KR100796953B1 - A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same - Google Patents

A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same Download PDF

Info

Publication number
KR100796953B1
KR100796953B1 KR1020060006532A KR20060006532A KR100796953B1 KR 100796953 B1 KR100796953 B1 KR 100796953B1 KR 1020060006532 A KR1020060006532 A KR 1020060006532A KR 20060006532 A KR20060006532 A KR 20060006532A KR 100796953 B1 KR100796953 B1 KR 100796953B1
Authority
KR
South Korea
Prior art keywords
active material
lithium
secondary battery
nickel composite
positive electrode
Prior art date
Application number
KR1020060006532A
Other languages
Korean (ko)
Other versions
KR20060084821A (en
Inventor
이영기
곽동학
윤희찬
김종섭
양호석
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of KR20060084821A publication Critical patent/KR20060084821A/en
Application granted granted Critical
Publication of KR100796953B1 publication Critical patent/KR100796953B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 2차 전지용 양극 활물질에 관한 것으로, 보다 상세하게는 The present invention relates to a positive electrode active material for a secondary battery, more specifically

LiaNi1-v-w-x-y-zMnvCowMxM'yM"zO2(단, M, M', M"은 각각 서로 독립적으로 Li a Ni 1-vwxyz Mn v Co w M x M ' y M " z O 2 (M, M', M" are each independently of one another.

Al, Mg, Sr, Ca, P, Pb, Y, Zr 로 이루어진 군에서 선택되는 적어도 하나 이상이며 이때, 0.90≤a≤1.15 , 0.01≤v≤0.40 , 0.01≤w≤0.4, 0<x+y+z≤0.05이다.) 및 At least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr, wherein 0.90 ≦ a ≦ 1.15, 0.01 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.4, 0 <x + y + z ≦ 0.05) and

LiaNi1 -v-w-u-x-y- zMnvCowAluMxM'yM"zO2( 상기식에서 M, M', M"은 Mg, Sr, Ca, P, Pb, Y, Zr 중 하나이며 0.90≤a≤1.15, 0<v≤0.4, 0.05≤w≤0.4, 0<u≤0.1, 0<x+y+z ≤0.05이다.)로 나타내어지는 리튬 니켈 복합 산화물을 포함하는 비수계 전해질의 2차 전지용 양극 활물질에 관한 것이다. Li a Ni 1 -vwuxy- z Mn v Co w Al u M x M ' y M " z O 2 (wherein M, M', M" is Mg, Sr, Ca, P, Pb, Y, Zr And a lithium nickel composite oxide represented by 0.90 ≦ a ≦ 1.15, 0 <v ≦ 0.4, 0.05 ≦ w ≦ 0.4, 0 <u ≦ 0.1, and 0 <x + y + z ≦ 0.05). It relates to a positive electrode active material for secondary batteries.

본 발명에 따른 양극 활물질은 비수계 전해질의 2차 전지에 적용할 경우, 열안정성이 높으므로 고온에서 활물질의 발열량이 현저히 감소하게 되어, 전지의 안전성을 확보할 수 있게 된다. When the positive electrode active material according to the present invention is applied to a secondary battery of a non-aqueous electrolyte, heat stability of the active material is significantly reduced at high temperature since the thermal stability is high, thereby ensuring safety of the battery.

비수계 전해질, 양극 활물질, 리튬 니켈 복합 산화물 Non-aqueous electrolyte, positive electrode active material, lithium nickel composite oxide

Description

2차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬이차전지{A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same}A positive electrode active material for a secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same {A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same}

도 1은 실시예 1 내지 8 및 비교예 1에 따른 발열량 및 발열속도의 비교 데이터이다. 1 is comparative data of a calorific value and a calorific rate according to Examples 1 to 8 and Comparative Example 1. FIG.

도 1은 실시예 9 내지 14 및 비교예 2에 따른 발열량 및 발열속도의 비교 데이터이다. 1 is comparative data of a calorific value and a calorific rate according to Examples 9 to 14 and Comparative Example 2. FIG.

도 3는 본 발명의 양극 활물질의 구조인 체리모델(Cherry model)의 단면도이다.3 is a cross-sectional view of a cherry model which is a structure of the cathode active material of the present invention.

본 발명은 2차 전지용 양극 활물질에 관한 것으로, 전지의 충방전 특성, 고율특성 및 안전성이 우수한 비수계 전해질의 2차 전지용 양극 활물질에 관한 것이다.       The present invention relates to a positive electrode active material for secondary batteries, and to a positive electrode active material for secondary batteries of a non-aqueous electrolyte excellent in charge and discharge characteristics, high rate characteristics, and safety of the battery.

최근 들어 휴대 전화, 노트북, PDA 등 휴대기기의 소형화, 박형화 추세에 따라 이들 휴대기기의 에너지원으로 사용되고 있는 리튬 이차 전지의 고용량화 문제 가 대두되고 있다. 현재 상용화되고 있는 리튬 코발트 산화물은 합성이 비교적 용이하며, 안전성, 사이클 특성이 우수하지만 용량 한계점에 도달함에 따라 전지의 고용량화에는 한계가 있다는 문제점이 있다. Recently, with the trend toward miniaturization and thinning of portable devices such as mobile phones, notebook computers, and PDAs, the problem of increasing the capacity of lithium secondary batteries, which are used as energy sources for these portable devices, has emerged. Lithium cobalt oxide, which is currently commercialized, is relatively easy to synthesize, has excellent safety and cycle characteristics, but has a problem in that the capacity of the battery is limited as the capacity limit point is reached.

이런 문제점 때문에 리튬 코발트 산화물을 대체할 물질로서 저가의 망간을 이용한 리튬 망간 복합 산화물(LiMnO2 또는 LiMn2O4)이나, 니켈을 이용한 리튬 니켈 산화물이 주목받고 있다. 이들 중 층상구조를 갖는 리튬 망간 산화물은 용량면에서는 리튬 코발트 산화물보다 훨씬 높은 장점이 있으나 구조가 불안정하여 사이클 특성이 좋지 않으며 스피넬 리튬 망간 산화물은 열안정성이 우수하지만 용량이 리튬 코발트 산화물보다 낮다는 단점이 있어 고용량 전지에 적용하기에는 어려움이 있다. Because of these problems, lithium manganese composite oxides (LiMnO 2 or LiMn 2 O 4 ) using inexpensive manganese and lithium nickel oxides using nickel have been attracting attention as materials to replace lithium cobalt oxide. Among them, the layered lithium manganese oxide has a much higher capacity than lithium cobalt oxide in terms of capacity, but the structure is unstable, resulting in poor cycle characteristics, and spinel lithium manganese oxide has excellent thermal stability but lower capacity than lithium cobalt oxide. This makes it difficult to apply to high capacity batteries.

한편, 리튬 니켈 산화물은 고용량의 물질이지만 사이클 특성이 좋지 않고 제조 방법이 어렵다는 문제점이 있다. 일본특개평 8-213015호에서는 이와 같은 결점을 해결하기 위해 리튬 이온 2차 전지의 자기 방전 특성, 사이클 특성, 고온 환경 하에서의 보존 및 사용에 양호한 전지성능을 유지하는 것이 가능한 양극 활물질로서, LixNiaCobMcO2(0.8≤x≤1.2 ,0.01≤a≤0.99 ,0.01≤b≤0.99,0.01≤c≤0.3 ,0.8≤a+b+c≤1.2), M은 Al, V, Mn, Fe, cu, Zn 로 이루어진 군에서 선택된 적어도 1종의 원소)을 개시하고 있다. On the other hand, lithium nickel oxide is a high capacity material but has a problem in that the cycle characteristics are not good and the manufacturing method is difficult. In Japanese Patent Laid-Open No. 8-213015, in order to solve such drawbacks, Li x Ni is a cathode active material capable of maintaining self discharge characteristics, cycle characteristics, and good battery performance for storage and use in a high temperature environment. a Co b M c O 2 (0.8≤x≤1.2, 0.01≤a≤0.99, 0.01≤b≤0.99,0.01≤c≤0.3, 0.8≤a + b + c≤1.2), M is Al, V, Mn, Fe, cu , At least one element selected from the group consisting of Zn).

상기 제조 방법에 의하여 얻어진 리튬 니켈 복합 산화물은 리튬 코발트 산화물 대비 고용량이며, 사이클 특성도 어느 정도 개선되었으나, 충전 상태에서 고온 특성은 아직도 만족스럽지 못하여, 고온에서 산소 방출을 수반한 분해가 시작되고, 방출된 산소가 전해액과 반응하거나, 니켈 이온의 전해액과의 반응 등을 통해 전지의 내부 압력이 상승하여 전지가 팽창하거나 최악의 경우에는 전지가 폭발할 위험을 갖고 있는 등의 문제점이 있다. The lithium nickel composite oxide obtained by the above production method has a higher capacity than the lithium cobalt oxide, and the cycle characteristics have been improved to some extent, but the high temperature characteristics are still unsatisfactory in the charged state, so that decomposition with oxygen release starts at a high temperature and is released. The oxygen may react with the electrolyte, or the internal pressure of the battery may increase due to the reaction of the nickel ions with the electrolyte, such that the battery may expand or, in the worst case, the battery may explode.

한편, 열 안정성 향상을 위해 니켈의 일부를 다른 금속으로 치환한 리튬-니켈 복합 산화물을 양극 활물질을 이용하는 경우에는 금속의 양이 증가할수록 용량이 현저히 저하되는 문제가 있다.On the other hand, in the case of using the positive electrode active material of the lithium-nickel composite oxide in which a part of nickel is replaced with another metal to improve thermal stability, there is a problem that the capacity is significantly lowered as the amount of the metal increases.

이에 본 발명은 상기 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로, 용량이 높을 뿐만 아니라 고온에서의 열 안정성이 높아 전해액과의 반응성이 억제된 본 발명의 리튬 니켈 복합 산화물을 포함한 비수계 전해질의 2차 전지용 양극 활물질을 제공함에 그 목적이 있다. Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and has a high capacity and high thermal stability at high temperature, and thus the non-aqueous electrolyte containing the lithium nickel composite oxide of the present invention has suppressed reactivity with the electrolyte. Its purpose is to provide a positive electrode active material for a secondary battery.

상기 목적을 달성하기 위하여 본 발명에서는 하기 화학식 1로 나타내어지는 리튬 니켈 복합 산화물을 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질이 제공된다.In order to achieve the above object, the present invention provides a cathode active material for a secondary battery comprising a lithium nickel composite oxide represented by the following Chemical Formula 1.

[화학식 1][Formula 1]

LiaNi1-v-w-x-y-zMnvCowMxM'yM"zO2 Li a Ni 1-vwxyz Mn v Co w M x M ' y M " z O 2

(단, M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y, Zr 로 이루어진 군에서 선택되는 적어도 하나 이상이며 이때, 0.90≤a≤1.15 , 0.01≤v≤0.40 , 0.01≤w≤0.4, 0<x+y+z≤0.05이다.)(M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr, wherein 0.90≤a≤1.15, 0.01≤ v ≦ 0.40, 0.01 ≦ w ≦ 0.4, and 0 <x + y + z ≦ 0.05.)

또한, 본 발명에 의하면 하기 화학식 2로 표시되는 리튬 니켈 복합 산화물을 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질이 제공된다.In addition, according to the present invention there is provided a cathode active material for a secondary battery comprising a lithium nickel composite oxide represented by the following formula (2).

[화학식 2][Formula 2]

LiaNi1-v-w-u-x-y-zMnvCowAluMxM'yM"zO2 Li a Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z O 2

(상기식에서 M, M', M"은 Mg, Sr, Ca, P, Pb, Y, Zr 중 어느 하나이며, 0.90 ≤a≤1.15, 0<v≤0.4, 0.05≤w≤0.4, 0<u≤0.1, 0<x+y+z≤0.05이다.)(M, M ', M "in the formula is any one of Mg, Sr, Ca, P, Pb, Y, Zr, 0.90 ≤ a ≤ 1.15, 0 <v ≤ 0.4, 0.05 ≤ w ≤ 0.4, 0 <u ≤ 0.1, 0 <x + y + z ≤ 0.05.)

상기 리튬 니켈 복합 산화물은 Al, Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되는 하나 이상이 그 표면에 50 내지 100% 분포된 것을 특징으로 한다.The lithium nickel composite oxide is characterized in that at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr is 50 to 100% distributed on the surface.

상기 리튬 니켈 복합 산화물은 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에 의한 NiCoMn이 상기 리튬 니켈 복합 산화물의 표면에 50 내지 100% 분포된 것을 특징으로 한다.The lithium nickel composite oxide is NiCoMn by Ni a Co b Mn c (OH) 2 aqueous solution prepared in the coprecipitation method (0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5) It is characterized in that 50 to 100% distribution on the surface of the nickel composite oxide.

또한, 본 발명에 의하면 상기 2차 전지용 양극 활물질을 NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제를 넣은 용액에 첨가한 것을 특징으로 하는 리튬-니켈 복합 금속 산화물 전극이 제공된다.According to the present invention, there is provided a lithium-nickel composite metal oxide electrode, wherein the secondary active material for a secondary battery is added to a solution containing a PVDF binder and a carbon conductive agent using NMP as a solvent.

또한, 본 발명에 의하면 상기 리튬-니켈 복합 금속 산화물의 전극을 사용하는 것을 특징으로 하는 리튬 이차전지가 제공된다.In addition, according to the present invention, there is provided a lithium secondary battery using the electrode of the lithium-nickel composite metal oxide.

또한 본 발명에 의하면 2차 전지용 양극 활물질을 제조하기 위하여 (a) Ni1 -v-w-u-x-y-zMnvCowAluMxM'yM"(OH)2 화합물을 용매와 혼합하여 슬러리를 만드는 단계; (b) 상기 슬러리에 암모니아수를 투입하고 교반하는 단계; (c) Co, Mn 수용액 또는 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)을 투입하여 코팅하는 단계; 및 (d)상기 코팅된 화합물을 증류수를 이용하여 세척한 다음, 수분을 건조한 후에 Li 화합물과 혼합하여 열처리하는 단계를 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법이 제공된다.In addition, according to the present invention to prepare a positive electrode active material for a secondary battery (a) Ni 1- vwuxyz Mn v Co w Al u M x M ' y M "(OH) 2 compound is mixed with a solvent to form a slurry; ( b) adding ammonia water to the slurry and stirring; (c) an aqueous solution of Co, Mn or Ni a Co b Mn c (OH) 2 prepared using a coprecipitation method (wherein 0.05≤a≤0.5, 0≤b ≤ 0.35, 0.05 ≤ c ≤ 0.5) to the coating step, and (d) washing the coated compound with distilled water, and then drying the water and mixed with a Li compound, characterized in that it comprises a heat treatment There is provided a method for producing a positive electrode active material for a secondary battery.

상기 (a) 단계는 0℃ 내지 70℃에서 진행되는 것을 특징으로 한다.Step (a) is characterized in that proceeds from 0 ℃ to 70 ℃.

상기 (c) 단계는 0.1 내지 3 몰농도의 Co 수용액, Mn 수용액 또는 공침법을 통해 제조된 NiCoMn수용액을 0.5 내지 10시간에 걸쳐서 투입하는 것을 특징으로 한다.Step (c) is characterized in that the NiCoMn aqueous solution prepared by 0.1 to 3 molar concentration of Co aqueous solution, Mn aqueous solution or co-precipitation method over 0.5 to 10 hours.

상기 (c) 단계는 Ni1 -v-w-u-x-y- zMnvCowAluMxM'yM"(OH)2 화합물 대비 NiCoMn의 몰비가 1 내지 20 mol% 가 되도록 투입량 및 농도를 조절하는 것을 특징으로 한다.The step (c) is characterized in that the amount and concentration of Ni 1 -vwuxy- z Mn v Co w Al u M x M ' y M "(OH) 2 compound to adjust the dosage and concentration so that the molar ratio of NiCoMn 1 to 20 mol% It is done.

상기 (c) 단계는 NaOH 수용액을 이용하여 pH를 9.5 내지 12로 조절하는 것을 특징으로 한다. Step (c) is characterized in that the pH is adjusted to 9.5 to 12 using an aqueous NaOH solution.

상기 (d) 단계는 일반공기, 건조공기(dry air) 혹은 산소 분위기 하에서, 300℃ 내지 900℃로 5시간 내지 30시간 동안 가열하는 것을 특징으로 한다.The step (d) is characterized in that for 5 hours to 30 hours heating to 300 ℃ to 900 ℃ under normal air, dry air (dry air) or oxygen atmosphere.

상기 (a) 단계에서 상기 용매는 증류수와 에탄올, 메탄올, 이소프로필알코올, 아세톤으로 이루어진 군에서 선택되는 하나 이상의 것을 특징으로 한다.In the step (a), the solvent is characterized in that at least one selected from the group consisting of distilled water and ethanol, methanol, isopropyl alcohol, acetone.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 비수계 전해질의 2차 전지용 양극 활물질 및 그 제조방법을 구체적으로 설명하기에 앞서, 본 발명의 특성을 간단하게 설명하면 다음과 같다. Before describing the positive electrode active material for a secondary battery of the non-aqueous electrolyte according to the present invention and a method for manufacturing the same in detail, the characteristics of the present invention will be briefly described as follows.

특정성분의 원소를 활물질 표면에 충분하게 분포시키면 그 원소의 특성이 더욱 우세하게 발현될 뿐만 아니라, 코팅시 내지 열처리시 그 원소의 일부가 유사구형 입자의 내부 빈공간과 결정격자 구조 내부로 확산되어, 구조적 안정성도 증가 된다. 이러한 구조적인 특성 변화로 인해 도 3으로 나타내어지는 이러한 체리모델(Cherry model)의 리튬-니켈 복합산화물을 비수계 전해질 전극용 양극 활물질을 사용할 경우, 전지의 고율 특성을 상승시키면서 고온 안정성이 향상되어 고온에서 전해액과 반응성이 낮아 안전성이 우수한 비수계 전해질 2차 전지용 양극 활물질이 제조되는 것이다. Sufficient distribution of an element of a specific component on the surface of the active material not only expresses the characteristic of the element more predominantly, but also during coating or heat treatment, a part of the element diffuses into the inner void space of the pseudo-spherical particle and the crystal lattice structure. In addition, structural stability is also increased. Due to these structural characteristics, when the lithium-nickel composite oxide of the cherry model shown in FIG. 3 is used as the positive electrode active material for a non-aqueous electrolyte electrode, the high temperature stability of the battery is improved while the high temperature stability is improved to improve the high temperature. In the non-aqueous electrolyte secondary battery positive electrode active material is excellent in safety because of low reactivity with the electrolyte.

결국 본 발명에 따른 비수계 전해질의 2차 전지용 양극 활물질은 전지 용량을 유지하거나 높게 하면서도 고율특성을 높일 뿐만 아니라, 고온 안정성이 높기 때문에 고온에서 전해액과 반응성도 낮아 안전성이 확보될 수 있다. As a result, the positive electrode active material for a secondary battery of the non-aqueous electrolyte according to the present invention may not only increase high rate characteristics while maintaining or increasing battery capacity, but also has high temperature stability and thus may have low reactivity with electrolyte at high temperature, thereby ensuring safety.

본 발명에서는 하기 화학식 1로 나타내어지는 리튬 니켈 복합 산화물을 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질이 제공된다.In the present invention, there is provided a cathode active material for a secondary battery comprising a lithium nickel composite oxide represented by the following formula (1).

[화학식 1][Formula 1]

LiaNi1-v-w-x-y-zMnvCowMxM'yM"zO2 Li a Ni 1-vwxyz Mn v Co w M x M ' y M " z O 2

(단, M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y, Zr 로 이루어진 군에서 선택되는 적어도 하나 이상이며 이때, 0.90≤a≤1.15 , 0.01≤v≤0.40 , 0.01≤w≤0.4, 0<x+y+z≤0.05이다.)(M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr, wherein 0.90≤a≤1.15, 0.01≤ v ≦ 0.40, 0.01 ≦ w ≦ 0.4, and 0 <x + y + z ≦ 0.05.)

또한 하기 화학식 2로 나타내어지는 리튬 니켈 복합 산화물을 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질이 제공된다.In addition, there is provided a cathode active material for a secondary battery comprising a lithium nickel composite oxide represented by the following Chemical Formula 2.

[화학식 2][Formula 2]

LiaNi1-v-w-u-x-y-zMnvCowAluMxM'yM"zO2 Li a Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z O 2

(단, M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y, Zr 로 이루어진 군에서 선택되는 적어도 하나 이상이며, 0.90 ≤a≤1.15, 0<v≤0.4, 0.05≤w≤0.4, 0<u≤0.1, 0<x+y+z≤0.05 이다.) (M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr, 0.90 ≤ a ≤ 1.15, 0 <v ≤ 0.4, 0.05 ≤ w ≤ 0.4, 0 <u ≤ 0.1, 0 <x + y + z ≤ 0.05.)

상기 리튬 니켈 복합 산화물에서 M, M', M"은 각각 서로 독립적으로 Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되는 하나 이상의 것이 표면에 50 내지 100% 분포된 것을 특징으로 한다. 또한 상기 리튬 니켈 복합 산화물에서 Co, Mn, 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에 의한 NiCoMn이 상기 리튬 니켈 복합 산화물의 표면에 50 내지 100% 된 것을 특징으로 한다.In the lithium nickel composite oxide, M, M ', and M "are each independently selected from the group consisting of Mg, Sr, Ca, P, Pb, Y, and Zr, 50 to 100% of which is distributed on the surface In addition, Ni a Co b Mn c (OH) 2 aqueous solution prepared by using Co, Mn, co-precipitation method in the lithium nickel composite oxide (wherein 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤ NiCoMn by 0.5) is characterized in that 50 to 100% on the surface of the lithium nickel composite oxide.

리튬 니켈 산화물은 층상구조로서 Li의 이탈 및 삽입에 의해 충·방전이 되는데, 예를 들어, 200mAh/g 정도의 충전 용량은 리튬 니켈 복합 산화물로부터 약 70%의 Li가 이탈한 상태로서 Li0.3NiMO2로 되어 있다. Lithium nickel oxide there is a charge and discharge by release and insertion of Li as a layered structure, for example, a charge capacity of about 200mAh / g is a state in which from about 70% Li from the lithium nickel composite oxide leaving Li 0.3 NiMO It is 2 .

이때 Ni는 그 일부가 Ni3+ 및 Ni4+ 로 되어 있으나, Ni4+ 는 상당히 불안정하고, 고온에서 용이하게 산소를 방출해 Ni2+ 로 되기 쉽다. 상기 리튬 니켈산화물의 경우 상기 산소 방출 분해 온도가 리튬 코발트 산화물과 비교하여 낮고, 이때 방출된 산소가 전해액과 반응하여 연소반응이 일어나거나 Ni 이온 자체가 촉매로 작용하여 전해액의 분해 반응을 촉진하기 때문에 활물질과 전해액의 분해반응에 의하여, 많은 양의 에너지가 발생하게 되는데 이로 인하여 활물질의 안전성이 떨어지는 것이다. At this time, Ni is part of Ni 3+ and Ni 4+ , but Ni 4+ is considerably unstable, and easily releases oxygen at high temperature to become Ni 2+ . In the case of the lithium nickel oxide, the oxygen emission decomposition temperature is lower than that of lithium cobalt oxide, and at this time, the released oxygen reacts with the electrolyte to cause a combustion reaction or Ni ions themselves act as a catalyst to promote the decomposition reaction of the electrolyte. Due to the decomposition reaction of the active material and the electrolyte, a large amount of energy is generated, thereby reducing the safety of the active material.

상기의 안전성은 활물질과 전해액을 일정량 넣고, DSC (Differential Scanning Calorimeter )를 측정함으로써 비교 실험을 평가할 수 있다. 표면에 코 발트(Co), 망간 원소(Mn) 또는 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에 의한 NiCoMn을 50 내지 100% 로 분포시킨 리튬-니켈 산화물을 이용한 양극 활물질을 2차 전지에 사용할 경우, 양극 활물질 내의 반응성이 높은 Ni4+ 등의 원소를 피막을 형성시켜 둘러쌈(capsulation)으로써, 고온에서 안정성이 우수하여 전해액과의 반응성을 억제하여 전지의 안전성을 확보할 수 있다. Said safety can evaluate a comparative experiment by putting a certain amount of active material and electrolyte solution, and measuring DSC (Differential Scanning Calorimeter). Ni a Co b Mn c (OH) 2 aqueous solution prepared by using cobalt (Co), manganese element (Mn) or coprecipitation method on the surface, where 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤ When a positive electrode active material using lithium-nickel oxide in which NiCoMn by 0.5) is distributed at 50 to 100% is used in a secondary battery, a film is formed by forming an element such as highly reactive Ni 4+ in the positive electrode active material. ), It is excellent in stability at high temperatures, thereby suppressing reactivity with the electrolyte solution, thereby ensuring battery safety.

한편, 본 발명에 의한 비수계 전해질의 2차 전지용 양극활물질은 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물에 Co(OH)₂, Mn(OH)₂, 공침법을 이용하여 제조된 NiCoMn(OH)₂을 코팅하고 Li 화합물과 혼합하여 열처리함에 의하여 제조된다. On the other hand, the positive electrode active material for the secondary battery of the non-aqueous electrolyte according to the present invention is Co (OH) ₂, Mn (OH) in Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z (OH) 2 compound ₂, NiCoMn (OH) ₂ prepared by the coprecipitation method is coated and prepared by heat treatment by mixing with a Li compound.

여기서 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물에 Co(OH)₂ , Mn(OH)₂, 공침법을 이용하여 제조된 NiCoMn(OH)₂을 코팅하기 위해서는 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물을 50중량부 내지 1000중량부의 용매와 혼합하여 슬러리를 만든다. 이때 반응기의 온도는 0℃ 내지 70℃ 가 바람직하다. 또한 이때 증류수의 양이 너무 많으면 Co(OH)₂, Mn(OH)₂, 공침법을 이용하여 제조된 NiCoMn(OH)₂이 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물의 표면에 코팅되지 않을 수 있고, 증류수의 양이 너무 적으면, 균일한 코팅이 어렵게 된다. 또한 상기 이 단계에서는 용매로써 증류수와 에탄올, 메탄올, 이소프로필알코올, 아세톤으로 이루어진 군에서 선택되는 하나 이상의 것을 혼합할 수 있다. Wherein NiCoMn (OH) ₂ prepared using Co (OH) ₂, Mn (OH) ₂, coprecipitation method in Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z (OH) 2 compound For coating, a slurry is prepared by mixing a Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z (OH) 2 compound with 50 parts by weight to 1000 parts by weight of a solvent. At this time, the temperature of the reactor is preferably 0 ℃ to 70 ℃. At this time, if the amount of distilled water is too large, Co (OH) ₂, Mn (OH) ₂, NiCoMn (OH) ₂ prepared using coprecipitation method is Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " It may not be coated on the surface of the z (OH) 2 compound, and if the amount of distilled water is too small, uniform coating becomes difficult, and in this step, distilled water and ethanol, methanol, isopropyl alcohol and acetone are used as solvents. One or more selected from the group can be mixed.

상기 슬러리에 암모니아수를 0.5 내지 20중량부 투입하고 계속 교반시켜 준다. 교반시키는 반응기에 0.1 mol/L 내지 3 mol/L 의 Co 수용액, Mn 수용액을 이용하여 공침법을 통해 제조된 NiCoMn(OH)₂을 0.5시간 내지 10시간에 걸쳐서 투입한다. 이때 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물 대비 Co, Mn 공침법을 이용하여 제조된 NiCoMn의 몰비가 1 mol% 내지 20 mol% 가 되게끔 투입량 및 농도를 조절한다. 0.5 to 20 parts by weight of ammonia water was added to the slurry and the stirring was continued. NiCoMn (OH) 2 prepared by coprecipitation using 0.1 mol / L to 3 mol / L Co aqueous solution and Mn aqueous solution was added to the reactor to be stirred over 0.5 to 10 hours. In this case, the amount of Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z (OH) 2 compound was added so that the molar ratio of NiCoMn prepared by Co and Mn coprecipitation method was 1 mol% to 20 mol%. And concentration.

이때 반응기의 pH 는 NaOH 수용액을 이용하여 조절하는데 pH 는 9.5 내지 12가 바람직하다.At this time, the pH of the reactor is adjusted using an aqueous NaOH solution, but the pH is preferably 9.5 to 12.

상기와 같이 코팅된 화합물을 증류수를 이용하여 충분히 세척한 다음, 수분을 건조한 후에 Li 소스와 혼합하여 열처리를 진행한다. The coated compound as described above is sufficiently washed with distilled water, and then dried with moisture and mixed with a Li source to perform a heat treatment.

상기 열처리 과정에서는 일반공기, 건조공기(dry air) 혹은 산소 분위기 하에서, 300도 내지 900도의 온도로 5시간 내지 30시간 동안 가열한다. In the heat treatment process, it is heated for 5 to 30 hours at a temperature of 300 to 900 degrees in a general air, dry air or oxygen atmosphere.

본 발명에 따른 리튬-니켈 복합 금속 산화물의 전극을 제조하기 위해서는, (N-메틸 피롤리돈(N-methyl pyrolidone:NMP)를 용매로 하여 폴리비닐리덴플로라이드(Polyvinylidene fluoride : PVDF) 바인더(binder)와 탄소계 도전제 및 상기 복합금속산화물을 넣어 제조된 슬러리를 사용하는 것이 바람직하나, 이에 제한되지 않는다.In order to manufacture an electrode of a lithium-nickel composite metal oxide according to the present invention, a polyvinylidene fluoride (PVDF) binder (N-methyl pyrolidone: NMP) is used as a solvent. ) And a carbon-based conductive agent and the slurry prepared by adding the composite metal oxide, but are not limited thereto.

Ni 금속복합산화물의 제조시 Ni의 공급원으로 사용되는 화합물은 산화니켈,수산화 니켈, 탄산 니켈, 질산 니켈, 또는 황산 니켈 중 어느 하나 이상을 사용하는 것이 바람직하다. It is preferable to use at least one of nickel oxide, nickel hydroxide, nickel carbonate, nickel nitrate, or nickel sulfate as the compound used as a source of Ni in preparing the Ni metal composite oxide.

Co의 공급원으로 사용되는 화합물은 산화코발트, 수산화 코발트, 탄산 코발트, 질산 코발트, 또는 황산 코발트 중 어느 하나 이상을 사용하는 것이 바람직하고, Mn 의 공급원으로 사용되는 화합물은 산화 망간, 수산화 망간, 질산 망간 또는 황산 망간 중 어느 하나 이상을 사용하는 것이 바람직하며, Li 의 공급원으로 사용되는 화합물은 탄산 리튬, 수산화 리튬, 수산화 리튬 수화물, 질산 리튬, 산화 리튬 중 어느 하나 이상을 사용하는 것이 바람직하다. 이때, Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"z(OH)2 화합물 대비 Li 의 몰비가 0.9 내지 1.1이 바람직하다. The compound used as a source of Co is preferably at least one of cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt nitrate, or cobalt sulfate, and the compound used as a source of Mn is manganese oxide, manganese hydroxide, manganese nitrate Or at least one of manganese sulfate, and the compound used as a source of Li is preferably at least one of lithium carbonate, lithium hydroxide, lithium hydroxide hydrate, lithium nitrate, and lithium oxide. In this case, the molar ratio of Li to the Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z (OH) 2 compound is preferably 0.9 to 1.1.

본 발명에 의한 리튬 니켈 복합 산화물을 리튬 이온 2차 전지의 양극 활물질로서 이용한 경우 전지의 초기 용량을 저하시키지 않고 고온 안정성을 향상시키면서 전해액과의 반응성을 억제할 수 있으며 또한 제조 안정성도 확보하는 것이 가능하다.When the lithium nickel composite oxide according to the present invention is used as a positive electrode active material of a lithium ion secondary battery, the reactivity with the electrolyte can be suppressed while improving the high temperature stability without lowering the initial capacity of the battery, and also the production stability can be ensured. Do.

본 발명에서는 상기 2차 전지용 양극 활물질을 NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제를 넣은 용액에 첨가한 것을 특징으로 하는 리튬-니켈 복합 금속 산화물 전극이 제공된다.The present invention provides a lithium-nickel composite metal oxide electrode, wherein the secondary active material for a secondary battery is added to a solution containing a PVDF binder and a carbon conductive agent using NMP as a solvent.

본 발명에서는 상기 리튬-니켈 복합 금속 산화물의 전극을 사용하는 것을 특 징으로 하는 리튬 이차전지가 제공된다.In the present invention, there is provided a lithium secondary battery characterized by using the electrode of the lithium-nickel composite metal oxide.

이하 실시예를 들어 본 발명을 보다 구체적으로 설명하나 하기 실시예들은 단지 설명을 위한 것으로서 본 발명의 보호 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the following examples are merely illustrative and are not intended to limit the protection scope of the present invention.

[실시예1]Example 1

Ni0.8Co0.15Mn0.05(OH)₂ 를 증류수와 1:1 중량부의 슬러리를 만든 다음, 28 중량% 암모니아수를 3중량부 반응기에 투입하였다. 그런 다음 반응기의 온도를 40℃ , pH 를 10.8 로 유지한 후 CoSO₄ 를 용해한 용액을 투입하였다. 투입하는 CoSO₄ 용액의 농도는 1 M/L 로 하고, 투입속도는 총 투입시간이 4시간이 되게끔 유량을 조절하여 투입하였다. 이때, 투입된 CoSO₄ 는 Ni0.8Co0.15Mn0.05(OH)₂ 의 3 mol% 이다.Ni0.8Co0.15Mn0.05 (OH) ₂ was prepared in a 1: 1 weight part slurry with distilled water, and 28 weight% ammonia water was added to a 3 weight part reactor. Then, the temperature of the reactor was maintained at 40 ° C. and the pH was 10.8, and a solution containing CoSO₄ was added thereto. The concentration of CoSO₄ solution to be added was 1 M / L, and the feeding rate was adjusted by adjusting the flow rate so that the total feeding time was 4 hours. At this time, the added CoSO 'is 3 mol% of Ni0.8Co0.15Mn0.05 (OH) ₂.

이렇게 얻어진 표면에 Co 가 95% 분포된 Ni0.77Co0.18Mn0.05(OH)2 을 LiOH 와 1:1.02 중량비로 잘 섞어준 다음 550℃로 1차 열처리를 진행한 후에 700℃ 내지 900℃로 2차 열처리를 진행하였다. 이렇게 얻어진 활물질을 잘 분쇄하여, 활물질 파우더를 얻었다.Ni0.77Co0.18Mn0.05 (OH) 2 having 95% Co distribution on the surface thus obtained was well mixed with LiOH in a 1: 1.02 weight ratio, and then subjected to a first heat treatment at 550 ° C., followed by 2 to 700 ° C. to 900 ° C. The secondary heat treatment was performed. The active material thus obtained was pulverized well to obtain an active material powder.

이때 얻어진 활물질을 이용하여, 2016 타입의 코인 반전지를 제작하였는데, 충방전은 0.1C-0.2C-0.5C-1.0C 의 순서로 진행하였다.Using the active material obtained at this time, a coin type half cell of 2016 type was produced, but charging and discharging proceeded in the order of 0.1C-0.2C-0.5C-1.0C.

이에 대한 0.1C 초기방전량 (mAh/g)과 1.0C 방전량(mAh/g), 발열량(J/g), 발열속도(W/g)에 대한 실험 결과를 아래 표 1에 나타내었으며, 도1에 실시예에 따른 발열량 및 발열속도의 비교 데이터를 나타내었다. Experimental results of 0.1C initial discharge amount (mAh / g), 1.0C discharge amount (mAh / g), calorific value (J / g) and exothermic rate (W / g) are shown in Table 1 below. Comparative data of the calorific value and the exothermic rate according to Example 1 is shown.

[실시예2]Example 2

CoSO₄ 의 함량이 7 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1, except that the content of CoSO₄ was 7 mol%.

[실시예3]Example 3

CoSO₄ 의 함량이 11 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.It proceeded in the same manner as in Example 1 except that the content of CoSO₄ was 11 mol%.

[실시예4]Example 4

CoSO₄ 의 함량이 15 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1 except that the content of CoSO₄ was 15 mol%.

[실시예5]Example 5

MnSO₄ 의 함량이 3 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1, except that the content of MnSOn is 3 mol%.

[실시예6]Example 6

MnSO₄ 의 함량이 7 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1, except that the content of MnSO₄ is 7 mol%.

[실시예7]Example 7

MnSO₄ 의 함량이 11 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1, except that the content of MnSO₄ is 11 mol%.

[실시예8]Example 8

MnSO₄ 의 함량이 15 mol% 인 것을 제외하고, 실시예 1과 동일하게 진행하였다.The procedure was the same as in Example 1, except that the content of MnSO₄ is 15 mol%.

[실시예9]Example 9

공침법을 이용하여 특정 비율로 제조된 Ni0.33Co0.33Mn0.33(OH)2 의 함량이 3 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.It proceeded in the same manner as in Example 1 except that the content of Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 prepared at a specific ratio using the coprecipitation method was 3 mol%.

[실시예 10]Example 10

공침법을 이용하여 특정 비율로 제조된 Ni0.33Co0.33Mn0.33(OH)2 의 함량이 11 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.It proceeded in the same manner as in Example 1 except that the content of Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 prepared in a specific ratio using the coprecipitation method was 11 mol%.

[실시예 11]Example 11

공침법을 이용하여 특정 비율로 제조된 Ni0.45Co0.1Mn0.45(OH)2 의 함량이 3 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.It proceeded in the same manner as in Example 1 except that the content of Ni 0.45 Co 0.1 Mn 0.45 (OH) 2 prepared in a specific ratio using the coprecipitation method was 3 mol%.

[실시예 12]Example 12

공침법을 이용하여 특정 비율로 제조된 Ni0 .45Co0 .1Mn0 .45(OH)2 의 함량이 11 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.Except that by using a co-precipitation amount of the Ni 0 .45 Co 0 .1 Mn 0 .45 (OH) 2 made of a specific ratio of 11 mol% and was conducted in the same manner as in Example 1.

[실시예 13]Example 13

Ni0.8Co0.15Al0.05(OH)₂에 공침법을 이용하여 특정 비율로 제조된 Ni0.33Co0.33Mn0.33(OH)2 의 함량이 3 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.Ni0.8Co0.15Al0.05 (OH) ₂ was carried out in the same manner as in Example 1 except that the content of Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 prepared at a specific ratio using a coprecipitation method was 3 mol%. .

[실시예 14]Example 14

Ni0.8Co0.15Al0.05(OH)₂에 공침법을 이용하여 특정 비율로 제조된 Ni0.33Co0.33Mn0.33(OH)2 의 함량이 11 mol%인 것을 제외하고 실시예1과 동일하게 진행하였다.Ni0.8Co0.15Al0.05 (OH) ₂ was carried out in the same manner as in Example 1 except that the content of Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 prepared at a specific ratio using a coprecipitation method was 11 mol%. .

[비교예 1] Comparative Example 1

CoSO₄ 를 사용하지 않은 것을 제외하고는, 실시예1 과 동일하게 진행하였다.The procedure was the same as in Example 1 except that CoSO? Was not used.

[비교예 2] Comparative Example 2

CoSO₄ 를 사용하지 않은 것과 Ni0.8Co0.15Al0.05(OH)₂에 코팅한 것을 제외하고는, 실시예1 과 동일하게 진행하였다.The procedure was the same as in Example 1 except that CoSO was not used and was coated on Ni 0.8 Co 0.15 Al 0.05 (OH) 2.

Figure 112006004670737-pat00001
Figure 112006004670737-pat00001

용량 : 2016 타입의 코인 반전지 ,전해액 EC/EMC/DEC=3/6/1 v/vCapacity: 2016 type coin half cell, electrolyte EC / EMC / DEC = 3/6/1 v / v

LiPF6 1.15M , 3.0 ∼ 4.3V 충방전             LiPF6 1.15M, 3.0 ~ 4.3V Charge / Discharge

DSC : 전해액 EC/EMC/DEC=3/6/1 v/v LiPF6 1.15M DSC: Electrolyte EC / EMC / DEC = 3/6/1 v / v LiPF6 1.15M

∼4.45V 충전진행, 전해액을 활물질대비 30중량부 투입후 DSC            Proceed to charge of ~ 4.45V, add 30 parts by weight of electrolyte to active material, and then DSC

측정 , 측정속도 10℃/min           Measurement, measuring speed 10 ℃ / min

표 1에서 보는 바와 같이 코팅원소로 Co와 Mn을 이용한 실시예는 코팅원소를 사용하지 않은 비교예에 비해 발열량이 적고, 발열속도가 감소되어 리튬 2차 전지의 고용량 특성을 유지하고, 안전성을 향상시킬 수 있음을 알 수 있다.As shown in Table 1, the embodiment using Co and Mn as the coating element has a lower calorific value and a lower heating rate than the comparative example without the coating element, thereby maintaining the high capacity characteristics of the lithium secondary battery and improving safety. It can be seen that.

이상에서 설명한 바와 같이, 본 발명에 따른 2차 전지용 양극 활물질에 의하면, 충전상태에서 고온에서 활물질 자체의 발열량 및 발열속도가 현저히 감소하므로 리튬 2차 전지의 고용량 특성을 유지하면서 안전성을 향상시킬 수 있다는 효과가 있다.As described above, according to the positive electrode active material for a secondary battery according to the present invention, since the calorific value and calorific rate of the active material itself are significantly reduced at high temperatures in a charged state, safety can be improved while maintaining high capacity characteristics of the lithium secondary battery. It works.

Claims (13)

하기 화학식 1로 표시되는 리튬-니켈 복합산화물로서, Mn, Co 또는 공침법으로 제조된 NiaCobMnc(OH)2 수용액(0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에서 유래한 Ni-Co-Mn 복합체가 상기 리튬-니켈 복합산화물 표면에 50 내지 100% 분포하는 2차 전지용 양극 활물질.As a lithium-nickel composite oxide represented by the following Chemical Formula 1, an aqueous solution of Ni a Co b Mn c (OH) 2 prepared by Mn, Co or coprecipitation method (0.05 ≦ a ≦ 0.5, 0 ≦ b ≦ 0.35, 0.05 ≦ c ≦ Ni-Co-Mn composite derived from 0.5) is a positive electrode active material for a secondary battery 50 to 100% distributed on the surface of the lithium-nickel composite oxide. [화학식 1][Formula 1] LiaNi1-v-w-x-y-zMnvCowMxM'yM"zO2 Li a Ni 1-vwxyz Mn v Co w M x M ' y M " z O 2 (단, M, M', M"은 각각 서로 독립적으로 Al, Mg, Sr, Ca, P, Pb, Y, Zr 로 이루어진 군에서 선택되는 적어도 하나 이상이며 이때, 0.90≤a≤1.15 , 0.01≤v≤0.40 , 0.01≤w≤0.4, 0<x+y+z≤0.05이다.)(M, M ', M "are each independently at least one selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr, wherein 0.90≤a≤1.15, 0.01≤ v ≦ 0.40, 0.01 ≦ w ≦ 0.4, and 0 <x + y + z ≦ 0.05.) 하기 화학식 2로 표시되는 리튬-니켈 복합산화물로서, Mn, Co 또는 공침법으로 제조된 NiaCobMnc(OH)2 수용액(0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에서 유래한 Ni-Co-Mn 복합체가 상기 리튬-니켈 복합산화물 표면에 50 내지 100% 분포하는 2차 전지용 양극 활물질.As a lithium-nickel composite oxide represented by the following Chemical Formula 2, an aqueous solution of Ni a Co b Mn c (OH) 2 prepared by Mn, Co or coprecipitation method (0.05 ≦ a ≦ 0.5, 0 ≦ b ≦ 0.35, and 0.05 ≦ c ≦ Ni-Co-Mn composite derived from 0.5) is a positive electrode active material for a secondary battery 50 to 100% distributed on the surface of the lithium-nickel composite oxide. [화학식 2][Formula 2] LiaNi1-v-w-u-x-y-zMnvCowAluMxM'yM"zO2 Li a Ni 1-vwuxyz Mn v Co w Al u M x M ' y M " z O 2 (상기 식에서 M, M', M"은 Mg, Sr, Ca, P, Pb, Y, Zr 중 어느 하나이며 0.90 ≤a≤1.15, 0<v≤0.4, 0.05≤w≤0.4, 0<u≤0.1, 0<x+y+z≤0.05이다.)(M, M ', M "is any one of Mg, Sr, Ca, P, Pb, Y, Zr, and 0.90≤a≤1.15, 0 <v≤0.4, 0.05≤w≤0.4, 0 <u≤ 0.1, 0 <x + y + z ≦ 0.05.) 제1항 또는 제2항에 있어서, 상기 리튬 니켈 복합 산화물은 Al, Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되는 하나 이상이 그 표면에 50 내지 100% 분포된 것을 특징으로 하는 2차 전지용 양극 활물질.The method of claim 1 or 2, wherein the lithium nickel composite oxide is one or more selected from the group consisting of Al, Mg, Sr, Ca, P, Pb, Y, Zr is 50 to 100% distributed on the surface A cathode active material for a secondary battery, characterized by the above-mentioned. 제1항 또는 제2항에 있어서, 상기 리튬 니켈 복합 산화물은 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)에 의한 NiCoMn이 상기 리튬 니켈 복합 산화물의 표면에 50 내지 100% 분포된 것을 특징으로 하는 2차 전지용 양극 활물질.The method of claim 1 or 2, wherein the lithium nickel composite oxide is Ni a Co b Mn c (OH) 2 aqueous solution prepared by the coprecipitation method (wherein 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤ c≤0.5) NiCoMn is a 50% to 100% distribution on the surface of the lithium nickel composite oxide, the positive electrode active material for secondary batteries. 제1항 또는 제2항에 있어서, 2차 전지용 양극 활물질을 NMP를 용매로 하여 PVDF계 바인더(binder)와 탄소계 도전제를 넣은 용액에 첨가한 것을 특징으로 하는 리튬-니켈 복합 금속 산화물 전극.The lithium-nickel composite metal oxide electrode according to claim 1 or 2, wherein the positive electrode active material for a secondary battery is added to a solution containing a PVDF binder and a carbon conductive agent using NMP as a solvent. 제5항에 따른 리튬-니켈 복합 금속 산화물의 전극을 사용하는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery using an electrode of the lithium-nickel composite metal oxide according to claim 5. (a) Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"(OH)2 화합물을 용매와 혼합하여 슬러리를 만드는 단계;(a) mixing a Ni 1-vwuxyz Mn v Co w Al u M x M ' y M "(OH) 2 compound with a solvent to form a slurry; (b) 상기 슬러리에 암모니아수를 투입하고 교반하는 단계;(b) adding ammonia water to the slurry and stirring; (c) Co, Mn 수용액 또는 공침법을 이용하여 제조된 NiaCobMnc(OH)2 수용액(식에서 0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5)을 투입하여 코팅하는 단계; 및(c) coating by adding Co, Mn aqueous solution or Ni a Co b Mn c (OH) 2 aqueous solution (0.05≤a≤0.5, 0≤b≤0.35, 0.05≤c≤0.5) Doing; And (d)상기 코팅된 화합물을 증류수를 이용하여 세척한 다음, 수분을 건조한 후에 Li 화합물과 혼합하여 열처리하는 단계를 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법.(d) washing the coated compound with distilled water, and then drying the water, followed by mixing with a Li compound to heat-treat the cathode active material for a secondary battery. 제7항에 있어서, 상기 (a) 단계는 0℃ 내지 70℃에서 진행되는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법.The method of claim 7, wherein the step (a) is performed at 0 ° C. to 70 ° C. 9. 제7항에 있어서, 상기 (c) 단계는 0.1 내지 3 몰농도의 Co 수용액, Mn 수용액 또는 공침법을 통해 제조된 NiCoMn수용액을 0.5 내지 10시간에 걸쳐서 투입하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법.The cathode active material of claim 7, wherein the step (c) comprises adding a Co aqueous solution, a Mn aqueous solution, or a NiCoMn aqueous solution prepared by a coprecipitation method at a concentration of 0.1 to 3 mols over 0.5 to 10 hours. Manufacturing method. 제7항에 있어서, 상기 (c) 단계는 Ni1-v-w-u-x-y-zMnvCowAluMxM'yM"(OH)2 화합물 대비 NiCoMn의 몰비가 1 내지 20 mol% 가 되도록 투입량 및 농도를 조절하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법. The method according to claim 7, wherein the step (c) is performed in such a manner that the dose and concentration are adjusted so that the molar ratio of NiCoMn to the Ni 1-vwuxyz Mn v Co w Al u M x M ' y M "(OH) 2 compound is 1-20 mol%. Method for producing a positive electrode active material for a secondary battery, characterized in that for adjusting. 제7항에 있어서, 상기 (c) 단계는 NaOH 수용액을 이용하여 pH를 9.5 내지 12로 조절하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법. According to claim 7, wherein the step (c) is a method for producing a positive electrode active material for a secondary battery, characterized in that the pH is adjusted to 9.5 to 12 using an aqueous NaOH solution. 제7항에 있어서, 상기 (d) 단계는 일반공기, 건조공기(dry air) 혹은 산소 분위기 하에서, 300℃ 내지 900℃로 5시간 내지 30시간 동안 가열하는 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법. The method of claim 7, wherein the step (d) is a cathode air active material for the secondary battery, characterized in that for heating for 5 to 30 hours at 300 ℃ to 900 ℃ under normal air, dry air (dry air) or oxygen atmosphere Way. 제7항에 있어서, 상기 (a) 단계에서 상기 용매는 증류수와 에탄올, 메탄올, 이소프로필알코올, 아세톤으로 이루어진 군에서 선택되는 하나 이상의 것을 특징으로 하는 2차 전지용 양극 활물질 제조방법.The method of claim 7, wherein in the step (a), the solvent is at least one selected from the group consisting of distilled water, ethanol, methanol, isopropyl alcohol, and acetone.
KR1020060006532A 2005-01-20 2006-01-20 A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same KR100796953B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050005364 2005-01-20
KR1020050005364 2005-01-20

Publications (2)

Publication Number Publication Date
KR20060084821A KR20060084821A (en) 2006-07-25
KR100796953B1 true KR100796953B1 (en) 2008-01-22

Family

ID=37174717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060006532A KR100796953B1 (en) 2005-01-20 2006-01-20 A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same

Country Status (1)

Country Link
KR (1) KR100796953B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123264A2 (en) * 2010-04-02 2011-10-06 Envia System, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8394534B2 (en) 2009-08-27 2013-03-12 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119973A1 (en) * 2013-01-31 2014-08-07 한양대학교 산학협력단 Anode active material for lithium secondary battery, method for fabricating same, and lithium secondary battery using same
KR101596723B1 (en) * 2013-04-30 2016-02-23 한양대학교 산학협력단 A method of preparing positive active material for lithium battery and positive active material made by the same
KR102229622B1 (en) * 2017-11-10 2021-03-17 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN111435738A (en) * 2019-12-18 2020-07-21 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125957A (en) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode material
JP2003221236A (en) * 2001-11-22 2003-08-05 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using it
KR20040007356A (en) * 2003-11-26 2004-01-24 선양국 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
KR20050114516A (en) * 2004-06-01 2005-12-06 브이케이 주식회사 Positive electrode active material for lithium ion secondary cell coated hetero metal oxide on the surface and lithium ion secondary cell comprising it
KR20060035547A (en) * 2004-10-21 2006-04-26 한양대학교 산학협력단 Double-layer cathode active materials and their preparing method for lithium secondary batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125957A (en) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode material
JP2003221236A (en) * 2001-11-22 2003-08-05 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using it
KR20040007356A (en) * 2003-11-26 2004-01-24 선양국 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
KR20050114516A (en) * 2004-06-01 2005-12-06 브이케이 주식회사 Positive electrode active material for lithium ion secondary cell coated hetero metal oxide on the surface and lithium ion secondary cell comprising it
KR20060035547A (en) * 2004-10-21 2006-04-26 한양대학교 산학협력단 Double-layer cathode active materials and their preparing method for lithium secondary batteries

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US8741485B2 (en) 2009-08-27 2014-06-03 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8394534B2 (en) 2009-08-27 2013-03-12 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8475959B2 (en) 2009-08-27 2013-07-02 Envia Systems, Inc. Lithium doped cathode material
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
WO2011123264A2 (en) * 2010-04-02 2011-10-06 Envia System, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
WO2011123264A3 (en) * 2010-04-02 2012-02-02 Envia System, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings

Also Published As

Publication number Publication date
KR20060084821A (en) 2006-07-25

Similar Documents

Publication Publication Date Title
KR100796953B1 (en) A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same
KR100660759B1 (en) A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR101785265B1 (en) Composite cathode active material, cathode, lithium battery comprising the same, and preparation method thereof
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
KR100752703B1 (en) Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
US9923190B2 (en) Method for preparing positive electrode active material precursor and positive electrode material for lithium secondary battery having concentration-gradient layer using batch reactor, and positive electrode active material precursor and positive electrode material for lithium secondary battery prepared by the method
KR100725399B1 (en) Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries
KR20130063868A (en) Positive active material for lithium secondary, method for preparing thereof, and lithium secondary battery containing the same
KR100723973B1 (en) Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
JP2008521196A (en) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
JPH09175825A (en) Production of compound oxide using sol-gel method
US20130260249A1 (en) Lithium ion secondary battery and method for preparing the same
WO2014040410A1 (en) Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery
KR20210134659A (en) Cobalt-free layered positive electrode material and manufacturing method thereof and lithium ion battery
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
KR100734225B1 (en) A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
CN114094060B (en) Preparation method of high-voltage positive electrode material with core-shell structure
CN116799153A (en) Method for preparing anode material by coating and modifying metal sulfide
KR102176654B1 (en) Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
KR101762282B1 (en) High capacity cathode material improved thermal stability for lithium ion battery and a method of manufacturing the same
CN114613963A (en) Negative electrode material, preparation method thereof, negative electrode plate and secondary battery
KR101986165B1 (en) A transition metal composite precursor and cathode materials for secondary battery
KR101588362B1 (en) Cathode active material having core-shell structure and manufacturing method therof
KR100595361B1 (en) A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
CN112978812B (en) Positive electrode material, electrochemical device, and electronic device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170113

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 13