JP5885984B2 - Electrode forming material and electrode manufacturing method using the electrode forming material - Google Patents

Electrode forming material and electrode manufacturing method using the electrode forming material Download PDF

Info

Publication number
JP5885984B2
JP5885984B2 JP2011216216A JP2011216216A JP5885984B2 JP 5885984 B2 JP5885984 B2 JP 5885984B2 JP 2011216216 A JP2011216216 A JP 2011216216A JP 2011216216 A JP2011216216 A JP 2011216216A JP 5885984 B2 JP5885984 B2 JP 5885984B2
Authority
JP
Japan
Prior art keywords
electrode
forming material
active material
electrode active
electrode forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011216216A
Other languages
Japanese (ja)
Other versions
JP2013077426A (en
Inventor
萩原 正弘
正弘 萩原
修 坂谷
修 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2011216216A priority Critical patent/JP5885984B2/en
Priority to PCT/JP2012/075340 priority patent/WO2013047870A1/en
Publication of JP2013077426A publication Critical patent/JP2013077426A/en
Application granted granted Critical
Publication of JP5885984B2 publication Critical patent/JP5885984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池などの電極を形成する電極形成材等の製造方法に関し、より詳しくは、高い電極特性を発揮し、かつ優れた導電性を有する電極形成材と該電極形成材を用いた電極の製造方法に関する。
The present invention relates to a manufacturing method of an electrode forming material or the like to form electrodes such as a lithium ion secondary battery, and more particularly, high electrode characteristics exhibit, and electrode-forming material having excellent conductivity and the electrode forming material The present invention relates to a method for manufacturing an electrode using the above .

従来、携帯電話やノート型パソコン等のポータブル電子機器の発達に伴い、小型軽量でかつ高容量の二次電池が必要とされている。さらに近年、リチウムイオン二次電池は、民生用用途に限らず、バイク、車載等の産業用用途に展開されつつあり、リチウムイオン二次電池について高容量化および高入出力化が求められている。 2. Description of the Related Art Conventionally, along with the development of portable electronic devices such as mobile phones and notebook computers, secondary batteries with small size, light weight and high capacity are required. Furthermore, in recent years, lithium ion secondary batteries are being developed not only for consumer use but also for industrial uses such as motorcycles and in-vehicle use, and there is a demand for higher capacity and higher input / output for lithium ion secondary batteries. .

そのために電池の反応物質として使用されている正極の複合金属リチウム酸化物や負極の炭素材自体の高容量化や高入出力化が図られると共に、電池設計面から電極比表面積の増加による見掛け充放電の電流密度の低減化、ならびに耐久性の工夫がなされてきた。 For this purpose, the positive electrode composite metal lithium oxide used as a battery reactant and the negative electrode carbon material itself have a higher capacity and higher input / output, and an apparent charge by increasing the electrode specific surface area in terms of battery design. There have been attempts to reduce the current density of discharge and to improve durability.

現在のリチウム電池に用いられている電極活物質の導電性はさほど高くないので電極の導電性を確保するため、電極活物質粉末に導電材の粉末を加え、結着剤(バインダー)を添加したペーストを金属箔に塗布して電極が形成されている。電極活物質に添加する導電材としては、カーボン、アセチレンブラック、グラファイトなど、および通常のカーボンナノファイバー、カーボンナノチューブ等が用いられている。 Since the conductivity of the electrode active material used in current lithium batteries is not so high, a conductive material powder was added to the electrode active material powder and a binder was added to ensure the electrode conductivity. An electrode is formed by applying a paste to a metal foil. As the conductive material added to the electrode active material, carbon, acetylene black, graphite and the like, and ordinary carbon nanofibers, carbon nanotubes and the like are used.

例えば、特開2009−170410号公報(特許文献1)には、分散剤を用いてカーボンナノチューブを電極材に適用することが記載されている。また、特開2009−176721号公報(特許文献2)には、電極活物質粒子を繊維状炭素で網目状に包み込むことにより電池の内部抵抗を小さくし、電池の出力特性を向上させることができることが記載されている。しかし、これら従来の材料は、分散剤が分解してガスが発生するなどの問題があり、特許文献2では分散剤を除去する工程が必要となっている。 For example, Japanese Unexamined Patent Application Publication No. 2009-170410 (Patent Document 1) describes that a carbon nanotube is applied to an electrode material using a dispersant. Japanese Patent Application Laid-Open No. 2009-176721 (Patent Document 2) describes that the internal resistance of a battery can be reduced by encapsulating electrode active material particles in a fibrous form with fibrous carbon, and the output characteristics of the battery can be improved. Is described. However, these conventional materials have problems such as decomposition of the dispersant and generation of gas, and Patent Document 2 requires a step of removing the dispersant.

特開2009−170410号公報JP 2009-170410 A 特開2009−176721号公報JP 2009-176721 A

本発明は、従来の電極形成材における上記問題を解決したものであり、充放電時に分解する分散剤を含有せずに高い電極特性を維持しながら優れた導電性を有する電極形成材と該電極形成材を用いた電極の製造方法を提供する。
The present invention solves the above-mentioned problems in conventional electrode forming materials , and the electrode forming material having excellent conductivity while maintaining high electrode characteristics without containing a dispersant that decomposes during charge and discharge , and the electrode An electrode manufacturing method using a forming material is provided.

本発明によれば、以下の構成によって上記課題を解決した電極形成材と該電極形成材を用いた電極の製造方法が提供される。
〔1〕硝酸濃度比が10〜20wt%の硝酸と硫酸の混酸中で100℃〜200℃で表面処理することによってカーボンナノファイバーの酸素含有量を8〜20wt%に制御し、該カーボンナノファイバーを溶媒に分散させ、この分散液に電極活物質と結着剤を加えて撹拌することによって、上記電極活物質表面の40〜80%が該カーボンナノファイバーによって網目状に被覆された電極形成材を形成することを特徴とする電極形成材の製造方法。
〔2〕電極活物質がリチウムを含有する遷移金属酸化物であり、リチウム電池の電極に用いられる電極形成材を形成する上記[1]に記載する電極形成材の製造方法。
〔3〕電極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLiTi12、あるいは、SnまたはSiの合金系である電極形成材を形成する上記[1]に記載する電極形成材の製造方法。
〔4〕上記[1]〜上記[3]の何れかに記載する方法によって製造した電極形成材を分散媒に分散させて分散液にし、これに結着剤を添加して塗料を形成し、該塗料を集電体の表面に塗布し乾燥して電極を製造する方法。

ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrode using the electrode forming material which solved the said subject with this structure, and this electrode forming material is provided.
[1] The oxygen content of carbon nanofibers is controlled to 8 to 20 wt% by surface treatment in a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration ratio of 10 to 20 wt% at 100 to 200 ° C , and the carbon nanofibers Is dispersed in a solvent, and an electrode active material and a binder are added to the dispersion and stirred, so that 40 to 80% of the surface of the electrode active material is covered with the carbon nanofibers in a network shape. A method for producing an electrode forming material, comprising: forming an electrode.
[2] The method for producing an electrode forming material according to the above [1], wherein the electrode active material is a transition metal oxide containing lithium and forms an electrode forming material used for an electrode of a lithium battery .
[3] The electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitized material, coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, or Li 4 Ti 5 O 12 , or The method for producing an electrode forming material according to [1] above , wherein an electrode forming material that is an alloy system of Sn or Si is formed.
[4] The electrode forming material produced by the method described in any one of [1] to [3] is dispersed in a dispersion medium to form a dispersion, and a binder is added thereto to form a paint. A method for producing an electrode by applying the paint to the surface of a current collector and drying it.

本発明の方法によって製造した電極形成材(以下、本発明の電極形成材と云う)は、カーボンナノファイバーによって電極活物質表面の40〜80%が網目状に被覆されることによって導電層が形成されているので、高い導電性を有し、電池の出力を高めることができる。また、分散剤を含まないので、分散剤の分解によるガス発生がなく、出力特性に優れた電極を形成することができる。
The electrode forming material produced by the method of the present invention (hereinafter referred to as the electrode forming material of the present invention) forms a conductive layer by covering 40 to 80% of the surface of the electrode active material with carbon nanofibers. Therefore, it has high conductivity and can increase the output of the battery. Further, since it does not contain a dispersant, no gas is generated due to decomposition of the dispersant, and an electrode having excellent output characteristics can be formed.

本発明の電極形成材に用いられるカーボンナノファイバーは表面の酸化処理によって親水性を有するので極性溶媒に分散させたときに分散性が良く、また酸化処理による酸素含有量を8〜20wt%に制御したので優れた導電性を維持しており、電極を形成したときに高い電極特性を得ることができる。 Since the carbon nanofibers used in the electrode forming material of the present invention have hydrophilicity due to the surface oxidation treatment, they have good dispersibility when dispersed in a polar solvent, and the oxygen content by the oxidation treatment is controlled to 8 to 20 wt%. Therefore, excellent conductivity is maintained, and high electrode characteristics can be obtained when the electrode is formed.

本発明の電極形成材はカーボンナノファイバーによって電極活物質表面が網目状に被覆されているので、電極活物質表面に導電層が均一に形成されており、電極特性のよい電極を形成することができる。 In the electrode forming material of the present invention, the surface of the electrode active material is coated with carbon nanofibers in a mesh form, so that a conductive layer is uniformly formed on the surface of the electrode active material, and an electrode having good electrode characteristics can be formed. it can.

本発明に係る電極形成材表面の組織状態を示す電子顕微鏡写真Electron micrograph showing the structure of the electrode forming material surface according to the present invention

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の製造方法は、硝酸濃度比が10〜20wt%の硝酸と硫酸の混酸中で100℃〜200℃で表面処理することによってカーボンナノファイバーの酸素含有量を8〜20wt%に制御し、該カーボンナノファイバーを溶媒に分散させ、この分散液に電極活物質と結着剤を加えて撹拌することによって、上記電極活物質表面の40〜80%が該カーボンナノファイバーによって網目状に被覆された電極形成材を形成することを特徴とする電極形成材の製造方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
In the production method of the present invention , the oxygen content of the carbon nanofibers is controlled to 8 to 20 wt% by performing a surface treatment at 100 ° C. to 200 ° C. in a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration ratio of 10 to 20 wt% . By dispersing the carbon nanofibers in a solvent, adding an electrode active material and a binder to the dispersion and stirring, 40-80% of the surface of the electrode active material is covered with the carbon nanofibers in a network. An electrode forming material is formed . The method for producing an electrode forming material is characterized in that:

電極形成材のカーボンナノファイバーの含有量は、電極活物質100質量部に対して0.5〜10質量部が適当であり、1〜7質量部が好ましい。この含有量が0.5質量部より少ないと導電性を高める効果が乏しく、10質量部より多いと相対的に電極活物質の量が少なくなるので電極材料として適当ではない。 0.5-10 mass parts is suitable with respect to 100 mass parts of electrode active materials, and, as for content of the carbon nanofiber of an electrode formation material, 1-7 mass parts is preferable. If the content is less than 0.5 parts by mass, the effect of increasing the conductivity is poor.

本発明の電極形成材において、電極活物質表面の導電層は、カーボンナノファイバーによって電極活物質表面の40〜80%が網目状に被覆されることによって形成されている。電極活物質表面の被覆率が40%未満では導電性が十分に向上せず、一方、この被覆率が80%を超えると電極を形成したときに空隙率が高くなり内部抵抗が大きくなるので好ましくない。 In the electrode forming material of the present invention, the conductive layer on the surface of the electrode active material is formed by covering 40 to 80% of the surface of the electrode active material with carbon nanofibers in a mesh shape. If the coverage on the surface of the electrode active material is less than 40%, the conductivity is not sufficiently improved. On the other hand, if the coverage exceeds 80%, the porosity is increased and the internal resistance is increased when the electrode is formed. Absent.

導電層を形成するカーボンナノファイバーは、表面が酸化処理されており、該酸化処理による酸素含有量が8〜20wt%に制御されている。このカーボンナノファイバーは表面の酸化処理によって親水性を有し、かつ酸素含有量が8〜20wt%に制御されているので、高い導電性を維持している。酸素含有量が8wt%より少ないと親水性が十分ではなく、極性溶媒に分散させたときにヘーズが高くなる。一方、酸素含有量が20wt%より多いと、導電性が低下する傾向がある。 The surface of the carbon nanofiber forming the conductive layer is oxidized, and the oxygen content by the oxidation treatment is controlled to 8 to 20 wt%. This carbon nanofiber has hydrophilicity by the oxidation treatment of the surface, and the oxygen content is controlled to 8 to 20 wt%, so that high conductivity is maintained. When the oxygen content is less than 8 wt%, the hydrophilicity is not sufficient, and the haze increases when dispersed in a polar solvent. On the other hand, when the oxygen content is more than 20 wt%, the conductivity tends to decrease.

カーボンナノファイバーの表面酸化処理において、酸素含有量を8〜20wt%に制御した酸化処理を行うには、例えば、硝酸濃度が10〜20wt%の硝酸と硫酸の混酸を用い、100℃以上で表面処理すればよい。
In the surface oxidation treatment of carbon nanofibers, for example, in order to perform an oxidation treatment in which the oxygen content is controlled to 8 to 20 wt%, a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration of 10 to 20 wt% is used at 100 ° C. or higher. What is necessary is just to surface-treat.

硝酸と硫酸の混酸において、硝酸濃度比が20wt%より高いと酸化処理が過度になる。一方、硝酸の濃度比が10wt%より低いと酸化処理が不十分になり、カーボンナノファイバーの酸素含有量は8wt%より少なくなる。硝酸の濃度比が10wt%より低いと凝集が発生し、電極活物質表面を凝集塊が覆い、均一な網目状被覆をすることができない。
In a mixed acid of nitric acid and sulfuric acid, if the nitric acid concentration ratio is higher than 20 wt% , the oxidation treatment becomes excessive. On the other hand, if the concentration ratio of nitric acid is lower than 10 wt%, the oxidation treatment becomes insufficient, and the oxygen content of the carbon nanofibers becomes lower than 8 wt%. If the concentration ratio of nitric acid is lower than 10 wt%, aggregation occurs, and the surface of the electrode active material is covered with aggregates, so that a uniform mesh-like coating cannot be formed.

酸化処理は、硝酸と硫酸の混酸中にカーボンナノファイバーを浸漬し、100℃以上の温度下で反応させればよい。液温は100℃〜200℃が良く、100℃〜160℃がより好ましい。100℃未満の液温では酸化が不十分になり、液温が200℃を超えると酸化処理が過度になる。 The oxidation treatment may be performed by immersing the carbon nanofibers in a mixed acid of nitric acid and sulfuric acid and reacting at a temperature of 100 ° C. or higher. The liquid temperature is preferably from 100 ° C to 200 ° C, more preferably from 100 ° C to 160 ° C. When the liquid temperature is lower than 100 ° C., the oxidation becomes insufficient, and when the liquid temperature exceeds 200 ° C., the oxidation treatment becomes excessive.

上記酸化処理において、硝酸と硫酸の混酸とカーボンナノファイバーとの量比は、カーボンナノファイバー1重量部に対して混酸1〜100重量部の範囲が適当である。 In the above oxidation treatment, the amount ratio of the mixed acid of nitric acid and sulfuric acid and the carbon nanofiber is suitably in the range of 1 to 100 parts by weight of the mixed acid with respect to 1 part by weight of the carbon nanofiber.

混酸の硝酸濃度比および処理条件を上記のように調整した酸化処理を行うことによって、カーボンナノファイバー表面にカルボキシル基などが導入され、酸素含有量を8〜20wt%に制御したカーボンナノファイバーを得ることができる。この酸素は、XPS分析するとC−O結合のピーク定量値が2〜5%であり、C−O結合を有する基によって導入されている。このカーボンナノファイバーは適度な親水性を有し、アルコールなどの極性溶媒に分散させたときに分散性に優れた分散液が得られる。 By performing the oxidation treatment in which the nitric acid concentration ratio of the mixed acid and the treatment conditions are adjusted as described above, a carbon nanofiber in which a carboxyl group or the like is introduced to the surface of the carbon nanofiber and the oxygen content is controlled to 8 to 20 wt% is obtained. be able to. This oxygen has a peak quantitative value of C—O bond of 2 to 5% according to XPS analysis and is introduced by a group having a C—O bond. This carbon nanofiber has moderate hydrophilicity, and a dispersion having excellent dispersibility can be obtained when dispersed in a polar solvent such as alcohol.

本発明の電極形成材に用いるカーボンナノファイバーは、繊維径1〜100nm、アスペクト比5以上で、X線回折測定によるグラファイト層の[002]面の間隔が0.35nm以下であるものが好ましい。繊維径とアスペクト比が上記範囲のカーボンナノファイバーは、溶媒に分散させたときに相互に十分な接触点を形成することができるので、高い導電性を有する導電性塗膜を得ることができる。また、X線回折測定によるグラファイト層の[002]面の積層間隔が上記範囲内であるカーボンナノファイバーは結晶性が高いため、電気抵抗が小さく、従って高導電性の材料を得ることができる。さらに、カーボンナノファイバーの圧密体の体積抵抗値が1.0Ω・cm以下であると、良好な導電性を発揮することができる。 The carbon nanofibers used for the electrode forming material of the present invention preferably have a fiber diameter of 1 to 100 nm, an aspect ratio of 5 or more, and a [002] plane interval of the graphite layer by X-ray diffraction measurement of 0.35 nm or less. Since carbon nanofibers having a fiber diameter and an aspect ratio in the above range can form sufficient contact points when dispersed in a solvent, a conductive coating film having high conductivity can be obtained. In addition, carbon nanofibers having a [002] plane interval of the graphite layer within the above range by X-ray diffraction measurement have high crystallinity, and therefore have low electrical resistance, and thus a highly conductive material can be obtained. Furthermore, when the volume resistance value of the compacted carbon nanofiber is 1.0 Ω · cm or less, good conductivity can be exhibited.

上記カーボンナノファイバーは、一酸化炭素を主な原料ガスとした気相成長法によって製造することができる。この気相成長法によって製造されたカーボンナノファイバーは、トルエン着色透過率が概ね95%以上であり、分散性の観点から好ましい。 The carbon nanofiber can be produced by a vapor phase growth method using carbon monoxide as a main raw material gas. Carbon nanofibers produced by this vapor phase growth method have a toluene coloring transmittance of approximately 95% or more, which is preferable from the viewpoint of dispersibility.

上記カーボンナノファイバーを溶媒に分散させ、この分散液に電極活物質粉末を結着剤と共に加えて攪拌することによって、電極活物質粉末の表面にカーボンナノファイバーが均一に網目状に付着した電極活物質スラリーを調製し、この電極活物質スラリーを電極集電体の両面に塗布して乾燥し、圧延して電極フィルムを作製し、これを切断して電極が作製される。電極活物質粉末の表面にカーボンナノファイバーが均一に網目状に付着した状態を図1に示す。 The carbon nanofibers are dispersed in a solvent, and the electrode active material powder is added to the dispersion together with a binder, followed by stirring, whereby an electrode active material in which the carbon nanofibers are uniformly attached to the surface of the electrode active material powder. A material slurry is prepared, this electrode active material slurry is applied to both sides of the electrode current collector, dried, rolled to produce an electrode film, and this is cut to produce an electrode. FIG. 1 shows a state in which carbon nanofibers are uniformly attached to the surface of the electrode active material powder in a mesh shape.

本発明の電極形成材を溶剤(分散媒)に分散させて電極形成材用分散液を形成する。分散媒としては極性溶媒が好ましく、例えばN-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、水などを用いることができる。
The electrode forming material of the present invention is dispersed in a solvent (dispersion medium) to form a dispersion for electrode forming material . The dispersion medium is preferably a polar solvent, and for example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, water and the like can be used.

さらに、上記分散液に結着剤を添加して塗料を形成する。また、本発明の電極形成材は、二次電池用電極形成のために必要な物質を添加した塗料、スラリー、ペーストの形態で利用することができる。
Further, a binder is added to the dispersion to form a paint . The electrode forming material of the present invention can be used in the form of a paint, slurry, or paste to which a substance necessary for forming an electrode for a secondary battery is added.

本発明の電極形成材において、電極活物質は、例えば、リチウムを含有する遷移金属酸化物である。具体的には、例えば、LiCoO2、LiNiO2、LiMn24、LiMnCoO4、LiCoPO4、LiMnCrO4、LiNiVO4、LiMn1.5Ni0.54、LiMnCrO4、LiCoVO4、LiFePO4、および、各上記組成の一部を他のMn、Mg、Ni、Co、Cu、Zn、Geから選択される1種もしくは2種以上の金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種である。これらはリチウム電池の電極材料として用いられている。 In the electrode forming material of the present invention, the electrode active material is, for example, a transition metal oxide containing lithium. Specifically, for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnCoO 4 , LiCoPO 4 , LiMnCrO 4 , LiNiVO 4 , LiMn 1.5 Ni 0.5 O 4 , LiMnCrO 4 , LiCoVO 4 , LiFePO 4 , and each of the above At least selected from the group consisting of non-stoichiometric compounds in which a part of the composition is substituted with one or more metal elements selected from other Mn, Mg, Ni, Co, Cu, Zn, Ge One type. These are used as electrode materials for lithium batteries.

リチウムイオン二次電池は、例えば、Ni鋼板製の有底円筒状筐体にロール体が非水電解液と共に密封されている。ロール体は帯状の正極材、セパレータ、負極材、セパレータを順に積層し、ロール状に巻回して作成されている。正極材は例えばAl合金箔の両面に正極活物質としてリチウム遷移金属複酸化物を含む正極形成材を均等かつ均質に塗着し作成されたものである。負極材は例えばCu合金箔の両面に負極活物質として、リチウムイオンを吸蔵、放出可能な非晶質炭素粉末を含む負極形成材を均等かつ均質に塗着し作成されたものである。本発明の電極形成材は、例えば、上記正極材または負極材を形成する材料として用いられる。 In the lithium ion secondary battery, for example, a roll body is sealed together with a non-aqueous electrolyte in a bottomed cylindrical casing made of a Ni steel plate. The roll body is formed by laminating a belt-like positive electrode material, a separator, a negative electrode material, and a separator in this order and winding them into a roll shape. The positive electrode material is prepared, for example, by uniformly and uniformly applying a positive electrode forming material containing a lithium transition metal double oxide as a positive electrode active material on both surfaces of an Al alloy foil. The negative electrode material is prepared, for example, by uniformly and uniformly applying a negative electrode forming material containing amorphous carbon powder capable of occluding and releasing lithium ions on both sides of a Cu alloy foil as a negative electrode active material. The electrode forming material of the present invention is used as a material for forming the positive electrode material or the negative electrode material, for example.

ロール体と共に筐体に収容される非水電解液はエチレンカーボネート(EC)等の有機溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF6)等を溶解したものが使用可能である。セパレータは例えばポリオレフィン系樹脂等の多孔性のポリマーが使用される。ロール体の捲回中心のほぼ延長線上に正極板からの電位を集電するための金属からなる円環状導体の正極が配置され、この正極にリードが接続される。正極は筐体の上部蓋に溶接で接合される。正極の反対側は負極材からの電荷を集めるための負極部が形成されている。負極部はリードを介して負極材に接続される。 As the nonaqueous electrolytic solution housed in the casing together with the roll body, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) or the like as a lithium salt in an organic solvent such as ethylene carbonate (EC) can be used. For the separator, for example, a porous polymer such as polyolefin resin is used. A positive electrode of an annular conductor made of a metal for collecting the potential from the positive electrode plate is disposed substantially on the extended line at the winding center of the roll body, and a lead is connected to the positive electrode. The positive electrode is joined to the upper lid of the housing by welding. On the opposite side of the positive electrode, a negative electrode portion for collecting charges from the negative electrode material is formed. The negative electrode portion is connected to the negative electrode material via a lead.

正極材および負極材の製造方法の一例を以下に示す。
〔正極材の作製〕
正極活物質粉末(リチウム含有遷移金属酸化物粉末:LiFePO4等)を、結着剤(ポリフッ化ビニリデン:PVdF等)と共に、カーボンナノファイバーの分散液(CNF分散液)に加えて攪拌することによって正極活物質粉末表面にカーボンナノファイバーが均一に網目状に付着した正極活物質スラリーを調製する。この正極活物質スラリーをアルミニウム箔(正極集電体)の両面に塗布乾燥し、圧延して正極フィルムを作製し、この正極フィルムを切断して正極を作製する。
An example of a method for producing the positive electrode material and the negative electrode material is shown below.
[Production of positive electrode material]
By adding a positive electrode active material powder (lithium-containing transition metal oxide powder: LiFePO 4 etc.) to a carbon nanofiber dispersion (CNF dispersion) together with a binder (polyvinylidene fluoride: PVdF etc.) and stirring. A positive electrode active material slurry is prepared in which carbon nanofibers are uniformly adhered to the surface of the positive electrode active material powder. This positive electrode active material slurry is applied and dried on both sides of an aluminum foil (positive electrode current collector), rolled to produce a positive electrode film, and this positive electrode film is cut to produce a positive electrode.

〔負極材の作製〕
負極活物質(黒鉛粉末等)を、結着剤(PVdF等)と共に、上記CNF分散液に加えて攪拌することによって黒鉛粉末表面にCNFが均一に網目状に付着した負極活物質スラリーを調製する。この負極活物質スラリーを銅箔(負極集電体)の両面に塗布乾燥し、圧延して負極フィルムを作製し、この負極フィルムを切断して負極を作製する。
(Production of negative electrode material)
A negative electrode active material (graphite powder or the like) and a binder (PVdF or the like) are added to the CNF dispersion and stirred to prepare a negative electrode active material slurry in which CNF is uniformly attached to the surface of the graphite powder. . The negative electrode active material slurry is applied and dried on both sides of a copper foil (negative electrode current collector), rolled to produce a negative electrode film, and the negative electrode film is cut to produce a negative electrode.

〔電池の作製〕
上記正極および負極を、ポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入して密封することによって円筒形リチウムイオン二次電池を得ることができる。電解液にはEC(エチレンカーボネート)、DMC(ジメチルカーボネート)、DEC(ジエチルカーボネート)を体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものなどを用いることができる。
[Production of battery]
The positive electrode and the negative electrode are wound through a polyethylene separator to form an electrode group. The electrode group is inserted into a cylindrical battery container, and a predetermined amount of electrolyte is injected and sealed to form a cylindrical lithium ion secondary battery. Can be obtained. As the electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was added to a solution in which EC (ethylene carbonate), DMC (dimethyl carbonate), and DEC (diethyl carbonate) were mixed at a volume ratio of 25:60:15. A solution obtained by dissolving 1 liter and further adding vinylene carbonate to the solution can be used.

本発明の実施例を比較例と共に以下に示す。なお、本発明の範囲は以下の実施例に限定されない。
〔実施例1:酸化処理〕
市販のカーボンナノファイバー(CNFと略記する。三菱マテリアル社製品、繊維径20nm、アスペクト比5以上)を用い、市販の濃硝酸(濃度60wt%)および濃硫酸(濃度95wt%)を用い、表1に示す条件にて表面酸化処理を行い、酸素含有量を制御した表面処理CNFを得た。酸化処理の結果を表1に示す。酸素含有量は不活性ガス搬送融解赤外線吸収法によって測定した。
Examples of the present invention are shown below together with comparative examples. The scope of the present invention is not limited to the following examples.
[Example 1: Oxidation treatment]
Using commercially available carbon nanofibers (abbreviated as CNF; manufactured by Mitsubishi Materials Corporation, fiber diameter 20 nm, aspect ratio 5 or more), commercially available concentrated nitric acid (concentration 60 wt%) and concentrated sulfuric acid (concentration 95 wt%), Table 1 Surface oxidation treatment was performed under the conditions shown in Table 1 to obtain surface-treated CNF with controlled oxygen content. The results of the oxidation treatment are shown in Table 1. The oxygen content was measured by an inert gas carrier melting infrared absorption method.

〔実施例2:分散液、塗料組成物〕
表1のCNFを乾燥して粉末化し、その粉末をエタノールに混合し、ビーズミルを使用してエタノール分散液を調製した。分散液のCNF含有量を表2に示す。
この分散液に乾燥塗膜固形分中のCNF含有量が4.5wt%になるようにアクリル樹脂溶液を混合して塗料組成物を調製した。この塗料組成物を、バーコーターを用いて、厚さ100μmのポリエステルフィルムの表面に、塗工量0.25g/m2になるように塗布し、80℃で3分間乾燥して塗膜を作製した。
[Example 2: Dispersion, coating composition]
The CNF in Table 1 was dried and powdered, the powder was mixed with ethanol, and an ethanol dispersion was prepared using a bead mill. Table 2 shows the CNF content of the dispersion.
An acrylic resin solution was mixed with this dispersion so that the CNF content in the dry coating film solids was 4.5 wt% to prepare a coating composition. This coating composition was applied to the surface of a 100 μm thick polyester film using a bar coater so that the coating amount was 0.25 g / m 2 and dried at 80 ° C. for 3 minutes to produce a coating film. did.

このCNF分散液のヘーズ、塗膜の表面抵抗率、および塗膜のヘーズ(%)を測定した。これらのヘーズはスガ試験機製ヘーズメーターを用いて測定した。分散液のヘーズ値は、CNF濃度が40ppmになるように分散媒を用いて希釈し、この希釈液を光路長3mmの石英セルに入れ、石英セルのヘーズ(0.3%)を含んで測定した。塗膜のヘーズは、ベースフィルムであるポリエステルフィルムのヘーズ(1.8%)を含んで測定した。塗膜の表面抵抗率(Ω/□)は三菱化学製ハイレスタUPを用いて二重リング電極法にて測定した。これらの結果を表2に示す。 The haze of the CNF dispersion, the surface resistivity of the coating film, and the haze (%) of the coating film were measured. These hazes were measured using a Suga Test Instruments haze meter. The haze value of the dispersion is diluted with a dispersion medium so that the CNF concentration is 40 ppm, and this diluted solution is put into a quartz cell having an optical path length of 3 mm, and includes the haze (0.3%) of the quartz cell. did. The haze of the coating film was measured including the haze (1.8%) of the polyester film as the base film. The surface resistivity (Ω / □) of the coating film was measured by a double ring electrode method using Hiresta UP manufactured by Mitsubishi Chemical. These results are shown in Table 2.

表2に示すように、酸素含有量が10wt%より少ないB1のCNFは溶媒での分散性が悪い。一方、酸素含有量が20%より多いB2のCNFは溶媒での分散性はよいが、塗膜の表面抵抗が高くなる。一方、A1〜A6のCNF(酸素含有量8〜20%)はCNF濃度40ppmに希釈した分散液のヘーズは0.6以下であり、またCNF含有量4.5wt%の塗膜のヘーズは2.2以下であって、CNFの分散性が良く、また表面抵抗(Ω/□)は5.6×106以下であり、高い導電性を有している。 As shown in Table 2, B1 CNF having an oxygen content of less than 10 wt% has poor dispersibility in a solvent. On the other hand, B2 CNF having an oxygen content of more than 20% has good dispersibility in a solvent, but the surface resistance of the coating film becomes high. On the other hand, CNFs of A1 to A6 (oxygen content 8 to 20%) have a haze of a dispersion diluted to a CNF concentration of 40 ppm of 0.6 or less, and a coating film having a CNF content of 4.5 wt% has a haze of 2. The dispersibility of CNF is good, and the surface resistance (Ω / □) is 5.6 × 10 6 or less, and it has high conductivity.

〔実施例3:電極の形成〕
表1に示す条件にて表面を酸化処理したCNFを乾燥し、ビーズミルを使用して上記CNFを粉末にし、このCNF粉末が5wt%濃度のN−メチルピロリドン分散液を調製した。
<正極の作製>
鉄燐酸リチウム粉末(D50:100nm)を正極活物質とし、この活物質100質量部に対してカーボンナノファイバーを表3に示す質量部となるように、上記CNF分散液に上記正極活物質を添加し、混合攪拌後、結着剤のポリフッ化ビニリデン7質量部を混合して、CNFによって形成した網目の被覆率が表3に示す状態の正極形成材を作製した。この形成材を厚さ20μmのアルミニウム箔の両面に塗布し、乾燥後に圧延し裁断して厚さ約150μmの正極を作製した。
[Example 3: Formation of electrode]
CNF whose surface was oxidized under the conditions shown in Table 1 was dried, and the above-mentioned CNF was powdered using a bead mill, and an N-methylpyrrolidone dispersion having a concentration of 5 wt% of this CNF powder was prepared.
<Preparation of positive electrode>
Lithium iron phosphate powder (D50: 100 nm) is used as the positive electrode active material, and the positive electrode active material is added to the CNF dispersion so that the carbon nanofibers are in the mass part shown in Table 3 with respect to 100 parts by mass of the active material. Then, after mixing and stirring, 7 parts by mass of polyvinylidene fluoride as a binder was mixed to prepare a positive electrode forming material having a network coverage ratio of CNF shown in Table 3. This forming material was applied to both sides of an aluminum foil having a thickness of 20 μm, dried, rolled and cut to prepare a positive electrode having a thickness of about 150 μm.

<負極の作製>
活物質として黒鉛粉末(D50:5μm)100質量部を用い、この活物質100質量部に対してカーボンナノファイバーを表3に示す質量部となるように、上記CNF分散液に負極活物質を添加し、混合攪拌後、結着剤のポリフッ化ビニリデン5質量部を混合して、CNFによって形成した網目の被覆率が表3に示す状態の負極形成材を作製した。この形成材を厚さ10μmの銅箔の両面に塗布し、乾燥後に圧延し裁断して厚さ約110μmの負極を作製した。
<Production of negative electrode>
Using 100 parts by mass of graphite powder (D50: 5 μm) as the active material, the negative electrode active material is added to the CNF dispersion so that the carbon nanofibers are in the mass part shown in Table 3 with respect to 100 parts by mass of the active material. Then, after mixing and stirring, 5 parts by mass of polyvinylidene fluoride as a binder was mixed to prepare a negative electrode forming material having a network coverage ratio of CNF shown in Table 3. This forming material was applied on both sides of a copper foil having a thickness of 10 μm, dried, rolled and cut to prepare a negative electrode having a thickness of about 110 μm.

<電池の作製>
上記正極および負極を、厚さ20μmのポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入後、密封して円筒形リチウムイオン二次電池を作製した。電解液にはEC、DMC、DECを体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものを用いた。
<Production of battery>
The positive electrode and the negative electrode are wound through a polyethylene separator having a thickness of 20 μm to form an electrode group. This electrode group is inserted into a cylindrical battery container, and after a predetermined amount of electrolyte is injected, it is sealed and cylindrical lithium ion is sealed. A secondary battery was produced. 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solution in which EC, DMC, and DEC are mixed at a volume ratio of 25:60:15, and vinylene carbonate is added to the solution. Used.

<比較例:C1〜C3>
A1のCNFを用い、CNFによって形成した導電層が網目状ではないもの(C1)、網目状ではあるが被覆率が本発明の範囲を外れるもの(C2、C3)にした以外は上記と同様にして正極および負極を作成した。
<Comparative example: C1-C3>
A1 CNF is used, and the conductive layer formed by CNF is not mesh-like (C1), except that it is mesh-like but the coverage is outside the scope of the present invention (C2, C3). Thus, a positive electrode and a negative electrode were prepared.

<充放電サイクル試験>
充放電サイクル試験を行い、50サイクル後の放電容量を1サイクル後の放電容量で割った値を放電容量維持率として算出した。その結果を表3に示す。
表3の結果に示すように、電極活物質表面の40〜80%がCNFによって網目に被覆されている電極形成材を用いたA1〜A6は、容量維持率の低下がなく、サイクル寿命が80%以上に向上している。
一方、CNFによる導電層が網目ではない比較例(C1)、および網目の被覆率が本発明の範囲を外れる比較例(C2〜C3)は何れも容量維持率が30%〜60%と低い。
<Charge / discharge cycle test>
A charge / discharge cycle test was performed, and a value obtained by dividing the discharge capacity after 50 cycles by the discharge capacity after 1 cycle was calculated as a discharge capacity retention rate. The results are shown in Table 3.
As shown in the results of Table 3, A1 to A6 using an electrode forming material in which 40 to 80% of the surface of the electrode active material is covered with a network by CNF has no decrease in capacity retention rate and a cycle life of 80 % Or more.
On the other hand, both the comparative example (C1) in which the conductive layer made of CNF is not a mesh and the comparative examples (C2 to C3) in which the coverage of the mesh is outside the scope of the present invention have a low capacity retention rate of 30% to 60%.

Claims (4)

硝酸濃度比が10〜20wt%の硝酸と硫酸の混酸中で100℃〜200℃で表面処理することによってカーボンナノファイバーの酸素含有量を8〜20wt%に制御し、該カーボンナノファイバーを溶媒に分散させ、この分散液に電極活物質と結着剤を加えて撹拌することによって、上記電極活物質表面の40〜80%が該カーボンナノファイバーによって網目状に被覆された電極形成材を形成することを特徴とする電極形成材の製造方法。 The oxygen content of the carbon nanofibers is controlled to 8 to 20 wt% by surface treatment in a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration ratio of 10 to 20 wt% at 100 to 200 ° C , and the carbon nanofibers are used as a solvent. By dispersing and adding an electrode active material and a binder to this dispersion and stirring, an electrode forming material in which 40 to 80% of the surface of the electrode active material is covered with the carbon nanofibers in a mesh form is formed. A method for producing an electrode-forming material. 電極活物質がリチウムを含有する遷移金属酸化物であり、リチウム電池の電極に用いられる電極形成材を形成する請求項1に記載する電極形成材の製造方法。 The method for producing an electrode forming material according to claim 1, wherein the electrode active material is a transition metal oxide containing lithium, and an electrode forming material used for an electrode of a lithium battery is formed. 電極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLiTi12、あるいは、SnまたはSiの合金系である電極形成材を形成する請求項1に記載する電極形成材の製造方法。 The electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitized material, coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, or Li 4 Ti 5 O 12 , or Sn or The method for producing an electrode forming material according to claim 1 , wherein an electrode forming material that is an alloy system of Si is formed. 請求項1〜請求項3の何れかに記載する方法によって製造した電極形成材を分散媒に分散させて分散液にし、これに結着剤を添加して塗料を形成し、該塗料を集電体の表面に塗布し乾燥して電極を製造する方法。The electrode-forming material produced by the method according to any one of claims 1 to 3 is dispersed in a dispersion medium to form a dispersion, and a binder is added thereto to form a paint, and the paint is collected A method of producing an electrode by applying to the surface of a body and drying.
JP2011216216A 2011-09-30 2011-09-30 Electrode forming material and electrode manufacturing method using the electrode forming material Expired - Fee Related JP5885984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011216216A JP5885984B2 (en) 2011-09-30 2011-09-30 Electrode forming material and electrode manufacturing method using the electrode forming material
PCT/JP2012/075340 WO2013047870A1 (en) 2011-09-30 2012-10-01 Electrode-forming material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216216A JP5885984B2 (en) 2011-09-30 2011-09-30 Electrode forming material and electrode manufacturing method using the electrode forming material

Publications (2)

Publication Number Publication Date
JP2013077426A JP2013077426A (en) 2013-04-25
JP5885984B2 true JP5885984B2 (en) 2016-03-16

Family

ID=47995893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216216A Expired - Fee Related JP5885984B2 (en) 2011-09-30 2011-09-30 Electrode forming material and electrode manufacturing method using the electrode forming material

Country Status (2)

Country Link
JP (1) JP5885984B2 (en)
WO (1) WO2013047870A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3116053B1 (en) * 2014-03-05 2020-04-29 Nippon Chemi-Con Corporation Method of producing an electrode material and method of procing an electrode using said electrode material
JP2015191688A (en) * 2014-03-27 2015-11-02 三菱マテリアル株式会社 Negative-electrode active material for lithium ion secondary battery and manufacturing method for the same
JP6497972B2 (en) * 2014-05-19 2019-04-10 日本ケミコン株式会社 Electrode, method for producing this electrode, electricity storage device equipped with this electrode, and conductive carbon mixture for electricity storage device electrode
WO2015178347A1 (en) * 2014-05-19 2015-11-26 日本ケミコン株式会社 Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode
KR102384975B1 (en) * 2014-11-28 2022-04-12 에스케이온 주식회사 Fabricating method of lithium electrode and lithium ion battery
JP6180568B1 (en) * 2016-03-02 2017-08-16 太平洋セメント株式会社 Polyanion positive electrode active material and method for producing the same
JP6688206B2 (en) * 2016-11-22 2020-04-28 本田技研工業株式会社 Electrode mixture layer
JP7015445B2 (en) 2017-07-12 2022-02-03 日本ケミコン株式会社 A method for producing a conductive carbon mixture and a method for producing an electrode using this mixture.
KR102244916B1 (en) 2018-04-30 2021-04-27 주식회사 엘지화학 Cathode active material for lithium-sulfur battery, manufacturing method of the same
CN109103438B (en) * 2018-08-30 2021-09-14 马鞍山科达普锐能源科技有限公司 Core-shell structure negative electrode material for lithium ion battery and preparation method thereof
JP7210198B2 (en) * 2018-09-18 2023-01-23 株式会社東芝 Electrodes, secondary batteries, battery packs, and vehicles
KR102651786B1 (en) 2019-02-13 2024-03-26 주식회사 엘지에너지솔루션 Cathode active material for lithium secondary battery
KR20200109476A (en) 2019-03-13 2020-09-23 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP7462066B2 (en) 2020-10-21 2024-04-04 旭化成株式会社 Nonaqueous alkali metal storage element and positive electrode coating fluid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494591B (en) * 1999-07-21 2002-07-11 Mitsubishi Materials Corp Carbon powder having enhanced electrical characteristics and its use
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
KR101520508B1 (en) * 2007-03-29 2015-05-14 미쓰비시 마테리알 가부시키가이샤 2 positive electrode-forming member material for the same method for producing the same and lithium ion secondary battery
JP2009238656A (en) * 2008-03-28 2009-10-15 Gs Yuasa Corporation Active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery having the same
JP5462445B2 (en) * 2008-04-30 2014-04-02 三菱マテリアル株式会社 Lithium ion secondary battery
JP4950166B2 (en) * 2008-11-11 2012-06-13 三菱マテリアル株式会社 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode
JP5552709B2 (en) * 2010-03-26 2014-07-16 三菱マテリアル株式会社 Cathode active material for Li-ion battery and method for producing the same
JP5672859B2 (en) * 2010-08-26 2015-02-18 宇部興産株式会社 Lithium titanium composite oxide electrode material compounded with fine carbon fiber

Also Published As

Publication number Publication date
JP2013077426A (en) 2013-04-25
WO2013047870A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5885984B2 (en) Electrode forming material and electrode manufacturing method using the electrode forming material
JP5335264B2 (en) Positive electrode forming material, material and manufacturing method thereof, and lithium ion secondary battery
JP5302456B1 (en) Non-aqueous secondary battery
JP5462445B2 (en) Lithium ion secondary battery
JP6183361B2 (en) Negative electrode active material, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
TWI458154B (en) Lithium secondary battery
JP6156939B2 (en) Lithium ion secondary battery
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
US11695111B2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
US11227726B2 (en) Electrolyte solution for potassium ion battery, potassium ion battery, electrolyte solution for potassium ion capacitor, and potassium ion capacitor
JPWO2017217408A1 (en) Lithium ion secondary battery
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
Kim et al. Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode
JP2012174546A (en) Nonaqueous electrolyte secondary battery
JPWO2018179934A1 (en) Anode material and non-aqueous electrolyte secondary battery
JP6567289B2 (en) Lithium ion secondary battery
JP2014093139A (en) Nonaqueous secondary battery
JP5472952B1 (en) Non-aqueous secondary battery
JP2023545293A (en) Method for manufacturing a positive electrode for a lithium secondary battery and a positive electrode for a lithium secondary battery manufactured thereby
JP2014049372A (en) Lithium ion secondary battery
JP2015018820A (en) Separator for nonaqueous electrolyte battery
JP5628385B2 (en) Separator manufacturing method and non-aqueous electrolyte battery
Chiluwal Three-Dimensional Electrode Architectures for Beyond Lithium-Ion Batteries
JP2024502362A (en) Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JPH11195414A (en) Manufacture of carbon fiber for nonaqueous electrolyte secondary battery and carbon fiber for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5885984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees