탄소계 음극의 개발로 리튬 이차전지의 상용화를 실현하였다. 1992년의 상용화 초기에는 코크스 탄소재료를 사용하여 비용량이 200mAh/g 이하였지만, 현재는 330mAh/g 내외의 비용량을 나타내는 고용량의 흑연계 탄소재료를 사용하며, 용량밀도로 보면 흑연재료와 피치계 탄소재료는 각각 726mAh/cm3과 380mAh/cm3에 해당한다. 즉, 종래 음극재료의 경우 피치계 및 흑연계 탄소재료의 비용량은 각각 200mAh/g 및 330mAh/g이고, 단위 체적당 용량을 나타내는 용량밀도로 보면 코크스 탄소 재료와 흡연재료는 각각 380mAh/cm3와 726mAh/cm3에 해당하는데, 이와 같이 비용량 및 용량밀도가 낮은 탄소계 재료를 리튬 이차전지용 음극으로 사용할 경우 전지의 비에너지 및 에너지 밀도도 이에 비례하여 제한되는 문제점이 있다.In general, a lithium secondary battery is a transition metal compound including a composition change thereof such as LiCoO 2 , LiMn 2 O 4 , LiCo x Ni 1-x O 2 (0 ≦ x ≦ 1), V 2 O 5, or LiFePO 4 . It consists of a positive electrode (or positive electrode), a lithium salt containing organic electrolyte solution, and a carbon negative electrode (or negative electrode). In the early stages of research and development for lithium secondary batteries, lithium metal and lithium-aluminum (Li-Al) alloys were developed. However, carbon-based negative electrodes were developed due to life and safety issues. The development of a carbon-based negative electrode realizes the commercialization of a lithium secondary battery. At the beginning of commercialization in 1992, coke carbon material was used, and its specific capacity was less than 200mAh / g, but now it uses high capacity graphite-based carbon material which shows specific capacity around 330mAh / g. Carbon materials correspond to 726 mAh / cm 3 and 380 mAh / cm 3 , respectively. That is, in the case of the conventional anode material, the specific amounts of pitch and graphite carbon materials are 200 mAh / g and 330 mAh / g, respectively. In terms of capacity density indicating capacity per unit volume, the coke carbon material and the smoking material are 380 mAh / cm 3, respectively. And 726 mAh / cm 3 , when the carbonaceous material having a low specific capacity and low capacity density is used as a negative electrode for a lithium secondary battery, the specific energy and energy density of the battery are also limited in proportion thereto.

일반적으로 리튬 이차 전지 제조시 음극은 리튬이 포함되어 있는 않은 상태로 만들어지고 양극에 리튬 전이 금속 등과 같은 리튬을 포함하는 화합물을 사용한다. 이에 리튬 이차 전지가 전지로서 작동하기 위해서는 먼저 충전을 해주어야 하는데 이때 양극에서 산화반응에 의해 생성된 리튬 이온이 음극으로 이동하고 음극 표면에 이르게 된 리튬 이온은 음극에서 받은 전자와 만나 환원 반응에 의해 고체-전해질 계면층(solid-electrolyte interphase layer; 이하, SEI)이라고 하는 층을 형성하게 된다. 이 층은 전기 전도도가 매우 낮고 이온전도도가 우수하여 이후로는 더 이상 계면층이 형성되지 않고 리튬 이온이 음극 내부로 이동하게 되지만, SEI 층을 형성할 때 리튬 이온이 소모되므로 용량의 저하가 생기게 되고 이를 초기 비가역 용량이라고 부른다. 흑연재료의 종류와 사용된 전해질의 종류에 따라서 초기 비가역 용량의 정도는 차이가 있으나 일반적으로 5 ~ 20% 정도가 된다. 이때 흑연 재료는 층상 구조로 되어 있어 음극 내부로 이동한 리튬 이온은 층 사이로 이동하게 되고 이동된 리튬 이온은 환원되어 리튬-탄소 합금을 형성하게 된다. 리튬-탄소 합금은 최대 LiC6 조성 (탄소 원자 6개당 리튬 원자 1개)이 가능하며 이때의 이론적인 최대 용량은 약 370 mAh/g이 된다.In general, in the manufacture of a lithium secondary battery, a negative electrode is made of lithium, and a compound including lithium, such as a lithium transition metal, is used in the positive electrode. In order for the lithium secondary battery to operate as a battery, the battery needs to be charged first. At this time, lithium ions generated by the oxidation reaction at the positive electrode move to the negative electrode, and lithium ions that reach the surface of the negative electrode meet with the electrons received at the negative electrode to form a solid by a reduction reaction. A layer called a solid-electrolyte interphase layer (hereinafter referred to as SEI) is formed. This layer has very low electrical conductivity and excellent ion conductivity, so that no more interface layer is formed and lithium ions move inside the cathode. However, when the SEI layer is formed, lithium ions are consumed. This is called the initial irreversible capacity. Although the degree of initial irreversible capacity varies depending on the type of graphite material and the type of electrolyte used, it is generally about 5 to 20%. At this time, the graphite material has a layered structure such that lithium ions moved into the cathode move between layers, and the transferred lithium ions are reduced to form a lithium-carbon alloy. Lithium-carbon alloys can have a maximum LiC 6 composition (one lithium atom per six carbon atoms) with a theoretical maximum capacity of about 370 mAh / g.

따라서, 전지의 성능 향상을 위하여 흑연재료의 비용량을 능가하는 신규 재 료들을 개발하고 있고, 대표적인 것으로 탄소나노튜브와 탄소나노파이버가 있다. 여기서 말하는 탄소나노파이버는 직경과 모양에서 탄소나노튜브와 흡사하지만, 탄소나노튜브가 가운데 부분이 비어 있는 말 그대로 튜브의 형태를 띠고 있는데 반해서 탄소나노파이버는 가운데 부분까지 탄소로 메워져 있는 직경이 수백 나노미터에 이르는 섬유 형태의 탄소 합성물을 말한다. 탄소나노튜브 또는 탄소나노파이버는 지구상에 다량으로 존재하는 탄소로 이루어진 탄소 동소체로서 다른 탄소 재료들에 비해 탄소나노튜브 또는 탄소나노파이버는 기공의 분포가 나노미터 단위로 일정하고, 전해질의 이온이 닿을 수 있는 표면적이 매우 크며, 전극 물질로 사용되었을 경우에 전극자체의 저항이 매우 작고, 화학적으로 매우 안정한 구조를 하고 있을 뿐만 아니라, 전기전도도가 최대 1.0×104S/cm이고, 비표면적의 유효이용율이 약 100%이며, 현재까지 알려진 최대 비표면적은 약 500m2/g에 이른다.Therefore, in order to improve the performance of the battery, new materials are being developed that surpass the specific amount of graphite material, and carbon nanotubes and carbon nanofibers are representative. Here, carbon nanofibers are similar to carbon nanotubes in diameter and shape, but carbon nanotubes are literally shaped like tubes with empty centers, whereas carbon nanofibers are filled with carbon to the center of hundreds of nanometers. It refers to a carbon composite in the form of fibers up to meters. Carbon nanotubes or carbon nanofibers are carbon allotrope composed of carbon present on the earth in large quantities. Compared to other carbon materials, carbon nanotubes or carbon nanofibers have a uniform distribution of pores in nanometer units and prevent ions from reaching the electrolyte. The surface area is very large, the resistance of the electrode itself is very small when used as an electrode material, it has a chemically very stable structure, the electrical conductivity is 1.0 × 10 4 S / cm, and the specific surface area is effective. The utilization rate is about 100%, and the maximum specific surface area known to date is about 500 m 2 / g.

탄소나노튜브는 흑연재료와 구조적으로 유사하므로 단일벽 탄소나노튜브나 다중벽 탄소나노튜브의 경우 모두 흑연에서의 메커니즘과 같이 리튬 이온의 삽입 및 탈리가 가능하고 탄소나노튜브의 경우 튜브와 튜브 사이에 미세기공이 생성되어 있으므로 이 공간에 리튬 이온이 저장될 수 있다. 이로 인해 탄소나노튜브에는 최대 1000 mAh/g의 높은 용량의 에너지가 저장될 수 있다. 그러나 탄소나노튜브는 이러한 리튬 이온 저장이 가능한 미세기공뿐만 아니라 리튬 이온이 저장되기에는 큰 기공들이 많이 존재하고 이로 인해 밀도가 낮아져서 부피당 에너지 밀도는 매우 낮게 된다. 게다가 큰 비표면적으로 인해 초기 비가역 용량이 5~20% 수준인 흑연계 재료에 비해 매우 큰 100% 이상의 초기 비가역 용량을 보인다. 따라서 탄소나노튜브를 단독으로 리튬 이차전지의 음극재료로 사용하는 것은 실현성이 없다.Since carbon nanotubes are structurally similar to graphite materials, both single-walled carbon nanotubes and multi-walled carbon nanotubes can be intercalated with lithium ions as with the mechanism of graphite, and carbon nanotubes can be interposed between tubes. Since micropores are generated, lithium ions may be stored in this space. As a result, carbon nanotubes can store high energy of up to 1000 mAh / g. However, carbon nanotubes have many pores for storing lithium ions, as well as micropores capable of storing lithium ions, and as a result, the density becomes low, and the energy density per volume is very low. In addition, due to the large specific surface area, the initial irreversible capacity is over 100%, which is very large compared to the graphite based material having an initial irreversible capacity of 5-20%. Therefore, using carbon nanotubes alone as a negative electrode material of a lithium secondary battery is not practical.

한편, 탄소 재료의 에너지 저장용량의 한계를 극복하기 위해 다른 재료들이 개발되어 왔는데, 그 중 대표적인 것이 리튬과 합금 형성이 가능한 금속이나 준금속을 음극물질로 사용하는 것이다. 이들 금속 또는 준금속은 리튬과 합금을 형성하며, 형성된 합금이 저장할 수 있는 에너지 용량은 원소의 종류에 따라서 다르지만 규소의 경우에는 약 4,000mAh/g, 알루미늄의 경우에는 약 2,200mAh/g, 주석의 경우에는 약 960mAh/g의 이론적 용량을 가진다. 이는 약 370mAh/g인 흑연계 탄소에 비해 매우 높은 용량이지만 충전시 리튬과 합금을 형성하면서 부피 증가가 매우 크다는 문제가 있다. 흑연계 탄소의 경우 리튬이 삽입되면서 부피가 약 10% 정도 증가하는 것으로 알려져 있지만 리튬과 합금을 형성하는 금속이나 준금속의 경우에는 200 ~ 300%의 큰 부피증가를 보인다. 이러한 부피증가는 방전하면서 리튬이 탈리될 때 다시 회복되면서 이전의 부피로 되돌아오게 되는데 이 때문에 충전과 방전을 거듭할 때 음극 재료의 부피가 증가하였다가 감소하는 결과를 가져오고, 이는 음극 재료의 구조적 변화를 수반하고 전기적 접촉이 끊어지면서 비활성화되는 부분이 많아지는 문제를 야기한다. 이러한 구조 변화와 비활성화는 전지 용량의 저하를 초래하고 이에 따라 수명 특성이 열악해진다. 도 1은 리튬과 합금을 형성할 수 있는 금속 또는 준금속 입자를 사용한 리튬 이차전지의 충전 및 방전시 거동을 나타낸 것이다.On the other hand, other materials have been developed to overcome the limitation of the energy storage capacity of the carbon material, a representative one is to use a metal or metalloid capable of forming an alloy with lithium as a negative electrode material. These metals or metalloids form alloys with lithium, and the energy capacity they can store varies depending on the type of element, but about 4,000 mAh / g for silicon, about 2,200 mAh / g for aluminum, and tin. In case it has a theoretical capacity of about 960 mAh / g. This is a very high capacity compared to graphite-based carbon of about 370mAh / g, but there is a problem that the volume increase is very large while forming an alloy with lithium during charging. In the case of graphite carbon, the volume increases about 10% as lithium is inserted, but the metal or metalloid forming an alloy with lithium shows a large volume increase of 200 to 300%. This increase in volume returns to the previous volume as lithium is released during discharge, which results in an increase and decrease in the volume of the negative electrode material during charging and discharging. This causes a problem that is accompanied by a change and a lot of inactivation is caused by the loss of electrical contact. Such structural changes and deactivation lead to deterioration of battery capacity and thus poor life characteristics. 1 illustrates the charging and discharging behavior of a lithium secondary battery using metal or metalloid particles capable of forming an alloy with lithium.

이에, WO 2001-15251호는 이를 극복하기 위하여 탄소나노튜브의 내부에 리튬 과 합금 형성이 가능한 금속 또는 준금속을 사용하여 전지의 용량 및 가역성이 개선된 리튬 전지용 음극을 개시하였으나, 탄소나노튜브를 합성하는 과정에서 금속이나 준금속 전구체를 함께 사용하여야 하고, 기존에 합성된 탄소나노튜브를 사용할 수 없으며, 전극제조 비용에 비해 매우 낮은 수율이 얻어지는 문제점이 있다(T.P. Kumar et al., Electrochemisty Communications, 6:520, 2004).Accordingly, WO 2001-15251 discloses a negative electrode for a lithium battery having improved capacity and reversibility by using a metal or metalloid capable of forming an alloy with lithium in the carbon nanotube to overcome this problem. In the synthesis process, metal or metalloid precursors must be used together, and carbon nanotubes synthesized previously cannot be used, and very low yields are obtained compared to electrode manufacturing costs (TP Kumar et al. , Electrochemisty Communications , 6: 520, 2004).

또한, 대한민국 등록특허 제584671호는 황 또는 금속 나노입자를 접착제로 사용하여 전극 물질인 탄소나노튜브를 접착시키고 이들 전극 물질과 전류 집전체를 접착시키는 황 또는 금속 나노입자를 접착제로 사용하는 탄소나노튜브 또는 탄소나노파이버 전극의 제조방법 및 이에 의해 제조된 전극을 개시하고 있으나, 단지 황 또는 금속 나노입자를 접착제로 사용하여 전극의 내부저항을 줄이고, 내구성을 향상시키는 것에만 그쳐 에너지 저장용량 및 충전 및 방전 수명을 증가시킬 수 없었다.In addition, the Republic of Korea Patent No. 584671 uses carbon or nanoparticles as sulfur to bond carbon nanotubes as electrode materials and to bond these electrode materials and current collectors to carbon nanoparticles as adhesives. A method of manufacturing a tube or carbon nanofiber electrode and an electrode manufactured by the same are disclosed. However, only sulfur or metal nanoparticles are used as an adhesive to reduce the internal resistance of the electrode and to improve durability. And the discharge life could not be increased.

한편, 탄소나노튜브 또는 탄소나노파이버를 규소와 같은 리튬과 합금 형성이 가능한 금속 또는 금속 입자와 함께 복합체를 제조하는 방법으로, 볼 밀링을 이용한 방법(J. Y. Eom et al., J. Electrochemical Society, 153:1678, 2006)과, 규소입자 위에 탄소 나토튜브를 코팅하거나 성장시키는 방법이 보고되었으나(J. Shu et al., Electrochemistry Communications, 8:51, 2006), 이러한 방법들은 금속 또는 준금속 입자의 부피 팽창시에 완충 작용을 하는 이점은 있지만, 금속 또는 준금속 입자의 크기가 1㎛ 이상이기 때문에 입자의 구조적 붕괴를 막을 수 없다. Meanwhile, a method of manufacturing a composite of carbon nanotubes or carbon nanofibers together with metals or metal particles capable of forming an alloy with lithium such as silicon, using ball milling (JY Eom et al. , J. Electrochemical Society , 153). : 1678, 2006), and methods of coating or growing carbon natotubes on silicon particles have been reported (J. Shu et al. , Electrochemistry Communications , 8:51, 2006), but these methods are known as volume of metal or metalloid particles. Although there is an advantage in buffering during expansion, the structural collapse of the particles cannot be prevented because the size of the metal or metalloid particles is 1 µm or more.

따라서, 종래 흑연계 탄소재료의 음극 재료에 비해 고에너지 밀도를 가지면 서 충전 및 방전 수명이 우수한 리튬 이차전지용 음극재료의 개발이 절실하다.Therefore, there is an urgent need to develop a negative electrode material for a lithium secondary battery having a high energy density and excellent charge and discharge life compared to the negative electrode material of the graphite-based carbon material.

이에, 본 발명자들은 전기 전도도가 우수하면서 비표면적이 넓은 탄소나노튜브 또는 탄소나노파이버에 리튬과 합금 형성이 가능한 금속 또는 준금속의 나노 입자를 함유시켜 리튬 이차전지용 음극을 제조한 다음, 리튬 이차전지에 사용한 결과, 종래 흑연계 탄소재료를 사용한 이차전지에 비해 월등히 높은 에너지 저장용량과 우수한 충전 및 방전 수명을 가짐을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors prepared a negative electrode for a lithium secondary battery by containing a nanoparticle of a metal or metalloid capable of forming an alloy with lithium in a carbon nanotube or a carbon nanofiber having excellent electrical conductivity and a wide specific surface area. As a result, it was confirmed that the secondary battery using the graphite-based carbon material has a significantly higher energy storage capacity and excellent charge and discharge life, and thus the present invention was completed.

결국, 본 발명의 주된 목적은 높은 에너지 저장 용량을 가지면서 충전 및 방전을 반복할 때 구조적 안정성에 의해 우수한 충·방전 수명을 가지는 리튬 이차전지용 음극과 그 제조방법 및 상기 이차전지용 음극을 함유하는 리튬 이차전지를 제공하는데 있다.After all, the main object of the present invention is a lithium secondary battery negative electrode having a high energy storage capacity and having a good charge and discharge life by the structural stability when repeated charging and discharging, a manufacturing method and a lithium containing the secondary battery negative electrode It is to provide a secondary battery.

상기 목적을 달성하기 위하여, 본 발명은, 일 관점에서, (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노 입자를 분산시켜 복합체 분산액을 제조하는 단계; 및 (c) 상기 복합체 분산액을 집전체 상에 도포하고 건조시키는 단계를 포함하는 리튬 이차전지용 전극의 제조방법을 제공한다.In order to achieve the above object, the present invention, in one aspect, (a) dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotubes or carbon nanofiber dispersion; (b) preparing a composite dispersion by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium in the carbon nanotube or carbon nanofiber dispersion; And (c) applying the composite dispersion onto a current collector and drying the same.

본 발명은 또한, 상기 방법에 의해 제조된 리튬 이차전지용 전극 및 상기 리튬 이차전지용 전극을 함유하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery electrode prepared by the above method and a lithium secondary battery containing the electrode for lithium secondary battery.

본 발명은, 다른 관점에서, (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자를 분산시켜 복합체 분산액을 제조하는 단계; 및 (c) 상기 복합체 분산액을 진공 여과하여 박막을 형성시킨 다음, 집전체에 접착시키는 단계를 포함하는 리튬 이차전지용 전극의 제조방법을 제공한다.In another aspect, (a) dispersing the carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) preparing a composite dispersion by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium in the carbon nanotube or carbon nanofiber dispersion; And (c) vacuum filtration of the composite dispersion to form a thin film, and then bonding the composite dispersion to a current collector.

본 발명은 또한, 상기 방법에 의해 제조된 리튬 이차전지용 전극 및 상기 리튬 이차전지용 전극을 함유하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery electrode prepared by the above method and a lithium secondary battery containing the electrode for lithium secondary battery.

본 발명은, 또 다른 관점에서, (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액을 진공 여과시켜 박막 형성시킨 다음, 집전체에 접착하는 단계; 및 (c) 상기 집전체에 접착된 박막에 금속 또는 준금속을 전착시키는 단계를 포함하는 리튬 이차전지용 전극의 제조방법을 제공한다.In another aspect, (a) dispersing the carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) vacuum-filtering the carbon nanotubes or carbon nanofiber dispersions to form a thin film, and then attaching the carbon nanotubes or carbon nanofibers to a current collector; And (c) electrodepositing a metal or metalloid on the thin film adhered to the current collector.

본 발명에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 할 수 있다.In the present invention, the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, rubidium , Rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium. can do.

본 발명에 있어서, 상기 용매는 n-메틸피롤리돈(n-methylpyrrolidinone), 디메틸포름아미드(dimethyl formamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란, 아세토니트릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시드(dimetyl sulfoxide), 아세톤, 디옥센, 케톤, 에탄올, 이소프로판올, 헥산, 에틸렌글리콜, 자일렌, 시클로헥산, 벤젠 및 톨루엔으로 구성된 그룹에서 선택되는 적어도 하나 이상인 것을 특징으로 할 수 있고, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 할 수 있으며, (c) 단계의 전착은 전기분해에 의해 수행되는 것을 특징으로 할 수 있다.In the present invention, the solvent is n-methylpyrrolidone (n-methylpyrrolidinone), dimethyl formamide (dimethyl formamide), dimethylacetamide (dimethylacetamide), hexamethylphosphoramide (hexamethylphosphoramide), tetrahydrofuran, acetonitrile (acetonitrile), cyclohexanone, chloroform, dichloromethane, dimethyl sulfoxide, acetone, dioxene, dioxene, ketone, ethanol, isopropanol, hexane, ethylene glycol, xylene, cyclohexane, benzene and toluene It may be characterized in that at least one or more selected, the diameter of the metal or metalloid nanoparticles may be characterized in that 1nm ~ 1㎛, (c) electrodeposition is characterized in that performed by electrolysis can do.

본 발명은 또한, 상기 방법에 의해 제조된 리튬 이차전지용 전극 및 상기 리튬 이차전지용 전극을 포함하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising the lithium secondary battery electrode and the lithium secondary battery electrode produced by the above method.

본 발명은, 또 다른 관점에서, 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자와 탄소나노튜브 또는 탄소나노파이버가 함유되는 것을 특징으로 하는 리튬 이차 전지용 전극을 제공한다.In still another aspect, the present invention provides an electrode for a lithium secondary battery, wherein metal or metalloid nanoparticles capable of forming an alloy with lithium, and carbon nanotubes or carbon nanofibers are contained.

본 발명에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 할 수 있고, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 할 수 있다.In the present invention, the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, rubidium , Rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium. The diameter of the metal or metalloid nanoparticles may be 1 nm to 1 μm.

본 발명은 또한, 상기의 리튬 이차 전지용 전극을 함유하는 리튬 이차전지를 제공한다.This invention also provides the lithium secondary battery containing said electrode for lithium secondary batteries.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 충전 및 방전 수명을 향상시키고 높은 에너지 저장 용량을 가지는 리튬 이차전지를 제조하기 위해 탄소나노튜브(carbon nanotube; CNT) 또는 탄소나노파이버(carbon nanofiber; CNF)에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자가 함유된 리튬 이차전지용 음극을 제조하고, 제조된 리튬 이차전지용 음극을 함유하는 리튬 이차전지를 제공하고자 한다. The present invention can form an alloy with lithium in carbon nanotubes (CNT) or carbon nanofibers (CNF) to improve the charge and discharge life and to produce a lithium secondary battery having a high energy storage capacity. To prepare a negative electrode for a lithium secondary battery containing a metal or metalloid nanoparticles present, and to provide a lithium secondary battery containing a negative electrode for a manufactured lithium secondary battery.

본 발명에 있어서, 탄소재료의 에너지 저장용량의 한계를 극복하기 위해 사용되는 리튬과 합금 형성이 가능한 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 군에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 할 수 있어, 상기 금속 또는 준금속은 리튬과 합금 형성시 리튬의 비율이 높아 리튬 이차전지의 음극 재료로 사용할 경우 높은 에너지 저장효과를 얻을 수 있다. In the present invention, the metal or metalloid capable of forming an alloy with lithium used to overcome the limitation of the energy storage capacity of the carbon material is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, Selected from the group consisting of phosphorus, lead, palladium, platinum, plutonium, rubidium, rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium It may be characterized in that one metal or two or more alloys, the metal or metalloid may have a high ratio of lithium when forming an alloy with lithium, when used as a negative electrode material of a lithium secondary battery can obtain a high energy storage effect.

또한, 본 발명은 기존의 금속 또는 준금속 입자를 함유한 이차전지가 충전 및 방전과정에서 부피팽창에 의한 구조적 붕괴와 용량 저하가 발생하는 문제점을 리튬과 합금을 형성할 수 있는 금속 또는 준금속의 입자 크기를 현저히 작게 제조하여 전극재료에 함유시킴으로써 극복할 수 있다. 따라서, 본 발명에 따른 금속 또는 준금속의 입자직경은 나노 크기로 1nm ∼ 1㎛인 것을 특징으로 할 수 있다. 이것은 금속 또는 준금속의 입자 직경이 1nm 이하인 경우 전지의 높은 부피당 에너지 저장 용량을 가지기 어렵고, 1㎛ 이상인 경우에는 충전과 방전과정에서 부피팽창에 의한 구조적 붕괴가 발생됨에 따라, 리튬과 합금을 형성할 수 있는 금속 또는 준금속의 입자 크기는 1nm ∼ 1㎛이고, 금속 또는 준금속의 나노 입자들의 입도 분포는 입자들의 50%이상, 바람직하게는 70%, 더욱 바람직하게는 90% 이상이 1nm ∼ 1㎛의 입자 직경을 갖도록 하는 것이 좋다.In addition, the present invention is a secondary battery containing metal or metalloid particles of the metal or metalloid that can form an alloy with lithium in the problem of the structural collapse and capacity decrease due to volume expansion during charging and discharging process This can be overcome by making the particle size significantly smaller and incorporating it into the electrode material. Therefore, the particle diameter of the metal or metalloid according to the present invention may be characterized by having a nano size of 1nm to 1㎛. It is difficult to have high energy storage capacity per volume of the battery when the particle diameter of the metal or metalloid is 1 nm or less, and when the particle size is 1 μm or more, structural collapse due to volume expansion occurs during charging and discharging, thereby forming an alloy with lithium. The particle size of the metal or metalloid may be 1 nm to 1 μm, and the particle size distribution of the nanoparticles of the metal or metalloid is 50% or more of the particles, preferably 70%, more preferably 90% or more. It is preferable to have a particle diameter of 탆.

본 발명에 있어서, 나노 입자의 제조방법은 특별히 한정되지 않고 기계적 분쇄법, 공침법, 분무법, 졸-겔법, 전기 분해법, 에몰젼법 또는 역상 에멀젼법 등 일반적으로 나노입자를 만들 수 있는 방법으로 제조된 것이면 어떤 것이든 상관없다. In the present invention, the production method of the nanoparticles is not particularly limited and is generally prepared by a method capable of producing nanoparticles, such as mechanical grinding, coprecipitation, spraying, sol-gel, electrolysis, emulsification or reverse phase emulsion. It doesn't matter what it is.

한편, 금속 또는 준금속의 나노입자를 사용할 경우에는 충전 및 방전 과정에서 부피의 팽창과 수축이 일어날 때 내부 응력을 적게 받게 되어 구조의 붕괴가 적으나, 개개의 입자는 구조 붕괴가 일어나지 않는다 하더라도 전체적으로 부피 증가가 수반되므로 이러한 부피 증가를 상쇄시켜 줄 수 있어야 하므로, 전극 물질로 사용되는 나노입자는 일정한 간격을 두고 떨어져 있어야 하고 산화 및 환원반응이 지속적으로 일어날 수 있어야 하므로 전기적 접촉을 계속 유지하여야 한다. On the other hand, in the case of using metal or metalloid nanoparticles, the internal stress is reduced when the expansion and contraction of the volume occurs during the charging and discharging process, so that the collapse of the structure is small. As the volume increase is accompanied, the volume increase must be counteracted. Therefore, the nanoparticles used as the electrode material should be spaced at regular intervals, and the electrical and redox reactions must be continuously maintained.

도 2에 나타난 바와 같이, 본 발명에서는 나노입자들 서로 일정한 간격을 두 고 떨어져 있으면서 전기적 접촉을 유지하기 위하여, 비표면적이 크고 전기 전도성이 우수하며 그 자체로도 리튬 이온의 삽입이 가능한 탄소나노튜브 또는 탄소나노파이버를 그물처럼 연결시키고, 상기 그물 형태의 탄소나노튜브 또는 탄소나노파이버 상에 나노입자를 함유시켜 높은 에너지 저장 용량을 가지면서 충전과 방전을 반복할 때 구조적 안정성에 의해 우수한 수명을 가지는 리튬 이차전지용 음극을 제조할 수 있다.As shown in FIG. 2, in the present invention, carbon nanotubes having a large specific surface area and excellent electrical conductivity, and are capable of inserting lithium ions in themselves, in order to maintain electrical contact with the nanoparticles spaced apart from each other at regular intervals. Alternatively, carbon nanofibers are connected like a net, and nanoparticles are contained on the net carbon nanotubes or carbon nanofibers to have high energy storage capacity and have excellent lifespan due to structural stability when repeated charging and discharging. The negative electrode for lithium secondary batteries can be manufactured.

본 발명에 따른, 리튬 이차전지용 음극을 제조하는 방법은 먼저, 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조한 다음, 상기 탄소나노튜브 또는 탄소나노파이버가 분산된 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자를 분산시켜 복합체 분산액을 제조한다. 상기 복합체 분산액은 집전체 상에 도포시키고 건조시켜 리튬 이차전지용 전극을 제조할 수 있다. 이와 같은, 제조방법은 탄소나노튜브 또는 탄소나노파이버의 그물 구조 안에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자가 효과적으로 잘 분산되어 있으면서 연속공정으로 이루어져 손쉽게 제조할 수 있다. According to the present invention, a method for manufacturing a negative electrode for a lithium secondary battery is first prepared by dispersing a carbon nanotube or carbon nanofiber in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion, and then the carbon nanotube or carbon nanofiber is A composite dispersion is prepared by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium in a dispersed dispersion. The composite dispersion may be coated on a current collector and dried to prepare an electrode for a lithium secondary battery. As such, the manufacturing method can be easily produced by a continuous process while the metal or metalloid nanoparticles capable of forming an alloy with lithium in the net structure of carbon nanotubes or carbon nanofibers are effectively dispersed well.

본 발명에 따른, 다른 이차전지용 음극제조 방법은 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조한 다음, 상기 탄소나노튜브 또는 탄소나노파이버가 분산된 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자를 분산시켜 복합체 분산액을 제조한다. 상기 복합체 분산액은 진공 여과방법을 이용하여 탄소나노튜브 또는 탄소나노파이 버에 금속 또는 준금속 나노입자가 함유된 박막으로 제조한 다음, 집전체와 접착시켜 전극을 제조할 수 있다. 상기 제조방법은 탄소나노튜브 또는 탄소나노파이버의 그물 구조 안에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자가 효과적으로 잘 분산되어 있으면서 박막의 두께가 균일한 박막을 제조할 수 있다.According to another aspect of the present invention, a method for manufacturing a negative electrode for a secondary battery includes dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion, and then dispersing the carbon nanotubes or carbon nanofibers in a dispersion liquid. A composite dispersion is prepared by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium. The composite dispersion may be made of a thin film containing metal or metalloid nanoparticles in carbon nanotubes or carbon nanofibers using a vacuum filtration method, and then bonded to a current collector to prepare an electrode. The manufacturing method can produce a thin film having a uniform thickness of the metal while the metal or metalloid nanoparticles capable of forming an alloy with lithium are effectively dispersed in the carbon nanotube or the carbon nanofiber net structure.

본 발명에 따른, 또 다른 이차전지용 음극제조 방법은 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조한 다음, 상기 분산액을 진공 여과하여 탄소나노튜브 또는 탄소나노파이버 박막을 제조한다. 제조된 상기 탄소나노튜브 또는 탄소나노파이버 박막은 집전체와 접착시키고, 집전체와 접착된 탄소나노튜브 또는 탄소나노파이버 박막에 금속 또는 준금속 나노 입자를 전기분해로 전착시켜 금속 또는 준금속 나노입자가 전착된 전극을 제조할 수 있다. 이와 같은 제조방법은 탄소나노튜브 또는 탄소나노파이버의 그물 구조 안에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자가 효과적으로 잘 분산되어 있으면서 박막의 두께가 균일한 박막을 제조할 수 있다.According to another aspect of the present invention, a method for manufacturing a negative electrode for a secondary battery includes dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare carbon nanotubes or carbon nanofiber dispersions, and then vacuum dispersing the dispersions to carbon nanotubes or carbon nanofibers. A fiber thin film is produced. The prepared carbon nanotubes or carbon nanofiber thin films are bonded to a current collector, and the metal or metalloid nanoparticles are electrolytically electrodeposited on the carbon nanotubes or carbon nanofiber thin films adhered to the current collector. Electrode electrodeposited can be prepared. Such a manufacturing method can produce a thin film having a uniform thickness of the metal while the metal or metalloid nanoparticles capable of forming an alloy with lithium are effectively dispersed in the carbon nanotube or the carbon nanofiber net structure.

일반적으로, 탄소나노튜브 또는 탄소나노파이버는 강력한 이차결합에 의해 여러 가닥이 뭉쳐진 다발로 존재하므로 탄소나노튜브 또는 탄소나노파이버를 전극에 적용하기 위해서는 뭉쳐진 다발을 효과적으로 분산시키는 것이 매우 중요하므로, 본 발명의 용매는 n-메틸피롤리돈(n-methylpyrrolidinone), 디메틸포름아미드(dimethyl formamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란, 아세토니트릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시 드(dimetyl sulfoxide), 아세톤, 디옥센, 케톤, 에탄올 및 이소프로판올, 헥산, 에틸렌글리콜, 자일렌, 시클로헥산, 벤젠 및 톨루엔이며, 바람직하게는 n-메틸피롤리돈 또는 디메틸포름아미드이다. In general, since carbon nanotubes or carbon nanofibers exist in bundles bundled together by strong secondary bonds, it is very important to effectively disperse the bundled bundles in order to apply carbon nanotubes or carbon nanofibers to electrodes. The solvent of the present invention is n-methylpyrrolidone (n-methylpyrrolidinone), dimethyl formamide (dimethyl formamide), dimethylacetamide (dimethylacetamide), hexamethylphosphoramide (hexamethylphosphoramide), tetrahydrofuran, acetonitrile (acetonitrile) , Cyclohexanone, chloroform, dichloromethane, dimethyl sulfoxide, acetone, dioxene, ketone, ethanol and isopropanol, hexane, ethylene glycol, xylene, cyclohexane, benzene and toluene, preferably n Methylpyrrolidone or dimethylformamide.

상기 복합체 분산액을 집전체 상에 도포하고 건조시켜 리튬 이차전지용 전극을 제조할 수 있고, 상기 복합체 분산액을 진공 여과방법을 이용하여 탄소나노튜브 또는 탄소나노파이버에 금속 또는 준금속 나노입자가 함유된 박막으로 제조한 후에 집전체와 접착시켜 전극을 제조할 수 있으며, 탄소나노튜브 또는 탄소나노파이버 분산액을 진공여과 방법을 이용하여 탄소나노튜브 또는 탄소나노파이버 박막을 제조한 후에 집전체에 접착시킨 후 금속 또는 준금속을 전기분해로 전착시켜 탄소나노튜브 또는 탄소나노파이버 박막에 금속 또는 준금속 나노 입자가 전착된 전극을 제조할 수 있다. The composite dispersion may be coated on a current collector and dried to manufacture an electrode for a lithium secondary battery, and the composite dispersion may be a thin film containing metal or metalloid nanoparticles in carbon nanotubes or carbon nanofibers using a vacuum filtration method. After the preparation, the electrode may be prepared by adhering to the current collector, and the carbon nanotube or carbon nanofiber dispersion liquid is manufactured by using a vacuum filtration method to prepare a thin film of carbon nanotube or carbon nanofiber, and then bonded to the current collector, followed by metal Alternatively, the electrode may be prepared by electrodepositing metal or metalloid nanoparticles on a carbon nanotube or a carbon nanofiber thin film by electrodepositing the metal.

본 발명의 집전체는 구리 또는 니켈과 같이 전기를 잘 통할 수 있는 금속 플레이트, 망 및 폼(form)의 형태가 사용되나, 이에 제한되는 것은 아니다.The current collector of the present invention may be used in the form of a metal plate, net and form that can be electrically conductive, such as copper or nickel, but is not limited thereto.

또한, 본 발명의 리튬 이차 전지용 전해액에 포함되는 비수용매는 통상 비수 전해액용 비수용매로 사용되고 있는 것이면 특별히 제한되지 않으며, 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 또는 케톤을 사용할 수 있다. 상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 있고, 상기 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있다. 상기 락톤의 예로는 감마부 티로락톤(GBL)이 있으며, 상기 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄 등이 있다. 또한 상기 에스테르의 예로는 n-메틸 아세테이트, n-에틸 아세테이트, 메틸 프로피오네이트, 메틸 피발레이트 등이 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 이들 비수 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Further, the nonaqueous solvent included in the lithium secondary battery electrolyte of the present invention is not particularly limited as long as it is normally used as a nonaqueous solvent for nonaqueous electrolyte, and cyclic carbonate, linear carbonate, lactone, ether, ester, or ketone can be used. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Examples of the linear carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC) and dipropyl carbonate. (DPC), ethylmethyl carbonate (EMC), methyl propyl carbonate (MPC), and the like. Examples of the lactone include gamma-butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, and the like. There is this. In addition, examples of the ester include n-methyl acetate, n-ethyl acetate, methyl propionate, methyl pivalate, and the like. The ketone includes polymethylvinyl ketone. These nonaqueous solvents can be used individually or in mixture of 2 or more types.

본 발명의 전해질 염은 통상 비수 전해액용 전해질 염으로 사용되고 있는 것이면 특별히 제한되지 않는다. 전해질 염의 비제한적인 예는 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이다. 특히, 리튬 염이 바람직하다. 이들 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.The electrolyte salt of the present invention is not particularly limited as long as it is usually used as an electrolyte salt for nonaqueous electrolyte. Electrolytic salt, non-limiting example, A + B - A salt of the structure, such as, A + comprises a Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 - , BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 - and a salt containing the same anion ion or a combination thereof. In particular, lithium salts are preferred. These electrolyte salts can be used individually or in mixture of 2 or more types.

본 발명의 양극 활물질은 리튬 금속 산화물(예를 들면, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LiCoPO4, LiFePO4 등의 리튬 망간 복합산화물, 리튬 니켈 산화물, 리튬 코발트 산화물 및 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐 등) 또는 칼코겐 화합물(예를 들면, 이산화망간, 이황화티탄, 이황화몰리브덴 등) 등이 사용할 수 있다.The positive electrode active material of the present invention is a lithium metal oxide (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (NiaCobMnc) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2- z Co z O 4 (here, 0 <Z <2), lithium manganese composite oxides such as LiCoPO 4 , LiFePO 4 , lithium nickel oxide, lithium cobalt oxide and a part of manganese, nickel, cobalt of these oxides and other transition metals Or the like, or a vanadium oxide containing lithium) or a chalcogen compound (for example, manganese dioxide, titanium disulfide, molybdenum disulfide, or the like).

본 발명에서 사용될 수 있는 분리막은 특별히 제한이 없으나, 다공성 분리막이 사용 가능하며, 예를 들면 폴리프로필렌계, 폴리에틸렌계, 폴리올레핀계 다공성 분리막 등을 사용할 수 있다.The separator that may be used in the present invention is not particularly limited, but a porous separator may be used, and for example, a polypropylene-based, polyethylene-based, or polyolefin-based porous separator may be used.

본 발명의 리튬 이차 전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 양극과 음극 사이에 다공성의 분리막을 넣고 상기 전해액을 투입하여 제조할 수 있다.The lithium secondary battery of the present invention may be prepared by inserting a porous separator between a positive electrode and a negative electrode in a conventional manner known in the art and adding the electrolyte solution.

한편, 본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.On the other hand, the appearance of the lithium secondary battery of the present invention is not particularly limited, but can be cylindrical, square, pouch (coin) or coin (coin) using a can.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 복합체 분산액을 이용한 음극 및 리튬 이차전지 제조방법Example 1: Method of manufacturing a negative electrode and a lithium secondary battery using a composite dispersion

1-1: 금속 나노입자 제조1-1: Preparation of Metal Nanoparticles

증류수 100ml에 SnCl2.2H2O 1.4g 및 sodium citrate 2.8g을 혼합하고, 이와는 별도로 다른 증류수 80ml에 NaOH 0.4g 및 NaBH4 0.5g을 혼합하였다. 상기 두 혼합액을 4℃로 유지된 항온조에 넣고 1시간 방치시킨 후 상기 두 용액을 혼합하였다. 두 용액의 혼합으로 생성된 주석입자는 물, 염산 및 아세톤 사용하여 5번 세척한 후 산화되지 않도록 Ar을 채운 다음, 120℃의 진공오븐에서 건조시켜 주석 나노입자를 제조하였다.1.4 g of SnC 12 .2H 2 O and 2.8 g of sodium citrate were mixed with 100 ml of distilled water, and 0.4 g of NaOH and 0.5 g of NaBH 4 were mixed with 80 ml of distilled water. The two mixtures were placed in a thermostat maintained at 4 ° C. and left for 1 hour to mix the two solutions. The tin particles produced by mixing the two solutions were washed five times with water, hydrochloric acid and acetone, filled with Ar to prevent oxidation, and dried in a vacuum oven at 120 ° C. to prepare tin nanoparticles.

1-2: 복합체 분산액 제조1-2: Complex Dispersion Preparation

탄소나노튜브는 씨엔아이사에서 구입한 것으로, 탄소나노튜브 10mg를 n-메틸피롤리돈 100ml에 첨가하고 초음파 분산장치를 통하여 분산시킨 다음, 탄소나노튜브가 분산된 상기 용액에 실시예 1의 1-1에서 제조된 평균 직경이 50nm주석 나노입자 20mg을 넣고 초음파 분산장치를 이용하여 분산시켜 탄소나노튜브 및 주석 나노입자가 분산된 복합체 분산액을 제조하였다.The carbon nanotubes were purchased from CNAI Inc., and 10 mg of the carbon nanotubes were added to 100 ml of n-methylpyrrolidone, dispersed through an ultrasonic dispersion apparatus, and then the carbon nanotubes were dispersed in the solution of Example 1 1-. 20 mg of 50 nm tin nanoparticles having an average diameter prepared in 1 was dispersed using an ultrasonic disperser to prepare a composite dispersion in which carbon nanotubes and tin nanoparticles were dispersed.

1-3: 리튬 이차전지용 음극제조1-3: Anode manufacturing for lithium secondary battery

상기 1-2에서 제조된 복합체 분산액을 알루미나 필터가 장착된 여과장치에 주입한 다음, 상기 여과장치에 진공을 걸어 복합체 분산액의 용매를 여과시켰다. 용매가 여과되고 남은 복합체 분산액의 고형분은 알루미나 필터 상에 박막 형태로 존재하기 때문에, 복합체 분산액의 고형분 막을 수득하기 위하여 상부에 복합체 분산액의 고형분 막이 형성된 알루미나 필터를 3mol/l NaOH 용액에 담지시켜 상기 알루미나 필터를 완전히 녹인 다음, 상기 알루미나 필터를 녹인 NaOH 용액을 제거하였다. NaOH가 제거된 상기 고형분 막에 증류수를 10 차례 주입 및 제거하여 고형분 막 내에 NaOH를 완전히 제거한 후, 상기 고형분 막이 담지된 증류수에 집전체로 사용되는 구리호일을 담지하되, 상기 고형분 막 하부에 위치되도록 담지하였다. 고형분 막이 담지된 상기 증류수만을 천천히 따라 버려 고형분 막이 구리호일 상부에 접촉되도록 한 다음, 증류수가 제거된 상기 구리호일 상에 접촉된 고형분 막을 오븐으로 옮겨 60℃로 진공 건조시켜 리튬전지용 음극을 제조하였다. 도 3은 1-2의 상기 복합체 분산액을 진공 여과장치를 이용하여 제조된 탄소나노튜브 및 주석 나노입자가 함유된 막의 주사현미경 사진이다.The composite dispersion prepared in 1-2 was injected into a filtration device equipped with an alumina filter, and then the solvent of the composite dispersion was filtered by applying a vacuum to the filtration device. Since the solid content of the composite dispersion remaining after the solvent is filtered is present in the form of a thin film on the alumina filter, in order to obtain a solid film of the composite dispersion, an alumina filter having a solid film of the composite dispersion formed thereon is supported on a 3 mol / l NaOH solution. After the filter was completely dissolved, the NaOH solution was dissolved in the alumina filter. After distilled water was injected and removed 10 times into the solid film from which NaOH was removed, NaOH was completely removed from the solid film, and then the copper foil used as a current collector was supported on the solid film. It was supported. After slowly distilling only the distilled water on which the solid film was supported, the solid film was brought into contact with the upper portion of the copper foil, and then the solid film contacted on the copper foil from which the distilled water was removed was transferred to an oven and dried under vacuum at 60 ° C. to prepare a negative electrode for a lithium battery. Figure 3 is a scanning micrograph of the membrane containing the carbon nanotubes and tin nanoparticles prepared by using the vacuum dispersion apparatus of the complex dispersion of 1-2.

1-4: 리튬 이차전지 제조1-4: Lithium Secondary Battery Manufacturing

전지는 코인형 전지를 사용하였고, 전해액은 에틸렌카보네이트(EC) 33vol%와 에틸 메틸카보네이트(EMC) 67vol%인 것을 사용하였으며, 염은 LiPF6 1mol/l이 포함된 것을 사용하였다. 또한, 분리막은 다공성 폴리에틸렌 필름을 사용하고 상대전극은 리튬금속을 사용하였으며 작업전극은 상기 1-3의 전극을 사용하여 상기 제조된 음극 전극만을 평가하는 반쪽전지를 구성하였다.As a battery, a coin-type battery was used. The electrolyte solution used was 33 vol% ethylene carbonate (EC) and 67 vol% ethyl methyl carbonate (EMC), and a salt containing 1 mol / l of LiPF 6 was used. In addition, the separator using a porous polyethylene film, the counter electrode used a lithium metal and the working electrode was composed of a half cell evaluating only the prepared negative electrode using the electrode of the 1-3.

실시예 2: 전기분해 전착방법을 이용한 음극 및 리튬 이차 전지 제조Example 2: Preparation of a negative electrode and a lithium secondary battery using an electrolytic electrodeposition method

실시예 1의 1-1에서 제조된 주석 나노입자를 사용하지 않은 것을 제외하고는 실시예 1의 1-2, 1-3과 같은 방법으로 탄소나노튜브 필름을 제조하였다. 상기 제조된 탄소나노튜브 필름을 작업전극으로 하고, 백금선을 상대전극으로 한 다음, 표준 칼로멜 전극을 기준전극으로 하여 주석 염이 포함된 수용액을 전기분해하여 탄소나노튜브 필름상에 평균 직경이 50nm인 주석 나노입자를 전착시켰다. 상기 수용액은 1 몰농도의 황산과 0.01 몰농도의 SnSO4가 포함된 수용액이며, 기준전극 대비 -0.45V의 전압으로 2000초 전착시켰다. 이때, 사용된 전착 장치의 개략도는 도 4에 나타내었다. 도 5는 전기분해 전착장치를 이용하여 제조된 박막의 주사식 전자현미경 사진을 나타낸 것으로, (a)는 탄소나노튜브 박막에 주석 나노입자가 전착되기 전의 주사식 전자 현미경 사진이고, (b)는 탄소나노튜브 박막에 주석 나노입자가 전착된 후의 주사식 전자 현미경 사진이다. 이후의 리튬 이차전지를 제조하는 방법은 상기 실시예 1의 1-4와 동일한 방법으로 제조하였다.Carbon nanotube films were prepared in the same manner as in Example 1, 1-2 and 1-3, except that the tin nanoparticles prepared in Example 1-1 were not used. The prepared carbon nanotube film was used as a working electrode, the platinum wire was used as a counter electrode, and the aqueous solution containing tin salt was electrolyzed using a standard calomel electrode as a reference electrode, and the average diameter was 50 nm on the carbon nanotube film. Tin nanoparticles were electrodeposited. The aqueous solution was an aqueous solution containing 1 mol of sulfuric acid and 0.01 mol of SnSO 4 , and was electrodeposited at a voltage of −0.45 V for 2000 seconds. At this time, a schematic diagram of the electrodeposition apparatus used is shown in FIG. Figure 5 shows a scanning electron micrograph of a thin film prepared using an electrolytic electrodeposition apparatus, (a) is a scanning electron micrograph before the electrodeposited tin nanoparticles on the carbon nanotube thin film, (b) is It is a scanning electron micrograph after tin nanoparticles were electrodeposited on a carbon nanotube thin film. Since the method of manufacturing a lithium secondary battery was prepared in the same manner as 1-4 of Example 1.

비교예 1: 탄소나노튜브의 음극 및 이를 사용하는 리튬 이차전지 제조 Comparative Example 1: Cathode of Carbon Nanotube and Manufacture of Lithium Secondary Battery Using the Same

실시예 2와 동일한 방법으로 제조하되, 주석입자를 탄소나노튜브 막에 전착시키는 것을 제외하여 주석 나노입자가 함유되지 않은 탄소나노튜브 음극 및 리튬 이차전지를 제조하였다.In the same manner as in Example 2, except that the electrodeposited tin particles on the carbon nanotube film, a carbon nanotube negative electrode and a lithium secondary battery containing no tin nanoparticles were prepared.

비교예 2: 주석 입자의 음극 및 이를 사용하는 리튬 이차전지 제조Comparative Example 2: Negative Electrode of Tin Particles and Fabrication of Lithium Secondary Battery Using the Same

평균 직경이 10㎛인 주석입자 20mg 및 카본블랙 2mg을 n-메틸피롤리돈 100ml에 분산시킨 것을 진공 여과시켜 음극을 제조한 것을 제외하고는 비교예 1과 동일한 방법으로 탄소나노튜브가 함유되지 않은 주석 입자가 함유된 음극 및 리튬 이차전지를 제조하였다.20 mg of tin particles having an average diameter of 10 µm and 2 mg of carbon black were dispersed in 100 ml of n-methylpyrrolidone, and the carbon nanotubes were not contained in the same manner as in Comparative Example 1 except that the negative electrode was prepared by vacuum filtration. A negative electrode and a lithium secondary battery containing tin particles were prepared.

시험예 1: 충전 및 방전의 수명 특성비교Test Example 1: Comparison of Life Characteristics of Charge and Discharge

상기 실시예 1 및 2와 비교예 1 및 2에서 제조된 전지를 반복적으로 충전과 방전하여 상기 실시예 및 비교예의 음극에서 리튬의 삽입 및 탈리가 반복적으로 일어나도록 하고 이때 전류가 흐른 시간을 측정하여 단위 무게당 에너지 저장용량의 크기변화를 충전 및 방전 횟수에 따라 구하였다.By repeatedly charging and discharging the batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 so that the insertion and desorption of lithium occurs repeatedly in the negative electrodes of the Examples and Comparative Examples, and the current flow time was measured by The change in energy storage capacity per unit weight was calculated according to the number of charge and discharge cycles.

도 6은 상기 실험 결과를 나타내었다. 탄소나노튜브 필름만을 사용한 비교예 1의 경우는 단위 무게당 용량이 작고 입자 직경이 10㎛인 주석입자를 사용한 비교예 2의 경우에는 단지 수회 충전과 방전의 반복에도 불구하고 단위 무게당 용량이 급격히 저하됨을 알 수 있었다. 하지만, 주석 나노입자와 탄소나노튜브를 함께 사용하되 별도로 만들어진 주석 나노입자를 탄소나노튜브와 함께 사용한 실시예 1의 경우나 탄소나노튜브 필름상에 전기분해 전착 방법에 의해 주석 나노입자를 형성시킨 실시예 2의 경우에는 단위 무게당 에너지 저장 용량이 크고 충전 및 방전이 반복되어도 용량의 저하가 크지 않음을 알 수 있었다.6 shows the experimental results. In the case of Comparative Example 1 using only carbon nanotube film, in Comparative Example 2 using tin particles having a small capacity per unit weight and having a particle diameter of 10 μm, the capacity per unit weight was abruptly despite repeated charging and discharging only several times. It was found that the degradation. However, in the case of Example 1 using tin nanoparticles and carbon nanotubes together, but using separately made tin nanoparticles with carbon nanotubes, or performing nanoelectrode formation on the carbon nanotube film by electrolytic electrodeposition In the case of Example 2, it was found that the energy storage capacity per unit weight was large and the capacity was not decreased even after repeated charging and discharging.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

이상 상세히 기술한 바와 같이, 본 발명은 높은 에너지 저장 용량을 가지면서 충전과 방전을 반복할 때 구조적 안정성에 의해 우수한 수명을 가지는 리튬 이차전지용 음극을 제조하고, 제조된 이차전지용 음극을 포함하는 리튬 이차전지를 제공하는데 효과가 있다. 본 발명에 따르면 고 에너지 밀도를 가지면서 충전 및 방전 수명이 우수한 리튬 이차전지용 음극을 제조할 수 있어 소량, 경량 및 고에너지의 특성을 갖는 고성능 이차전지에 응용할 수 있다.As described in detail above, the present invention provides a lithium secondary battery negative electrode having a high energy storage capacity and having an excellent lifespan by structural stability when repeating charging and discharging, and including a manufactured secondary battery negative electrode It is effective in providing a battery. According to the present invention, it is possible to manufacture a negative electrode for a lithium secondary battery having a high energy density and an excellent charge and discharge life, and thus it can be applied to a high performance secondary battery having characteristics of small amount, light weight and high energy.

Claims (23)

다음 단계를 포함하는 리튬 이차전지용 전극의 제조방법:Method of manufacturing an electrode for a lithium secondary battery comprising the following steps: (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계;(a) dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자를 분산시켜 복합체 분산액을 제조하는 단계; 및(b) preparing a composite dispersion by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium in the carbon nanotube or carbon nanofiber dispersion; And (c) 상기 복합체 분산액을 집전체 상에 도포하고 건조시키는 단계.(c) applying the composite dispersion onto a current collector and drying. 제1항에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 하는 방법.The method of claim 1, wherein the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, A metal or two or more alloys selected from the group consisting of rubidium, rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium How to. 제1항에 있어서, 상기 용매는 n-메틸피롤리돈(n-methylpyrrolidinone), 디메 틸포름아미드(dimethyl formamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란, 아세토니트릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시드(dimetyl sulfoxide), 아세톤, 디옥센, 케톤, 에탄올, 이소프로판올, 헥산 에틸렌글리콜, 자일렌, 시클로헥산, 벤젠 및 톨루엔으로 구성된 그룹에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 방법.The method of claim 1, wherein the solvent is n-methylpyrrolidinone (n-methylpyrrolidinone), dimethyl formamide (dimethyl formamide), dimethylacetamide (dimethylacetamide), hexamethylphosphoramide (hexamethylphosphoramide), tetrahydrofuran, Group consisting of acetonitrile, cyclohexanone, chloroform, dichloromethane, dimethyl sulfoxide, acetone, dioxene, ketone, ethanol, isopropanol, hexane ethylene glycol, xylene, cyclohexane, benzene and toluene At least one selected from: 제1항에 있어서, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 하는 방법.The method of claim 1, wherein the metal or metalloid nanoparticles have a diameter of 1 nm to 1 μm. 제1항 내지 제4항 중 어느 한 항의 방법에 의해 제조된 리튬 이차전지용 전극.The lithium secondary battery electrode manufactured by the method of any one of Claims 1-4. 제5항의 리튬 이차전지용 전극을 함유하는 리튬 이차전지.A lithium secondary battery containing the lithium secondary battery electrode of claim 5. 다음 단계를 포함하는 리튬 이차전지용 전극의 제조방법:Method of manufacturing an electrode for a lithium secondary battery comprising the following steps: (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계;(a) dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액에 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자를 분산시켜 복합체 분산액을 제조하는 단계; 및(b) preparing a composite dispersion by dispersing metal or metalloid nanoparticles capable of forming an alloy with lithium in the carbon nanotube or carbon nanofiber dispersion; And (c) 상기 복합체 분산액을 진공 여과하여 박막을 형성시킨 다음, 집전체에 접착시키는 단계.(c) vacuum filtration of the composite dispersion to form a thin film, and then adhering to the current collector. 제7항에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 하는 방법.The method of claim 7, wherein the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, A metal or two or more alloys selected from the group consisting of rubidium, rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium How to. 제7항에 있어서, 상기 용매는 n-메틸피롤리돈(n-methylpyrrolidinone), 디메틸포름아미드(dimethyl formamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란, 아세토니트 릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시드(dimetyl sulfoxide), 아세톤, 디옥센, 케톤, 에탄올 및 이소프로판올로 구성된 그룹에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 방법.The method of claim 7, wherein the solvent is n-methylpyrrolidinone (n-methylpyrrolidinone), dimethyl formamide (dimethyl formamide), dimethylacetamide (dimethylacetamide), hexamethylphosphoramide (hexamethylphosphoramide), tetrahydrofuran, aceto At least one selected from the group consisting of nitrile, cyclohexanone, chloroform, dichloromethane, dimethyl sulfoxide, acetone, dioxene, ketone, ethanol and isopropanol. 제7항에 있어서, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 하는 방법.The method of claim 7, wherein the metal or metalloid nanoparticles have a diameter of 1 nm to 1 μm. 제7항 내지 제10항 중 어느 한 항의 방법에 의해 제조된 리튬 이차전지용 전극.An electrode for a lithium secondary battery produced by the method of any one of claims 7 to 10. 제11항의 리튬 이차전지용 전극을 함유하는 리튬 이차전지.A lithium secondary battery containing the lithium secondary battery electrode of claim 11. 다음 단계를 포함하는 리튬 이차전지용 전극의 제조방법:Method of manufacturing an electrode for a lithium secondary battery comprising the following steps: (a) 탄소나노튜브 또는 탄소나노파이버를 용매에 분산시켜 탄소나노튜브 또는 탄소나노파이버 분산액을 제조하는 단계;(a) dispersing carbon nanotubes or carbon nanofibers in a solvent to prepare a carbon nanotube or carbon nanofiber dispersion; (b) 상기 탄소나노튜브 또는 탄소나노파이버 분산액을 진공 여과시켜 박막 형성시킨 다음, 집전체에 접착시키는 단계; 및(b) vacuum-filtering the carbon nanotubes or carbon nanofiber dispersions to form a thin film, and then attaching the carbon nanotubes or carbon nanofibers to a current collector; And (c) 상기 집전체에 접착된 박막에 금속 또는 준금속을 전착시키는 단계.(c) electrodepositing a metal or metalloid on the thin film adhered to the current collector. 제13항에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 하는 방법.The method of claim 13, wherein the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, A metal or two or more alloys selected from the group consisting of rubidium, rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium How to. 제13항에 있어서, 상기 용매는 n-메틸피롤리돈(n-methylpyrrolidinone), 디메틸포름아미드(dimethyl formamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란, 아세토니트릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시드(dimetyl sulfoxide), 아세톤, 디옥센, 케톤, 에탄올 및 이소프로판올로 구성된 그룹에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 방법.The method of claim 13, wherein the solvent is n-methylpyrrolidinone, dimethyl formamide, dimethylacetamide, hexamethylphosphoramide, tetrahydrofuran, aceto At least one selected from the group consisting of nitrile, cyclohexanone, chloroform, dichloromethane, dimethyl sulfoxide, acetone, dioxene, ketone, ethanol and isopropanol. 제13항에 있어서, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 하는 방법.The method of claim 13, wherein the metal or metalloid nanoparticles have a diameter of 1 nm to 1 μm. 제13항에 있어서, (c) 단계의 전착은 전기분해에 의해 수행되는 것을 특징으로 하는 방법.The method of claim 13, wherein the electrodeposition of step (c) is carried out by electrolysis. 제13항 내지 제17항 중 어느 한 항의 방법에 의해 제조된 리튬 이차전지용 전극.A lithium secondary battery electrode manufactured by the method of claim 13. 제18항의 리튬 이차전지용 전극을 함유하는 리튬 이차전지.A lithium secondary battery containing the electrode for lithium secondary batteries of claim 18. 리튬과 합금을 형성할 수 있는 금속 또는 준금속 나노입자와 탄소나노튜브 또는 탄소나노파이버가 함유되는 것을 특징으로 하는 리튬 이차 전지용 전극.An electrode for a lithium secondary battery, comprising metal or metalloid nanoparticles capable of forming an alloy with lithium, and carbon nanotubes or carbon nanofibers. 제20항에 있어서, 상기 리튬과 합금을 형성할 수 있는 금속 또는 준금속은 알루미늄, 금, 비스무트, 게르마늄, 마그네슘, 망간, 몰리브덴, 나트륨, 니켈, 오스뮴, 인, 납, 팔라듐, 백금, 플루토늄, 루비듐, 로듐, 루테늄, 황, 안티몬, 셀레늄, 규소, 주석, 스트론튬, 탄탈륨, 텔레늄, 티타늄, 우라늄, 바나듐, 텅스텐, 아연 및 지르코늄으로 구성된 그룹에서 선택되는 하나의 금속 또는 둘 이상의 합금인 것을 특징으로 하는 리튬 이차 전지용 전극.The method of claim 20, wherein the metal or metalloid capable of forming an alloy with lithium is aluminum, gold, bismuth, germanium, magnesium, manganese, molybdenum, sodium, nickel, osmium, phosphorus, lead, palladium, platinum, plutonium, A metal or two or more alloys selected from the group consisting of rubidium, rhodium, ruthenium, sulfur, antimony, selenium, silicon, tin, strontium, tantalum, telenium, titanium, uranium, vanadium, tungsten, zinc and zirconium A lithium secondary battery electrode. 제20항에 있어서, 상기 금속 또는 준금속 나노입자의 직경은 1nm ∼ 1㎛ 인 것을 특징으로 하는 리튬 이차 전지용 전극.The electrode for a lithium secondary battery according to claim 20, wherein the metal or metalloid nanoparticles have a diameter of 1 nm to 1 μm. 제20항의 리튬 이차 전지용 전극을 함유하는 리튬 이차전지.A lithium secondary battery containing the lithium secondary battery electrode of claim 20.
KR1020070034875A 2007-04-10 2007-04-10 High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same KR101400994B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070034875A KR101400994B1 (en) 2007-04-10 2007-04-10 High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070034875A KR101400994B1 (en) 2007-04-10 2007-04-10 High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Publications (2)

Publication Number Publication Date
KR20080091883A true KR20080091883A (en) 2008-10-15
KR101400994B1 KR101400994B1 (en) 2014-05-29

Family

ID=40152227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070034875A KR101400994B1 (en) 2007-04-10 2007-04-10 High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Country Status (1)

Country Link
KR (1) KR101400994B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024305A2 (en) 2011-08-18 2013-02-21 Nexeon Ltd Method
WO2013052456A1 (en) 2011-10-05 2013-04-11 Nanosys, Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
KR101324295B1 (en) * 2011-11-21 2013-10-30 한국과학기술원 Aglomerated electroactive materials including Ag nanowire network and method for manufacturing the same
WO2014084636A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
KR101451354B1 (en) * 2012-12-11 2014-10-15 인하대학교 산학협력단 Free-standing carbon nanotube/metal oxide particle composite film and the manufacturing method
WO2015099324A1 (en) * 2013-12-24 2015-07-02 일진전기 주식회사 Negative plate for lithium secondary battery
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
WO2017164563A3 (en) * 2016-03-21 2018-09-07 주식회사 엘지화학 Method for manufacturing electrode collector for secondary battery and electrode including electrode collector manufactured by same method
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
CN108780896A (en) * 2016-03-21 2018-11-09 株式会社Lg化学 The manufacturing method of electrode current collector for secondary cell and the electrode for including the electrode current collector for using the method manufacture
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10950847B2 (en) 2014-04-25 2021-03-16 South Dakota Board Of Regents High capacity electrodes
US11710819B2 (en) 2017-06-16 2023-07-25 Nexeon Limited Electroactive materials for metal-ion batteries
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634315B2 (en) 2014-08-01 2017-04-25 SiNode Systems, Inc. Carbon containing binderless electrode formation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302928B1 (en) * 1998-12-17 2001-10-16 Moltech Corporation Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
GB9919807D0 (en) * 1999-08-21 1999-10-27 Aea Technology Plc Anode for rechargeable lithium cell
JP3930002B2 (en) 2003-07-28 2007-06-13 昭和電工株式会社 High density electrode and battery using the electrode
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
WO2013024305A2 (en) 2011-08-18 2013-02-21 Nexeon Ltd Method
WO2013052456A1 (en) 2011-10-05 2013-04-11 Nanosys, Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
US10804525B2 (en) 2011-10-05 2020-10-13 Oned Material Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
US10355266B2 (en) 2011-10-05 2019-07-16 Oned Material Llc Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components and devices related thereto
KR101324295B1 (en) * 2011-11-21 2013-10-30 한국과학기술원 Aglomerated electroactive materials including Ag nanowire network and method for manufacturing the same
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
WO2014084636A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR101451354B1 (en) * 2012-12-11 2014-10-15 인하대학교 산학협력단 Free-standing carbon nanotube/metal oxide particle composite film and the manufacturing method
CN105849946A (en) * 2013-12-24 2016-08-10 日进电气有限公司 Negative plate for lithium secondary battery
WO2015099324A1 (en) * 2013-12-24 2015-07-02 일진전기 주식회사 Negative plate for lithium secondary battery
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10950847B2 (en) 2014-04-25 2021-03-16 South Dakota Board Of Regents High capacity electrodes
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10483549B2 (en) 2016-03-21 2019-11-19 Lg Chem, Ltd. Method of manufacturing electrode current collector for secondary battery and electrode including electrode current collector manufactured using the method
CN108780896A (en) * 2016-03-21 2018-11-09 株式会社Lg化学 The manufacturing method of electrode current collector for secondary cell and the electrode for including the electrode current collector for using the method manufacture
WO2017164563A3 (en) * 2016-03-21 2018-09-07 주식회사 엘지화학 Method for manufacturing electrode collector for secondary battery and electrode including electrode collector manufactured by same method
US11710819B2 (en) 2017-06-16 2023-07-25 Nexeon Limited Electroactive materials for metal-ion batteries
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes

Also Published As

Publication number Publication date
KR101400994B1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
KR101400994B1 (en) High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
EP3208870B1 (en) Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
JP6125202B2 (en) Negative electrode active material, method for producing the same, electrode containing the active material, and lithium battery employing the electrode
CN103928708B (en) Electrolyte and lithium secondary battery including the electrolyte
KR101558535B1 (en) Negative active material negative electrode comrprising same method of preparing negative electrodee and lithium battery
CN103415947B (en) Rechargeable nonaqueous electrolytic battery
JP5885984B2 (en) Electrode forming material and electrode manufacturing method using the electrode forming material
KR101620066B1 (en) Electrode for electrochemical device with low resistance, method of making the same and electrochemical device comprising the same
KR20130056668A (en) Composite negative active material, method of preparing the same and lithium secondary battery comprising the same
JP6908641B2 (en) Electrodes for lithium secondary batteries and lithium secondary batteries containing them
US20130313486A1 (en) Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP6039269B2 (en) Positive electrode active material for sodium ion secondary battery and sodium ion secondary battery using the same
KR101997968B1 (en) Spider network structure composition of N-doped carbon nanofibers containing MnCoOx nanoparticles, the preparation method, and application to anode material for secondary battery
KR101776244B1 (en) Composite electrode, method for manufacturing the same, and electrochemical device including the same
CN114552125B (en) Nondestructive lithium supplement composite diaphragm and preparation method and application thereof
Banerjee et al. Materials for electrodes of Li-ion batteries: issues related to stress development
KR20180088283A (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
KR101775543B1 (en) Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same
KR101666872B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
US20200403224A1 (en) Lithium molybdate anode material
JP2019117716A (en) Secondary battery
KR101702983B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2020149824A (en) Lithium ion secondary battery and method for manufacturing the same
KR101156532B1 (en) Negative electrode for lithium battery and lithium battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee