KR20130112583A - Positive active material, method of preparing the same, and lithium battery using the same - Google Patents

Positive active material, method of preparing the same, and lithium battery using the same Download PDF

Info

Publication number
KR20130112583A
KR20130112583A KR1020120035074A KR20120035074A KR20130112583A KR 20130112583 A KR20130112583 A KR 20130112583A KR 1020120035074 A KR1020120035074 A KR 1020120035074A KR 20120035074 A KR20120035074 A KR 20120035074A KR 20130112583 A KR20130112583 A KR 20130112583A
Authority
KR
South Korea
Prior art keywords
active material
manganese oxide
spinel
lithium nickel
nickel manganese
Prior art date
Application number
KR1020120035074A
Other languages
Korean (ko)
Other versions
KR101392525B1 (en
Inventor
조성님
조해인
공영선
심재하
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to KR1020120035074A priority Critical patent/KR101392525B1/en
Publication of KR20130112583A publication Critical patent/KR20130112583A/en
Application granted granted Critical
Publication of KR101392525B1 publication Critical patent/KR101392525B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A positive active material has excellent high temperature and low temperature lifetime by improving the structural stability of a spinel structure, prevents the oxidation change of manganese during a sintering process, and prevents the electrolyte elution of manganese ion. CONSTITUTION: A positive active material is represented by chemical formula 1: Li_(1+α)Ni_xMn_(2-x)O_4 and includes a spinel lithium nickel manganese oxide satisfying formula 1: 8.1725Å < lattice constant a < 8.1810Å. In the chemical formula, x is 0<x<1 and α is 0.02 <= α <= 0.15. A manufacturing method of the positive active material comprises a step of mixing the metal procurer compound of a spinel type lithium nickel manganese oxide; a step of sintering the mixture at 730°C or higher for 5-20 hours; and a step of sintering the mixture at 730°C or lower for 5-20 hours. [Reference numerals] (AA) Example 2; (BB) Comparative example 1

Description

양극 활물질, 이의 제조방법 및 이를 이용한 이차전지{POSITIVE ACTIVE MATERIAL, METHOD OF PREPARING THE SAME, AND LITHIUM BATTERY USING THE SAME}Anode active material, a method of manufacturing the same and a secondary battery using the same {POSITIVE ACTIVE MATERIAL, METHOD OF PREPARING THE SAME, AND LITHIUM BATTERY USING THE SAME}

본 발명은 스피넬형 리튬금속산화물을 포함하는 양극 활물질, 이의 제조방법 및 이를 이용한 이차전지에 관한 것이다.The present invention relates to a cathode active material including a spinel-type lithium metal oxide, a method of manufacturing the same, and a secondary battery using the cathode active material.

일반적으로 리튬이차전지는 양극재료, 음극재료, 전해액, 절연막 등의 조합으로 이루어진 것으로, 최근에는 그 활용범위가 소형 전자기기에서 전기자동차 및 전력저장용으로 확대되면서 고안전성, 장수명, 고에너지 밀도 및 고출력 특성을 제공할 수 있는 이차전지용 양극 소재에 대한 요구가 커지고 있다. 상기 양극 활물질로 리튬 코발트 산화물, 리튬 망간 산화물, 리튬 복합 산화물 등이 이용되고 있고, 특히, 고전압용 스피넬형 리튬 니켈망간산화물(Li1 NixMn2 - xO4 : 0<x<1.0)은 제조비용이 저렴하고 코발트와 같은 유해한 중금속 소재를 사용하지 않아 환경 친화적이며 안전성이 높은 특성으로 인해 전기자동차, 하이브리드 전기 자동차의 동력원 및 전력저장용 등으로 사용 범위가 확대되고 있다.Generally, a lithium secondary battery is formed of a combination of a cathode material, an anode material, an electrolyte, and an insulating film. Recently, its application range has expanded from small electronic devices to electric vehicles and electric power storage devices. There is a growing demand for a cathode material for a secondary battery capable of providing high output characteristics. Lithium cobalt oxide, lithium manganese oxide, lithium composite oxide and the like are used as the positive electrode active material. In particular, spinel type lithium nickel manganese oxide (Li 1 + α Ni x Mn 2 - x O 4 : 0 <x <1.0 ) Is inexpensive to manufacture and does not use harmful heavy metal materials such as cobalt, and thus is widely used for power sources for electric vehicles and hybrid electric vehicles and electric power storage due to its environment-friendly and high safety characteristics.

그러나 고전압용 스피넬형 리튬망간산화물은 망간이온이 모두 4+를 형성하면 정입방체의 스피넬 구조(P4332)를 가지며, 충방전이 반복될수록 구조적인 안정성이 저하되어 수명 특성이 저하되는 단점에 있다. 반면에 Mn3 + 이온이 소량 형성되는 면심입방체의 스피넬 구조를 가지면 안정적인 구조를 가질 수 있고, 충방전의 반복시 구조적인 변형에 따른 수명 특성 저하 현상이 작아진다. 그러나 Mn3 + 함량이 많아지면 망간이온의 용출에 의한 전해질의 분해 반응으로 고온에서 장기 사용 시 수명이 급격하게 저하되는 단점을 가지고 있다. 이에 고전압용 스피넬형 리튬 니켈망간산화물의 제조에 있어 조성 및 구조 제어를 통한 충방전 특성 개선이 필요하다.However, the spinel-type lithium manganese oxide for high voltage has a spinel structure (P4 3 32) in an orthorhombic form when manganese ions form all 4+, and the structural stability is lowered as the charge and discharge are repeated, . On the other hand, if a spinel structure of a face-centered cubic body in which Mn 3 + ions are formed in a small amount is provided, the structure can be stably maintained, and degradation of lifetime characteristics due to structural deformation during repetition of charging and discharging becomes small. However, when the content of Mn 3 + is increased, the electrolyte degrades due to the elution of manganese ions, which shortens the lifetime of the electrolyte at a high temperature for a long period of time. Therefore, it is necessary to improve charge / discharge characteristics through composition and structure control in the production of spinel type lithium nickel manganese oxide for high voltage.

상기 문제점을 해결하기 위한 본 발명의 목적은, 상온이나 고온(55℃)에서 우수한 수명특성을 제공하고, 구조적으로 안정한 5V급 고전압용 리튬 니켈망간산화물을 포함하는 양극 활물질, 이의 제조방법 및 이를 이용한 이차전지를 제공하는 것이다.An object of the present invention to solve the above problems is to provide a cathode active material including a lithium nickel manganese oxide for 5V class and high voltage which is structurally stable and provides excellent lifetime characteristics at room temperature or high temperature (55 ° C) Thereby providing a secondary battery.

상기 목적을 달성하기 위한 본 발명의 양상은,According to an aspect of the present invention,

하기의 화학식 1로 표시되고, 스피넬 구조의 격자상수 a값이 하기의 식 1을 만족하는 스피넬형 리튬 니켈망간산화물을 포함하는 양극 활물질에 관한 것이다.And a spinel-type lithium nickel manganese oxide represented by the following formula (1) and having a lattice constant a value of a spinel structure satisfying the following formula (1).

[화학식 1][Formula 1]

Li1 NixMn2 - xO4 Li 1 + α Ni x Mn 2 - x O 4

(상기 x는 0 < x < 1이고, α는 0.02 ≤ α ≤ 0.15이다.)
(Where x is 0 < x < 1 and a is 0.02?? 0.15).

[식 1][Formula 1]

8.1725Å < 격자상수 a < 8.1810Å
8.1725 < lattice constant a < 8.1810 A

상기 스피넬형 리튬 니켈망간산화물은 XRD 스펙트럼에서 2θ=36.3 내지 36.4의 회절피크 세기(311면) 대 2θ=44.2 내지 44.3의 회절피크 세기(400면)가 하기의 식 2를 만족할 수 있다. The spinel type lithium nickel manganese oxide can satisfy the following expression (2) as the diffraction peak intensity (311 plane) of 2? = 36.3 to 36.4 versus the diffraction peak intensity (400 plane) of 2? = 44.2 to 44.3 in the XRD spectrum.

[식 2] [Formula 2]

1.0 ≤ XRD (311)/(400)회절피크 세기비 ≤ 1.2
1.0? XRD (311) / (400) Diffraction peak intensity ratio? 1.2

본 발명의 다른 양상은,According to another aspect of the present invention,

스피넬형 리튬 니켈망간산화물의 금속 전구체 화합물을 혼합하는 단계; 상기 혼합하는 단계 이후에 730 ℃ 이상에서 5 내지 20 시간 동안 소성하는 제1 소성 단계 및 상기 제1 소성 단계 이후에 730 ℃ 미만에서 5 내지 20 시간 동안 소성하는 제2 소성 단계를 포함하는 양극 활물질의 제조방법에 관한 것이다.
Mixing a metal precursor compound of a spinel type lithium nickel manganese oxide; And a second firing step of firing at a temperature of less than 730 DEG C for 5 to 20 hours after the first firing step and a second firing step of firing at 730 DEG C or higher for 5 to 20 hours after the mixing step, And a manufacturing method thereof.

상기 금속 전구체 화합물은 1.02 내지 1.15 : 2(Li/Ni+Mn)의 금속 화학당량비로 혼합될 수 있다. The metal precursor compound may be mixed at a metal-chemical equivalent ratio of 1.02 to 1.15: 2 (Li / Ni + Mn).

본 발명은 스피넬 구조의 구조적 안정성을 향상시켜 전지의 충방전 반복에 따른 활물질의 구조적 변형을 방지하고, 우수한 고온 및 저온 수명 특성을 갖는 양극 활물질을 제공할 수 있다. 또한, 상기 양극 활물질은 이론적 화학당량비에 비해 초과된 함량의 리튬을 첨가하여 소성 과정에서 발생하는 망간의 산화적 변화를 억제하고 망간 이온의 전해질 용출을 방지할 수 있다.The present invention can improve the structural stability of the spinel structure to prevent structural deformation of the active material due to repetition of charging and discharging of the battery, and to provide a cathode active material having excellent high-temperature and low-temperature lifetime characteristics. In addition, the positive electrode active material may contain an excess amount of lithium relative to the theoretical chemical equivalent ratio, thereby suppressing the oxidative change of manganese generated in the firing process and preventing the elution of manganese ions from the electrolyte.

도 1은 본 발명의 실시예 2 및 비교예 1에 따라 제조된 스피넬형 리튬 니켈망간산화물의 XRD 패턴을 나타낸 것이다.
도 2는 본 발명의 실시예 1에 의한 스피넬형 리튬 니켈망간산화물로 제조된 전지의 고온 수명 특성을 나타낸 것이다.
도 3은 본 발명의 실시예 1에 의한 스피넬형 리튬 니켈망간산화물로 제조된 전지의 저온 수명 특성을 나타낸 것이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 스피넬형 리튬 니켈망간산화물의 리튬 함량에 따른 전지의 용량 변화를 나타낸 것이다.
1 shows XRD patterns of spinel-type lithium nickel manganese oxides prepared according to Example 2 and Comparative Example 1 of the present invention.
2 is a graph showing a high temperature lifetime characteristic of a battery made of a spinel type lithium nickel manganese oxide according to Example 1 of the present invention.
3 is a graph showing the low-temperature lifetime characteristics of a battery made of a spinel-type lithium nickel manganese oxide according to Example 1 of the present invention.
FIG. 4 shows changes in the capacity of a battery according to the lithium content of the spinel-type lithium nickel manganese oxide produced according to Examples and Comparative Examples of the present invention.

이하, 본 발명에 관하여 보다 상세하게 설명한다.
Hereinafter, the present invention will be described in more detail.

본 발명은 양극 활물질을 제공하며, 상기 양극 활물질은 하기의 화학식 1로 표시되는 스피넬형 리튬 니켈망간산화물을 포함할 수 있다. The present invention provides a cathode active material, wherein the cathode active material can include a spinel-type lithium nickel manganese oxide expressed by the following formula (1).

[화학식 1][Formula 1]

Li1 NixMn2 - xO4 Li 1 + α Ni x Mn 2 - x O 4

(상기 x는 0 < x < 1이고, α는 0.02 ≤ α ≤ 0.15이다.)
(Where x is 0 < x < 1 and a is 0.02?? 0.15).

상기 스피넬형 리튬 니켈망간산화물은 XRD 스펙트럼을 측정하여 하기의 식 1과 같은 격자상수 a를 나타낼 수 있다. The spinel-type lithium nickel manganese oxide can exhibit a lattice constant a as shown in the following Equation 1 by measuring the XRD spectrum.

[식 1][Formula 1]

8.1725Å < 격자상수 a < 8.1810Å
8.1725 < lattice constant a < 8.1810 A

또한, 상기 스피넬형 리튬 니켈망간산화물은 XRD 패턴에서 2θ=36.3 내지 36.4의 회절피크 세기(311면) 대 2θ=44.2 내지 44.3의 회절피크 세기(400면)가 하기의 식 2를 만족할 수 있다. 상기 311면 및 400면은 JCPDS(01-070-8650)에 표시되는 스피넬형 리튬 니켈망간산화물의 회절 피크의 면지수를 의미한다. The spinel type lithium nickel manganese oxide can satisfy the following expression (2) as the diffraction peak intensity (311 plane) of 2? = 36.3 to 36.4 and the diffraction peak intensity (400 plane) of 2? = 44.2 to 44.3 in the XRD pattern. The 311 and 400 planes refer to the surface indices of the diffraction peaks of the spinel type lithium nickel manganese oxide represented by JCPDS (01-070-8650).

[식 2][Formula 2]

1.0 ≤ XRD (311)/(400)회절피크 세기비 ≤ 1.2
1.0? XRD (311) / (400) Diffraction peak intensity ratio? 1.2

상기 화학식 1에 따라 스피넬형 리튬 니켈망간산화물에서 리튬 대 니켈과 망간의 화학당량비는 1.02 내지 1.15 : 2(Li : Ni+Mn)이며, 상기 리튬이 리튬 니켈망간산화물의 이론적 화학당량비에 비해 더 포함되기에 망간의 산화수 변화(+4 → +3)를 억제하여 스피넬의 구조적 안정성을 향상시키고, 전지에 적용시 반복적인 충방전에 의한 망간 이온의 전해질 용출을 방지하여 안정적인 충방전 특성을 제공할 수 있다. According to the above formula 1, the chemical equivalent ratio of lithium to nickel and manganese in the spinel type lithium nickel manganese oxide is 1.02 to 1.15: 2 (Li: Ni + Mn), and the lithium is more in proportion to the theoretical chemical equivalent ratio of lithium nickel manganese oxide , The structural stability of spinel is improved by suppressing the oxidation number change of manganese (+4 → +3), and it is possible to prevent the elution of electrolyte of manganese ions by repeated charge and discharge when applied to a battery, have.

또한, 이러한 리튬의 초과 함량 및 하기에서 제시한 제조방법에 따른 스피넬형 리튬 니켈망간산화물의 결정성 및 구조적 안정성은 상기 식 1의 격자 상수 및 XRD (311)/(400)회절피크 세기비로 나타낼 수 있다. 상기 격자 상수 및 XRD (311)/(400)회절피크 세기비가 상기 범위 내로 포함되면 스피넬 구조의 구조적 안정성이 향상되고, 상온 및 고온 수명 특성이 향상될 수 있다.
The crystallinity and the structural stability of the spinel-type lithium nickel manganese oxide according to the excess content of lithium and the manufacturing method described below can be represented by the lattice constant and XRD (311) / (400) diffraction peak intensity ratio of the formula 1 have. When the lattice constant and the XRD (311) / (400) diffraction peak intensity ratio are included within the above range, the structural stability of the spinel structure can be improved and the room temperature and high temperature lifetime characteristics can be improved.

상기 스피넬형 리튬 니켈망간산화물의 입자 크기는 5㎛ 내지 20㎛이고, 바람직하게는 8 내지 12㎛이다.
The particle size of the spinel type lithium nickel manganese oxide is 5 탆 to 20 탆, preferably 8 to 12 탆.

본 발명은 양극 활물질의 제조방법을 제공하고, 상기 제조방법은 금속 전구체 화합물의 혼합 단계 및 소성 단계를 포함한다. 상기 제조방법은 스피넬형 리튬 니켈망간산화물의 결정성 및 구조적 안정성을 증가시키고, 소성 과정에서 망간의 산화수 변화를 억제하여 전지의 수명특성 및 용량 유지율을 개선시킬 수 있다.
The present invention provides a method for producing a cathode active material, which comprises mixing and calcining a metal precursor compound. The above manufacturing method increases the crystallinity and structural stability of the spinel type lithium nickel manganese oxide and suppresses the oxidation number change of manganese during the firing process, thereby improving the lifetime characteristics and capacity retention ratio of the battery.

상기 금속 전구 화합물의 혼합 단계는 상기 화학식 1에 따라 스피넬형 리튬 니켈망간산화물의 금속 전구체 화합물인 리튬을 포함하는 화합물; 및 니켈 및 망간 중 1종 이상을 포함하는 화합물을 혼합한다. The mixing step of the metal precursor compound may be a compound containing lithium which is a metal precursor compound of a spinel type lithium nickel manganese oxide according to Formula 1, And at least one of nickel and manganese are mixed.

상기 리튬을 포함하는 화합물은 리튬을 포함하는 하이드록사이드(hydroxide), 암모늄(ammonium), 설페이트(sulfate), 알콕사이드(alkoxide), 옥살레이트(oxalate), 포스페이트(phosphate), 할라이드(halide), 옥시할라이드(oxyhalide), 설파이드(sulfide), 옥사이드(oxide), 퍼옥사이드(peroxide), 아세테이트(acetate), 나이트레이트(nitrate), 카보네이트(carbonate), 시트레이트(citrate), 프탈레이트(phtalate), 퍼클로레이트(perchlorate), 아세틸아세토네이트(acetylacetonate), 아크릴레이트(acrylate), 포메이트(formate), 옥살레이트(oxalate) 화합물 및 이들의 수화물 중 1종 이상일 수 있고, 바람직하게는 리튬을 포함하는 하이드록사이드 및 카보네이트이다.
The lithium-containing compound may be selected from the group consisting of lithium, ammonium, sulfate, alkoxide, oxalate, phosphate, halide, oxyacid, The compounds of the present invention can be used in the form of salts such as halides, sulfides, oxides, peroxides, acetates, nitrates, carbonates, citrates, phtalates, perchlorate, acetylacetonate, acrylate, formate, oxalate compounds and hydrates thereof, preferably at least one of hydroxide containing lithium, Carbonate.

상기 니켈 및 망간 중 1종 이상을 포함하는 화합물은 니켈 및 망간 중 1종 이상을 포함 하는 하이드록사이드(hydroxide), 암모늄(ammonium), 설페이트(sulfate), 알콕사이드(alkoxide), 옥살레이트(oxalate), 포스페이트(phosphate), 할라이드(halide), 옥시할라이드(oxyhalide), 설파이드(sulfide), 옥사이드(oxide), 퍼옥사이드(peroxide), 아세테이트(acetate), 나이트레이트(nitrate), 카보네이트(carbonate), 시트레이트(citrate), 프탈레이트(phtalate), 퍼클로레이트(perchlorate), 아세틸아세토네이트(acetylacetonate), 아크릴레이트(acrylate), 포메이트(formate), 옥살레이트(oxalate) 화합물 및 이들의 수화물 중 1종 이상일 수 있다. 바람직하게는 상기 니켈 및 망간 중 1종 이상을 포함하는 화합물은 하기의 화학식 2로 표시되는 화학당량비의 니켈 및 망간을 포함할 수 있다.
The compound containing at least one of nickel and manganese may be at least one selected from the group consisting of hydroxide, ammonium, sulfate, alkoxide, oxalate, (S), phosphate, halide, oxyhalide, sulfide, oxide, peroxide, acetate, nitrate, carbonate, sheet, It may be at least one of citrate, phtalate, perchlorate, acetylacetonate, acrylate, formate, oxalate compounds and hydrates thereof . Preferably, the compound comprising at least one of nickel and manganese may include nickel and manganese in a chemical equivalent ratio expressed by the following formula (2).

[화학식 2](2)

NiyMn1 -y Ni y Mn 1- y

(y는 0 < y < 1이다.)
(y is 0 < y < 1).

상기 금속 전구체 화합물은 상기 화학식 1에 따라, 1.02 내지 1.15 : 2(Li : Ni+Mn)의 금속 화학당량비로 혼합될 수 있다. 상기 화학당량비가 상기 범위 내로 포함되면 소성 과정에서 발생할 수 있는 산소 결핍에 따른 Mn의 일부 4+에서 3+로의 산화수 변화를 최대한 억제하여 스피넬 구조의 안정성을 개선시키고, 전지에 적용시 전해질로의 망간 이온의 용출을 방지할 수 있다.
The metal precursor compound may be mixed at a metal chemical equivalent ratio of 1.02 to 1.15: 2 (Li: Ni + Mn) according to Formula 1 above. If the chemical equivalent ratio is within the above range, the stability of the spinel structure is improved by suppressing the oxidation number change from some 4+ to 3+ of Mn according to the oxygen deficiency that may occur during the firing process, thereby improving the stability of the spinel structure. The elution of ions can be prevented.

상기 소성 단계는 제1 소성 단계 및 제2 소성 단계를 포함한다. 상기 제1 소성 단계는 상기 금속 전구체 화합물을 730 ℃ 이상, 바람직하게는 730 내지 950 ℃에서 5 내지 20 시간 동안 소성하는 단계이다. 상기 제2 소성 단계는 상기 제1 소성 단계 이후에 730℃ 미만, 바람직하게는 600 내지 725 ℃에서 5 내지 20 시간 동안 소성하는 단계이다. The firing step includes a first firing step and a second firing step. The first firing step is a step of firing the metal precursor compound at 730 DEG C or higher, preferably 730 to 950 DEG C for 5 to 20 hours. The second firing step is a step of firing at a temperature of less than 730 ° C, preferably 600 to 725 ° C, for 5 to 20 hours after the first firing step.

상기 소성단계에서 소성 분위기는 망간의 산화를 유도하기 위해서 산소를 포함하는 분위기에서 실시될 수 있고, 바람직하게는 대기 또는 산소 분위기일 수 있다.The firing atmosphere in the firing step may be carried out in an atmosphere containing oxygen to induce oxidation of manganese, and may be atmosphere or oxygen atmosphere.

상기 소성 단계에서 제1 소성 단계는 730 ℃ 이상의 고온에서 소성하여 스피넬 구조의 결정성을 증가시키고 1차 입자 크기를 증가시켜 양극 활물질의 비표면적을 최소화할 수 있고, 제2 소성 단계는 730℃ 미만의 온도에서 소성을 행하여 양극 활물질의 구조적인 안정성을 확보할 수 있다.
In the first firing step in the firing step, firing is performed at a high temperature of 730 ° C or higher to increase the crystallinity of the spinel structure and to increase the primary particle size, thereby minimizing the specific surface area of the cathode active material. In the second firing step, The structural stability of the cathode active material can be secured.

상기 소성 단계 이후에 통상적인 고상법에 따른 후처리 공정이 더 진행될 수 있으며, 예를 들어, 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 단계 및 분체 단계 등이 실시될 수 있다. 상기 그라인딩 단계는 유말, 볼 밀, 진동 밀, 라드 밀, 제트 밀 등을 이용할 수 있다.
After the firing step, a post-treatment process according to a conventional solid-phase method may be further performed. For example, a grinding step and a powder step may be performed to control particle size and remove impurities. In the grinding step, a milk powder, a ball mill, a vibration mill, a rod mill, a jet mill or the like may be used.

본 발명은 상기 양극 활물질을 포함하는 리튬이차전지를 제공한다. The present invention provides a lithium secondary battery comprising the above cathode active material.

상기 리튬이차전지는 양극 활물질을 포함하는 양극, 이외 음극, 분리막 및 비수 전해액을 더 구성할 수 있다. 상기 이차 전지의 구조와 제조방법은 본 발명의 기술 분야에서 알려져 있고, 본 발명의 범위를 벗어나지 않는 한 적절히 선택할 수 있다. The lithium secondary battery may further include a cathode including a cathode active material, a cathode, a separator, and a non-aqueous electrolyte. The structure and manufacturing method of the secondary battery are known in the technical field of the present invention, and may be appropriately selected without departing from the scope of the present invention.

예를 들어, 상기 양극은 양극 활물질 및 바인더를 포함하는 양극 활물질 형성용 조성물을 양극 집전체에 도포하고 건조한 이후 압연하여 제조될 수 있다. For example, the positive electrode may be prepared by applying a composition for forming a positive electrode active material containing a positive electrode active material and a binder to a positive electrode collector, drying and then rolling.

상기 바인더는 양극 활물질들 간의 결합과 집전체에 이들을 고정시키는 역할을 하며, 본 기술 분야에서 사용되는 바인더라면 제한 없이 사용될 수 있으며, 바람직하게는 폴리비닐리덴플루오라이드, 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 폴리에틸렌, 폴리프로필렌, 스틸렌 브티렌 고무, 불소 고무 중에서 선택된 1종 이상일 수 있다. The binder serves to fix the bonding between the positive electrode active material and the current collector, and any binder used in the art may be used without limitation, and preferably, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl It may be at least one selected from chloride, polyvinylpyrrolidone, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, polyethylene, polypropylene, styrene butylene rubber, fluorine rubber.

상기 양극 활물질 형성용 조성물은 양극 활물질 및 바인더에 선택적으로 NMP(N-Methyl-2-pyrrolidone) 등과 같은 용매 및 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등과 같은 섬유 상 물질로 이루어진 충진재 등을 더 추가하여 제조될 수 있다. 또한, 하기 음극에서 제시한 도전재를 더 포함할 수 있다.The composition for forming the positive electrode active material may include a solvent such as N-Methyl-2-pyrrolidone (NMP) and an olefin-based polymer such as polyethylene and polypropylene. It can be prepared by further adding a filler made of a fibrous material such as glass fiber, carbon fiber and the like. In addition, the conductive material may be further included in the negative electrode.

상기 양극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다.
The positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.

상기 음극은 음극 집전체 상에 음극 활물질을 포함하는 음극 활물질 형성용 조성물을 도포하고 건조하여 제조될 수 있거나 또는 리튬 금속일 수 있다. 상기 음극 활물질 형성용 조성물은 바인더 및 도전재 등을 선택적으로 더 포함할 수 있다. The negative electrode may be prepared by applying a composition for forming an anode active material containing a negative electrode active material on a negative electrode collector and drying the same, or may be a lithium metal. The negative electrode active material composition may further include a binder and a conductive material.

상기 음극 활물질은 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료, 리튬과 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si 합금, Sn 합금, Al 합금 등과 같은 합금화가 가능한 금속질 화합물 및 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등일 수 있다. The negative electrode active material may be a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, lithium, Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy , A metal compound capable of alloying such as an Al alloy, and the like, and a composite including the metal compound and a carbonaceous material.

상기 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다.
The negative electrode current collector is copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.

상기 분리막은 음극 및 양극 사이에 배치되며, 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등일 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막 등일 수 있다.
The separator is disposed between the cathode and the anode, an olefin polymer such as polypropylene; It may be a sheet or nonwoven fabric made of glass fiber or polyethylene or the like. For example, a polyethylene / polypropylene / polyethylene three-layer separator, a polypropylene / polyethylene / polypropylene three-layer separator, a polyethylene / polypropylene double-layer separator, Or the like.

상기 비수 전해액은 비수전해액에 리튬염이 용해된 것을 사용할 수 있고, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB1OCl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란 리튬 등 일 수 있다.The non-aqueous electrolyte may use a lithium salt dissolved in the non-aqueous electrolyte, the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 1 OCl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, can be LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, etc..

상기 비수전해액은 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등을 포함할 수 있으며, 예를 들어, 상기 비수계 유기 용매로는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란, 아세토니트릴, 디메틸포름아미드, N-메틸-2-피롤리디논, 디메틸술폭시드, 1,3-디메틸-2-이미다졸리디논, 설포란, 메틸 설포란 등일 수 있다.The non-aqueous electrolyte may include a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like. For example, the non-aqueous organic solvent may include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and dimethyl carbonate. Methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 2-methyltetrahydrofuran, acetonitrile, dimethylformamide, N-methyl-2-pyrrolidinone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, sulfolane , Methyl sulfolane and the like.

상기 유기 고체 전해질은 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체전해질 등일 수 있다.The organic solid electrolyte may be a gel polymer electrolyte impregnated with an electrolyte solution in a polymer electrolyte such as polyethylene oxide or polyacrylonitrile.

상기 무기 고체 전해질은 Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등일 수 있다.
The inorganic solid electrolyte is Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI Nitrides, halides, sulfates of Li, such as —LiOH, Li 3 PO 4 —Li 2 S-SiS 2, and the like.

상기 리튬이차전지는 코인형, 각형, 원통형, 파우치형 등으로 분리될 수 있고, 이들 전지의 구조와 제조방법은 본 기술 분야에서 알려져 있으므로, 상세한 설명은 생략한다.
The lithium secondary battery can be separated into a coin type, a prismatic type, a cylindrical type, a pouch type, and the like. Since the structure and manufacturing method of these batteries are known in the art, detailed description thereof will be omitted.

이하 본 발명을 하기의 실시예 및 비교예에 의하여 보다 구체적으로 설명한다. 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples. The following examples are only illustrative of the present invention and do not limit the scope of protection of the present invention.

[실시예 1] Example 1

5V급 스피넬 양극활물질의 기본 조성인 LiNi0.5Mn1.5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0 .25Mn0 .75)를 Li과 Metal의 화학당량비 1.02 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr 동안 열처리하고 2차 700℃에서 12hr 동안 열처리해 스피넬형 리튬 니켈망간산화물을 제조했다. 상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말로 획득되었다.
LiNi 0.5 Mn 1.5 O 4 lithium nickel manganese oxide, which is the basic constituent of the 5 V spinel cathode active material, is composed of lithium carbonate (Li 2 CO 3 ), nickel manganese hydroxide (Ni 0 .25 Mn 0 .75 ) And the mixture was uniformly mixed at an equivalent ratio of 1.02: 2. The mixture was heat-treated at 900 ° C. for 6 hours and then heat-treated at 700 ° C. for 12 hours to prepare spinel-type lithium nickel manganese oxide. The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to obtain powder having an average particle size of 10 탆.

[실시예 2] [Example 2]

5V급 스피넬 양극활물질의 기본 조성인 LiNi0.5Mn1.5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0 .25Mn0 .75)를 Li과 Metal의 화학당량비 1.05 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr 동안 열처리하고 2차 700℃에서 12hr 동안 열처리해 스피넬형 리튬 니켈망간산화물을 제조하였다.LiNi 0.5 Mn 1.5 O 4 lithium nickel manganese oxide, which is the basic constituent of the 5 V spinel cathode active material, is composed of lithium carbonate (Li 2 CO 3 ), nickel manganese hydroxide (Ni 0 .25 Mn 0 .75 ) The mixture was uniformly mixed at an equivalent ratio of 1.05: 2 and then heat treated at 900 ° C. for 6 hours and then annealed at 700 ° C. for 12 hours to prepare a spinel type lithium nickel manganese oxide.

상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말로 획득되었다.
The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to obtain powder having an average particle size of 10 탆.

[실시예 3] [Example 3]

5V급 스피넬 양극활물질의 기본 조성인 LiNi0.5Mn1.5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0 .25Mn0 .75)를 Li과 Metal의 화학당량비 1.10 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr 동안 열처리하고 2차 700℃에서 12hr 동안 열처리해 스피넬형 리튬 니켈망간산화물을 제조하였다. 상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말로 획득되었다.
LiNi 0.5 Mn 1.5 O 4 lithium nickel manganese oxide, which is the basic constituent of the 5 V spinel cathode active material, is composed of lithium carbonate (Li 2 CO 3 ), nickel manganese hydroxide (Ni 0 .25 Mn 0 .75 ) The mixture was uniformly mixed at an equivalent ratio of 1.10: 2 and then heat treated at 900 ° C. for 6 hours and then annealed at 700 ° C. for 12 hours to prepare spinel-type lithium nickel manganese oxide. The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to obtain powder having an average particle size of 10 탆.

[비교예 1] Comparative Example 1

실시예 2와 같이 5V급 스피넬 양극활물질의 기본 조성인 LiNi0 .5Mn1 .5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0.25Mn0.75)를 Li과 Metal의 화학당량비 1.05 : 2로 균일하게 혼합한 후 1차 730℃에서 18hr의 열처리를 하여 스피넬형 리튬 니켈망간산화물을 제조했다. 상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말로 획득되었다.
Example 2 Basic composition of 5V class spinel positive electrode active material, such as LiNi 0 .5 Mn 1 .5 O 4 lithium-nickel-manganese oxide is lithium carbonate (Li 2 CO 3), manganese nickel hydroxide (Ni 0.25 Mn 0.75) The mixture was uniformly mixed with a chemical equivalent ratio of Li and metal of 1.05: 2 and then subjected to a heat treatment at 730 ° C for 18 hours to prepare a spinel type lithium nickel manganese oxide. The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to obtain powder having an average particle size of 10 탆.

[비교예 2] Comparative Example 2

실시예 2와 같이 5V급 스피넬 양극활물질의 기본 조성인 LiNi0 .5Mn1 .5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0.25Mn0.75)를 Li과 Metal의 화학당량비 1.05 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr 동안 열처리를 하여 스피넬형 리튬 니켈망간산화물을 제조했다. 상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말을 합성했다.
Example 2 Basic composition of 5V class spinel positive electrode active material, such as LiNi 0 .5 Mn 1 .5 O 4 lithium-nickel-manganese oxide is lithium carbonate (Li 2 CO 3), manganese nickel hydroxide (Ni 0.25 Mn 0.75) The mixture was uniformly mixed with a chemical equivalent ratio of Li and metal of 1.05: 2 and then subjected to heat treatment at 900 ° C. for 6 hours to prepare a spinel-type lithium nickel manganese oxide. The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to synthesize a powder having an average particle size of 10 탆.

 [비교예 3][Comparative Example 3]

실시예 2와 같이 5V급 스피넬 양극활물질의 기본 조성인 LiNi0 .5Mn1 .5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO3), 니켈망간하이드록사이드 (Ni0.25Mn0.75)를 Li과 Metal의 화학당량비 1.00 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr 동안 열처리하고 2차 700℃에서 12hr 동안 열처리해 스피넬형 리튬 니켈망간산화물을 제조했다. 상기 열처리 후 얻은 리튬 니켈망간산화물은 추가로 입자 사이즈 제어 및 불순물 제거를 위하여 그라인딩 및 분체 공정을 거쳐 평균 입경 10㎛의 분말을 합성했다.
Example 2 Basic composition of 5V class spinel positive electrode active material, such as LiNi 0 .5 Mn 1 .5 O 4 lithium-nickel-manganese oxide is lithium carbonate (Li 2 CO 3), manganese nickel hydroxide (Ni 0.25 Mn 0.75) The mixture was uniformly mixed at a chemical equivalent ratio of Li and metal of 1.00: 2 and then heat treated at 900 ° C. for 6 hours and then annealed at 700 ° C. for 12 hours to prepare spinel-type lithium nickel manganese oxide. The lithium nickel manganese oxide obtained after the heat treatment was further subjected to a grinding and powder process for particle size control and impurity removal to synthesize a powder having an average particle size of 10 탆.

[비교예 4] [Comparative Example 4]

5V급 스피넬 양극활물질의 기본 조성인 LiNi0.5Mn1.5O4 리튬 니켈망간산화물은 리튬카보네이트 (Li2CO), 니켈망간하이드록사이드 (Ni0 .25Mn0 .75)를 Li과 Metal의 화학당량비 1.2 : 2로 균일하게 혼합한 후 1차 900℃에서 6hr의 열처리하고 2차 700℃에서 12hr의 열처리해 스피넬형 리튬 니켈망간산화물을 제조했다.  5V-class of a basic composition of a spinel positive active material LiNi 0.5 Mn 1.5 O 4 lithium nickel manganese oxide is lithium carbonate (Li 2 CO), manganese nickel hydroxide (Ni 0 .25 Mn 0 .75) the chemical equivalent ratio of Li and Metal 1.2: 2, and then subjected to a first heat treatment at 900 ° C. for 6 hours and a second heat treatment at 700 ° C. for 12 hours to prepare a spinel-type lithium nickel manganese oxide.

 

[실험예 1][Experimental Example 1]

상기 실시예 및 비교예에서 합성된 스피넬형 리튬 니켈망간산화물의 분말 XRD 회절 패턴(분석 조건: 2θ= 10 내지 80 °, 0.001°/step, Cu-Kα선((1.5418Å, 40kV/30mA), 제조사 : BRUKER AXS)를 측정하였고, JCPDS(01-070-8650)로 스피넬형 리튬 니켈망간산화물 임을 확인하였다. 상기 XRD 패턴을 이용하여 격자 상수 및 LiNi0.5Mn1.5O4의 JCPDS에 따른 (311)/(400) 면의 회절 피크의 세기비를 계산하였다. 그 결과는 표 1 및 도 1에 제시하였다.
The powder XRD diffraction pattern of the spinel type lithium nickel manganese oxide synthesized in the above Examples and Comparative Examples (analysis conditions: 2? = 10 to 80 占 0.001 占 step, Cu-K? Line ((1.5418A, 40kV / 30mA) (311) according to the JCPDS of the lattice constant and LiNi 0.5 Mn 1.5 O 4 using the above XRD pattern, and the XRD pattern was used as the spinel type lithium nickel manganese oxide by JCPDS (01-070-8650) / (400) plane was calculated. The results are shown in Table 1 and FIG.

[실험예 2] [Experimental Example 2]

상기 실시예 및 비교예에서 합성한 스피넬형 리튬 니켈망간산화물과 도전재인 Denka Black, PVDF 바인더를 94:3:3의 질량 비율로 혼합하여 Al 호일 위에 코팅하여 전극 극판을 제작하였다. 음극으로 리튬 메탈, 전해질로 1.3M LiPF6 EC/DMC/EC = 5:3:2 용액을 사용하여 코인셀을 제작하였다. 상기 코인셀의 전지용량, 25℃ 상온 수명 및 55℃ 고온 수명 특성을 측정하였다. 그 결과는 표 1 및 도 2 내지 4에 제시하였다.The spinel-type lithium nickel manganese oxide synthesized in the above Examples and Comparative Examples and the Denka Black and the PVDF binder as the conductive materials were mixed at a mass ratio of 94: 3: 3 and coated on Al foil to prepare an electrode plate. A coin cell was fabricated using lithium metal as the cathode and 1.3M LiPF6 EC / DMC / EC = 5: 3: 2 solution as the electrolyte. The battery capacity, 25 ° C ordinary temperature service life and 55 ° C high temperature service life characteristics of the coin cell were measured. The results are shown in Table 1 and Figs.

구성Configuration 합성조건Synthesis condition 구조적 특징 (XRD)Structural features (XRD) 전지특성Battery characteristics Li 혼합
몰비
Li mixture
Mole ratio
소성
횟수
Plasticity
Number of times
격자상수
a (Å)
Lattice constant
a (A)
(311)/(400) peak
세기비
(311) / (400) peak
Century ratio
전지용량
(mAh/g)
Battery capacity
(mAh / g)
상온
수명
(%)
Room temperature
life span
(%)
고온
수명 (%)
High temperature
life span (%)
실시예 1Example 1 1.021.02 22 8.17868.1786 1.001.00 132132 9494 9292 실시예 2Example 2 1.051.05 22 8.17768.1776 1.011.01 135135 9797 9393 실시예 3Example 3 1.101.10 22 8.17748.1774 1.021.02 137137 9393 9292 비교예 1Comparative Example 1 1.051.05 1One 8.17258.1725 0.960.96 135135 8282 7474 비교예 2Comparative Example 2 1.051.05 1One 8.18128.1812 1.031.03 128128 8989 7979 비교예 3Comparative Example 3 1.001.00 22 8.17978.1797 0.970.97 132132 8686 7676 비교예 4Comparative Example 4 1.201.20 22 8.17788.1778 1.031.03 130130 8484 7777

(1) 격자상수: Rietveld법을 이용하여 DIFFRACplus TOPAS 프로그램으로 계산하였다. (1) Lattice constant: Calculated by DIFFRACplus TOPAS program using Rietveld method.

(2) JCPDS 카드(01-070-8650)에 따라 311 피크 및 400 피크를 확인하였다. (2) 311 peak and 400 peak were confirmed according to the JCPDS card (01-070-8650).

(3) 상온수명: 25℃, 1C-rate, 100회 충방전 후 1회 방전 용량 유지율 %(3) Normal temperature service life: 25 ° C, 1C-rate, 100 times of discharge capacity retention after charge and discharge%

(4) 고온수명: 55℃, 1C-rate, 100회 충방전 후 1회 방전 용량 유지율 %
(4) High temperature service life: 55 deg. C, 1C-rate, 100 times discharge capacity retention after charge and discharge%

표 1에 제시한 바와 같이, 리튬 니켈망간산화물의 스피넬 구조의 격자상수 a값이 8.1725Å < a < 8.1810Å 범위에 있는 실시예 1, 실시예 2, 실시예 3의 경우 모두 25℃ 상온 수명과 55℃ 고온 수명이 100cycle 충방전 후에 첫 방전용량의 90% 이상을 유지하는 우수한 수명 특성을 나타내는 것을 확인할 수 있다. 반면 격자상수 a 값이 8.1725Å인 비교예 1의 경우나 격자상수 a 값이 8.1810Å인 비교예 2의 경우 구조적 안정성이 결여되어 상온, 고온 수명 특성 모두 90% 이하로 현격히 떨어진 것을 확인할 수 있다. As shown in Table 1, in the case of Examples 1, 2 and 3 in which the lattice constant a of the spinel structure of the lithium nickel manganese oxide is in the range of 8.1725 Å <a <8.1810 Å, It can be confirmed that the high temperature service life at 55 캜 has an excellent lifespan characteristic that retains 90% or more of the initial discharge capacity after 100 cycles of charging and discharging. On the other hand, in the case of Comparative Example 1 in which the lattice constant a is 8.1725 Å, and in Comparative Example 2 in which the lattice constant a is 8.1810 Å, the structural stability is lacking, and both the room temperature and high temperature lifetime characteristics are remarkably reduced to 90% or less.

또한, Li 함량과 소성 조건에 따라 달라지는 리튬 니켈망간산화물의 스피넬 구조를 알아보기 위해 311 피크과 400 피크 세기의 상대비를 비교해 보면, (311)/(400)비가 1.0 ≤ (311)/(400)비 ≤ 1.2 인 실시예 1, 실시예 2, 실시예 3은 스피넬 구조의 구조적 안정성이 매우 우수하며 상온, 고온 수명 특성 모두 우수하게 나타나는 것을 확인할 수 있다.  In order to investigate the spinel structure of the lithium nickel manganese oxide depending on the Li content and the firing conditions, it was found that the ratio of 311 peak / 400 peak intensity was 1.0? 311/400, In Examples 1, 2 and 3 having a ratio of? 1.2, the structural stability of the spinel structure is excellent, and both the room temperature and the high temperature lifetime characteristics are excellent.

또한, 5V급 리튬 니켈망간산화물 Li1 Ni0 .5Mn1 .5O4에서 α값이 0.02 내지 0.15일 때 Mn이온의 산화수 변화가 적으며 구조적으로 안정해지는 것을 확인할 수 있다. 그리고 α값은 무게당 에너지용량에도 크게 영향을 미치는데 도 4에 나타낸 것처럼 α값 0.02보다 작고 0.15보다 큰 경우에는 무게당 용량이 130mAh/g 이하로 에너지밀도가 낮아진 것을 확인할 수 있다.In addition, it can be confirmed that becomes 5V-grade lithium nickel manganese oxide Li 1 + α Ni 0 .5 Mn 1 .5 O 4 is the oxidation number of Mn ions changes when the α value from 0.02 to 0.15 days in the enemy was structurally stable. As shown in FIG. 4, when the α value is smaller than 0.02 and larger than 0.15, the energy density is lowered to 130 mAh / g or less per weight capacity as shown in FIG. 4.

Claims (8)

하기의 화학식 1로 표시되고,
스피넬 구조의 격자상수 a값이 하기의 식 1을 만족하는 스피넬형 리튬 니켈망간산화물을 포함하는 것을 특징으로 하는 양극 활물질:
[화학식 1]
Li1 NixMn2 - xO4
(상기 x는 0 < x < 1이고, α는 0.02 ≤ α ≤ 0.15이다.)
[식 1]
8.1725Å < 격자상수 a < 8.1810Å
(1)
A cathode active material comprising a spinel lithium nickel manganese oxide whose lattice constant a value of the spinel structure satisfies Equation 1 below:
[Formula 1]
Li 1 + α Ni x Mn 2 - x O 4
(Where x is 0 < x < 1 and a is 0.02?? 0.15).
[Formula 1]
8.1725 < lattice constant a < 8.1810 A
제1항에 있어서,
상기 스피넬형 리튬 니켈망간산화물의 XRD 스펙트럼에서 2θ=36.3 내지 36.4의 회절피크 세기(311면) 대 2θ=44.2 내지 44.3의 회절피크 세기(400면)가 하기의 식 2를 만족하는 것을 특징으로 하는 양극 활물질:
[식 2]
1.0 ≤ XRD (311)/(400)회절피크 세기비 ≤ 1.2
The method of claim 1,
The X-ray diffraction peak intensity (plane 400) of the diffraction peak intensity (311 plane) at 2? = 36.3 to 36.4 versus 2? = 44.2 to 44.3 in the XRD spectrum of the spinel type lithium nickel manganese oxide satisfies the following formula Cathode active material:
[Formula 2]
1.0? XRD (311) / (400) Diffraction peak intensity ratio? 1.2
제1항에 있어서,
상기 스피넬형 리튬 니켈망간산화물의 입자 크기는 5㎛ 내지 20㎛인 것을 특징으로 하는 양극 활물질.
The method of claim 1,
Wherein the spinel type lithium nickel manganese oxide has a particle size of 5 to 20 占 퐉.
하기의 화학식 1에 따라 스피넬형 리튬 니켈망간산화물의 금속 전구체 화합물을 혼합하는 단계;
상기 혼합하는 단계 이후에 730 ℃ 이상에서 5 내지 20 시간 동안 소성하는 제1 소성 단계 및
상기 제1 소성 단계 이후에 730 ℃ 미만에서 5 내지 20 시간 동안 소성하는 제2 소성 단계를 포함하는 것을 특징으로 하는 양극 활물질의 제조방법:
[화학식 1]
Li1 NixMn2 - xO4
(상기 x는 0 < x < 1이고, α는 0.02 ≤ α ≤ 0.15이다.)
Mixing a metal precursor compound of a spinel type lithium nickel manganese oxide according to Formula 1 below;
A first firing step of firing at 730 ° C. for 5 to 20 hours after the mixing step;
Method for producing a positive electrode active material comprising a second firing step of firing for 5 to 20 hours at less than 730 ℃ after the first firing step:
[Formula 1]
Li 1 + α Ni x Mn 2 - x O 4
(Where x is 0 < x < 1 and a is 0.02?? 0.15).
제4항에 있어서,
상기 금속 전구체 화합물은 1.02 내지 1.15 : 2(Li : Ni+Mn)의 금속 화학당량비로 혼합되는 것을 특징으로 하는 양극 활물질의 제조방법.
5. The method of claim 4,
The metal precursor compound is 1.02 to 1.15: 2 (Li: Ni + Mn) metal chemical equivalent ratio of the manufacturing method of the positive electrode active material, characterized in that mixed.
제4항에 있어서,
상기 금속 전구체 화합물은 Li을 포함하는 하이드록사이드(hydroxide), 암모늄(ammonium), 설페이트(sulfate), 알콕사이드(alkoxide), 옥살레이트(oxalate), 포스페이트(phosphate), 할라이드(halide), 옥시할라이드(oxyhalide), 설파이드(sulfide), 옥사이드(oxide), 퍼옥사이드(peroxide), 아세테이트(acetate), 나이트레이트(nitrate), 카보네이트(carbonate), 시트레이트(citrate), 프탈레이트(phtalate), 퍼클로레이트(perchlorate), 아세틸아세토네이트(acetylacetonate), 아크릴레이트(acrylate), 포메이트(formate), 옥살레이트(oxalate) 화합물 및 이들의 수화물 중 1종 이상인 것을 특징으로 하는 양극 활물질의 제조방법.
5. The method of claim 4,
The metal precursor compound may include hydroxide, ammonium, sulfate, alkoxide, oxalate, phosphate, halide, and oxyhalide containing Li. oxyhalide, sulfide, oxide, peroxide, acetate, nitrate, carbonate, citrate, phthalate, perchlorate And acetylacetonate, acrylate, acrylate, formate, oxalate compound, and a hydrate thereof, wherein the positive electrode active material is produced.
제4항에 있어서,
상기 금속 전구체 화합물은 Ni 및 Mn 중 1종 이상을 포함하는 하이드록사이드(hydroxide), 암모늄(ammonium), 설페이트(sulfate), 알콕사이드(alkoxide), 옥살레이트(oxalate), 포스페이트(phosphate), 할라이드(halide), 옥시할라이드(oxyhalide), 설파이드(sulfide), 옥사이드(oxide), 퍼옥사이드(peroxide), 아세테이트(acetate), 나이트레이트(nitrate), 카보네이트(carbonate), 시트레이트(citrate), 프탈레이트(phtalate), 퍼클로레이트(perchlorate), 아세틸아세토네이트(acetylacetonate), 아크릴레이트(acrylate), 포메이트(formate), 옥살레이트(oxalate) 화합물 및 이들의 수화물 중 1종 이상인 것을 특징으로 하는 양극 활물질의 제조방법.
5. The method of claim 4,
The metal precursor compound may include hydroxide, ammonium, sulfate, alkoxide, oxalate, phosphate, and halide including at least one of Ni and Mn. halide, oxyhalide, sulfide, oxide, peroxide, acetate, nitrate, carbonate, citrate, phthalate ), A perchlorate, an acetylacetonate, an acrylate, a formate, an oxalate compound and a hydrate thereof.
제1항의 양극 활물질을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising the cathode active material of claim 1.
KR1020120035074A 2012-04-04 2012-04-04 Positive active material, method of preparing the same, and lithium battery using the same KR101392525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120035074A KR101392525B1 (en) 2012-04-04 2012-04-04 Positive active material, method of preparing the same, and lithium battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120035074A KR101392525B1 (en) 2012-04-04 2012-04-04 Positive active material, method of preparing the same, and lithium battery using the same

Publications (2)

Publication Number Publication Date
KR20130112583A true KR20130112583A (en) 2013-10-14
KR101392525B1 KR101392525B1 (en) 2014-05-07

Family

ID=49633561

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120035074A KR101392525B1 (en) 2012-04-04 2012-04-04 Positive active material, method of preparing the same, and lithium battery using the same

Country Status (1)

Country Link
KR (1) KR101392525B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111543A1 (en) * 2018-11-30 2020-06-04 주식회사 엘지화학 Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
WO2022039491A1 (en) * 2020-08-18 2022-02-24 주식회사 엘지화학 Method for manufacturing positive electrode active material
CN114094095A (en) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 Spinel type positive electrode material, preparation method thereof and lithium ion battery positive electrode plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581333B2 (en) 2003-04-01 2010-11-17 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111543A1 (en) * 2018-11-30 2020-06-04 주식회사 엘지화학 Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
KR20200065626A (en) * 2018-11-30 2020-06-09 주식회사 엘지화학 Lithium manganese-based positive electrode active material having octahedral structure, positive electrode and lithium secondary battery including the same
WO2022039491A1 (en) * 2020-08-18 2022-02-24 주식회사 엘지화학 Method for manufacturing positive electrode active material
CN114094095A (en) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 Spinel type positive electrode material, preparation method thereof and lithium ion battery positive electrode plate
CN114094095B (en) * 2021-11-09 2023-11-28 远景动力技术(江苏)有限公司 Spinel type positive electrode material, preparation method thereof and lithium ion battery positive electrode sheet

Also Published As

Publication number Publication date
KR101392525B1 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US10651462B2 (en) Positive electrode active material containing lithium composite oxide and covering material, and battery including positive electrode active material
JP4197002B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
KR101478873B1 (en) Positive active material, method of preparing the same, and lithium battery using the same
US11201319B2 (en) Positive electrode active material containing lithium composite oxide and covering material, and battery including positive electrode active material
JP4784608B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
JP2020068210A (en) Composite positive electrode active material, positive electrode containing the same, lithium battery and manufacturing method thereof
US11171327B2 (en) Positive electrode active material containing lithium composite oxide and covering material and battery
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101814737B1 (en) Composite nitrides, mamufacturing method, electrode active material, electrode including the electrode active material, and lithium secondary battery including the electrode
KR102201686B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPWO2018198410A1 (en) Positive electrode active material and battery
EP2626945B1 (en) Lithium titanium oxide, method of preparing the same, negative electrode including the same, and lithium battery including the negative electrode
KR20200056235A (en) Positive active material, method of manufacturing the same and rechargeable lithium battery incluidng the same
KR20160081111A (en) Composite positive active material, preparing method thereof, positive electrode including the same, and lithium secondary battery including the positive electrode
EP3659976B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20190077160A (en) Positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR20190076774A (en) Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR101848979B1 (en) Transition metal oxide precursor, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same
KR101708362B1 (en) Composite, mamufacturing method, anode active material, anode including the anode active material, and lithium secondary battery including the anode
KR101392525B1 (en) Positive active material, method of preparing the same, and lithium battery using the same
KR102224039B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102140211B1 (en) a method for preparing cathode active material, a cathode active material prepared thereby, and a lithium secondary battery including the same
KR101449813B1 (en) Positive active material for a lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101426148B1 (en) Lithium-metal oxide and lithium rechargeable battery using the same
WO2020110590A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180320

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 6