KR20070060784A - A cathode material for lithium secondary batteries with non-aqueous electrolyte, a process for preparing the cathode material and lithium secondary battery containing the same - Google Patents

A cathode material for lithium secondary batteries with non-aqueous electrolyte, a process for preparing the cathode material and lithium secondary battery containing the same Download PDF

Info

Publication number
KR20070060784A
KR20070060784A KR1020050120796A KR20050120796A KR20070060784A KR 20070060784 A KR20070060784 A KR 20070060784A KR 1020050120796 A KR1020050120796 A KR 1020050120796A KR 20050120796 A KR20050120796 A KR 20050120796A KR 20070060784 A KR20070060784 A KR 20070060784A
Authority
KR
South Korea
Prior art keywords
active material
secondary battery
lithium secondary
lithium
aqueous electrolyte
Prior art date
Application number
KR1020050120796A
Other languages
Korean (ko)
Other versions
KR100734225B1 (en
Inventor
곽동학
이영기
윤희찬
김종섭
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020050120796A priority Critical patent/KR100734225B1/en
Publication of KR20070060784A publication Critical patent/KR20070060784A/en
Application granted granted Critical
Publication of KR100734225B1 publication Critical patent/KR100734225B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided is a positive electrode active material for a lithium secondary battery with a non-aqueous electrolyte, which enhances battery capacity, is improved in cycle characteristics, and has excellent thermal safety owing to low reactivity with an electrolytic solution at high temperature. The positive electrode active material for a lithium secondary battery with a non-aqueous electrolyte comprises at least one metal selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, and Zr distributed on the surface of a lithium nickel cobalt manganese composite metal oxide represented by a formula 1 which is Li_aNi_1-(v+w+x+y+z)Mn_vCo_wM_xM'_yM"_zO2, wherein a content of unreacted sulfur on the surface is 1000ppm or less. In the formula 1, M, M', and M" are independently one or more selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, and Zr, wherein 0.9<=a<=1.1, 0.295<=1-(v+w+x+y+z)<=0.85, 0.05<=v<=0.35, 0.10<=w<=0.35, and 0.015<=x+y+z<=0.03.

Description

비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지{A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same}A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same}

도1은 실시예1, 비교예1에 따른 양극활물질의 DSC 측정결과를 나타낸 도면.1 is a view showing the DSC measurement results of the positive electrode active material according to Example 1, Comparative Example 1.

도2은 실시예7, 비교예2에 따른 양극활물질의 DSC 측정결과를 나타낸 도면이다.Figure 2 is a view showing the DSC measurement results of the positive electrode active material according to Example 7, Comparative Example 2.

본 발명은 리튬 이차전지용 양극활물질, 그 제조 방법 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는 전지의 충방전 특성, 0.1C 방전용량과 1.0C 방전용량의 비로 정의된 고율특성, 사이클 특성 및 열적 안정성 특성이 우수한 리튬 이차전지용 양극활물질 및 그 제조 방법에 관한 것이다.The present invention relates to a positive electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, a high rate characteristic defined by a charge / discharge characteristic of a battery, a ratio of a 0.1C discharge capacity and a 1.0C discharge capacity, and a cycle The present invention relates to a cathode active material for a lithium secondary battery having excellent characteristics and thermal stability characteristics, and a method of manufacturing the same.

본 발명의 비수계 전해질 리튬 이차전지용 양극활물질은 LiaNi1-(v+w+x+y+z)MnvCowMxM'yM"zO2(상기식에서 M, M', M"은 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군으로부터 선택되는 적어도 하나 이상이며, 0.9≤a≤1.1, 0.295≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.1≤w≤0.35, 0.005≤x+y+z≤0.03 이다.)로 나타내어지는 리튬-니켈코발트망간 복합금속 산화물이다.The cathode active material for a non-aqueous electrolyte lithium secondary battery of the present invention is Li a Ni 1- (v + w + x + y + z) Mn v Co w M x M ' y M " z O 2 (wherein M, M', M ″ is at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, and 0.9 ≦ a ≦ 1.1, 0.295 ≦ 1- (v + w + x + y + z) ≤ 0.85, 0.05 ≤ v ≤ 0.35, 0.1 ≤ w ≤ 0.35, 0.005 ≤ x + y + z ≤ 0.03).

근래, 휴대 전화, 노트북, PDA 등 휴대기기의 소형화, 박형화 추세에 따라 이들 휴대기기의 에너지원으로 사용되고 있는 리튬 이차전지의 고용량화가 필요하다. 현재 상용화되고 있는 리튬-코발트 복합산화물은 합성이 비교적 용이하며, 안전성, 사이클 특성이 우수하지만 용량 한계점에 도달함에 따라 전지의 고용량화에는 한계가 있다는 문제점이 있다. Recently, with the trend toward miniaturization and thinning of portable devices such as mobile phones, laptops, and PDAs, it is necessary to increase the capacity of lithium secondary batteries used as energy sources for these portable devices. Lithium-cobalt composite oxide currently commercialized is relatively easy to synthesize, has excellent safety and cycle characteristics, but has a problem in that the capacity of the battery is limited as the capacity limit is reached.

이런 문제점 때문에 리튬-코발트 복합산화물을 대체할 물질로서 저가의 Mn을 이용한 리튬-망간 복합산화물(LiMnO2 또는 LiMn2O4)이나, Ni을 이용한 리튬-니켈 복합산화물이 주목받고 있다. 이들 중 층상구조를 갖는 리튬-망간 복합산화물은 용량면에서는 리튬-코발트 복합산화물보다 훨씬 높은 장점이 있으나 구조가 불안정하여 사이클 특성이 좋지 않으며, 스피넬 리튬-망간 복합산화물은 열안정성이 우수하지만 용량이 리튬-코발트 복합산화물보다 낮다는 단점이 있어 고용량 전지에 적용하기에는 어려움이 있었다.Because of these problems, lithium-manganese composite oxide (LiMnO 2) using low-cost Mn as a material to replace the lithium-cobalt composite oxide Or LiMn 2 O 4 ) and lithium-nickel composite oxides using Ni are attracting attention. Among them, the layered lithium-manganese composite oxide has a much higher capacity than the lithium-cobalt composite oxide in terms of capacity, but the structure is unstable and cycle performance is not good. The spinel lithium-manganese composite oxide has excellent thermal stability but high capacity. It has a disadvantage that it is lower than the lithium-cobalt composite oxide, it is difficult to apply to a high capacity battery.

한편, 리튬-니켈 복합산화물은 고용량의 물질이지만 사이클 특성이 좋지 않고 제조 방법이 어렵다는 문제점이 있다. 이와 같은 결점을 해결하기 위해, 특개평 8-213015호 공보는 리튬 이차전지의 자기 방전 특성, 사이클 특성, 고온 환경 하에서의 보존, 사용에 양호한 전지성능을 유지하는 것이 가능한 양극활물질로서, LixNiaCobMcO2(0.8〈 x〈 1.2, 0.01〈 a〈 0.99, 0.01〈 b〈 0.99, 0.01〈 c〈 0.3, 0.8〈 a+b+c〈 1.2, M은 Al, V, Mn, Fe, Cu 및 Zn로부터 선택된 적어도 1종의 원소)을 제안하고 있다. 상기 제조 방법에 의하여 얻어진 리튬-니켈 복합산화물은 리튬-코발트 복합산화물 대비 고용량이며, 사이클 특성도 어느 정도 개선되었으나, 충전 상태에서 고온 특성은 아직도 만족스럽지 못하여, 고온에서 산소 등 가스 방출을 수반한 분해가 시작되고, 이 때 방출된 산소 등의 가스가 전해액과 반응하거나, 니켈 이온의 전해액과의 반응 등을 통해 전지의 내부 압력이 상승하여 전지가 팽창하거나 최악의 경우에는 전지가 폭발할 위험을 갖고 있는 등의 문제가 있다. On the other hand, lithium-nickel composite oxide is a high capacity material, but there is a problem that the cycle characteristics are not good and the manufacturing method is difficult. In order to solve the above drawbacks, Patent Application Laid-Open No. 8-213015 is a positive electrode active material capable of maintaining good battery performance for self-discharge characteristics, cycle characteristics, preservation under high temperature environment, the use of a lithium secondary battery, Li x Ni a Co b M c O 2 (0.8 <x <1.2, 0.01 <a <0.99, 0.01 <b <0.99, 0.01 <c <0.3, 0.8 <a + b + c <1.2, M is Al, V, Mn, Fe , At least one element selected from Cu and Zn). The lithium-nickel composite oxide obtained by the manufacturing method has a higher capacity than the lithium-cobalt composite oxide, and the cycle characteristics have been improved to some extent, but the high temperature characteristics are still unsatisfactory in the state of charge, resulting in decomposition involving the release of gas such as oxygen at high temperatures. At this time, the released gas reacts with the electrolyte, or the internal pressure of the battery increases due to the reaction of nickel ions with the electrolyte, causing the battery to expand or, in the worst case, the battery to explode. There is such a problem.

한편, 열 안정성 향상을 위해 Ni의 일부를 다른 금속으로 치환한 리튬-니켈 복합산화물을 양극활물질로 이용할 경우, Ni의 일부가 첨가 금속으로 치환되어 열 안정성은 향상될 수 있으나, 첨가금속의 양이 증가할수록 용량이 현저히 저하되는 문제점을 갖고 있다.On the other hand, when using a lithium-nickel composite oxide in which a part of Ni is substituted with another metal to improve thermal stability as a cathode active material, a part of Ni may be replaced with an additive metal to improve thermal stability, but the amount of added metal Increasingly, the capacity is significantly lowered.

따라서, 당해 기술분야에는 고용량 전지 제조에 적용하기 위한 양극활물질로써 용량이 높을 뿐만 아니라 고온에서의 열 안정성이 높아 전해액과의 반응성을 억제된 양극활물질의 개발이 요구되어 왔다.Accordingly, there is a need in the art for the development of a cathode active material having high capacity as well as high thermal stability at high temperatures and suppressing reactivity with an electrolyte as a cathode active material for application in high capacity batteries.

상기 문제점을 해결하기 위하여, 본 발명은 특정 조성의 비수계 전해질 리튬 이차전지용 양극활물질을 제공함으로써 전지의 용량을 고용량화하면서 열적 안정성 이 향상되고 사이클 특성을 향상시키는 것을 목적으로 한다. In order to solve the above problems, an object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte lithium secondary battery of a specific composition to improve the thermal stability and improve the cycle characteristics while increasing the capacity of the battery.

즉, 본 발명은 특정 조성에서의 전지 용량은 높게 하면서도 사이클 특성이 향상되고, 고온에서의 전해액과 반응성이 낮아서 열적 안정성이 우수한 비수계 전해질 리튬 이차 전지용 양극활물질을 제공하기 위한 것이다.That is, the present invention is to provide a positive electrode active material for a non-aqueous electrolyte lithium secondary battery having a high battery capacity at a specific composition, improved cycle characteristics, low reactivity with an electrolyte at high temperature, and excellent thermal stability.

상기 목적을 달성하기 위해 본 발명에서는 하기 화학식 1로 나타내어지는 리튬니켈코발트망간 복합금속 산화물에 Al, Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되어진 적어도 하나 이상의 금속이 표면에 분포되고, 표면에 미반응으로 남아 있는 황 함량이 1000ppm 이하인 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극 활물질이 제공된다.In order to achieve the above object, in the present invention, at least one metal selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, and Zr in the lithium nickel cobalt manganese composite metal oxide represented by the following Chemical Formula 1 The positive electrode active material for a non-aqueous electrolyte lithium secondary battery, which is distributed in and has an unreacted sulfur content on the surface of 1000 ppm or less, is provided.

[화학식 1][Formula 1]

LiaNi1 -(v+w+x+y+z)MnvCowMxM'yM"zO2 Li a Ni 1- (v + w + x + y + z) Mn v Co w M x M ' y M " z O 2

(상기식에서 M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군에서 선택되는 적어도 하나 이상이며, 이 때 0.9 ≤a≤ 1.1, 0.295 ≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.10≤w≤0.35, 0.015≤x+y+z≤0.03 이다.)(In the above formula, M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, where 0.9 ≤ a ≤ 1.1, 0.295 ≦ 1- (v + w + x + y + z) ≦ 0.85, 0.05 ≦ v ≦ 0.35, 0.10 ≦ w ≦ 0.35, 0.015 ≦ x + y + z ≦ 0.03.)

상기 양극 활물질의 평균 입경은 1~30um이고, 탭밀도는 2~2.8g/㎤이며, 4.3~3.0V 충방전에서 1.0C-rate의 첫 번째 방전용량이 140~185mAh/g이며, 구형 또 는 유사 구형을 나타내는 것을 특징으로 한다.The average particle diameter of the positive electrode active material is 1 ~ 30um, the tap density is 2 ~ 2.8g / ㎠, the first discharge capacity of 1.0C-rate at 4.3 ~ 3.0V charge and discharge is 140 ~ 185mAh / g, spherical or It is characterized by showing a pseudo sphere.

또한, 본 발명에서는 니켈염 용액, 코발트염 용액 및 망간염 용액의 혼합 금속 용액을 착제 및 침전제 존재 하에서 공침전시켜 니켈코발트망간 금속 하이드록사이드를 제조하고, NaOH, KOH 수용액 또는 LiOH 수용액의 알카리 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 황 함량을 1000ppm 이하로 제어한 후, Al, Mg, Sr, Ca, P, Pb, Y, Zr 중 적어도 하나 이상의 화합물을 표면에 분포시키고, 얻은 Ni1 -v-w-x-y- zMnvCowMxM'yM"z(OH)2 (상기식에서 M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군에서 선택되는 적어도 하나 이상이며, 이 때 0.9 ≤a≤ 1.1, 0.295 ≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.10≤w≤0.35, 0.015≤x+y+z≤0.03 이다.)를 LiOH·H2O, LiCO3 를 포함하는 Li화합물과 혼합하여 열처리하여 리튬-니켈 복합산화물을 얻는 공정을 포함하는 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극활물질의 제조방법이 제공된다.In the present invention, a mixed metal solution of a nickel salt solution, a cobalt salt solution and a manganese salt solution is coprecipitated in the presence of a complexing agent and a precipitant to prepare nickel cobalt manganese metal hydroxide, and an aqueous alkali solution of NaOH, KOH aqueous solution or LiOH aqueous solution. After controlling the sulfur content remaining unreacted on the surface of Ni 1- (v + w) Mn v Co w (OH) 2 to 1000ppm or less, Al, Mg, Sr, Ca, P, Pb, Y, At least one compound of Zr is distributed on the surface, and Ni 1 -vwxy- z Mn v Co w M x M ' y M " z (OH) 2 (wherein M, M' and M" are each independently of one another) At least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, wherein 0.9 ≦ a ≦ 1.1, 0.295 ≦ 1- (v + w + x + y + z) ≦ 0.85, 0.05 ≤ v ≤ 0.35, 0.10 ≤ w ≤ 0.35, 0.015 ≤ x + y + z ≤ 0.03), and mixed with a Li compound containing LiOH.H 2 O, LiCO 3 and heat treated to form a lithium-nickel composite oxide. Gaining process Provided is a method of manufacturing a positive electrode active material for a non-aqueous electrolyte lithium secondary battery, comprising:

상기 공침전시 반응조 내의 pH는 11~12인 것을 특징으로 한다.PH in the reaction tank during the coprecipitation is characterized in that 11 to 12.

상기 열처리는 일반공기, 건조공기 또는 산소 분위기 하에서 300 내지 700도에서 5~10시간, 700 내지 1000도에서 10~30시간 소성하는 것을 특징으로 한다.The heat treatment is characterized in that for 5 to 10 hours at 300 to 700 degrees, 10 to 30 hours at 700 to 1000 degrees under normal air, dry air or oxygen atmosphere.

또한 본 발명에서는 상기 이차 전지용 양극 활물질을 NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제를 넣은 용액에 첨가한 것을 특징으로 하는 리튬-니켈코발트망간 복합 금속 산화물 전극이 제공된다.The present invention also provides a lithium-nickel cobalt manganese composite metal oxide electrode, wherein the positive electrode active material for secondary batteries is added to a solution containing a PVDF binder and a carbon conductive agent using NMP as a solvent.

또한 본 발명에서는 상기 리튬-니켈코발트망간 복합 금속 산화물의 전극을 사용하는 것을 특징으로 하는 리튬 이차전지가 제공된다.In addition, the present invention provides a lithium secondary battery using an electrode of the lithium-nickel cobalt manganese composite metal oxide.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 의한 비수계 전해질 리튬 이차전지용 양극활물질은 화학식 1의 리튬 니켈코발트망간 복합금속 산화물이다.The cathode active material for a non-aqueous electrolyte lithium secondary battery according to the present invention is a lithium nickel cobalt manganese composite metal oxide of Chemical Formula 1.

[화학식 1][Formula 1]

LiaNi1 -(v+w+x+y+z)MnvCowMxM'yM"zO2 Li a Ni 1- (v + w + x + y + z) Mn v Co w M x M ' y M " z O 2

(상기식에서 M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군에서 선택되는 적어도 하나 이상이며, 이 때 0.9 ≤a≤ 1.1, 0.295 ≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.10≤w≤0.35, 0.015≤x+y+z≤0.03 이다.)(In the above formula, M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, where 0.9 ≤ a ≤ 1.1, 0.295 ≦ 1- (v + w + x + y + z) ≦ 0.85, 0.05 ≦ v ≦ 0.35, 0.10 ≦ w ≦ 0.35, 0.015 ≦ x + y + z ≦ 0.03.)

본 발명의 양극 활물질은 특정 조성에서의 고용량과 고안전성을 실현하는 것으로서, 니켈 함량이 낮으면 용량이 저하되고, 니켈 함량이 높으면 용량은 높으나, 안전성이 떨어진다. 또한 코발트 함량이 낮으면 안전성이 떨어지고, 높으면 용량 저하 및 제조단가가 높게 된다. 망간 함량이 낮으면 안전성이 떨어지고, 높으면 용 량 및 수명 특성이 저하되게 된다. The positive electrode active material of the present invention realizes high capacity and high safety in a specific composition. If the nickel content is low, the capacity is lowered. If the nickel content is high, the capacity is high, but the safety is poor. In addition, the lower the cobalt content, the lower the safety, and the higher the capacity, the higher the manufacturing cost. Lower manganese content leads to lower safety, while higher manganese content leads to lower capacity and lifetime characteristics.

본 발명의 양극 활물질을 제조하기 위해서는 먼저, 니켈염 용액, 코발트염 용액, 망간염 용액과 착제(complex agent) 및 침전제를 반응시켜 니켈코발트망간 금속 하이드록사이드인 Ni1 -(v+w)MnvCow(OH)2를 제조한다. 이 공정은 공침법으로서, 보다 자세히 설명하면, 상기 금속염 용액, 착제 및 침전제를 반응조에 연속적으로 공급시키면서 니켈, 코발트, 망간 금속이 반응하면서 Ni1 -(v+w)MnvCow(OH)2 를 제조한다. 첨가되는 니켈염 용액, 코발트염 용액, 망간염 용액에서 총 금속의 농도는 1 내지 3M이 바람직하다. 금속염의 농도가 1M이하일 경우, 생성되는 물질의 양이 적어 생산성이 나쁘며, 금속염 농도가 3M이상일 경우에는 금속염이 석출될 우려가 있으며, 이 석출을 방지하기 위하여 50℃이상으로 가온을 해야만 하는 단점이 있고, 입자 조절이 힘들어 진다. 이 때, 용매로는 물을 사용할 수 있다. In order to prepare the cathode active material of the present invention, first, a nickel salt solution, a cobalt salt solution, a manganese salt solution, a complex agent, and a precipitant are reacted with Ni 1- (v + w) Mn, which is a nickel cobalt manganese metal hydroxide. v Co w (OH) 2 is prepared. This process is a coprecipitation method, which will be described in more detail. Ni 1- (v + w) Mn v Co w (OH) as nickel, cobalt, and manganese metal reacts while continuously supplying the metal salt solution, the complexing agent, and the precipitant to the reactor. 2 is prepared. In the nickel salt solution, cobalt salt solution and manganese salt solution to be added, the concentration of the total metal is preferably 1 to 3 M. If the concentration of the metal salt is less than 1M, the amount of material produced is low, the productivity is poor, if the concentration of the metal salt is more than 3M there is a risk that the metal salt is precipitated, in order to prevent this precipitation must be heated to more than 50 ℃ And particle control becomes difficult. At this time, water may be used as the solvent.

상기 니켈염으로는 니켈 하이드록사이드, 니켈 설페이트, 니켈 나이트레이트, 니켈 아세테이트, 니켈 클로라이드 등을 사용할 수 있고, 상기 코발트염으로는 코발트 하이드록사이드, 코발트 설페이트, 코발트 나이트레이트, 코발트 클로라이드 등을 사용할 수 있고, 망간염으로는 망간 아세테이트, 망간 디옥사이드, 망간 설페이트, 망간 클로라이드를 사용할 수 있다. 이 때 반응조의 온도는 30 내지 60℃의 범위를 유지할 수 있다. 반응조 내의 pH는 11 내지 12로 유지되는 것이 바람직하다.Nickel hydroxide, nickel sulfate, nickel nitrate, nickel acetate, nickel chloride, and the like may be used as the nickel salt, and cobalt hydroxide, cobalt sulfate, cobalt nitrate, and cobalt chloride may be used as the cobalt salt. As the manganese salt, manganese acetate, manganese dioxide, manganese sulfate, manganese chloride may be used. At this time, the temperature of the reaction tank can be maintained in the range of 30 to 60 ℃. The pH in the reactor is preferably maintained at 11-12.

또한, 공급되는 금속염 용액에서 금속과 착제의 혼합 비율은 1:0.5 내지 1.3의 몰비가 바람직하며, 이들 반응조 내의 물질들을 200 내지 1000 rpm의 속도로 교반하면서 반응시키는 것이 바람직하다. 본 발명에서 사용한 반응조는 오버플로우(overflow)되는 것을 사용하면 형성된 공침전물이 반응조 위로 오버플로우되므로, 분리하기가 용이하다. In addition, the mixing ratio of the metal and the complex in the metal salt solution to be supplied is preferably a molar ratio of 1: 0.5 to 1.3, and it is preferable to react the materials in these reactors with stirring at a speed of 200 to 1000 rpm. The reaction tank used in the present invention is easy to separate since the formed coprecipitate overflows over the reaction tank by using an overflowing one.

상기 반응 후 오버플로우되는 반응 침전물을 물 또는 약산의 용액으로 중성이 될 때까지 세척하고 NaOH 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 황(sulfur) 및 염소(chlorine)를 1000ppm이하로 제거한 후, 다시 탈이온화된 물로 중성이 될 때까지 세척하면서 나트륨을 제거한 후, 건조하여 니켈코발트망간 하이드록사이드를 제조한다. NaOH 수용액 뿐만 아니라 KOH 수용액, LiOH 수용액과 같은 알카리 수용액을 이용해도 같은 효과를 볼 수 있다. After the reaction, the overflowed reaction precipitate is washed with a solution of water or weak acid until it is neutral and remains unreacted on the surface of Ni 1- (v + w) Mn v Co w (OH) 2 using NaOH aqueous solution. Sulfur and chlorine are removed below 1000 ppm, and then washed again with deionized water until neutral to remove sodium, followed by drying to prepare nickel cobalt manganese hydroxide. The same effect can be obtained using not only NaOH aqueous solution but also alkaline aqueous solution, such as KOH aqueous solution and LiOH aqueous solution.

여기에 상기 화학식의 M, M' 및 M"는 해당되는 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr염을 하나 혹은 둘이상의 조합에 의해 선택하여 일정량을 물에 녹인 후 상기 니켈코발트망간 하이드록사이드를 이 용액에 교반하면서 투여한다. 이 때 사용한 화합물은 P인 경우 디암모늄 하이드로겐포스페이트((NH4)2HPO4), H3PO4 등이 있으며, 기타 금속염은 나이트레이트, 아세테이트, 설페이트 화합물을 사용한다. Here, M, M 'and M "of the formula is selected from the corresponding Al, Mg, Sr, Ca, P, Pb, Y and Zr salts by one or more combinations to dissolve a certain amount in water and then the nickel cobalt Manganese hydroxide is administered to this solution with stirring, where the compound used is P, such as diammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 ), H 3 PO 4 , and other metal salts such as nitrate, Acetate, sulfate compounds are used.

이 니켈코발트망간 복합금속 하이드록사이드 화합물을 건조한 후, 분급하여 리튬염과 혼합한 후, 산소 또는 공기 분위기하에서 300 내지 700도에서 5~10시간, 700 내지 1000도에서 10~30시간 소성하여 활물질을 제조한다. 상기 리튬염으로는 탄산리튬, 리튬 나이트레이트, 리튬 아세테이트, 수산화리튬, 수산화리튬수화물 또는 리튬옥사이드를 사용할 수 있다. 소성이 끝난 활물질을 분쇄/분급하여 최종적으로 활물질을 제조하였다. The nickel cobalt manganese composite metal hydroxide compound is dried, classified and mixed with a lithium salt, and then fired at 300 to 700 degrees for 5 to 10 hours and 700 to 1000 degrees for 10 to 30 hours in an oxygen or air atmosphere. To prepare. Lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate or lithium oxide may be used as the lithium salt. An active material was finally prepared by pulverizing / classifying the finished active material.

이렇게 제조된 활물질은 구형 또는 유사 구형의 형상을 가지며, 평균 입경이 1 내지 30um, 탭밀도가 2 내지 2.8g/㎤이고, 4.3~3V 충방전에서 140~185mAh/g의 1C 용량을 가지는 구형 또는 유사 구형의 화학식 1의 화합물이다. The active material thus prepared has a spherical or pseudo-spherical shape, an average particle diameter of 1 to 30 um, a tap density of 2 to 2.8 g / cm 3, and a spherical or having a 1 C capacity of 140 to 185 mAh / g at 4.3 to 3 V charge and discharge. Similar spherical compound of formula (1).

본 발명에 따른 리튬 니켈코발트망간 복합금속 산화물로 이차전지용 양극을 만들기 위해서, 예를 들어, NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제 및 상기 복합금속산화물을 넣어 제조된 슬러리를 사용할 수 있으나, 이에 제한되지 않는다. In order to make a positive electrode for a secondary battery using the lithium nickel cobalt manganese composite metal oxide according to the present invention, for example, a slurry prepared by adding a PVDF binder, a carbon conductive agent and the composite metal oxide using NMP as a solvent Can be used, but is not limited thereto.

본 발명에 의해 제조된 리튬 니켈코발트망간 복합금속 산화물을 리튬 이차전지의 양극활물질로서 이용한 경우 전지의 용량이 높고 열적 안정성을 향상시키면서 전해액과의 반응성을 억제할 수 있으며 또한 제조 안정성도 확보하는 것이 가능하다.When the lithium nickel cobalt manganese composite metal oxide prepared according to the present invention is used as a positive electrode active material of a lithium secondary battery, the capacity of the battery is high and the thermal stability can be suppressed and the reactivity with the electrolyte can be suppressed, and also the production stability can be secured. Do.

이하, 구체적인 실시예 및 비교예로 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the configuration and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

[실시예 1]Example 1

니켈 설페이트, 코발트 설페이트, 망간 설페이트를 전체 금속의 농도가 2.5M이 되도록 수용액을 제조하였다. 이 금속염 수용액과 착제로서 NH4OH, 침전제로서 NaOH 수용액을 40℃로 온도가 유지되는 오버플로우가 가능한 반응조에 펌프를 이용하여 일정 속도로 연속적으로 공급하였다. 이 때 반응조의 pH는 11.3 내지 11.7을 유지하였으며, 금속염 용액들 중에서 금속과 암모니아의 몰비는 1:0.8로 하고, 350rpm으로 교반하여 연속적으로 공침시켰다. 상기 과정에서 오버플로우된 침전물을 탈이온화된 물로 중성이 될 때까지 세척하고 NaOH 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 불순물를 제거한 후, 다시 탈이온화된 물로 중성이 될 때까지 세척한 다음 130℃에서 건조한 후 분급하여 구형인 Ni0.72Co0.23Mn0.05(OH)2 를 제조하였다. 얻어진 이 화합물에 대하여 (NH4)2HPO4 0.75M%와 알루미늄 나이트레이트 0.75M%를 탈이온수에 넣어 교반하여 녹인후 상기 Ni0.72Co0.23Mn0.05(OH)2를 교반하면서 투입하여 표면에 코팅하였다. 1시간 충분히 교반한 후 130℃에서 건조 후 분급하였다. 이 건조한 분말과 LiOH·H2O를 1:1의 몰비로 균일 혼합한 다음 도가니에 넣고 산소분위기에서 2℃/min의 속도로 550℃까지 승온하고 550℃에서 7시간 열처리후 다시 800℃까지 2℃/min의 속도로 승온하고, 800℃에서 20시간 소성 및 분쇄 분급하여 리튬 니켈코발트망간 복합금속 산화물인 Li1.02Ni0.709Mn0.049Co0.227Al0.007P0.007O2을 얻었다.Nickel sulfate, cobalt sulfate and manganese sulfate were prepared in an aqueous solution so that the total metal concentration was 2.5M. This aqueous metal salt solution and NH 4 OH as a complex and a NaOH aqueous solution as a precipitant were continuously supplied at a constant rate using a pump to a reactor capable of overflowing at a temperature of 40 ° C. At this time, the pH of the reactor was maintained at 11.3 to 11.7, the molar ratio of metal to ammonia in the metal salt solution was 1: 0.8, and stirred at 350 rpm to continuously coprecipitate. The precipitate overflowed in the above process was washed with deionized water until neutral, and the impurities remaining unreacted on the surface of Ni 1- (v + w) Mn v Co w (OH) 2 were removed using an aqueous NaOH solution. , Washed with deionized water until neutral, dried at 130 ° C., and classified to prepare spherical Ni 0.72 Co 0.23 Mn 0.05 (OH) 2 . 0.75 M% of (NH 4 ) 2 HPO 4 and 0.75 M% of aluminum nitrate were dissolved in the deionized water to dissolve it, and the Ni 0.72 Co 0.23 Mn 0.05 (OH) 2 was added with stirring to coat the surface. It was. After stirring for 1 hour, the mixture was dried at 130 ° C and classified. The dry powder and LiOH · H 2 O were uniformly mixed in a molar ratio of 1: 1, and then placed in a crucible, heated to 550 ° C. at a rate of 2 ° C./min in an oxygen atmosphere, and heat-treated at 550 ° C. for 7 hours, and then up to 800 ° C. It heated up at the rate of ° C / min, calcined and classified at 800 ° C for 20 hours to obtain Li 1.02 Ni 0.709 Mn 0.049 Co 0.227 Al 0.007 P 0.007 O 2 which is a lithium nickel cobalt manganese composite metal oxide.

수득된 분말을 Cu의 Kα선을 이용한 분말 X선 회절로 분석한 결과, 육방정으 로 귀속될 수 있는 리튬 니켈코발트망간 복합금속 산화물의 피크를 확인할 수 있었다. 그리고 Leco사의 탄소/황 측정기(carbon/sulfur deteminator)를 이용하여 상기 양극활물질의 황 함량을 측정하였다.The powder obtained was analyzed by powder X-ray diffraction using Kα-rays of Cu. As a result, peaks of lithium nickel cobalt manganese composite metal oxides which can be attributed to hexagonal crystals were confirmed. And sulfur content of the cathode active material was measured using a carbon / sulfur deteminator of Leco.

상기 양극활물질을 이용하여 하기와 같은 방법으로 2016형 코인 전지를 제작하고 충방전 용량과 수명특성을 측정했다.Using the cathode active material, a 2016 type coin battery was manufactured in the following manner, and the charge / discharge capacity and life characteristics were measured.

양극활물질 96wt%에 도전제 2wt%와 PVDF 2wt%를 혼합하고, NMP를 전지 제조에 통상 사용되는 양을 가하여 슬러리를 만든 다음 이것을 두께 20μm의 알루미늄박에 닥터 블레이드를 이용하여 코팅, 건조하여 극판을 제작하였다. 음극으로써 리튬 금속을, 전해액으로는 1.15M의 LiPF6 EC/DMC/DEC 용매를 사용하여 Ar 분위기의 글로브박스 속에서 2016형 코인전지를 제작했다. 96 wt% of the cathode active material was mixed with 2 wt% of the conductive agent and 2 wt% of the PVDF, and NMP was added to an amount commonly used in battery production to make a slurry, which was then coated and dried on a 20 μm thick aluminum foil using a doctor blade. Produced. A 2016 type coin cell was fabricated in an Ar atmosphere glove box using lithium metal as a negative electrode and 1.15 M of LiPF6 EC / DMC / DEC solvent as an electrolyte.

다음으로 상기 전지를 12시간 동안 숙성(aging)시켜 OCV가 안정된 후, 정극에 대한 전류 밀도를 0.150mA/cm2 로 하여 4.3 ∼ 3 V 전압범위에서 충방전 시험을 행했다. 충방전은 0.1C-0.2C-0.5C-1.0C 의 순서로 진행하고 수명특성을 측정하기 위해 1.0C 100 cycle을 진행하였다. 또한 본 발명에 따른 실시예 및 비교예에 따라 제조된 양극활물질의 열적 안정성을 측정하기 위하여 다음과 같이 DSC 분석을 실시하였다. Next, after aging the battery for 12 hours to stabilize the OCV, charge and discharge tests were conducted in a voltage range of 4.3 to 3 V with a current density of 0.150 mA / cm 2 for the positive electrode. Charging and discharging were conducted in the order of 0.1C-0.2C-0.5C-1.0C and 1.0C 100 cycle was conducted to measure the life characteristics. In addition, in order to measure the thermal stability of the positive electrode active material prepared according to the Examples and Comparative Examples according to the present invention was carried out DSC analysis as follows.

실시예 및 비교예의 코인타입 반쪽 전지에 대하여 4.45V로 충전한 후 캡을 분리하여 Al-foil 위에 도포되어 있던 활물질과 묻어 있는 전해액이 활물질 대비 30중량부가 되도록 약 1 ~ 1.5mg 정도 채취하여 알루미늄 샘플 캔에 넣고, 밀봉한 다음 NETZSCH사 DSC를 이용하여 분석을 실시하였다. DSC 분석은 질소분위기하에서 50 ~ 350℃사이의 온도범위에서 10℃/min의 승온 속도로 스캐닝하여 실시하였다. 실시예 및 비교예에 대한 황함량, 0.1C 초기방전량 (mAh/g), 1.0C 방전량(mAh/g), 1.0 C 100 cycle 진행 후 방전량(mAh/g)을 표 1에, 발열량(J/g), 발열속도(W/g)에 대한 실험 결과를 표 1 및 도 1, 도 2에 나타내었다. Charge the coin-type half cell of the Examples and Comparative Examples to 4.45V, remove the cap, and collect about 1 to 1.5 mg of the active material and the electrolytic solution coated on the Al-foil so as to be 30 parts by weight of the active material. The can was placed in a can, sealed, and analyzed using a NETZSCH DSC. DSC analysis was carried out by scanning at an elevated temperature rate of 10 ℃ / min in the temperature range of 50 ~ 350 ℃ under nitrogen atmosphere. Sulfur content, 0.1C initial discharge amount (mAh / g), 1.0C discharge amount (mAh / g), and discharge amount (mAh / g) after 1.0 C 100 cycle progress for Example and Comparative Example are shown in Table 1 (J / g), the experimental results for the exothermic rate (W / g) is shown in Table 1 and Figures 1 and 2.

[실시예 2]Example 2

Ni0 .70Co0 .24Mn0 .06(OH)2 화합물을 사용하여 조성비가 다른 것을 제외하고 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.Using Ni 0 .70 Co 0 .24 Mn 0 .06 (OH) 2 compound with the exception that the composition ratio and the other was prepared the positive electrode active material in the same manner as in Example 1.

[실시예 3]Example 3

Ni0 .745Co0 .205Mn0 .05(OH)2 화합물을 사용하여 조성비가 다른 것을 제외하고 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.The Ni 0 .745 Co 0 .205 Mn 0 .05 (OH) a cathode active material in the same manner as in Example 1, except using compound 2 by other that the composition ratio was prepared.

[실시예 4]Example 4

Ni0 .8Co0 .15Mn0 .05(OH)2 화합물을 사용하여 조성비가 다른 것과 두 번째 열처리온도가 780도인 것을 제외하고 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.The Ni 0 .8 Co 0 .15 Mn 0 .05 (OH) 2 using the compound to the composition ratio of the other two as the positive electrode active material in the same manner as in Example 1 except that the second heat treatment temperature of 780 degrees were prepared.

[실시예 5]Example 5

Ni0 .78Co0 .17Mn0 .05(OH)2 화합물을 사용하여 조성비가 다른 것을 제외하고 실시예 4와 동일한 방법으로 양극활물질을 제조하였다.Using Ni 0 .78 Co 0 .17 Mn 0 .05 (OH) 2 compound with the exception that the composition ratio and the other was prepared the positive electrode active material in the same manner as in Example 4.

[실시예 6]Example 6

니켈 설페이트, 코발트 설페이트, 망간 설페이트를 전체 금속의 농도가 2.5M이 되도록 수용액을 제조하였다. 이 금속염 수용액과 착제로서 NH4OH, 침전제로서 NaOH 수용액을 40℃로 온도가 유지되는 오버플로우가 가능한 반응조에 펌프를 이용하여 일정 속도로 연속적으로 공급하였다. 이 때 반응조의 pH는 11.3 내지 11.7를 유지하였으며, 금속염 용액들 중에서 금속과 암모니아의 몰비는 1:0.8로 하고, 350rpm으로 교반하여 연속적으로 공침시켰다. 상기 과정에서 오버플로우된 침전물을 탈이온화된 물로 중성이 될 때까지 세척하고 NaOH 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 불순물을 제거한 후, 다시 탈이온화된 물로 중성이 될 때까지 세척한 다음 130℃에서 건조한 후 분급하여 구형인 Ni0.5Co0.2Mn0.3(OH)2 를 제조하였다. 얻어진 이 화합물에 대하여 (NH4)2HPO4 0.5M%와 알루미늄 나이트레이트 0.5M% 를 탈이온수에 넣어 교반하여 녹인후 상기 Ni0.5Co0.2Mn0.3(OH)2 를 교반하면서 투입하여 표면에 코팅하였다. 1시간 충분히 교반한 후 130℃에서 건조 후 분급하였다. 이 건조한 분말과 LiOH·H2O를 1:1의 몰비로 균일 혼합한 다음 도가니에 넣고 공기분위기에서 2℃/min의 속도로 550℃까지 승온하고 550℃에서 7시간 열처리후 상온까지 냉각하였다. 분말을 혼합한 다음 상온에서 다시 890℃까지 2℃/min의 속도로 승온하고, 890℃에서 20시간 소성 및 분쇄 분급하여 리튬-니켈코발트망간 복합금속 산화물을 얻었다. 수득된 분말을 Cu의 Kα선을 이용한 분말 X선 회절로 분석한 결과, 육방정으로 귀속될 수 있는 리튬-니켈코발트 망간 복합금속 산화물의 피크를 확인할 수 있었다.Nickel sulfate, cobalt sulfate and manganese sulfate were prepared in an aqueous solution so that the total metal concentration was 2.5M. This aqueous metal salt solution and NH 4 OH as a complex and a NaOH aqueous solution as a precipitant were continuously supplied at a constant rate using a pump to a reactor capable of overflowing at a temperature of 40 ° C. At this time, the pH of the reactor was maintained at 11.3 to 11.7, and the molar ratio of metal to ammonia in the metal salt solutions was 1: 0.8, and stirred at 350 rpm to continuously coprecipitate. The precipitate overflowed in the above process was washed with deionized water until neutral and impurities were removed unreacted on the surface of Ni 1- (v + w) Mn v Co w (OH) 2 using NaOH aqueous solution. Then, washed again with deionized water until neutral, dried at 130 ℃ and classified to prepare a spherical Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 . 0.5 M% of (NH 4 ) 2 HPO 4 and 0.5 M% of aluminum nitrate were added to deionized water to dissolve it, and the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 was added with stirring to coat the surface. It was. After stirring for 1 hour, the mixture was dried at 130 ° C and classified. The dry powder was uniformly mixed with LiOH.H 2 O at a molar ratio of 1: 1, then placed in a crucible, and heated to 550 ° C. at a rate of 2 ° C./min in an air atmosphere, and cooled to room temperature after heat treatment at 550 ° C. for 7 hours. The powders were mixed and then heated up again at room temperature at a rate of 2 ° C./min to 890 ° C., calcined and pulverized at 890 ° C. for 20 hours to obtain a lithium-nickel cobalt manganese composite metal oxide. The obtained powder was analyzed by powder X-ray diffraction using Kα-rays of Cu. As a result, peaks of lithium-nickel cobalt manganese composite metal oxides which can be attributed to hexagonal crystals were confirmed.

그리고 황함량 분석, 2016형 코인 전지를 제작하고 충방전 용량과 수명특성을 측정과 DSC 분석은 실시예1과 동일하다. In addition, sulfur content analysis, 2016 type coin cell was fabricated, charge and discharge capacity and life characteristics were measured and DSC analysis was the same as in Example 1.

[실시예 7]Example 7

Ni0 .32Co0 .35Mn0 .33(OH)2 화합물을 사용하여 조성비가 다른 것과 두 번째 열처리 온도가 970도인 것을 제외하고 실시예 6과 동일한 방법으로 양극활물질을 제조하였다. Ni 0 .32 Co 0 .35 Mn 0 .33 (OH) 2 using the compound to the composition ratio different as the second heat treatment temperature is 970 degrees, except that a cathode active material was prepared in the same manner as in Example 6.

[실시예 8]Example 8

Ni0 .32Co0 .35Mn0 .33(OH)2 화합물을 사용하여 조성비가 다른 것을 제외하고 실시예 7과 동일한 방법으로 양극활물질을 제조하였다.Using Ni 0 .32 Co 0 .35 Mn 0 .33 (OH) 2 compound with the exception that the composition ratio and the other was prepared the positive electrode active material in the same manner as in Example 7.

[실시예 9]Example 9

Ni0 .33Co0 .34Mn0 .33(OH)2 화합물을 사용하여 조성비가 다른 것을 제외하고 실시예 7과 동일한 방법으로 양극활물질을 제조하였다. Ni 0 .33 Co 0 .34 Mn 0 .33 (OH) a cathode active material was prepared in the same manner as in Example 7, except using compound 2 by the different composition ratios.

[비교예 1]Comparative Example 1

Ni0 .72Co0 .23Mn0 .05(OH)2 화합물을 제조함에 있어서 NaOH 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 불순물을 제거하는 과정이 없는 것을 제외하고 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.Using NaOH in an aqueous solution as Ni 0 .72 Co 0 .23 Mn 0 .05 (OH) 2 to prepare a compound Ni 1 - (v + w) Mn v Co w (OH) impurities that remains unreacted to the second surface A positive electrode active material was prepared in the same manner as in Example 1, except that there was no process of removing.

[비교예 2]Comparative Example 2

Ni0 .32Co0 .34Mn0 .34(OH)2 화합물을 제조함에 있어 NaOH 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 불순물를 제거하는 과정이 없는 것을 제외하고 실시예 8과 동일한 방법으로 양극활물질을 제조하였다. Ni 0 .32 Co 0 .34 Mn 0 .34 (OH) 2 I preparing the compound Ni with a NaOH aqueous solution of 1 - (v + w) Mn v Co w (OH) bulsunmulreul that remains unreacted to the second surface A positive electrode active material was prepared in the same manner as in Example 8, except that there was no removal process.

Ni/Co/Mn ratioNi / Co / Mn ratio 황함량 (ppm)Sulfur content (ppm) 1st discharge 0.1C (mAh/g)1st discharge 0.1C (mAh / g) 4th discharge 1.0C (mAh/g)4th discharge 1.0C (mAh / g) 103th discharge 1.0C (mAh/g)103th discharge 1.0C (mAh / g) 수명특성 1st/100thdischarge (%)Lifespan 1st / 100thdischarge (%) 발열량(J/g)Calorific value (J / g) 발열속도(W/g)Exothermic rate (W / g) 실시예1Example 1 72/23/572/23/5 700700 192192 173173 157157 9191 520520 88 실시예2Example 2 70/24/670/24/6 705705 190190 170170 153153 9090 510510 77 실시예3Example 3 68/27/568/27/5 720720 188188 169169 152152 9090 505505 66 실시예4Example 4 80/15/580/15/5 900900 198198 178178 157157 8888 780780 1212 실시예5Example 5 78/17/578/17/5 880880 195195 174174 151151 8787 765765 1111 실시예6Example 6 50/20/3050/20/30 850850 170170 155155 140140 9090 610610 1010 실시예7Example 7 32/34/3432/34/34 750750 160160 149149 140140 9494 450450 77 실시예8Example 8 32/35/3332/35/33 780780 160160 148148 138138 9393 485485 88 실시예9Example 9 33/34/3333/34/33 805805 159159 148148 137137 9393 505505 1010 비교예1Comparative Example 1 72/23/572/23/5 51005100 188188 170170 148148 8787 850850 2525 비교예2Comparative Example 2 32/34/3432/34/34 53005300 155155 143143 127127 8989 632632 1616

용량 : 2016 타입의 코인 반전지 ,전해액 EC/EMC/DEC=3/6/1 v/v LiPF6 1.15M , 3.0 ~ 4.3V 충방전 Capacity: 2016 type coin half cell, electrolyte EC / EMC / DEC = 3/6/1 v / v LiPF6 1.15M, 3.0 ~ 4.3V charge / discharge

DSC : 전해액 EC/EMC/DEC=3/6/1 v/v LiPF6 1.15M 4.45V 충전만진행, DSC: Electrolyte EC / EMC / DEC = 3/6/1 v / v LiPF6 1.15M 4.45V charge only,

전해액 포함한 활물질 투입후 DSC 측정, 측정속도 10℃/minDSC measurement after adding active material including electrolyte, measuring speed 10 ℃ / min

상기 표 1에서 나타난 바와 같이 실시예 1~9의 4.3~3.0V 충방전에서 1.0C-rate의 첫 번째 방전용량은 조성에 따라 178~148mAh/g의 용량을 나타내며, 열적 안정성은 유사 조성에서 비교해 보면 황함량이 높은 비교예에 비하여 훨씬 우수함을 알 수 있다. 용량은 전지의 에너지밀도는 결정짓는 중요한 요소이며, 충전된 상태의 양극활물질은 금속과 산소의 결합이 약해져서 O2의 분해가 발생하며, 분해된 O2가 전해액과 반응하여 큰 발열을 일으켜 DSC에 의하여 발열속도 또는 발열량으로 측정되는 것이다. 이러한 현상은 전지의 안전성을 저하시키는 요인이 된다. 본 발명에 따라 제조된 실시예 1에서 9의 발열량 및 발열속도는 비교예1, 2에 비하여 상당히 감소되었으며 이로부터 유사조성에서 비교해 보면 비교예에 비해 용량이 높고 수명특성도 우수하며, 열적 안정성이 매우 우수함을 알 수 있다.As shown in Table 1, the first discharge capacity of 1.0 C-rate in the 4.3 ~ 3.0V charge and discharge of Examples 1 to 9 shows a capacity of 178 ~ 148mAh / g depending on the composition, thermal stability compared to similar composition It can be seen that the sulfur content is much superior to the comparative example high. The capacitor is an important factor in the energy density of the battery is determined, the positive electrode active material in a charged state and decomposition of the second combination of metal and oxygen weakened O occurs, the decomposition O 2 causes a large heat generation by the reaction and an electrolyte DSC By the exothermic rate or calorific value. This phenomenon becomes a factor of lowering the safety of the battery. In Example 1 manufactured according to the present invention, the calorific value and the exothermic rate of 9 were considerably reduced compared to Comparative Examples 1 and 2, and from this, a higher capacity and better life characteristics and thermal stability compared to Comparative Examples. It can be seen that it is very excellent.

본 발명에 따른 양극활물질은 비수계 전해질의 2차 전지에 적용할 경우, 구조적인 안정성이 우수하여 전기화학적 특성이 우수할 뿐만 아니라 발열속도 및 발열량이 현저히 감소하므로 열적 안정성이 우수하여 전지의 안전성을 개선 할 수 있다. 본 발명의 양극활물질의 제조공정은 특정 조성을 공침법에 의하여 제조되는 것으로써 분말 제어가 용이하며, 전지에서의 적용 특성이 우수하다. 또한 유사조성과 비교해 보면 1.0C-rate의 첫 번째 방전용량이 높으면서 전지 적용 시 안전성이 매우 우수하고 수명 특성이 향상됨을 알 수 있다.When the positive electrode active material according to the present invention is applied to a secondary battery of a non-aqueous electrolyte, the structural stability is excellent, not only the electrochemical characteristics are excellent, but also the heat generation rate and the amount of heat are significantly reduced, so that the stability of the battery is excellent. Can be improved. In the manufacturing process of the positive electrode active material of the present invention, a specific composition is prepared by the coprecipitation method, so that powder control is easy and the application characteristics of the battery are excellent. Compared with similar composition, it can be seen that the first discharge capacity of 1.0C-rate is high and the safety is very excellent and the lifespan characteristics are improved when the battery is applied.

Claims (7)

하기 화학식 1로 나타내어지는 리튬니켈코발트망간 복합금속 산화물에 Al, Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되어진 적어도 하나 이상의 금속이 표면에 분포되고, 표면에 미반응으로 남아 있는 황 함량이 1000ppm 이하인 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극 활물질.At least one metal selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, and Zr in the lithium nickel cobalt manganese composite metal oxide represented by Formula 1 is distributed on the surface, and unreacted on the surface. A positive electrode active material for a non-aqueous electrolyte lithium secondary battery, characterized in that the sulfur content is 1000ppm or less. [화학식 1][Formula 1] LiaNi1 -(v+w+x+y+z)MnvCowMxM'yM"zO2 Li a Ni 1- (v + w + x + y + z) Mn v Co w M x M ' y M " z O 2 (상기식에서 M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군에서 선택되는 적어도 하나 이상이며, 이 때 0.9 ≤a≤ 1.1, 0.295 ≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.10≤w≤0.35, 0.015≤x+y+z≤0.03 이다.)(In the above formula, M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, where 0.9 ≤ a ≤ 1.1, 0.295 ≦ 1- (v + w + x + y + z) ≦ 0.85, 0.05 ≦ v ≦ 0.35, 0.10 ≦ w ≦ 0.35, 0.015 ≦ x + y + z ≦ 0.03.) 제1항에 있어서, 상기 양극 활물질의 평균 입경은 1~30um이고, 탭밀도는 2~2.8g/㎤이며, 4.3~3.0V 충방전에서 1.0C-rate의 첫 번째 방전용량이 140~185mAh/g이며, 구형 또는 유사 구형을 나타내는 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극활물질.The method of claim 1, wherein the average particle diameter of the positive electrode active material is 1 ~ 30um, the tap density is 2 ~ 2.8g / cm 3, the first discharge capacity of 1.0C-rate at 4.3 ~ 3.0V charge and discharge is 140 ~ 185mAh / g, a spherical or pseudo-spherical positive electrode active material for a non-aqueous electrolyte lithium secondary battery. 니켈염 용액, 코발트염 용액 및 망간염 용액의 혼합 금속 용액을 착제 및 침전제 존재 하에서 공침전시켜 니켈코발트망간 금속 하이드록사이드를 제조하고,Nickel cobalt manganese metal hydroxide was prepared by coprecipitation of a mixed metal solution of a nickel salt solution, a cobalt salt solution and a manganese salt solution in the presence of a complex and a precipitant, NaOH, KOH 수용액 또는 LiOH 수용액의 알카리 수용액을 이용하여 Ni1 -(v+w)MnvCow(OH)2 표면에 미반응으로 남아 있는 황 함량을 1000ppm 이하로 제어한 후, Al, Mg, Sr, Ca, P, Pb, Y, Zr 중 적어도 하나 이상의 화합물을 표면에 분포시키고, 얻은 Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 (상기식에서 M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y 및 Zr로 이루어진 군에서 선택되는 적어도 하나 이상이며, 이 때 0.9 ≤a≤ 1.1, 0.295 ≤1-(v+w+x+y+z)≤0.85, 0.05≤v≤0.35, 0.10≤w≤0.35, 0.015≤x+y+z≤0.03 이다.)를 LiOH·H2O, LiCO3 를 포함하는 Li화합물과 혼합하여 열처리하여 리튬-니켈 복합산화물을 얻는 공정을 포함하는 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극활물질의 제조방법.An alkali solution of NaOH, KOH or LiOH solution was used to control the sulfur content remaining unreacted on the surface of Ni 1- (v + w) Mn v Co w (OH) 2 to 1000 ppm or less, and then Al, Mg, At least one compound of Sr, Ca, P, Pb, Y, Zr is distributed on the surface, and Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2 (wherein M, M' , M "is each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y and Zr, wherein 0.9≤a≤1.1, 0.295≤1- (v + w + x + y + z) ≦ 0.85, 0.05 ≦ v ≦ 0.35, 0.10 ≦ w ≦ 0.35, and 0.015 ≦ x + y + z ≦ 0.03), and are mixed with a Li compound containing LiOH.H 2 O, LiCO 3. A method for producing a cathode active material for a non-aqueous electrolyte lithium secondary battery, comprising the step of obtaining a lithium-nickel composite oxide by heat treatment. 제3항에 있어서, 상기 공침전시 반응조 내의 pH는 11~12인 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극활물질의 제조방법.The method according to claim 3, wherein the pH of the reaction tank during coprecipitation is 11 to 12. 제3항에 있어서, 상기 열처리는 일반공기, 건조공기 또는 산소 분위기 하에 서 300 내지 700도에서 5~10시간, 700 내지 1000도에서 10~30시간 소성하는 것을 특징으로 하는 비수계 전해질 리튬 이차 전지용 양극활물질의 제조방법.The non-aqueous electrolyte lithium secondary battery according to claim 3, wherein the heat treatment is fired for 5 to 10 hours at 300 to 700 degrees and 10 to 30 hours at 700 to 1000 degrees in a general air, dry air or oxygen atmosphere. Method for producing a cathode active material. 제1항 또는 제2항에 따른 이차 전지용 양극 활물질을 NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제를 넣은 용액에 첨가한 것을 특징으로 하는 리튬-니켈코발트망간 복합 금속 산화물 전극.A lithium-nickel cobalt manganese composite metal oxide electrode according to claim 1 or 2, wherein the cathode active material for secondary battery according to claim 1 is added to a solution containing a PVDF binder and a carbon conductive agent using NMP as a solvent. 제6항에 따른 리튬-니켈코발트망간 복합 금속 산화물의 전극을 사용하는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery using an electrode of the lithium-nickel cobalt manganese composite metal oxide according to claim 6.
KR1020050120796A 2005-12-09 2005-12-09 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same KR100734225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050120796A KR100734225B1 (en) 2005-12-09 2005-12-09 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050120796A KR100734225B1 (en) 2005-12-09 2005-12-09 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same

Publications (2)

Publication Number Publication Date
KR20070060784A true KR20070060784A (en) 2007-06-13
KR100734225B1 KR100734225B1 (en) 2007-07-02

Family

ID=38356764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050120796A KR100734225B1 (en) 2005-12-09 2005-12-09 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same

Country Status (1)

Country Link
KR (1) KR100734225B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203089B2 (en) 2011-03-08 2015-12-01 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and recharge lithium battery including the same
WO2016126082A1 (en) * 2015-02-02 2016-08-11 주식회사 엘앤에프 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same
KR20170073909A (en) * 2015-12-21 2017-06-29 한국과학기술연구원 Manufacturing method of cathode active material for a lithium secondary battery and cathode active material obtained thereby
US10381126B2 (en) 2009-02-13 2019-08-13 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
US11848448B2 (en) 2018-03-09 2023-12-19 Lg Energy Solution, Ltd. Lithium secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824074B1 (en) 2013-07-11 2019-02-20 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR101904896B1 (en) 2013-11-27 2018-10-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102327532B1 (en) * 2018-11-20 2021-11-17 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, and preparing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106534A (en) 1999-10-06 2001-04-17 Tanaka Chemical Corp Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
JP4070585B2 (en) 2001-11-22 2008-04-02 日立マクセル株式会社 Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP2004111076A (en) * 2002-09-13 2004-04-08 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
KR100557240B1 (en) 2003-04-28 2006-03-15 한양대학교 산학협력단 Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381126B2 (en) 2009-02-13 2019-08-13 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
US9203089B2 (en) 2011-03-08 2015-12-01 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and recharge lithium battery including the same
WO2016126082A1 (en) * 2015-02-02 2016-08-11 주식회사 엘앤에프 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same
KR20170073909A (en) * 2015-12-21 2017-06-29 한국과학기술연구원 Manufacturing method of cathode active material for a lithium secondary battery and cathode active material obtained thereby
US11848448B2 (en) 2018-03-09 2023-12-19 Lg Energy Solution, Ltd. Lithium secondary battery

Also Published As

Publication number Publication date
KR100734225B1 (en) 2007-07-02

Similar Documents

Publication Publication Date Title
KR100660759B1 (en) A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR100542184B1 (en) An active material for a battery and a method of preparing the same
JP4000041B2 (en) Positive electrode active material for lithium secondary battery
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
KR101287092B1 (en) Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR100582507B1 (en) Cathod material for Lithium second battery of which surface is processed and manufacturing method thereof
KR100796953B1 (en) A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same
KR101470092B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
EP2104163A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
KR100280998B1 (en) Cathode Active Material for Lithium Secondary Battery
KR100723973B1 (en) Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
KR20130063868A (en) Positive active material for lithium secondary, method for preparing thereof, and lithium secondary battery containing the same
JP2005044801A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery including same
KR100734225B1 (en) A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR20120009779A (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
KR20160083638A (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
KR20160002200A (en) Composite cathode active material, cathode and lithium battery containing the material, and preparation method thereof
CN103022471B (en) Improve the method for nickelic tertiary cathode material chemical property
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR20130112583A (en) Positive active material, method of preparing the same, and lithium battery using the same
JP2008198364A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
KR101458505B1 (en) The maufacturing method of Lithium-Nickel-Cobalt-Manganese complex oxide by using thermal degradation of oxalate anion
KR100595361B1 (en) A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR101448356B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130418

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140623

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170622

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180712

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 13