KR100756853B1 - Process of rod-like Ag particles for application in electrode - Google Patents

Process of rod-like Ag particles for application in electrode Download PDF

Info

Publication number
KR100756853B1
KR100756853B1 KR1020060018389A KR20060018389A KR100756853B1 KR 100756853 B1 KR100756853 B1 KR 100756853B1 KR 1020060018389 A KR1020060018389 A KR 1020060018389A KR 20060018389 A KR20060018389 A KR 20060018389A KR 100756853 B1 KR100756853 B1 KR 100756853B1
Authority
KR
South Korea
Prior art keywords
particles
rod
electrode
shaped
agno
Prior art date
Application number
KR1020060018389A
Other languages
Korean (ko)
Other versions
KR20070088151A (en
Inventor
이종국
장우양
황규홍
서동석
박근주
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to KR1020060018389A priority Critical patent/KR100756853B1/en
Publication of KR20070088151A publication Critical patent/KR20070088151A/en
Application granted granted Critical
Publication of KR100756853B1 publication Critical patent/KR100756853B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2217/00Gas-filled discharge tubes
    • H01J2217/38Cold-cathode tubes
    • H01J2217/49Display panels, e.g. not making use of alternating current
    • H01J2217/492Details
    • H01J2217/49207Electrodes

Abstract

본 발명은 액상환원법으로 Ag 입자를 제조하고, 상기 Ag 입자를 씨드로 이용하여 높은 장단축비를 지닌 막대상 Ag입자를 제조하기 위한 방법에 있어서, In the present invention, in the method for producing Ag particles by the liquid reduction method, using the Ag particles as a seed for producing rod-shaped Ag particles having a high long-term reduction ratio,

상기 씨드로 이용되는 Ag 입자를 몰비에 따라 CTAB와 AgNO3의 몰비가 0.5인 수용액에 넣어서 구형의 나노입자를 성장시키는 단계로 이루어진 전극용 은막대입자 제조방법을 제공하기 위한 것으로, 본 발명은 높은 장단축비를 형성하는 막대상 Ag 입자를 제조할 수 있는 방법을 제공함으로써 기존 Ag 페이스트의 전극 특성을 보완할 전극용 잉크로서의 Ag 졸로 활용이 가능하고, PDP 전극제조에 있어 원가 절감이 가능한 매우 유용한 발명인 것이다.According to the present invention, there is provided a method for preparing a silver rod particle for an electrode, wherein the Ag particles used as seeds are grown in an aqueous solution having a molar ratio of CTAB and AgNO 3 of 0.5 according to the molar ratio to grow spherical nanoparticles. By providing a method for manufacturing rod-shaped Ag particles that form a short and short ratio, it can be used as an Ag sol as an electrode ink to supplement electrode characteristics of existing Ag paste, and it is very useful for cost reduction in PDP electrode manufacturing. It is an invention.

전극, 은, 막대, 입자 Electrode, silver, rod, particle

Description

전극용 은 막대 입자 제조방법{Process of rod-like Ag particles for application in electrode}Process of rod-like Ag particles for application in electrode

도 1 - tri-sodium citrate을 계면활성제로 사용하여 제조된 Ag입자 분말의 x-선 회절 분석결과를 보이기 위한 그래프도.1 is a graph showing the results of X-ray diffraction analysis of Ag particle powder prepared using tri-sodium citrate as a surfactant.

도 2 - 합성된 콜로이드 내 Ag 입자를 TEM으로 관찰한 사진.Figure 2-TEM observation of Ag particles in the synthesized colloid.

도 3 - 계면활성제로 사용한 CTAB 의 농도를 0.01 M로 하고, AgNO3 와의 몰비를 각각 0.1, 0.5, 1, 5로 하여 혼합한 뒤 씨드를 첨가하여 합성된 Ag 입자를 TEM으로 관찰한 사진도.Fig. 3-A photograph showing the synthesis of Ag particles synthesized by adding a seed after mixing CTAB with a concentration of 0.01 M and a molar ratio with AgNO 3 of 0.1, 0.5, 1, and 5, respectively.

도 4 - AgNO3 와 계면활성제인 CTAB의 몰비를 0.5가 되도록 혼합한 뒤, 씨드를 첨가하여 합성한 Ag 입자를 TEM과 SEM을 통해 관찰한 사진.Figure 4-AgNO 3 and the surfactant is mixed with a molar ratio of CTAB to 0.5, and then the Ag particles synthesized by the addition of seeds observed by TEM and SEM.

도 5 - 구형과 막대형 입자를 함유한 콜로이드의 UV 흡광도 peak를 보이기 위한 그래프도.5-Graph showing the UV absorbance peak of the colloid containing spherical and rod-shaped particles.

도 6 - 막대형 입자분말을 x-선 회절 분석한 그래프도.6-X-ray diffraction analysis of rod-shaped powder powder.

본 발명은 전극용 은막대입자 제조방법에 관한 것으로, 특히 피디피(PDP) 전극용 은막대입자 제조방법에 관한 것이다.The present invention relates to a method for producing silver bar particles for electrodes, and more particularly to a method for producing silver bar particles for PDP electrodes.

최근 전자, 정보통신 산업의 발달과 더불어 각종 디바이스의 소형화 또는 복합화에 대한 요구가 증대되고, 이에 따라 이러한 분야에 나노기술을 접목하려는 연구가 시도되고 있다. 각종 디바이스의 전극재료로 사용 중인 전도성 페이스트의 경우에도 나노 크기의 금속분말을 사용할 경우 입자 표면을 극대화함으로써 높은 활성에 기인하여 저온 소성이 가능해지고, 이에 따라 세라믹 기판뿐만 아니라 고분자 기판에도 활용이 가능할 것으로 예측되고 있다. Recently, with the development of the electronic and information communication industry, the demand for miniaturization or complexation of various devices is increasing, and thus, researches for incorporating nanotechnology into these fields have been attempted. In the case of the conductive paste used as the electrode material of various devices, when the nano-sized metal powder is used, the surface of the particles is maximized to enable low-temperature firing due to the high activity, and thus it can be used not only for the ceramic substrate but also for the polymer substrate. It is predicted.

이미 선진국의 경우 나노 크기의 Ag 및 Pt를 이용하여 전도성 페이스트를 개발하여 상업화 단계에 있으며 최근에는 국내 기업들도 Ag 페이스트 시장 진출을 위해 제품 개발 및 품질 향상에 주력하고 있다. 현재 대형 평판디스플레이 시장 확대를 위해 원가 절감에 전력하고 있으며 그 중 PDP 패널에 전극을 형성하는 핵심 소재인 Ag 페이스트의 공정상 소모량을 줄일 수 있는 기술 개발이 절대적으로 필요하다.In developed countries, conductive pastes are developed and commercialized using nano-sized Ag and Pt. Recently, Korean companies are also focusing on product development and quality improvement to enter the Ag paste market. Currently, the company is focusing on cost reduction to expand the large flat panel display market, and it is absolutely necessary to develop a technology that can reduce the consumption of Ag paste, a key material for forming electrodes on PDP panels.

그러나 현재 PDP 전극용으로 사용되고 있는 Ag 전극을 저온소성용 PDP 투명전극으로 활용하기 위한 방법으로는 나노크기의 Ag입자를 액상환원법을 이용하여 제조하고 있으며, 나노크기의 균일한 Ag 입자를 합성하기 위하여 AgNO3 수용액에 분 산제를 첨가하여 졸의 안정화를 유도하고 있긴 하나, 기존 Ag 페이스트의 전극 특성을 보완할 만한 높은 장단축비를 형성하는 막대상 Ag 입자의 제조에 대한 연구는 매우 미비한 실정이다.However, as a method for utilizing the Ag electrode, which is currently used for PDP electrodes, as a PDP transparent electrode for low temperature firing, nano-size Ag particles are manufactured by using a liquid reduction method, and in order to synthesize nano-size uniform Ag particles. Although dispersants are added to the AgNO 3 aqueous solution to induce sol stabilization, studies on the production of rod-shaped Ag particles that form high long-term reduction ratios to compensate for the electrode properties of existing Ag pastes are very poor.

따라서 본 발명은 액상환원법을 이용하여 구형의 Ag 나노입자를 제조하고 박막의 기판과의 부착성을 향상시켜 구형의 나노입자를 성장시킴으로써 높은 장단축비를 지니는 막대형 Ag 입자를 제조하여 Ag 페이스트의 전극 특성을 보완하고, 원가 절감이 가능하도록 하는데 그 목적이 있다.Therefore, the present invention is to prepare a Ag Ag particles having a high long-term ratio by producing a spherical Ag nanoparticles by using a liquid reduction method and to improve the adhesion of the thin film to the substrate to grow a spherical nanoparticles of Ag paste Its purpose is to complement electrode characteristics and enable cost reduction.

본 발명은 높은 장단축비를 지닌 막대상 Ag입자를 제조하기 위하여 액상환원법으로 Ag 입자를 제조하는 단계와, 상기 Ag 입자를 씨드(seeds)로 이용하여 CTAB와 AgNO3 의 몰비에 따라 몰비가 0.5인 수용액에 넣어 구형의 나노입자를 성장시키는 단계로 이루어진다.The present invention is to prepare the Ag particles by the liquid phase reduction method in order to produce rod-shaped Ag particles having a high long-term reduction ratio, and by using the Ag particles as seeds (seeds) molar ratio of 0.5 according to the molar ratio of CTAB and AgNO 3 It is composed of a step of growing spherical nanoparticles in an aqueous solution of phosphorus.

상기 씨드로 사용된 Ag입자는 계면활성제로 tri-sodium citrate를 AgNO3 수용액에 첨가하여 Ag 이온들을 환원시켜 제조하였으며, 또한 상기 씨드는 약 10-20 nm의 크기를 갖는 구형의 입자들로 이루어져 있고, 대체로 고른 입도 분포를 나타내었다. Ag particles used as seeds were prepared by reducing tri-sodium citrate as a surfactant to AgNO 3 aqueous solution to reduce Ag ions, and the seed was composed of spherical particles having a size of about 10-20 nm. In general, the particle size distribution was uniform.

상기와 같이 제조된 씨드를 CTAB(cetyltrimethyl ammonium bromide)와 AgNO3 의 몰비에 따라 혼합된 수용액에 첨가하였을 때 몰비가 0.5인 수용액 내에서 가장 높은 장단축비를 지닌 막대상 입자가 형성되었다. 이 막대상 입자는 길이가 약 4-10 ㎛이며 직경은 약 300-500 nm 크기를 나타내었으며 약 15-18의 높은 장단축비를 형성하였다.When the seed prepared as described above was added to the mixed aqueous solution according to the molar ratio of cetyltrimethyl ammonium bromide (CTAB) and AgNO 3 , rod-shaped particles having the highest long-term reduction ratio were formed in the aqueous solution having a molar ratio of 0.5. The rod-shaped particles were about 4-10 μm in length, about 300-500 nm in diameter, and formed a high long-term ratio of about 15-18.

상기 Ag 나노입자를 합성하기 위한 출발 원료로 질산은(silver nitrate, AgNO3 99+%)을 사용하였고, 환원제로는 보론 나트륨 수소화물(borohydride, NaBH4)과 아스코르브산(ascorbic acid)을 사용하였다. 상기 Ag 나노 콜로이드 입자의 크기 및 수용액 내 안정성을 향상시키기 위하여 분산제로 tri-sodium citrate dihydrate(C6H5Na3O7)을 사용하였으며, 막대상의 입자를 합성하기 위해 계면활성제로 CTAB 를 사용하였다.Silver nitrate (AgNO 3 99 +%) was used as a starting material for synthesizing the Ag nanoparticles, and boron sodium hydride (borohydride, NaBH 4 ) and ascorbic acid were used as reducing agents. Tri-sodium citrate dihydrate (C 6 H 5 Na 3 O 7 ) was used as a dispersant to improve the size and stability of the Ag nanocolloid particles, and CTAB was used as a surfactant to synthesize the rod-shaped particles. .

이하 본 발명을 실시예에 의해 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 Example

먼저 막대상 Ag입자를 제조하기 위해서는 씨드로 사용하기 위한 Ag 입자를 제조해야하는데, 이는 액상환원법으로 제조하였다. 이를 위해 우선 AgNO3 를 증류수에 30분간 교반시켜 완전히 녹인 다음, 분산안정제인 tri-sodium citrate를 첨가하고 2시간 동안 교반하여 충분히 혼합하였다. AgNO3 와 분산안정제의 혼합수용액에 환원제인 보론 나트륨 수소화물을 0.5 ml/min로 서서히 첨가시켜 환원반응을 유도하고, 이 반응에 의해 Ag 나노입자가 형성되도록 하였다.First, in order to manufacture rod-shaped Ag particles, Ag particles for use as seeds should be prepared, which were prepared by a liquid reduction method. To this end, AgNO 3 was first dissolved in distilled water for 30 minutes to completely dissolve. Then, tri-sodium citrate, a dispersion stabilizer, was added thereto, followed by stirring for 2 hours, followed by sufficient mixing. To the mixed aqueous solution of AgNO 3 and a dispersion stabilizer, boron sodium hydride, a reducing agent, was slowly added at 0.5 ml / min to induce a reduction reaction, thereby allowing Ag nanoparticles to be formed.

이렇게 얻어진 Ag 콜로이드 내 입자의 크기가 10-20 nm 이며 장시간 동안 안정성을 지니고 있어 막대상 입자를 제조하기 위한 씨드로 바람직하다. The Ag colloidal particles thus obtained have a size of 10-20 nm and are stable for a long time, and thus are preferable as seeds for preparing rod-shaped particles.

다음 막대상 Ag 입자를 제조하기 위하여 AgNO3 를 증류수에 30분간 교반시킨 후 계면활성제인 CTAB를 (AgNO3 /CTAB) 몰비에 따라 첨가하여 혼합하였다. 1시간 동안 교반을 한 뒤, 환원제인 아스코르브산을 0.1 ml/min로 서서히 첨가시켜 주었다. 30분 동안 반응을 유도하고 씨드를 1 ml/min로 첨가시켜 주었다. 이후 2시간 동안 교반을 통해 충분히 혼합시켜 막대형 Ag 입자가 형성되도록 하였다. 모든 실험조건에 대해서 수용액내 반응을 촉진하기 위해 자석식 교반기를 이용하여 약 800 rpm의 일정한 속도로 교반시켰으며, 실험조건은 상온에서 행하였다. AgNO 3 was then stirred in distilled water for 30 minutes to prepare rod-shaped Ag particles, and the surfactant CTAB was added and mixed according to the molar ratio of (AgNO 3 / CTAB). After stirring for 1 hour, ascorbic acid as a reducing agent was slowly added at 0.1 ml / min. The reaction was induced for 30 minutes and the seeds were added at 1 ml / min. Thereafter, the mixture was sufficiently mixed with stirring for 2 hours to form rod-shaped Ag particles. All the experimental conditions were stirred at a constant speed of about 800 rpm using a magnetic stirrer to promote the reaction in the aqueous solution, and the experimental conditions were performed at room temperature.

반응에 의하여 얻어진 Ag 콜로이드 입자를 증류수, 아세톤, 그리고 알코올을 이용하여 원심분리 및 세척을 반복 수행한 다음, 80℃의 건조오븐에서 건조시킨 후 분쇄하여 Ag 미분말을 제조하였다. Ag colloid particles obtained by the reaction were repeatedly centrifuged and washed with distilled water, acetone, and alcohol, dried in a drying oven at 80 ° C., and then ground to prepare fine Ag powder.

제조된 분말의 결정상은 x-선 회절분석을 통하여 확인하였고, Ag 콜로이드 입자의 모양, 크기 및 그 분포상태는 투과전자현미경(TEM)과 주사전자현미경 (SEM)으로 관찰하였다. 또한 반응 후 얻어진 Ag 콜로이드의 분체특성 및 표면특성을 확인하기 위하여 UV 흡수 분광도 측정기(Shimazu, UVmini-1240)를 이용, 자외선 흡수실험을 행하였다. 이를 도 1 내지 도 6에 표시하였다.The crystal phase of the prepared powder was confirmed by X-ray diffraction analysis, and the shape, size and distribution state of Ag colloidal particles were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). In addition, in order to confirm the powder characteristics and surface characteristics of the Ag colloid obtained after the reaction, an ultraviolet absorption experiment was conducted using a UV absorption spectrophotometer (Shimazu, UVmini-1240). This is shown in FIGS. 1 to 6.

도 1은 tri-sodium citrate을 계면활성제로 사용하여 제조된 분말의 x-선 회절 분석결과이다. Ag 분말은 회절각 20-90˚ 범위에서 Ag 고유의 동일한 결정피크를 나타내었으며, 각 피크의 면지수는 (111), (200), (220), (311), (222)로서 FCC 구조임을 확인할 수 있었다.1 is an x-ray diffraction analysis of a powder prepared using tri-sodium citrate as a surfactant. Ag powder exhibited the same crystal peaks unique to Ag in the diffraction angle range of 20-90 °, and the surface index of each peak was (111), (200), (220), (311), and (222). I could confirm it.

이렇게 합성된 콜로이드 내 Ag 입자 형상을 TEM으로 관찰하여 도 2에 나타내었다. AgNO3 와 tri-sodium citrate의 몰비가 0.5인 수용액에서 환원제로 보론 나트륨 수소화물을 첨가하였을 때 Ag 이온의 환원속도가 빠르게 진행하였다. 하지만 tri-sodium citrate가 분산안정제로서의 우수한 특성에 기여하여 입자간의 응집 및 크기를 제어 하였다. 약 10-20 nm의 입자크기를 갖는 구형의 Ag 나노 졸을 합성할 수 있었으며 대체로 고른 입도 분포를 나타내었다. 또한 합성한 졸은 최대 일주일까지 침전이 생기지 않고 안정한 졸 상태를 유지하기 때문에 Ag 막대상 입자를 합성하기 위한 씨드로 사용하였다. The Ag particle shape in the colloid thus synthesized is shown in FIG. 2 by TEM. When boron sodium hydride was added as a reducing agent in an aqueous solution in which the molar ratio of AgNO 3 to tri-sodium citrate was 0.5, the reduction rate of Ag ions proceeded rapidly. However, tri-sodium citrate contributed to its excellent properties as a dispersion stabilizer to control the aggregation and size between particles. Spherical Ag nano sols having a particle size of about 10-20 nm could be synthesized and showed generally uniform particle size distribution. In addition, the synthesized sol was used as a seed for synthesizing Ag rod-like particles because the sol did not generate precipitates and maintained a stable sol state for up to one week.

도 3은 계면활성제로 사용한 CTAB 의 농도를 0.01 M로 하고, AgNO3 와의 몰비를 각각 0.1, 0.5, 1, 5로 하여 혼합한 뒤 씨드를 첨가하여 합성된 Ag 입자를 TEM으로 관찰한 결과이다. AgNO3 몰농도 변화에 따라 합성된 Ag 입자의 미세구조와 응집상태가 변하였는데 몰비가 0.1인 수용액내에서는 10-30 nm의 입자 크기를 갖는 구형의 Ag 입자가 합성되었다. 몰비가 0.5인 수용액내에서는 직경이 약 300-500 nm이고 길이가 약 4-10 ㎛인 막대상 입자가 합성 되었다. AgNO3 몰 농도를 증가시켜 CTAB와의 몰비를 1과 5로 하였을 때 씨드의 성장을 통한 막대상 입자의 제조에 있 어 장단축비를 지니는 입자는 형성되지 않았다. 농도가 증가할수록 구형의 입자 형태로 크기가 조대해졌으며 몰비가 5에서는 약 100-300 nm 크기의 입자들이 형성되었으며 응집성향을 나타내었다. FIG. 3 shows the results of observing the synthesized Ag particles by TEM with a concentration of 0.01 M of CTAB used as a surfactant and a molar ratio with AgNO 3 of 0.1, 0.5, 1, and 5, respectively, followed by the addition of seeds. The microstructure and agglomeration state of the synthesized Ag particles changed according to the AgNO 3 molar concentration. Spherical Ag particles having a particle size of 10-30 nm were synthesized in an aqueous solution having a molar ratio of 0.1. In an aqueous solution with a molar ratio of 0.5, rod-shaped particles of about 300-500 nm in diameter and about 4-10 μm in length were synthesized. When the molar ratio with the CTAB was increased to 1 and 5 by increasing the AgNO 3 molar concentration, no particles having long-to-short ratio were formed in the production of rod-shaped particles through seed growth. As the concentration was increased, the size became coarse in the form of spherical particles. At molar ratio of 5, particles of about 100-300 nm were formed and showed cohesiveness.

도 4는 AgNO3 와 계면활성제인 CTAB의 몰비를 0.5가 되도록 혼합한 뒤, 씨드를 첨가하여 합성한 Ag 입자를 TEM과 SEM을 통해 관찰한 결과이다. 구형의 입자들이 입자성장을 통하여 막대형상을 이루었고, 길이는 4-10 ㎛이며 직경은 300-500 nm 크기를 나타내었으며, 약 15-18의 높은 장단축비를 가진 입자가 형성되었다. 이는 씨드를 첨가하였을 때, AgNO3 와 계면활성제인 CTAB 내에서 Ag 이온들이 아스코르브산에 의해 환원이 되는 과정에서 씨드와의 결합을 통해 막대형상으로 입자성장을 이룬 것으로 보인다. 4 is a result of mixing AgNO 3 and a molar ratio of CTAB, which is a surfactant, to 0.5, and then observing Ag particles synthesized by adding seeds through TEM and SEM. The spherical particles formed rods through particle growth, 4-10 ㎛ in length, 300-500 nm in diameter, and particles with high long-term ratio of about 15-18. This is because, when the addition of the seed, Ag ions in the AgNO 3 and CTAB surfactant are likely to grain growth achieved by the combination of a rod-shaped seed and in the course of the reduction by the ascorbic acid.

이와 같이 제조되어 진 구형과 막대형 입자를 함유한 콜로이드의 UV 흡광도 peak를 도 5에서 나타내었다. 씨드로 사용된 구형의 나노입자는 그림에서 보는 바와 같이 250 nm의 흡수단에 해당하는 Ag 이온들이 Ag입자로 환원되어 400 nm 영역에서 환원된 Ag 입자의 흡광도가 크게 나타나고 있다. 일반적으로 밴드가 좁으면 입자들이 단분산되어 있음을 의미 하는데 흡광도의 증가는 흡수밴드 폭을 좁게 하며, 이는 단분산도를 증가시키게 된다. 따라서 본 실험에서 계면활성제로 사용된 tri-sodium citrate의 경우, 분산안정제로서의 역할을 하기 때문에 Ag 입자의 평균 입자크기가 감소하고 단분산 입자들이 형성되어 흡광도가 높고 흡수밴드의 폭이 좁게 형성되었다. The UV absorbance peaks of the colloids containing spherical and rod-shaped particles thus prepared are shown in FIG. 5. As shown in the figure, the spherical nanoparticles used as seeds show the absorbance of Ag particles reduced in the 400 nm region due to the reduction of Ag ions corresponding to 250 nm absorption stages into Ag particles. In general, a narrower band means that the particles are monodisperse. An increase in absorbance results in a narrower absorption band width, which increases monodispersity. Therefore, in the case of tri-sodium citrate used as a surfactant in this experiment, the average particle size of Ag particles was reduced and monodisperse particles were formed because they act as dispersion stabilizers, resulting in high absorbance and narrow width of the absorption band.

또한 막대상 입자 peak의 정점 (430 nm)이 나노 크기의 입자보다 단파장에서 장파장으로 이동되고 있는 것을 알 수 있다. 이는 Ag 입자들이 결합과 성장을 하게 되면서 입자크기의 증가로 인해 단파장에서 장파장으로의 peak 이동이 일어나게 되었다. 이러한 막대입자는 넓은 입도분포를 보이며 결과적으로 흡수밴드의 폭이 넓게 형성되었다.In addition, it can be seen that the peak of the rod-shaped particle peak (430 nm) is shifted from shorter wavelength to longer wavelength than nano-sized particles. As Ag particles bind and grow, the peak size shifts from short wavelength to long wavelength due to the increase in particle size. These rod particles showed a wide particle size distribution, and as a result, a wider absorption band was formed.

도 6은 막대형 입자분말을 x-선 회절 분석한 결과이다. 각 peak의 면지수는 (111), (200), (220), (311), (222)로서 FCC 구조를 이루고 있음을 확인할 수 있었다. 그리고 구형의 입자와는 달리 (111)면의 peak 감소는 입자가 막대상의 입자로 성장하는 과정에서 (200)면을 통한 입자성장을 이루어 상대적으로 peak가 감소된 것으로 사료된다. 또한 회절각 20-90˚ 범위에서 분말은 Ag 고유의 동일한 결정피크를 나타내었으며 Br화합물의 peak는 계면활성제로 사용한 CTAB에서 비롯한 것인데, 이는 세척 과정의 반복을 통해 제거해야 할 것으로 판단된다.6 is a result of x-ray diffraction analysis of rod-shaped powder. The surface indices of each peak were (111), (200), (220), (311), and (222). Unlike the spherical particles, the peak reduction of the (111) plane is thought to be relatively reduced by the particle growth through the (200) plane during the growth of the particles into rod-shaped particles. In addition, the powder showed the same crystal peak of Ag in the diffraction angle range of 20-90˚, and the peak of Br compound was derived from CTAB used as a surfactant, which should be removed by repeated washing process.

이처럼 본 발명은 CTAB는 Ag 입자간의 응집을 방지할 뿐만 아니라 몰비에 따라서 입자 모양을 형성하는데도 관여함을 알 수 있었고, Ag 입자를 CTAB와 AgNO3의 몰비가 0.5인 수용액에 넣었을 때는 박막 기판과의 부착성을 향상시켜 구형의 나노입자가 성장되어 높은 장단축비를 형성하는 막대상 Ag 입자가 제조되어짐을 확인할 수 있었다. As described above, the present invention was found that CTAB not only prevents aggregation between Ag particles but also forms particles according to the molar ratio, and when the Ag particles are placed in an aqueous solution in which the molar ratio of CTAB and AgNO 3 is 0.5, It was confirmed that the rod-shaped Ag particles were formed to improve adhesion and spherical nanoparticles were grown to form a high long-term reduction ratio.

본 발명은 높은 장단축비를 형성하는 막대상 Ag 입자를 제조할 수 있는 방법을 제공함으로써 기존 Ag 페이스트의 전극 특성을 보완할 전극용 잉크로서의 Ag 졸로 활용이 가능하고, PDP 전극제조에 있어 원가 절감이 가능한 매우 유용한 발명인 것이다.The present invention can be used as an Ag sol as an electrode ink to supplement the electrode characteristics of the existing Ag paste by providing a method for manufacturing rod-shaped Ag particles forming a high long-term reduction ratio, cost reduction in the production of PDP electrode This is a very useful invention possible.

Claims (1)

액상환원법으로 Ag 입자를 제조하고, 상기 Ag 입자를 씨드로 이용하여 높은 장단축비를 지닌 막대상 Ag입자를 제조하기 위한 방법에 있어서,In the method for producing Ag particles by the liquid reduction method, using the Ag particles as a seed for producing rod-shaped Ag particles having a high long-term reduction ratio, 상기 씨드로 이용되는 Ag 입자를 CTAB(cetyltrimethyl ammonium bromide):AgNO3의 몰비가 1:50인 수용액에 넣어서 구형의 나노입자를 성장시키는 단계로 이루어짐을 특징으로 하는 전극용 은막대입자 제조방법.Ag particle used as the seed is a method for producing a silver bar particle for an electrode, characterized in that the step of growing a spherical nanoparticles by putting in a solution of a molar ratio of 1:50 CTAB (cetyltrimethyl ammonium bromide): AgNO 3 .
KR1020060018389A 2006-02-24 2006-02-24 Process of rod-like Ag particles for application in electrode KR100756853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060018389A KR100756853B1 (en) 2006-02-24 2006-02-24 Process of rod-like Ag particles for application in electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060018389A KR100756853B1 (en) 2006-02-24 2006-02-24 Process of rod-like Ag particles for application in electrode

Publications (2)

Publication Number Publication Date
KR20070088151A KR20070088151A (en) 2007-08-29
KR100756853B1 true KR100756853B1 (en) 2007-09-07

Family

ID=38613878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060018389A KR100756853B1 (en) 2006-02-24 2006-02-24 Process of rod-like Ag particles for application in electrode

Country Status (1)

Country Link
KR (1) KR100756853B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690630B1 (en) * 2015-06-17 2016-12-30 재단법인 대구경북첨단의료산업진흥재단 Coating method of silver on solid silicone substrate and the antibacterial solid silicone substrate having silver coating layer produced by the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035206A (en) * 2001-10-30 2003-05-09 한국과학기술원 Method for Chemical Synthesis of Various Shaped Nanomaterials Including Spheres, Rods, and Stars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035206A (en) * 2001-10-30 2003-05-09 한국과학기술원 Method for Chemical Synthesis of Various Shaped Nanomaterials Including Spheres, Rods, and Stars

Also Published As

Publication number Publication date
KR20070088151A (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US20210339316A1 (en) Methods for production of silver nanostructures
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
JP5068614B2 (en) Method for producing copper nanoparticles using microwaves
Dong et al. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia
Kundu et al. Anisotropic growth of gold clusters to gold nanocubes under UV irradiation
KR101090431B1 (en) Method for preparing metal nanoparticles using matal seed and metal nanoparticles comprising metal seed
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
KR20120115298A (en) Compositions and methods for growing copper nanowires
US10226822B2 (en) Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
JP5059317B2 (en) Method for producing silver particles
KR20080035315A (en) Silver nano-particles and preparation method thereof
WO2004078641A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
EP3508291A1 (en) Method for preparing solution containing ligand-bonded gold nanoclusters
Chang et al. High-yield water-based synthesis of truncated silver nanocubes
TW201330955A (en) Manufacturing method of precious metal nanoparticles
KR101273122B1 (en) NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES
KR20170106086A (en) preparation method of copper nano-structures
Xu et al. Self-assembled growth of LuVO 4 nanoleaves: hydrothermal synthesis, morphology evolution, and luminescence properties
Zhang et al. A facile colloidal templating method to monodisperse hollow Ag and Ag/Au submicrometer spheres
KR20120026923A (en) A method for preparing silver nanoparticles using ionic liquid
KR100756853B1 (en) Process of rod-like Ag particles for application in electrode
CN110181074B (en) Method for green preparation of high-length-diameter-ratio silver nanowires by composite soft template method
Hu et al. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates
KR100629112B1 (en) Manufacturing method of silver superfine nanoparticles
KR20180108537A (en) Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110811

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee