KR20040106947A - Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube - Google Patents

Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube Download PDF

Info

Publication number
KR20040106947A
KR20040106947A KR1020030036265A KR20030036265A KR20040106947A KR 20040106947 A KR20040106947 A KR 20040106947A KR 1020030036265 A KR1020030036265 A KR 1020030036265A KR 20030036265 A KR20030036265 A KR 20030036265A KR 20040106947 A KR20040106947 A KR 20040106947A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
pattern
film
poly
conductive film
Prior art date
Application number
KR1020030036265A
Other languages
Korean (ko)
Inventor
박종진
구본원
이상윤
강인남
정은정
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030036265A priority Critical patent/KR20040106947A/en
Publication of KR20040106947A publication Critical patent/KR20040106947A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Abstract

PURPOSE: A method for preparing a conductive film or pattern and a conductive film or pattern prepared by the method are provided, to allow a metal nanoparticle to be uniformly doped on the network structure of a carbon nanotube, thereby improving the conductivity of a film, and to allow a conductive film to be obtained easily without the complex process such as etching, etc. CONSTITUTION: A conductive film is prepared by obtaining an acid-treated carbon nanotube; and dispersing a metal nanoparticle and the carbon nanotube in an organic solvent, coating the dispersion on a substrate, and drying it. A conductive pattern is prepared by obtaining an acid-treated carbon nanotube; and dispersing a metal nanoparticle and the carbon nanotube in a photopolymerizable organic solvent containing a multifunctional monomer and a photopolymerization initiator, coating the dispersion on a substrate, optionally exposing the coated one, and developing it. Preferably the metal nanoparticle is gold, silver, copper, palladium, nickel or platinum.

Description

금속나노입자 및 카본나노튜브를 이용한 도전성 필름 또는 패턴 형성방법 {Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube}Method for preparing a conductive film and a pattern using metallic nano particles and carbon nanotubes

본 발명은 금속나노입자 및 카본나노튜브를 이용한 도전성 필름 및 그 패턴 형성방법에 관한 것으로, 보다 상세하게는, 산처리된 탄소나노튜브를 금속나노입자와 함께 유기용매 또는 광중합성 유기 용액에 분산시키고 이를 기재상에 코팅한 후 건조하여 필름을 수득하거나, 또는 상기 필름을 선택적으로 노광하고 현상하여 패턴을 형성하는 도전성 필름 또는 패턴 형성방법에 관한 것이다. 본 발명의 방법에 따라 제조된 필름의 경우, 탄소나노튜브의 망상구조에 금속 나노입자가 균일하게 도핑될 수 있어 수득된 필름의 전도성이 우수하고, 필요에 따라 전도성을 조절할 수 있으며, 에칭 등의 복잡한 공정없이 전도성 패턴을 용이하게 형성할 수 있으므로, 대전방지성 점착시트 또는 신발, 도전성 폴리우레탄 프린트 롤러, 전자파 차폐 EMI 등의 분야에 유리하게 사용될 수 있다.The present invention relates to a conductive film using metal nanoparticles and carbon nanotubes and a pattern forming method thereof. More particularly, the acid-treated carbon nanotubes are dispersed together with metal nanoparticles in an organic solvent or a photopolymerizable organic solution. The present invention relates to a conductive film or a pattern forming method of coating a substrate on a substrate and then drying to obtain a film, or selectively exposing and developing the film to form a pattern. In the case of the film prepared according to the method of the present invention, the metal nanoparticles can be uniformly doped in the network structure of the carbon nanotubes, the conductivity of the obtained film is excellent, and if necessary, the conductivity can be adjusted, such as etching Since the conductive pattern can be easily formed without a complicated process, it can be advantageously used in the fields of antistatic adhesive sheets or shoes, conductive polyurethane print rollers, electromagnetic shielding EMI and the like.

나노 크기의 분자구조를 갖는 소재의 경우, 당해 소재의 1차원, 2차원 및 3차원의 공간 구조 및 질서에 따라 상이한 전기적, 광학적, 및 생물학적 성질을 나타내는 바, 나노, 광정보 전자 및 생물소자 개발과 관련한 나노입자의 연구가 전세계적으로 활발하게 진행되고 있다. 특히, 나노크기의 구조를 구현할 수 있는 나노 패턴닝 기술은 고집적 회로(IC) 뿐 아니라 초소형 발광 소자, 디스플레이 소자, 저장 소자, 스핀 디바이스(Spin Device), 분자수준의 전자공학 (Molecular Electronics), 및 광통신 소자 등의 개발에 가장 중요한 기술로서, 차세대 정보저장 및 처리 시스템과 광신호 연결 및 다중화 등에 있어 주요 기술로 대두되고 있는 양자점(Quantum Dot) 및 광자 결정(Photonic Crystal)의 개념을 구현할 수 있는 구조물 성형에 적용할 수 있다.In the case of a material having a nano-sized molecular structure, the development of nano, optical information electronics and biodevices shows different electrical, optical, and biological properties according to the spatial structure and order in one, two, and three dimensions of the material. Research of nanoparticles related to this is being actively conducted worldwide. In particular, nano-patterning technology capable of realizing nanoscale structures is not only integrated circuits (ICs) but also micro-light emitting devices, display devices, storage devices, spin devices, molecular-level electronics, and As the most important technology for the development of optical communication devices, etc., it is a structure that can realize the concept of quantum dot and photonic crystal, which are emerging as main technologies in next-generation information storage and processing systems and optical signal connection and multiplexing. It can be applied to molding.

나노크기 소재 중, 금속나노입자는 특정 금속이온을 함유한 수용액을 시트르산염, EDTA, NaBH4등의 환원제로 처리하여 제조하는 등의, 공지된 다양한 제조방법에 의해 제조할 수 있다. 금속나노입자는 전하이동(charge transfer) 내지 전자이동(electron transfer)등의 전기전도메카니즘을 통해 전도성을 지니며, 그 크기를 조절하여 패킹 밀도(packing density)를 조절하면 재료의 전도성을 조절할 수 있는 특징이 있다.Among the nano-sized materials, the metal nanoparticles can be prepared by various known manufacturing methods, such as by treating an aqueous solution containing a specific metal ion with a reducing agent such as citrate, EDTA, NaBH 4, and the like. Metal nanoparticles have conductivity through electrical conductivity mechanisms such as charge transfer or electron transfer, and by controlling their packing density to control the conductivity of materials There is a characteristic.

한편, 나노크기의 또 다른 소재인 탄소나노튜브는 1991년 전자현미경을 다루던 일본 메이조 대학의 이지마 박사가 발견한 이후에 많은 연구가 진행되어 왔다. 탄소나노튜브는 통상 흑연면으로 이루어진 원통형 구조로서, 그 직경은 1 내지 20㎚ 정도이다. 흑연면은 튼튼하고 평탄한 육각형 판상막 구조의 독특한 결합배열을가지며, 나선모양으로 감기면서 탄소나노튜브를 형성하고, 상이한 지점에서 모서리의 결합이 이루어진다. 상기 막의 상하부는 자유전자로 채워져 있어 전자는 이산상태에서 막과 평행한 상태로 운동을 한다. 나노튜브의 전기적 특성은 구조와 직경의 함수인 바 [Phys.Rev.B46, 1804 (1992); Phys.Rev.Lett.,68, 1579 (1992)], 탄소나노튜브는 그 구조와 직경에서의 차이에 따라 절연체로부터 반도체, 금속성까지 나타낼 수 있다. 예를 들면, 탄소나노튜브의 나선형 또는 키랄성(chirality)이 변할 경우 자유전자의 운동방식이 바뀌게 되고, 그 결과 자유전자의 운동이 완전히 자유로워져 탄소나노튜브가 금속과 같은 도체적 성질을 갖게 되거나, 혹은 극복해야 될 배리어(barrier)의 존재로 인해 반도체적 특성을 나타내기도 한다. 이 때, 상기 배리어의 크기는 튜브의 직경에 따라 결정되며, 최소직경에서 1eV도 가능한 것으로 알려져 있다. 탄소나노튜브는 이처럼 역학적 견고성과 화학적 안정성이 뛰어나고, 반도체와 도체의 성질을 모두 띨 수 있으며, 직경이 작고 길이가 길며 속이 비어있다는 특성 때문에, 평판표시소자, 트랜지스터, 에너지 저장체 등의 소재로서 뛰어난 성질을 보이고, 나노크기의 각종 전자소자로서의 응용성이 매우 크다.On the other hand, carbon nanotubes, another nano-sized material, have been studied since discovery by Dr. Ijima of Japan's Meijo University in 1991. Carbon nanotubes generally have a cylindrical structure composed of graphite surfaces, and have a diameter of about 1 to 20 nm. The graphite surface has a unique bonding arrangement of a strong, flat hexagonal plate-like membrane structure, wound into a spiral to form carbon nanotubes, and the edges are joined at different points. The upper and lower portions of the membrane are filled with free electrons so that the electrons move in parallel with the membrane in a discrete state. The electrical properties of nanotubes are a function of structure and diameter [Phys. Rev. B46 , 1804 (1992); Phys. Rev. Lett., 68 , 1579 (1992)], carbon nanotubes can be expressed from insulators to semiconductors and metals, depending on the difference in their structure and diameter. For example, if the helical or chirality of the carbon nanotubes is changed, the motion of the free electrons is changed. As a result, the free electrons are completely freed and the carbon nanotubes have the same conductive properties as metals. Or, it may exhibit semiconductor characteristics due to the existence of barriers to be overcome. At this time, the size of the barrier is determined according to the diameter of the tube, it is known that even 1eV at the minimum diameter. Carbon nanotubes are excellent in mechanical properties such as flat panel display devices, transistors, and energy storage materials because of their excellent mechanical robustness and chemical stability, their ability to exhibit both semiconductor and conductor properties, and their small diameter, length, and hollowness. It shows properties, and its applicability as nano-sized various electronic devices is very large.

한편, 전자산업의 발달에 따라 물성이 우수하고 그 전도성을 임의로 조절할 수 있는, 도전성 필름 또는 패턴에 대한 요구가 증가하고 있는 상황에서, 탄소나노튜브에 금속나노입자를 블랜딩할 경우 상기 요구에 적합한 소재를 제공할 수 있을 것으로 기대된다. 하지만, 본 발명자들의 연구에 따르면 이들의 단순 블렌딩은 탄소나노튜브와 금속입자 간의 좋지 않은 계면특성 (또는 상용성)으로 인해 만족할 만한 성과를 얻을 수 없으며, 균일 혼합된 경우에도 시간경과에 따라 상분리 등이발생하는 등의 문제가 있다. 한편, 이러한 문제를 해결하기 위해 계면활성제 등의 제3의 성분을 사용한 경우, 탄소나노튜브 표면에서 상기 제3성분을 완전히 제거하기 힘들어 계면에 불순물로 존재하게 되어 순수한 탄소나노튜브만의 성질을 얻기가 힘들어진다.On the other hand, when the demand for a conductive film or pattern is increasing in accordance with the development of the electronic industry, which has excellent physical properties and can arbitrarily control its conductivity, when blending metal nanoparticles to carbon nanotubes, a material suitable for the above requirements It is expected to be able to provide. However, according to the researches of the present inventors, their simple blending cannot achieve satisfactory performance due to poor interface characteristics (or compatibility) between the carbon nanotubes and the metal particles, and even in the case of homogeneous mixing, phase separation and the like. There is a problem such as this occurs. On the other hand, when a third component such as a surfactant is used to solve this problem, it is difficult to completely remove the third component from the surface of the carbon nanotubes, so that it exists as impurities at the interface to obtain the properties of pure carbon nanotubes only. Gets harder.

본 발명자들은 상기 문제를 해결하고자 예의 연구한 결과, 탄소나노튜브의 표면을 산처리하여 상기 튜브표면에 카르복실레이트기를 도입한 후 이를 금속나노입자와 함께 적절한 유기용매 또는 광중합성 유기용액에 분산시킬 경우, 분산이 쉽게 이루어지며, 금속나노입자와 탄소나노튜브간의 계면에 형성된 쿨롱힘에 의해 상용성이 크게 향상되어 별도의 계면활성제를 사용하지 않고도, 코팅 시에 금속나노 입자와 탄소나노튜브가 상분리되거나 시간경과에 따라 침전되는 문제없이, 도전성 필름 또는 패턴을 수득할 수 있다는 것을 확인하고 본 발명에 이르게 되었다.The present inventors earnestly studied to solve the above problems, and the acid treatment of the surface of the carbon nanotubes to introduce a carboxylate group on the surface of the tube and to disperse them together with the metal nanoparticles in an appropriate organic solvent or photopolymerizable organic solution. In this case, the dispersion is easily performed, and the compatibility is greatly improved by the Coulomb force formed at the interface between the metal nanoparticles and the carbon nanotubes, so that the metal nanoparticles and the carbon nanotubes are phase-separated at the time of coating without using a separate surfactant. It has been found that a conductive film or pattern can be obtained without the problem of depositing or being precipitated over time and the present invention has been reached.

결국, 본 발명은 금속나노입자 및 탄소나노튜브를 사용하여, 수득된 필름의 물성이 우수하고, 그 전도성을 적당한 범위에서 조절할 수 있는 필름 또는 패턴 형성방법과, 그에 따라 수득된 도전성 필름 및 패턴을 제공하기 위한 것이다.As a result, the present invention is excellent in the physical properties of the film obtained by using the metal nanoparticles and carbon nanotubes, it is possible to control the conductivity in an appropriate range It is for providing a film or a pattern formation method and the electroconductive film and pattern obtained by this.

상기 목적을 달성하기 위한 본 발명의 한 측면은 ⅰ) 산처리된 탄소나노튜브를 수득하는 단계; 및 ⅱ) 금속나노입자 및 상기 산처리된 탄소나노튜브를 유기용매에 분산시키고 이를 기재 상에 코팅한 후 건조하여 필름을 수득하는 단계를 포함하는 도전성 필름 형성방법에 관한 것이다.One aspect of the present invention for achieving the above object is iii) obtaining an acid treated carbon nanotube; And ii) dispersing the metal nanoparticles and the acid treated carbon nanotubes in an organic solvent, coating the same on a substrate, and drying to obtain a film.

본 발명의 또 다른 한 측면은 ⅰ) 산처리된 탄소나노튜브를 수득하는 단계; ⅱ) 금속나노입자와 상기 산처리된 탄소나노튜브를, 다관능성 단량체 및 광중합 개시제를 포함한 광중합성 유기용액에 분산시키고 이를 기재 상에 코팅한 후, 이를 선택적으로 노광하고 현상하는 단계를 포함하는 도전성 패턴 형성방법에 관한 것이다.Another aspect of the present invention is to obtain the acid-treated carbon nanotubes; Ii) dispersing the metal nanoparticles and the acid treated carbon nanotubes in a photopolymerizable organic solution including a polyfunctional monomer and a photopolymerization initiator, coating them on a substrate, and then selectively exposing and developing them. It relates to a pattern forming method.

본 발명의 또 다른 한 측면은 상기 방법에 의해 수득한 필름 또는 패턴에 관한 것이다.Another aspect of the invention relates to the film or pattern obtained by the above method.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

탄소나노튜브 및 금속나노입자의 도전성 필름을 형성Form conductive film of carbon nanotubes and metal nanoparticles

ⅰ) 단계:Iii) Steps:

우선, 탄소나노튜브를 산 처리하여 금속입자와 함께 쿨롱 힘을 형성할 수 있는 다량의 카르복실레이트기가 표면에 존재하도록 한다.First, the carbon nanotubes are acid treated so that a large amount of carboxylate groups on the surface can form coulomb forces with the metal particles.

본 발명에 사용되는 탄소나노튜브는 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않으며, 시판되는 제품을 구입하여 사용할 수 있다. 예컨대, 통상의 아크방전법, 레이저 삭마법(Laser ablation), 고온 필라멘트 플라즈마 화학기상증착법, 마이크로웨이브 플라즈마 화학기상증착법, 열화학 기상증착법 또는 열분해법으로 제조된 것을 사용할 수 있다. 다만, 상기의 방법으로 합성된 탄소나노튜브에는 부산물인 비정질 탄소, 플러렌 등의 탄소-함유 물질들과 튜브의 성장을 위한 촉매로 사용되는 전이금속 등이 포함되어 있기 때문에, 이를 제거하기 위한 별도의 정제공정이 필요하다. 탄소나노튜브의 정제는 당업계에 공지된 모든 방법을 사용할 수 있으며, 바람직하게는 후술하는 방법에 따르나, 이에 제한되지는 아니한다: 우선, 탄소나노튜브를 100℃의 증류수 내에서 8 내지 24 시간, 바람직하게는 12시간 동안 환류시킨 후, 이를 여과하여 그 여과물을 완전히 건조시킨 다음, 건조된 분말을 톨루엔으로 세척하여 상술한 바와 같은 탄소-함유 물질들을 제거한다. 이어서, 이로부터 수득된 검뎅이 물질(soot)을 450 내지 500℃, 바람직하게는 470℃에서 20 내지 30 분간, 바람직하게는 20분간 가열하고, 마지막으로 4 내지 7M, 바람직하게는 6M의 염산으로 세척하여 모든 금속성 오염물을 제거함으로써 순수한 탄소나노튜브를 수득할 수 있다.The carbon nanotubes used in the present invention are not particularly limited as long as the object of the present invention is not impaired, and commercially available products can be purchased. For example, those manufactured by conventional arc discharge, laser ablation, high temperature filament plasma chemical vapor deposition, microwave plasma chemical vapor deposition, thermochemical vapor deposition or pyrolysis can be used. However, since the carbon nanotubes synthesized by the above method include carbon-containing materials such as by-products amorphous carbon and fullerene, and transition metals used as catalysts for growth of the tubes, a separate Purification process is required. Purification of carbon nanotubes may use any method known in the art, preferably according to the method described below, but not limited to: First, the carbon nanotubes in distilled water at 100 ℃ 8 to 24 hours, After refluxing preferably for 12 hours, it is filtered to dry the filtrate completely and then the dried powder is washed with toluene to remove the carbon-containing materials as described above. Subsequently, the soot obtained therefrom Pure carbon nanotubes are heated by heating at 450 to 500 ° C., preferably at 470 ° C. for 20 to 30 minutes, preferably 20 minutes, and finally washed with 4 to 7 M, preferably 6 M of hydrochloric acid to remove all metallic contaminants. Can be obtained.

산 처리는 탄소나노튜브를 환류하는 강산, 예를 들어 질산, 황산 또는 이들의 혼합물 용액으로 처리하여 수행함이 바람직하나, 이에 제한되지 않으며, 탄소나노튜브의 표면에 카르복실레이트기를 도입할 수 있는 목적에 적합한 모든 공지된 산 처리방법이 본 발명에 포함된다. 산처리를 거친 탄소나노튜브는 랜덤 네트워크를 형성하여 전도성 브릿지 채널 (conducting bridge channel)을 형성하게 되며, 그 표면에 다수의 카르복실레이트기가 존재하여 후술하는 ⅱ)단계에서 첨가될 금속나노입자와 쿨롱힘을 형성할 수 있다. 본 발명의 한 구현예에 따른 산처리 방법을 보다 상세히 설명하면, 다음과 같다:Acid treatment is preferably carried out by treating the carbon nanotubes with reflux strong acid, for example nitric acid, sulfuric acid or a mixture thereof, but is not limited thereto, the purpose of introducing a carboxylate group on the surface of the carbon nanotubes All known acid treatment methods suitable for the invention are included in the present invention. The acid-treated carbon nanotubes form a random network to form a conducting bridge channel, and a plurality of carboxylate groups exist on the surface thereof so that the metal nanoparticles and coulombs to be added in step ii) will be described later. Can form forces. In more detail, the acid treatment method according to an embodiment of the present invention is as follows:

먼저, 탄소나노튜브를 부피비 1:9 내지 9:1, 바람직하게는 2:8 내지 8:2의질산 및 황산의 혼합산 용액 내에서 72 내지 120시간 동안 환류시키고 0.1 내지 0.4 ㎛, 바람직하게는 0.2㎛의 폴리카보네이트 필터로 여과한 후, 그 여과물을 다시 질산에 담가 90 내지 120 ℃에서 45 내지 60시간 동안 환류시킨 다음, 원심분리한다. 원심분리 후 상등액을 회수하여 폴리카보네이트 필터로 여과하고, 그 여과물을 완전히 건조시키고, 건조된 카르복실화 탄소나노튜브를 증류수 또는 디메틸포름알데히드 (DMF)에 분산시킨 후, 다시 폴리카보네이트 필터로 여과하여 일정한 크기를 갖는 탄소나노튜브만을 선별해 낸다. 수득된 탄소나노튜브를 용매에 첨가하고 초음파 처리하면 탄소나노튜브 입자가 골고루 분산될 수 있다. 본 발명에 있어, 탄소나노튜브 표면의 카르복실화는 라만스펙트럼 등으로 확인할 수 있으며, 산처리된 탄소나노튜브의 경우 표면에 존재하는 카르복실레이트때문에 일정한 점도를 가진 균일 슬러리로 존재하게 된다.First, the carbon nanotubes were refluxed in a mixed acid solution of nitric acid and sulfuric acid at a volume ratio of 1: 9 to 9: 1, preferably 2: 8 to 8: 2 for 72 to 120 hours, and then 0.1 After filtering with a polycarbonate filter of 0.4 to 0.4 mu m, preferably 0.2 mu m, the filtrate is immersed in nitric acid again and refluxed at 90 to 120 DEG C for 45 to 60 hours, followed by centrifugation. After centrifugation, the supernatant was recovered, filtered through a polycarbonate filter, the filtrate was completely dried, the dried carboxylated carbon nanotubes were dispersed in distilled water or dimethylformaldehyde (DMF), and again filtered through a polycarbonate filter. To screen only carbon nanotubes with a certain size. When the obtained carbon nanotubes are added to the solvent and sonicated, the carbon nanotube particles may be evenly dispersed. In the present invention, the carboxylation of the surface of the carbon nanotubes can be confirmed by Raman spectrum, etc., and the acid-treated carbon nanotubes are present as a uniform slurry having a constant viscosity because of the carboxylate present on the surface.

ⅱ) 단계:Ii) step:

상기 ⅰ) 단계에서 수득한 산처리된 탄소나노튜브 및 금속나노입자를 유기용매에 분산시키고 이를 기재 상에 코팅한 후 건조하여 탄소나노튜브 및 금속나노입자로 이루어진 도전성 필름을 형성한다.The acid treated carbon nanotubes and the metal nanoparticles obtained in step iii) are dispersed in an organic solvent, coated on a substrate, and dried to form a conductive film composed of carbon nanotubes and metal nanoparticles.

본 발명에서 사용되는 금속 나노입자는 특별히 제한되지는 않으나, 바람직하게는 금, 은, 구리, 팔라듐, 니켈, 또는 플라티늄의 나노입자이다. 본 발명에 있어 상기 금속나노입자는 공지된 모든 방법에 의해 제조할 수 있으며, 특별히 제한되지는 않는다. 예를 들어, 특정금속의 금속염 수용액을 시트레이트(citrate), 에틸렌디아민테트라아세트산 (EDTA), 및 NaBH4와 같은 환원제로 환원시켜 금속입자를 수득할 수 있다. 이 경우, 입자의 안정을 위하여 소디움 올레이트(sodium oleate)와 같은 계면활성제를 사용하기도 한다. 또 다른 예로서, 특정금속의 메탈 히드라진 카르복실레이트 [metal hydrazine carboxylate: M(N2H3COO)2·2H2O (상기 식에서, M은 Mg, Ca, Mn, Fe, Co, Ni, 또는 Cu)] 수용액을 제조하고, 이를 70 내지 90 ℃, 바람직하게는 80℃에서 환류시켜 금속나노입자를 수득할 수 있다.The metal nanoparticles used in the present invention are not particularly limited, but are preferably nanoparticles of gold, silver, copper, palladium, nickel, or platinum. In the present invention, the metal nanoparticles can be prepared by any known method, and are not particularly limited. For example, an aqueous metal salt solution of a specific metal may be reduced with a reducing agent such as citrate, ethylenediaminetetraacetic acid (EDTA), and NaBH 4 to obtain metal particles. In this case, a surfactant such as sodium oleate may be used to stabilize the particles. As another example, metal hydrazine carboxylate: M (N 2 H 3 COO) 2 .2H 2 O (wherein M is Mg, Ca, Mn, Fe, Co, Ni, or Cu)] aqueous solution, and refluxed at 70 to 90 ℃, preferably 80 ℃ to obtain a metal nanoparticles.

상기 산처리된 탄소나노튜브와 상기 금속나노입자는 적절한 유기용매에 분산시킨다. 사용가능한 유기용매의 예는 DMF,4-히드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone), 에틸렌글리콜모노에틸에테르 (ethylene glycol monoethyl ether) 또는 2-메톡시에탄올 (2-methoxyethanol)을 포함하나 이에 한정되지는 않는다. 분산시 산처리된 탄소나노튜브 및 금속나노입자의 사용량은 특별히 제한되지는 않으나, 바람직하게는 탄소나노튜브는 유기용매 100중량부에 대하여 1 내지 15 중량부로 사용하고, 금속나노입자는 유기용매 100중량부에 대하여 0.2 내지 15 중량부로 사용한다. 탄소나노튜브 및 금속나노입자의 혼합비는 특별히 제한되지는 않으나, 바람직하게는 1:1 내지 20:1 비율로 혼합하여 사용한다.The acid treated carbon nanotubes and the metal nanoparticles are dispersed in a suitable organic solvent. Examples of organic solvents that can be used are DMF , 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monoethyl ether or 2- 2-methoxyethanol, including but not limited to. The amount of the acid treated carbon nanotubes and metal nanoparticles during dispersion is not particularly limited. Preferably, the carbon nanotubes are used in an amount of 1 to 15 parts by weight based on 100 parts by weight of the organic solvent, and the metal nanoparticles are used in the organic solvent 100. 0.2 to 15 parts by weight based on parts by weight. The mixing ratio of carbon nanotubes and metal nanoparticles is not particularly limited, but is preferably used in a ratio of 1: 1 to 20: 1.

한편, 유기용매에 전도성 고분자 또는 비전도성 고분자를 고분자 바인더로서 추가할 경우, 수득된 필름에 균일성 및 다양한 기능성을 부여할 수 있다.On the other hand, when a conductive polymer or a non-conductive polymer is added to the organic solvent as a polymer binder, uniformity and various functionalities can be imparted to the obtained film.

이 때, 전도성 고분자로서는, 폴리아세틸렌(polyacetylene: PA), 폴리티오펜 (polythiophene: PT), 폴리(3-알킬)티오펜[poly(3-alkyl)thiophene: P3AT], 폴리피롤(polypyrrole: PPY), 폴리이소시아나프탈렌(polyisothianapthalene: PITN), 폴리에틸렌 디옥시티오펜(polyethylene dioxythiophene: PEDOT), 폴리파라페닐렌 비닐렌(polyparaphenylene vinylene: PPV), 폴리(2,5-디알콕시)파라페닐렌 비닐렌 [poly(2,5-dialkoxy)paraphenylene vinylene], 폴리파라페닐렌 [polyparaphenylene: PPP), 폴리헵타디엔(polyheptadiyne: PHT), 또는 폴리(3-헥실)티오펜 [poly(3-hexyl)thiophene: P3HT], 및 폴리아닐린 [polyaniline: PANI] 으로 이루어진 군으로부터 선택된 1 또는 2종 이상의 고분자를 탄소나노튜브 100중량부에 대하여 0.05 내지 30 중량부사용할 수 있다.At this time, as the conductive polymer, polyacetylene (PA), polythiophene (PT), poly (3-alkyl) thiophene (poly (3-alkyl) thiophene: P3AT), polypyrrole (PPY) , Polyisothianapthalene (PITN), polyethylene dioxythiophene (PEDOT), polyparaphenylene vinylene (PPV), poly (2,5-dialkoxy) paraphenylene vinylene [poly (2,5-dialkoxy) paraphenylene vinylene], polyparaphenylene (PPP), polyheptadiyne (PHT), or poly (3-hexyl) thiophene [poly (3-hexyl) thiophene: P3HT] , And polyaniline [polyaniline: PANI] may be used in one or two or more polymers selected from the group consisting of 0.05 to 30 parts by weight based on 100 parts by weight of carbon nanotubes.

상기 비전도성 고분자로서는 폴리에스테르, 폴리카보네이트, 폴리비닐알코올, 폴리비닐부티랄, 폴리아세탈, 폴리아릴레이트, 폴리아마이드, 폴리아미드이미드, 폴리에테르이미드, 폴리페닐렌에테르, 폴리페닐렌설파이드, 폴리에테르설폰, 폴리에테르케톤, 폴리프탈아마이드, 폴리에테르니트릴, 폴리에테르설폰, 폴리벤즈이미다졸, 폴리카보디이미드, 폴리실록산, 폴리메틸메타크릴레이트, 폴리메타크릴아마이드, 니트릴고무, 아크릴 고무, 폴리에틸렌테트라플루오라이드, 에폭시 수지, 페놀 수지, 멜라민 수지, 우레아 수지, 폴리부텐, 폴리펜텐, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-디엔 공중합체, 폴리부타디엔, 폴리이소프렌, 에틸렌-프로필렌-디엔 공중합체, 부틸고무, 폴리메틸펜텐, 폴리스티렌, 스티렌-부타디엔 공중합체, 수첨(hydrogenated)스티렌-부타디엔 공중합체, 수첨폴리이소프렌 및 수첨폴리부타디엔으로 이루어진 군으로부터 선택된 1 또는 2이상의 고분자를 탄소나노튜브 100중량부에 대하여 1 내지 30 중량부로 사용할 수 있다.As said nonconductive polymer, polyester, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyarylate, polyamide, polyamideimide, polyetherimide, polyphenylene ether, polyphenylene sulfide, polyether Sulfone, polyetherketone, polyphthalamide, polyethernitrile, polyethersulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethylmethacrylate, polymethacrylamide, nitrile rubber, acrylic rubber, polyethylenetetrafluoro Ride, epoxy resin, phenolic resin, melamine resin, urea resin, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene-diene copolymer, polybutadiene, polyisoprene, ethylene-propylene-diene copolymer, butyl rubber , Polymethylpentene, polystyrene, styrene-butadiene copolymer, hydrogenated Alkylene-butadiene copolymer, hydrogenated polyisoprene and hydrogenated for one or two or more polymers selected from the group consisting of polybutadiene, an amount of 1 to 30 parts by weight based on 100 parts by weight of carbon nanotubes Can be used.

수득한 탄소나노튜브 및 금속나노입자의 분산용액은 기재 상에 균일하게 도포되는데, 이때 기재의 재질은 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않으며, 유리 기재, 실리콘 웨이퍼, 또는 플라스틱 기재 등을 용도에 따라 선택하여 사용할 수 있다. 분산용액을 도포하는 방법에는 스핀 코팅(spin coating), 딥 코팅(dip coating), 분무 코팅(spray coating), 흐름 코팅(flow coating), 스크린 인쇄(screen printing) 등이 포함되나, 이에 제한되는 것은 아니며, 편의성 및 균일성의 측면에서 가장 바람직한 도포방법은 스핀 코팅이다. 스핀 코팅을 행하는 경우, 스핀속도는 200 내지 3500 rpm의 범위 내에서 조절되는 것이 바람직하며, 정확한 속도는 분산용액의 점도와 원하는 필름두께 및 전도성에 따라 결정한다.The dispersion solution of the obtained carbon nanotubes and metal nanoparticles is uniformly coated on the substrate, and the material of the substrate is not particularly limited, unless it impairs the object of the present invention, glass substrates, silicon wafers, plastic substrates, etc. Can be selected depending on the application. Methods of applying the dispersion solution include spin coating, dip coating, spray coating, flow coating, screen printing, and the like, but are not limited thereto. In view of convenience and uniformity, the most preferable coating method is spin coating. When spin coating, the spin speed is 200 It is preferably controlled within the range of 3500 rpm, and the exact speed is determined according to the viscosity of the dispersion solution and the desired film thickness and conductivity.

본 발명에 따른 방법으로 제조된 도전성 필름의 경우, 산 처리된 탄소나노튜브와 금속나노입자 간의 우수한 상용성으로 인해, 탄소나노 튜브의 랜덤 네트워크 구조(random network structure)에 금속 나노입자가 균일하게 도핑(doppig)된 구조를 가지는 바, 수득된 필름의 전도성이 우수하고, 필요한 경우, 탄소나노튜브와 금속나노입자간의 비율을 조절하여 필름의 전도성을 조절할 수도 있다.In the case of the conductive film prepared by the method according to the present invention, the metal nanoparticles are uniformly doped in the random network structure of the carbon nanotubes due to the excellent compatibility between the acid-treated carbon nanotubes and the metal nanoparticles. Having a (doppig) structure, the obtained film is excellent in conductivity, and if necessary, the conductivity of the film may be controlled by adjusting the ratio between the carbon nanotubes and the metal nanoparticles.

탄소나노튜브 및 금속나노입자의 도전성 패턴 형성Conductive pattern formation of carbon nanotubes and metal nanoparticles

ⅰ) 단계:Iii) Steps:

우선, 탄소나노튜브를 산처리하여 표면에 다수의 카르복실레이트기를 함유하는 탄소나노튜브를 수득한다. 탄소나노튜브의 정제 및 산처리는 전술한 바와 같다.First, the carbon nanotubes are acid treated to obtain carbon nanotubes containing a plurality of carboxylate groups on the surface thereof. Purification and acid treatment of carbon nanotubes are as described above.

ⅱ) 단계:Ii) step:

금속 나노입자 및 ⅰ) 단계에서 수득한 탄소나노튜브를, 다관능성 단량체 및 광중합 개시제를 포함한 광중합성 유기용액에 분산시키고 이를 기재 상에 코팅한 후, 이를 선택적으로 노광하고 현상하여 패턴을 형성한다.The metal nanoparticles and the carbon nanotubes obtained in step iii) are dispersed in a photopolymerizable organic solution including a polyfunctional monomer and a photopolymerization initiator, coated on a substrate, and then selectively exposed and developed to form a pattern.

본 단계에서 사용하는 금속나노입자는 전술한 바와 같다.The metal nanoparticles used in this step are as described above.

상기 다관능성 단량체는 바람직하게는 2 이상의 아크릴기를 가지고 코팅의 균일성을 고려하여 분자량이 250 이상인 다관능성 아크릴레이트이다. 본 발명에서 사용가능한 다관능성 아크릴레이트의 예는 일본화약(日本化藥), 동아합성(東亞合成), 소화고분자(昭化高分子)사의 상품명 Kayarad PET-30, Aronix M-315, Ripoxy SP-4010, Kayarad DPHA, Kayarad T-1420, Aronix M-400, Ripoxy SP-4060, Diabeam UK-4101, BISCOAT #215 등을 포함한다. 수득된 필름의 전도성에 악영향을 주지 않는 범위내에서, 코팅의 균일성을 고려하여 우레탄 아크릴레이트(urethane acrylates), 에폭시 아크릴레이트, 또는 폴리에스테르 아크릴레이트 등의 다관능성 아크릴레이트 고분자도 사용할 수 있다. 사용가능한 고분자 아크릴레이트의 구체적인 예는 Kayarad UX-3204, Aronix M-1200, UN-1000PEP, Diabeam UK-6038와 같은 우레탄아크릴레이트; Kayarad R-190, Diabeam UK-6123, 또는 BISCOAT #540와 같은 에폭시 아크릴레이트; 또는 Kayarad PAR-100, Aronix M-8060, Diabeam UK-1102, 또는 BISCOAT #700 등의 폴리에스테르아크릴레이트를 포함한다. 다관능의 아크릴기를 포함한 디펜타에리트리톨 헥사아크릴레이트(DPHA: Dipentaerythritol Hexa Acrylate)사용한 경우, 분산성 및 코팅성 면에서 우수한 결과를 얻을 수 있어 특히바람직하다.The multifunctional monomer is preferably a multifunctional acrylate having two or more acrylic groups and having a molecular weight of 250 or more in consideration of the uniformity of the coating. Examples of the multifunctional acrylate that can be used in the present invention include Nippon Gunpowder, Dong-A Synthesis, Digestive Polymer, Kayarad PET-30, Aronix M-315, Ripoxy SP- 4010, Kayarad DPHA, Kayarad T-1420, Aronix M-400, Ripoxy SP-4060, Diabeam UK-4101, BISCOAT # 215 and the like. In the range which does not adversely affect the conductivity of the obtained film, in consideration of the uniformity of the coating, polyfunctional acrylate polymers such as urethane acrylates, epoxy acrylates, or polyester acrylates can also be used. Specific examples of the polymer acrylate that can be used include urethane acrylates such as Kayarad UX-3204, Aronix M-1200, UN-1000PEP, Diabeam UK-6038; Epoxy acrylates such as Kayarad R-190, Diabeam UK-6123, or BISCOAT # 540; Or polyesteracrylates such as Kayarad PAR-100, Aronix M-8060, Diabeam UK-1102, or BISCOAT # 700. Dipentaerythritol hexaacrylate (DPHA: Dipentaerythritol Hexa Acrylate) containing a polyfunctional acrylic group is particularly preferable because excellent results can be obtained in terms of dispersibility and coating properties.

본 발명에 사용가능한 광중합 개시제는 광에 의해 분해되어 라디칼 중합을 개시하는 모든 개시제를 포함하며, 바람직하게는 아세토 페논계 화합물; 벤조인계 화합물; 벤조페논계 화합물; 또는 티옥사톤계 화합물이다.Photopolymerization initiators usable in the present invention include all initiators which are decomposed by light to initiate radical polymerization, preferably acetophenone-based compounds; Benzoin compounds; Benzophenone compounds; Or a thioxatone compound.

아세토페논계 개시제의 예는 4-페녹시 디클로로아세토페논 (4-phenoxy dich loroacetophenone), 4-t-부틸 디클로로아세토페논 (4-t-butyl dichloroacetopheno ne), 4-t-부틸 트리클로로아세토페논 (4-t-butyl trichloroacetophenone), 디에톡시아세토페논 (diethoxyacetophenone), 2-히드록시-2-메틸-1-페닐프로판-1-온 (2-hydroxy-2-methyl-1-phenyl-propane-1-one), 1-(4-이소프로필페닐)-2-히드록시-2-메틸-프로판-1-온 (1-(4-isopropylphenyl)-2-hydroxy-2-methyl-propane-1-one), 1-(4-도데실페닐)-2-히드록시-2-메틸프로판-1-온 (1-(4-dodecylphenyl)-2-hydroxy-2-methylpropane-1-one), 4-(2-히드록시)-페닐-(2-히드록시-2-프로필)케톤 (4-(2-hy droxyethoxy)-phenyl-(2-hydroxy-2-propyl)ketone), 1-히드록시 시클로헥실페닐케톤(1-hydroxy cyclohexyl phenyl ketone), 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온(2-methyl-1-[4-(methylthio)phenyl] -2-morpholino-propane-1-one) 등을 사용할 수 있다. 벤조인계 광개시제로는 벤조인(benzoin), 벤조인메틸에테르 (benzoin methyl ether), 벤조인 에틸에테르 (benzoin ethyl ether), 벤조인이소프로필에테르 (benzoin isopropyl ether), 벤조인 이소부틸 에테르 (benzoin isobut yl ether), 벤질 디메틸 케탈 (benzyl dimethyl ketal) 을 사용할 수 있다. 벤조페논계 광개시제로는 벤조페논 (benzophenone), 벤조일 벤조산 (benzoyl benzoicacid), 벤조일 벤조산메틸에스테르 (benzoyl benzoic acid methyl ester), 4-페닐 벤조페논 (4-phenyl benzophenone), 히드록시 벤조페논 (hydroxy benzophenone), 4-벤조일-4'-메틸디페닐 설파이드 (4-benzoyl-4'-methyl diphenyl sulphide), 3,3'-디메틸-4-메톡시 벤조페논 (3,3'-dimethyl-4-methoxy benzophenone) 등을 사용할 수 있다. 티옥사톤계로는 티옥사톤 (thioxanthone), 2-클로로티옥사톤 (2-c hlorothioxanthone), 2-메틸티옥사톤 (2-methylthioxanthone), 2,4-디메틸티옥사톤 (2,4-dimethylthioxanthone), 이소프로필티옥사톤 (isopropylthioxanthone), 2,4-디클로로티옥사톤 (2,4-dichlorothioxanthone), 2,4-디에틸티옥사톤 (2,4-diethyl thioxanthone), 2,4-디이소프로필티옥사톤 (2,4-diisopropylthioxanthone) 등을 사용할 수 있다.Acetophenone nongye Examples of initiators include 4-phenoxy-dichloro-acetophenone (4-phenoxy dich loroacetophenone), 4-t - butyl-dichloro-acetophenone (4-t -butyl dichloroacetopheno ne), 4-t - butyl acetoacetate trichloro acetophenone ( 4- t -butyl trichloroacetophenone), diethoxyacetophenone (diethoxyacetophenone), 2- hydroxy-2-methyl-1-phenylpropan-1 - one (2-hydroxy-2-methyl -1-phenyl-propane-1- one), 1- (4-isopropylphenyl) -2-hydroxy-2-methyl-propane-1-one (1- (4-isopropylphenyl) -2-hydroxy-2-methyl-propane-1-one) , 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one (1- (4-dodecylphenyl) -2-hydroxy-2-methylpropane-1-one), 4- (2 -Hydroxy) -phenyl- (2-hydroxy-2-propyl) ketone (4- (2-hy droxyethoxy) -phenyl- (2-hydroxy-2-propyl) ketone), 1-hydroxy cyclohexylphenyl ketone (1-hydroxy cyclohexyl phenyl ketone) , 2- methyl-1- [4- (methylthio) phenyl] -2-Dimorpholino Reno -propan-1 - one (2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 - one) , etc. It can be used. Benzoin-based photoinitiators include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether. yl ether) and benzyl dimethyl ketal may be used. Benzophenone-based photoinitiators include benzophenone, benzoyl benzoic acid, benzoyl benzoic acid methyl ester, 4-phenyl benzophenone, and hydroxy benzophenone. ), 4-benzoyl-4'-methyldiphenyl sulfide (4-benzoyl-4'-methyl diphenyl sulphide), 3,3'-dimethyl-4-methoxy benzophenone (3,3'-dimethyl-4-methoxy benzophenone) and the like. The thioxanthones include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-methylthioxanthone, and 2,4-dimethylthioxone (2,4- dimethylthioxanthone), isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethyl thioxanthone, 2,4- Diisopropylthioxone (2,4-diisopropylthioxanthone) and the like can be used.

상기 화합물 이외에도, 1-페닐-1,2-프로판디온-2-(O-에톡시카르보닐)옥심(1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime), 2,4,6-트리메틸벤조일 디페닐 포스핀옥시드 (2,4,6-trimethyl benzoil diphenyl phosphine oxide), 메틸페닐글리옥실레이트 (methyl phenyl glyoxylate), 벤질(benzil),9,10-페난쓰렌퀴논 (9,10-phenanthlene quinone), 캠포퀴논(camphorquinone),디벤조수베론(dibenzosu berone), 2-에틸안트라퀴논(2-ethyl anthraquinone),4 , 4'-디에틸이소프탈로페논 (4,4'-diethylisophthalo phenone), 또는 3,3',4,4'-테트라(t-부틸퍼옥시카르보닐)벤조페논 (3,3',4,4'-tetra(t-butylperoxycarbonyl) benzophenone) 등을 본 발명에서의 광중합 개시제로서 사용할 수 있다. 특히 하기 화학식 1 내지 4로 나타내어지는 화합물, 즉, 중합가능한 관능기를 포함한 광개시제를 사용할 경우, 특별히 광중합 모노머를 많이 사용하지 않고 패턴을 형성할 수 있는 점에서 추가로 유리하다:In addition to the above compounds, 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime (1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime), 2,4 , 6-trimethylbenzoyl diphenyl phosphine oxide (2,4,6-trimethyl benzoil diphenyl phosphine oxide), methyl phenyl glyoxylate, benzil, 9,10-phenanthrenquinone (9,10 -phenanthlene quinone, camphorquinone, dibenzosu berone, 2-ethyl anthraquinone, 4, 4'-diethylisophthalophenone (4,4'-diethylisophthalo phenone), or 3,3 ', 4,4'-tetra ( t -butylperoxycarbonyl) benzophenone (3,3', 4,4'-tetra ( t -butylperoxycarbonyl) benzophenone) It can be used as a photoinitiator of the. In particular, in the case of using a compound represented by the following Chemical Formulas 1 to 4, that is, a photoinitiator including a polymerizable functional group, it is further advantageous in that a pattern can be formed without particularly using many photopolymerization monomers:

(상기 식에서, R은 아크릴기이다)(Wherein R is an acryl group)

제 ⅱ) 단계의 광중합성 유기용액은 광중합 개시제 이외에 광개시 조제를 추가로 포함할 수 있다. 사용가능한 광개시조제 화합물의 예는 트리에탄올아민(triethanolamine), 메틸디에탄올아민 (methyldiethanolamine), 트리이소프로필아민 (triisopropanolamine), 4,4'-디메틸아미노벤조페논 (4,4'-dimethylamino benz ophenone), 4,4'-디에틸아미노 벤조페논 (4,4'-diethylamino benzophenone), 2-디메틸아미노 에틸벤조에이트 (2-dimethylamino ethylbenzoate), 4-디메틸아미노 에틸벤조에이트 (4-dimethylamino ethylbenzoate), 2-n-부톡시에틸-4-디메틸아미노벤조에이트 (2-n-buthoxyethyl-4-dimethylaminobenzoate), 4-디메틸아미노 이소아밀벤조에이트 (4-dimethylamino isoamylbenzoate), 4-디메틸아미노-2-에틸헥실 벤조에이트 (4-dimethylamino-2-ethylhexyl benzoate), 및 에오신 Y (Eosin Y)을 포함한다.The photopolymerizable organic solution of step ii) may further include a photoinitiator in addition to the photopolymerization initiator. Examples of photoinitiator compounds that may be used include triethanolamine, methyldiethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (4,4'-dimethylamino benz ophenone) , 4,4'-diethylamino benzophenone, 2-dimethylamino ethylbenzoate, 4-dimethylamino ethylbenzoate, 2 2-n-buthoxyethyl-4-dimethylaminobenzoate, 4-dimethylamino isoamylbenzoate, 4-dimethylamino-2-ethylhexyl benzo Ate (4-dimethylamino-2-ethylhexyl benzoate), and Eosin Y.

상기 다관능성 단량체, 광개시제, 및 필요에 따라 광개시조제를 적절한 유기용매에 용해시켜 광중합성 유기용액을 제조한다. 다관능성 단량체의 사용량은 특별히 제한되지는 않으나, 바람직하게는 유기용매 100중량부에 대하여 0.1 내지 30 중량부로 사용한다. 광개시제 및 광개시조제의 사용량은 특별히 제한되지 않으며, 사용된 단량체의 종류 및 양과 소망하는 필름 두께 등을 고려하여 적절한 범위를 선택하여 사용할 수 있다.The polyfunctional monomer, the photoinitiator, and the photoinitiator are dissolved in a suitable organic solvent as necessary to prepare a photopolymerizable organic solution. The amount of the polyfunctional monomer to be used is not particularly limited, but is preferably used in an amount of 0.1 to 30 parts by weight based on 100 parts by weight of the organic solvent. The amount of the photoinitiator and the photoinitiator is not particularly limited and may be selected and used in consideration of the type and amount of the monomer used and the desired film thickness.

상기 광중합성 유기용액은, 추가로 전도성 고분자 또는 비전도성 고분자를 고분자 바인더로서 포함하여 광중합과정중 코팅 피막에 균일성 및 다양한 기능성을 부여할 수 있다. 사용가능한 전도성 고분자 및 비전도성 고분자의 예와 그 사용량은 전술한 바와 같다. 상기 광중합성 유기용액은 코팅 및 패턴박막의 용도에 따라서 염료(dye), 충진제(filler), 난연화제(retarding agent) 및 습윤제(wettingagent)와 같은 각종 첨가제를 추가로 포함할 수 있다.The photopolymerizable organic solution may further include a conductive polymer or a nonconductive polymer as a polymer binder to impart uniformity and various functionalities to the coating film during the photopolymerization process. Examples of the conductive polymer and the non-conductive polymer that can be used, and the amount of use thereof are as described above. The photopolymerizable organic solution may further include various additives such as dyes, fillers, retarding agents, and wetting agents, depending on the use of the coating and pattern thin film.

광중합성 유기용액에 탄소나노튜브 및 금속나노입자를 분산시킬 경우, 산처리된 탄소나노튜브의 사용량은 특별히 제한되지는 않으나, 유기용매 100중량부에 대하여 1 내지 20 중량부 정도로 사용하며, 금속나노입자의 사용량 또한 특별히 제한되지는 않으나, 유기용매 100 중량부에 대하여 0.2 내지 20 중량부 정도로 사용한다. 탄소나노튜브 및 금속나노입자의 혼합비는 특별히 제한되지는 않으나, 바람직하게는 1:1부터 10:1의 비로 혼합하여 사용한다.When the carbon nanotubes and the metal nanoparticles are dispersed in the photopolymerizable organic solution, the amount of the acid-treated carbon nanotubes is not particularly limited, but is based on 100 parts by weight of the organic solvent. It is used in an amount of about 1 to 20 parts by weight, and the amount of the metal nanoparticles is not particularly limited, but is used in an amount of about 0.2 to 20 parts by weight based on 100 parts by weight of the organic solvent. The mixing ratio of the carbon nanotubes and the metal nanoparticles is not particularly limited, but is preferably used by mixing in a ratio of 1: 1 to 10: 1.

탄소나노튜브 및 금속나노입자가 분산된 광중합성 유기용액(이하, 코팅액이라고도 한다)을 적절한 코팅방법에 의해 기재 상에 균일하게 도포하며, 이 경우, 기재의 재질 및 코팅방법에 대해서는 전술한 바와 같다.A photopolymerizable organic solution (hereinafter also referred to as a coating solution) in which carbon nanotubes and metal nanoparticles are dispersed is uniformly coated on a substrate by an appropriate coating method. In this case, the material and coating method of the substrate are as described above. .

코팅액의 도포가 완료된 후에는, 80 내지 120℃, 바람직하게는 100℃에서 1 내지 2분 정도 예비건조(prebaking)하여 용매를 휘발시켜 기재 위에 필름을 형성시킨다. 다음으로 가공하고자 하는 패턴이 형성된 포토마스크를 통해 상기 필름에 100~800 mJ/㎠ 자외선을 조사한다. 포토마스크를 통한 자외선 조사결과, 노광부의 필름은 불용화되어 후속 현상단계에서 현상액으로 현상시 비노광부와 비교하여 현저히 감소된 용해속도를 보이며, 결국에는 이러한 용해속도의 차이에 의해 노광부만이 기재 상에 남게 되어 원하는 네가티브 패턴을 형성하게 된다. 상기 현상과정에 사용되는 현상액의 종류는 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않으며, 포토리소그래피 분야에서 통상적으로 사용되는 임의의 유기 현상액을 사용하는 것이 가능하나, DMF, 4-히드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone), 에틸렌글리콜모노에틸에테르 (ethylene glycol monoethyl ether) 또는 2-메톡시에탄올 (2-methoxyethanol)을 사용하는 것이 패턴의 피막 안정성과 균일성의 측면에서 바람직하다.After application of the coating liquid is completed, prebaking for 1 to 2 minutes at 80 to 120 ℃, preferably 100 ℃ to evaporate the solvent to form a film on the substrate. Next, 100-800 mJ / cm 2 ultraviolet rays are irradiated to the film through a photomask on which a pattern to be processed is formed. As a result of ultraviolet irradiation through the photomask, the film of the exposed part was insolubilized and showed a significantly reduced dissolution rate when developing with a developing solution in a subsequent developing step, and eventually, only the exposed part was described by the difference in the dissolution rate. It will remain on to form the desired negative pattern. The type of developer used in the developing process is not particularly limited as long as it does not impair the object of the present invention, it is possible to use any organic developer commonly used in the field of photolithography, DMF, 4-hydroxy- The use of 4-methyl-2-pentanone, ethylene glycol monoethyl ether, or 2-methoxyethanol may be used. It is preferable in terms of film stability and uniformity.

이하에서 본 발명을 실시예를 들어 상세히 설명하나, 이들 실시예는 단지 본 발명을 설명하기 위한 것으로 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in detail with reference to Examples, but these Examples are only for illustrating the present invention and should not be construed as limiting the protection scope of the present invention.

[실시예]EXAMPLE

제조예 1: 금 나노입자의 제조Preparation Example 1 Preparation of Gold Nanoparticles

50mM의 브롬화 테트라옥틸암모늄 (Tetraoctylamonium bromide)를 20 ㎖ 톨루엔에 녹인 용액에 Hydrogen perculatorate(HAuCl4·H2O) 용액 (40mM) 25㎖를 넣고 교반하였다. 상기 용액(오렌지 색)에 0.4g의 소디움 보로하이드라이드(NaBH4)를 녹인 25㎖ 수용액을 넣고, 2시간 동안 교반하여 반응을 진행시키면 어두운 보라색 유기층이 분리된다. 여기에 0.1M 황산과 1M 탄산나트륨 용액으로 반응물을 씻어내고, 다시 물로 2회 씻어내었다. 유기층을 분리하여 MgSO4로 건조시키고 0.45㎛ PTFE 실린지 필터로 여과한 후, 유기톨루엔에 분산시켜 TEM을 측정한 결과 평균 크기 4~8 ㎚의 금 나노입자가 분산된 유기용액을 얻었다. 상기 유기용액을 원심분리하여 상등액으로부터 순수한 금 나노 입자를 수득하였다.25 ml of Hydrogen perculatorate (HAuCl 4 · H 2 O) solution (40mM) was added to a solution of 50mM tetraoctylamonium bromide dissolved in 20 ml toluene and stirred. A 25 ml aqueous solution of 0.4 g of sodium borohydride (NaBH 4 ) dissolved in the solution (orange) was added, followed by stirring for 2 hours to separate the dark purple organic layer. The reaction was washed with 0.1 M sulfuric acid and 1 M sodium carbonate solution, and then washed twice with water. The organic layer was separated, dried over MgSO 4 , filtered through a 0.45 μm PTFE syringe filter, dispersed in organic toluene, and measured by TEM to obtain an organic solution in which gold nanoparticles having an average size of 4 to 8 nm were dispersed. The organic solution was centrifuged to obtain pure gold nanoparticles from the supernatant.

제조예 2: 은 나노입자의 제조Preparation Example 2 Preparation of Silver Nanoparticles

0.1 리터 증류수에 5g의 AgNO3를 넣은 용액을 2×10-3M 소디움보로하이드라이드(NaBH4)로 만들어진 0.3리터 얼음용액에 집어 넣고 2시간 동안 교반하였다. 상기 용액을 원심분리하여 상등액을 분리하고 얻어진 슬러리 상태를 MgSO4로 건조시키고 톨루엔을 부어 0.45㎛ PTFE 실린지 필터로 여과하였다. TEM을 측정한 결과 평균 크기 4~8㎚의 은 나노입자가 분산된 유기용액을 얻었다. 다시 이 유기용액을 원심분리로 상등액을 분리하여 순수한 은 나노 입자를 수득하였다.A solution containing 5 g of AgNO 3 in 0.1 liter distilled water was put in a 0.3 liter ice solution made of 2 × 10 −3 M sodium borohydride (NaBH 4 ) and stirred for 2 hours. The solution was centrifuged to separate the supernatant and the resulting slurry was dried over MgSO 4 , poured into toluene and filtered through a 0.45 μm PTFE syringe filter. As a result of measuring the TEM, an organic solution in which silver nanoparticles having an average size of 4 to 8 nm was dispersed was obtained. The supernatant was separated from the organic solution by centrifugation to obtain pure silver nanoparticles.

제조예 3: 구리 나노입자의 제조Preparation Example 3 Preparation of Copper Nanoparticles

염화제2동 (Cupric chloride)과 히드라진 카르복시산 (N2H3COOH)으로 제조한 300mg의 구리 히드라진 카르복실레이트 (CHC)를 100 ㎖ 증류수에 녹여서 80℃에서 3시간 동안 질소 분위기 하에서 환류시켰다. 이 때 파란 색깔의 용액이 붉게 변하면 금속 성질의 구리가 있는 용액이 된 것을 나타낸다. 이 유기용액을 원심분리로 상등액을 분리하여 순수한 구리 나노 입자를 수득하였다. TEM을 측정한 결과 평균 크기 4~8 ㎚의 구리 나노입자가 분산된 유기용액을 얻었다.300 mg of copper hydrazine carboxylate (CHC) prepared with cupric chloride and hydrazine carboxylic acid (N 2 H 3 COOH) was dissolved in 100 ml distilled water and refluxed at 80 ° C. for 3 hours under nitrogen atmosphere. At this time, the blue solution turns red, indicating that the solution is made of metallic copper. The organic solution was centrifuged to separate the supernatant to obtain pure copper nanoparticles. As a result of measuring the TEM, an organic solution in which copper nanoparticles having an average size of 4 to 8 nm was dispersed was obtained.

제조예 4: 팔라듐 나노입자의 제조Preparation Example 4 Preparation of Palladium Nanoparticles

Na2PdCl4(5 mM, 15㎖)을 녹인 노란색 용액 100㎖에 히드라진 (N2H4) (40mM,10㎖)를 적하하고, 3시간 동안 반응시켜 팔라듐 나노 입자가 존재하는 갈색의 용액을 수득하였다. 상기 용액을 원심분리로 상등액을 분리하여 순수한 팔라듐 나노입자를 분리하였다. TEM을 측정한 결과 평균 크기 3~10 nm의 팔라듐 나노입자를 수득하였다.Hydrazine (N 2 H 4 ) (40 mM, 10 mL) was added dropwise to 100 mL of a yellow solution of Na 2 PdCl 4 (5 mM, 15 mL) and reacted for 3 hours to give a brown solution containing palladium nanoparticles. Obtained. The supernatant was separated by centrifugation of the solution to separate pure palladium nanoparticles. As a result of measuring TEM, palladium nanoparticles having an average size of 3-10 nm were obtained.

제조예 5: 니켈 나노입자의 제조Preparation Example 5 Preparation of Nickel Nanoparticles

질소 분위기 하에서 NiCl210g을 녹인 100㎖ 수용액에 히드라진 (N2H4) 5g과 브롬화 세틸트리메틸암모늄 (CTAB)/ n-헥사놀 용액 (5g/50㎖)을 집어넣고 40℃에서 2시간 동안 환류시켰다. 이 때 암모니아를 사용하여 pH를 13으로 조절하였다. 반응물을 원심분리로 상등액을 분리하여 MgSO4로 건조시키고 0.45㎛ PTFE 실린지 필터로 여과한다. TEM을 측정한 결과 평균 크기 3~10 ㎚의 니켈 나노입자를 얻었다. 5 g of hydrazine (N 2 H 4 ) and cetyltrimethylammonium bromide (CTAB) / n-hexanol solution (5 g / 50 mL) were added to a 100 mL aqueous solution of 10 g of NiCl 2 dissolved in a nitrogen atmosphere, and refluxed at 40 ° C. for 2 hours. I was. At this time, the pH was adjusted to 13 using ammonia. The reaction was centrifuged to separate the supernatant, dried over MgSO 4 and filtered through a 0.45 μm PTFE syringe filter. As a result of measuring the TEM, nickel nanoparticles having an average size of 3 to 10 nm were obtained.

제조예 6: 플라티늄 나노입자의 제조Preparation Example 6 Preparation of Platinum Nanoparticles

0.06M 소디움보로하이드라이드(NaBH4) 5㎖, 0.0033M의 하이드로젠 헥사클로로플라티네이트(Ⅵ)헥사하이드레이트 (H2PtCl6·6H2O) 10 ㎖ 및 0.02 M의 머켑탄숙신산 (mercaptosuccinic acid) 1㎖를 함께 혼합·교반한다. 혼합용액은 곧 노란색에서 갈색으로 바뀌고 이 반응을 2시간 동안 진행시키면 진한 갈색으로 바뀌었다. 유기층을 분리하여 MgSO4로 건조시키고 0.45㎛ PTFE 실린지 필터로 여과한다. TEM을 측정한 결과 평균 크기 2~5 ㎚의 니켈 나노입자를 얻었다.5 ml of 0.06 M sodium borohydride (NaBH 4 ), 10 ml of 0.0033 M of hydrogen hexachloroplatinate (VI) hexahydrate (H 2 PtCl 6 .6H 2 O) and 0.02 M of mercaptosuccinic acid) 1 ml is mixed and stirred together. The mixed solution soon changed from yellow to brown and turned to dark brown after 2 hours of reaction. The organic layer was separated, dried over MgSO 4 and filtered with a 0.45 μm PTFE syringe filter. As a result of measuring the TEM, nickel nanoparticles having an average size of 2 to 5 nm were obtained.

제조예 7: 탄소나노튜브의 정제Preparation Example 7 Purification of Carbon Nanotubes

100㎎의 탄소나노튜브(상품명 ILJIN CNT AP-Grade, 일진나노텍, 한국)를 환류관이 장착된 500㎖ 플라스크 내에서 50㎖의 증류수를 사용하여 100℃에서 12시간 동안 환류시켰다. 환류가 끝난 후 필터를 통해 여과된 물질을 60℃에서 12시간 건조시킨 후, 톨루엔으로 잔류 플러렌을 씻어내었다. 남아있는 검댕이 물질을 플라스크로부터 회수하여 470℃ 가열로에서 20분간 가열하고, 마지막으로 6M 염산으로 세척함으로써 금속 성분을 모두 제거하여 순수한 탄소나노튜브를 수득하였다.100 mg of carbon nanotubes (trade name ILJIN CNT AP-Grade, Iljin Nanotech, Korea) were refluxed at 100 ° C. for 12 hours using 50 ml of distilled water in a 500 ml flask equipped with a reflux tube. After reflux, the material filtered through the filter was dried at 60 ° C. for 12 hours, and the residual fullerene was washed off with toluene. The remaining soot material was recovered from the flask and heated in a 470 ° C. heating furnace for 20 minutes, and finally washed with 6M hydrochloric acid to remove all metal components to obtain pure carbon nanotubes.

제조예 8: 탄소나노튜브 표면에 카르복실기 도입Preparation Example 8 Introduction of carboxyl group on the surface of carbon nanotube

상기 제조예 7에서 얻은 순수한 탄소나노튜브를 질산:황산 = 7:3(v/v)의 혼합산 용액이 담긴 소니케이터에서 96시간 동안 환류시켰다. 이 용액을 O.2 ㎛ 폴리카보네이트 필터로 여과한 후, 그 여과물을 다시 질산에 담가 90℃에서 45시간 동안 환류시킨 다음, 12,000rpm에서 원심분리하여 얻은 상등액을 0.1 ㎛ 폴리카보네이트 필터로 여과한 후, 그 여과물을 60℃에서 12시간 동안 건조시켰다. 건조된 탄소나노튜브를 DMF에 분산시킨 후, 다시 0.1㎛ 폴리카보네이트 필터로 여과하여 선별 사용하였다.The pure carbon nanotubes obtained in Preparation Example 7 were refluxed for 96 hours in a sonicator containing a mixed acid solution of nitric acid: sulfuric acid = 7: 3 (v / v). The solution was filtered through a 0.2 μm polycarbonate filter, and the filtrate was immersed in nitric acid again, refluxed at 90 ° C. for 45 hours, and the supernatant obtained by centrifugation at 12,000 rpm was filtered through a 0.1 μm polycarbonate filter. The filtrate was then dried at 60 ° C. for 12 hours. The dried carbon nanotubes were dispersed in DMF, and filtered again using a 0.1 μm polycarbonate filter.

실시예 1Example 1

제조예 1에서 수득한 금 나노입자 0.01g, 제조예 8에서 수득한 탄소나노튜브 0.04g 및 DMF 1.5g으로 이루어진 분산액을 1시간 동안 초음파 처리하여 각 성분을 충분히 혼합하고, 실리콘 웨이퍼 위에 300rpm으로 스핀코팅한 후, 100℃에서 1분간 건조하여 필름을 수득하였다. Jandel Universal Probe Station을 사용하여 도전성을 측정하고, 그 결과를 표 1에 나타내었다.A dispersion consisting of 0.01 g of gold nanoparticles obtained in Preparation Example 1, 0.04 g of carbon nanotubes obtained in Preparation Example 8, and 1.5 g of DMF was sonicated for 1 hour to sufficiently mix each component and spin at 300 rpm on a silicon wafer. After coating, it was dried at 100 ° C. for 1 minute to obtain a film. Conductivity was measured using the Jandel Universal Probe Station, and the results are shown in Table 1.

실시예 2Example 2

제조예 8에서 수득한 탄소나노튜브를 0.06g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.Except for using 0.06 g of carbon nanotubes obtained in Preparation Example 8, a conductive film was formed in the same manner as in Example 1, the conductivity thereof was measured, and the results are shown in Table 1 below.

실시예 3Example 3

제조예 1에서 얻은 금 나노입자 0.01g, 제조예 8에서 얻은 탄소나노튜브 0.04g, 감광성 수지(DPHA) 0.01g, 개시제(벤질 디메틸케탈) 0.001g 및 DMF 1.5g로 이루어진 코팅액을 1시간동안 초음파처리하여 각 성분을 충분히 혼합하고, 실리콘 웨이퍼 상에 300rpm으로 스핀 코팅한 후, 100℃에서 1분간 건조하여 용매를 제거하였다. 수득된 필름을 소망하는 패턴을 가진 포토마스크하에서 400mJ/㎠의 노광량으로 UV 노광시킨 후, DMF에 10초간 침지현상하여, 패턴라인 30㎛의 패턴을 수득하였다. 상기 패턴의 전도성을 실시예 1과 같은 방법으로 측정하고 그 결과를 표 1에나타내었다.0.01 g of gold nanoparticles obtained in Preparation Example 1, 0.04 g of carbon nanotubes obtained in Preparation Example 8, 0.01 g of photosensitive resin (DPHA), 0.001 g of initiator (benzyl dimethyl ketal), and 1.5 g of DMF were ultrasonicated for 1 hour. After treatment, each component was sufficiently mixed, spin-coated at 300 rpm on a silicon wafer, and then dried at 100 ° C. for 1 minute to remove the solvent. The obtained film was subjected to UV exposure under a photomask having a desired pattern at an exposure dose of 400 mJ / cm 2, and then immersed in DMF for 10 seconds to obtain a pattern with a pattern line of 30 μm. The conductivity of the pattern was measured in the same manner as in Example 1 and the results are shown in Table 1.

실시예 4Example 4

탄소나노튜브 0.06g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Conductive patterns were obtained in the same manner as in Example 3 except that 0.06 g of carbon nanotubes were used and the exposure amount was set to 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 5Example 5

금 나노입자대신, 제조예 2에서 수득한 은 나노입자 0.01g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 1 except that 0.01 g of the silver nanoparticles obtained in Preparation Example 2 was used instead of the gold nanoparticles, and the conductivity thereof was measured and the results are shown in Table 1.

실시예 6Example 6

탄소나노튜브를 0.06g 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.Except that 0.06 g of carbon nanotubes were used, a conductive film was formed in the same manner as in Example 5, the conductivity was measured, and the results are shown in Table 1.

실시예 7Example 7

제조예 2에서 수득한 은 나노입자 0.01g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.A conductive pattern was obtained in the same manner as in Example 3 except that 0.01 g of the silver nanoparticles obtained in Preparation Example 2 were used, and the exposure amount was set to 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 8Example 8

탄소나노튜브를 0.06g 사용한 것을 제외하고는 실시예 7과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Except that 0.06g of carbon nanotubes were used, a conductive pattern was obtained in the same manner as in Example 7, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 9Example 9

금 나노입자대신, 제조예 3에서 수득한 구리 나노입자 0.01g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 1 except that 0.01 g of the copper nanoparticles obtained in Preparation Example 3 was used instead of the gold nanoparticles, and the conductivity thereof was measured and the results are shown in Table 1 below.

실시예 10Example 10

탄소나노튜브 0.06g을 사용한 것을 제외하고는, 실시예 9와 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 9 except that 0.06 g of carbon nanotubes were used, and the conductivity thereof was measured.

실시예 11Example 11

제조예 3에서 수득한 구리 나노입자 0.01g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Conductive patterns were obtained in the same manner as in Example 3 except that 0.01 g of the copper nanoparticles obtained in Preparation Example 3 were used, and the exposure amount was set to 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 12Example 12

탄소나노튜브를 0.06g 사용한 것을 제외하고는 실시예 11과 같은 방식으로도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.A conductive pattern was obtained in the same manner as in Example 11 except that 0.06 g of carbon nanotubes were used, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 13Example 13

금 나노입자대신, 제조예 4에서 수득한 팔라듐 나노입자 0.01g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 1 except that 0.01 g of the palladium nanoparticles obtained in Preparation Example 4 were used instead of the gold nanoparticles, and the conductivity thereof was measured and the results are shown in Table 1.

실시예 14Example 14

탄소나노튜브 0.06g을 사용한 것을 제외하고는, 실시예 13과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 13 except that 0.06 g of carbon nanotubes were used, and the conductivity thereof was measured. The results are shown in Table 1 below.

실시예 15Example 15

금나노입자 대신, 제조예 4에서 수득한 팔라듐 나노입자 0.01g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.A conductive pattern was obtained in the same manner as in Example 3 except that 0.01 g of the palladium nanoparticles obtained in Preparation Example 4 was used instead of the gold nanoparticles, and the exposure amount was 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 16Example 16

탄소나노튜브를 0.06g 사용한 것을 제외하고는 실시예 15와 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Except that 0.06g carbon nanotubes were used, a conductive pattern was obtained in the same manner as in Example 15, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 17Example 17

금 나노입자대신, 제조예 5에서 수득한 니켈 나노입자 0.01g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 1 except that 0.01 g of the nickel nanoparticles obtained in Preparation Example 5 was used instead of the gold nanoparticles. The conductivity is measured. The results are shown in Table 1 below.

실시예 18Example 18

탄소나노튜브 0.06g을 사용한 것을 제외하고는, 실시예 17과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 17 except that 0.06 g of carbon nanotubes were used, and the conductivity thereof was measured.

실시예 19Example 19

금나노입자 대신, 제조예 5에서 수득한 니켈 나노입자 0.01g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.A conductive pattern was obtained in the same manner as in Example 3 except that 0.01 g of the nickel nanoparticles obtained in Preparation Example 5 was used instead of the gold nanoparticles, and the exposure amount was 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 20Example 20

탄소나노튜브를 0.06g 사용한 것을 제외하고는 실시예 19와 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Except for using 0.06g of carbon nanotubes, a conductive pattern was obtained in the same manner as in Example 19, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 21Example 21

금 나노입자대신, 제조예 6에서 수득한 플라티늄 나노입자 0.01g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 1 except that 0.01 g of the platinum nanoparticles obtained in Preparation Example 6 was used instead of the gold nanoparticles. The conductivity thereof was measured and the results are shown in Table 1 below.

실시예 22Example 22

탄소나노튜브 0.06g을 사용한 것을 제외하고는, 실시예 21과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 21 except that 0.06 g of carbon nanotubes were used, and the conductivity thereof was measured.

실시예 23Example 23

금 나노입자 대신, 제조예 6에서 수득한 플라티늄 나노입자 0.01g을 사용하고, 노광량을 500 mJ/㎠으로 한 것을 제외하고는 실시예 3과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.A conductive pattern was obtained in the same manner as in Example 3 except that 0.01 g of the platinum nanoparticles obtained in Preparation Example 6 was used instead of the gold nanoparticles, and the exposure amount was set to 500 mJ / cm 2, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 24Example 24

탄소나노튜브를 0.06g 사용한 것을 제외하고는 실시예 23과 같은 방식으로 도전성 패턴을 수득하고 그 전도성을 측정하였다. 수득된 패턴의 라인은 40㎛였다.Except that 0.06g carbon nanotubes were used, a conductive pattern was obtained in the same manner as in Example 23, and the conductivity thereof was measured. The line of the obtained pattern was 40 micrometers.

실시예 25Example 25

탄소나노튜브를 0.06g 사용하고, 추가로 폴리비닐알코올의 10% DMF용액을 0.01g을 사용하며, 500rpm으로 스핀코팅한 것을 제외하고는 실시예 1과 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.Conductive films were formed in the same manner as in Example 1, except that 0.06 g of carbon nanotubes were used, and 0.01 g of 10% DMF solution of polyvinyl alcohol was used, and spin-coated at 500 rpm. Was measured and the results are shown in Table 1.

실시예 26Example 26

폴리비닐알코올용액 대신, 폴리티오펜의 5% DMF 용액을 0.001g 사용한 것을 제외하고는, 실시예 25와 동일한 방법으로 도전성 필름을 형성하고, 그 도전성을 측정하여 결과를 표 1에 나타내었다.A conductive film was formed in the same manner as in Example 25, except that 0.001 g of a 5% DMF solution of polythiophene was used instead of the polyvinyl alcohol solution, and the conductivity thereof was measured. The results are shown in Table 1 below.

비교예 1 내지 4Comparative Examples 1 to 4

제조예 8에서 수득한 탄소나노튜브 각각 0.04g(비교예 1), 0.08 (비교예 2), 0.12 (비교예 3), 0.24(비교예 4) 및 DMF 1,5g 만으로 이루어진 코팅액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방식으로 코팅하여 전도성을 측정하고, 그 결과를 표 1에 나타내었다. 표 1에서 PEDOT/PSS2은 본 발명의 전도도값을 상대비교하기 위해 Bayer사 상품명 Batyron P AI 4083을 입수하여 측정한 값을 나타낸 것이다.Except for using the coating liquid consisting of 0.04g (Comparative Example 1), 0.08 (Comparative Example 2), 0.12 (Comparative Example 3), 0.24 (Comparative Example 4) and DMF 1,5g, respectively, obtained in Preparation Example 8 Then, coating in the same manner as in Example 1 to measure the conductivity, the results are shown in Table 1. PEDOT / PSS2 in Table 1 shows the values obtained by obtaining the Bayer brand name Batyron P AI 4083 in order to compare the conductivity value of the present invention.

상기 표 1로부터, 본 발명의 방법에 의해 필름 또는 패턴을 제조할 경우, 단순히 탄소나노튜브만을 사용하여 제조된 도전성 필름 또는 패턴보다는 월등히 높고 상용화된 PEDOT 수준이거나 또는 그 이상인 전도성을 나타낼 뿐만 아니라, 금속나노입자와 탄소나노튜브간의 블랜드 비율을 변화시켜 전도성을 조절할 수 있다. 이는 탄소나노튜브간 망목구조 사이에 금속나노입자가 도핑됨으로써 필름 또는 패턴의 전도성이 증가하였기 때문으로 볼 수 있다.From Table 1, when manufacturing a film or a pattern by the method of the present invention, not only exhibits a conductivity that is much higher than or higher than the commercially available PEDOT level or more than a conductive film or a pattern manufactured using only carbon nanotubes, but also a metal. The conductivity can be controlled by changing the blend ratio between nanoparticles and carbon nanotubes. This may be because the conductivity of the film or pattern is increased by doping the metal nanoparticles between the network structure between carbon nanotubes.

본 발명의 방법에 따라 제조된 필름의 경우, 탄소나노튜브의 망상구조에 금속 나노입자가 균일하게 도핑될 수 있어 수득된 필름의 전도성이 우수하고, 필요에 따라 전도성을 조절할 수 있으며, 에칭 등의 복잡한 공정을 거치지 않고 전도성 패턴을 용이하게 형성할 수 있어 대전방지성 점착성 시트(antistatic washable sticky mat), 대전방지성 신발(antistatic shoes), 도전성 폴리우레탄 프린터 롤러 (conductive polyurethane printer roller), 도전성 대차바퀴와 산업롤러 (conductive wheel and industrial roller), 대전방지성 압력민감 접착필름 (antistatic pressure sensitive adhesive film), 전자파 차폐 EMI (Electromagnetic Interference shielding) 등에 유리하게 사용될 수 있다.In the case of the film prepared according to the method of the present invention, the metal nanoparticles can be uniformly doped in the network structure of the carbon nanotubes, the conductivity of the obtained film is excellent, and if necessary, the conductivity can be adjusted, such as etching Conductive patterns can be easily formed without complex processes, thus allowing antistatic washable sticky mats, antistatic shoes, conductive polyurethane printer rollers, and conductive wheels And industrial rollers, antistatic pressure sensitive adhesive films, electromagnetic shielding EMI, and the like.

Claims (12)

ⅰ) 산 처리된 탄소 나노튜브를 수득하는 단계; 및 ⅱ) 금속나노입자 및 상기 탄소 나노튜브를 유기용매에 분산시키고 이를 기재 상에 코팅한 후 건조하는 단계를 포함하는 도전성 필름 형성방법.Iii) obtaining acid treated carbon nanotubes; And ii) dispersing the metal nanoparticles and the carbon nanotubes in an organic solvent, coating them on a substrate, and drying the conductive film. ⅰ) 산처리된 탄소나노튜브를 수득하는 단계; 및, ⅱ) 금속나노입자와 상기 산처리된 탄소나노튜브를, 다관능성 단량체 및 광중합 개시제를 포함한 광중합성 유기용액에 분산시키고 이를 기재 상에 코팅한 후, 이를 선택적으로 노광하고 현상하는 단계를 포함하는 도전성 패턴 형성방법.Iii) obtaining acid treated carbon nanotubes; And ii) dispersing the metal nanoparticles and the acid treated carbon nanotubes in a photopolymerizable organic solution including a polyfunctional monomer and a photopolymerization initiator, coating them on a substrate, and then selectively exposing and developing them. A conductive pattern forming method. 제1항 또는 제2항에 있어 금속 나노입자는 금, 은, 구리,팔라듐, 니켈, 또는 플라티늄인 것을 특징으로 하는 필름 또는 패턴 형성방법.The method of claim 1 or 2, wherein the metal nanoparticles are gold, silver, copper , palladium, nickel, or platinum. 제1항 또는 제 2항에 있어, 상기 유기용매 또는 상기 광중합성 유기용액은 추가로 비전도성 고분자, 전도성 고분자 또는 양자의 혼합물을 포함하는 것을 특징으로 하는 필름 또는 패턴 형성 방법.The method of claim 1 or 2, wherein the organic solvent or the photopolymerizable organic solution further comprises a nonconductive polymer, a conductive polymer, or a mixture of both. 제2항에 있어, 다관능성 단량체는 2 이상의 아크릴기를 가지고 분자량이 250 이상인 다관능성 아크릴레이트인 것을 특징으로 하는 패턴형성 방법.The method of claim 2, wherein the multifunctional monomer is a multifunctional acrylate having two or more acrylic groups and a molecular weight of 250 or more. 제4항에 있어 상기 전도성 고분자는 폴리아세틸렌(polyacetylene: PA), 폴리티오펜(polythiophene: PT), 폴리(3-알킬)티오펜[poly(3-alkyl)thiophene: P3AT], 폴리피롤(polypyrrole: PPY), 폴리이소시아나프탈렌(polyisothianapthalene: PITN ), 폴리에틸렌 디옥시티오펜(polyethylene dioxythiophene: PEDOT), 폴리파라페닐렌 비닐렌(polyparaphenylene vinylene: PPV), 폴리(2,5-디알콕시)파라페닐렌 비닐렌 [poly(2,5-dialkoxy)paraphenylene vinylene], 폴리파라페닐렌 {polyparapheny lene: PPP), 폴리헵타디엔(polyheptadiyne: PHT), 또는 폴리(3-헥실)티오펜[poly( 3-hexyl)thiophene: P3HT], 및 폴리아닐린 [polyaniline: PANI] 으로 이루어진 군으로부터 선택된 1 또는 2종 이상의 고분자인 것을 특징으로 하는 필름 또는 패턴형성 방법.The method of claim 4, wherein the conductive polymer is polyacetylene (PA), polythiophene (PT), poly (3-alkyl) thiophene (poly (3-alkyl) thiophene: P3AT], polypyrrole: PPY), polyisothianapth a lene (PITN), polyethylene dioxythiophene (PEDOT), polyparaphenylene vinylene (PPV), poly (2,5-dialkoxy) paraphenylene Poly (2,5-dialkoxy) paraphenylene vinylene, polyparaphenylene (PPP), polyheptadiyne (PHT), or poly (3-hexyl) thiophene [poly (3-hexyl ) thiophene: P3HT], and polyaniline [polyaniline: PANI] is a film or pattern forming method, characterized in that one or two or more polymers selected from the group consisting of. 제4항에 있어서, 상기 비전도성 고분자는 폴리에스테르, 폴리카보네이트, 폴리비닐알코올, 폴리비닐부티랄, 폴리아세탈, 폴리아릴레이트, 폴리아마이드, 폴리아미드이미드, 폴리에테르이미드, 폴리페닐렌에테르, 폴리페닐렌설파이드, 폴리에테르설폰, 폴리에테르케톤, 폴리프탈아마이드, 폴리에테르니트릴, 폴리에테르설폰, 폴리벤즈이미다졸, 폴리카보디이미드, 폴리실록산, 폴리메틸메타크릴레이트, 폴리메타크릴아마이드, 니트릴고무, 아크릴 고무, 폴리에틸렌테트라플루오라이드, 에폭시 수지, 페놀 수지, 멜라민 수지, 우레아 수지, 폴리부텐, 폴리펜텐, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-디엔 공중합체, 폴리부타디엔, 폴리이소프렌, 에틸렌-프로필렌-디엔 공중합체, 부틸고무, 폴리메틸펜텐, 폴리스티렌, 스티렌-부타디엔 공중합체, 수첨스티렌-부타디엔 공중합체, 수첨폴리이소프렌 및 수첨폴리부타디엔로 이루어진 군으로부터 선택된 1종 또는 2이상의 고분자인 것을 특징으로 하는 필름 또는 패턴 형성 방법.The method of claim 4, wherein the non-conductive polymer is polyester, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyarylate, polyamide, polyamideimide, polyetherimide, polyphenylene ether, poly Phenylene sulfide, polyether sulfone, polyether ketone, polyphthalamide, polyether nitrile, polyether sulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethyl methacrylate, polymethacrylamide, nitrile rubber, Acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene-diene copolymer, polybutadiene, polyisoprene, ethylene-propylene- Diene copolymer, butyl rubber, polymethylpentene, polystyrene, styrene-butadiene copolymer, hydrogenated A film or pattern forming method, characterized in that one or two or more polymers selected from the group consisting of styrene-butadiene copolymer, hydrogenated polyisoprene and hydrogenated polybutadiene. 제2항에 있어서, 광중합개시제는 아세토페논계 화합물; 벤조인계 화합물; 벤조페논계 화합물; 티옥사톤계 화합물이거나; 혹은 1-페닐-1,2-프로판디온-2-(O-에톡시카보닐)옥심, (1-Phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime),2,4, 6-트리메틸벤조일 디페닐 포스핀옥시드 (2,4,6-Trimethyl benzoil diphenyl phosp hine oxide), 메틸페닐글리옥실레이트 (Methyl phenyl glyoxylate), 벤질(Benzil), 9,10-페난쓰렌퀴논(9,10-Phenanthlene quinone), 캠포퀴논(Camphorquinone), 디벤조수베론(Dibenzosuberone), 2-에틸안트라퀴논(2-Ethyleanthraquinone), 4,4'-디에틸이소프탈로페논(4,4'-Diethylisophthalophenone), 또는 3,3',4,4'-테트라(t-부틸퍼옥시카르보닐)벤조페논 (3,3',4,4'-tetra(t- butylperoxycarbonyl) benzophenone)인 것을 특징으로 하는 패턴 형성방법.The method of claim 2, wherein the photopolymerization initiator is acetophenone-based compound; Benzoin compounds; Benzophenone compounds; Thioxatone compounds; Or 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime, (1-Phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime), 2,4,6 Trimethylbenzoyl diphenyl phosphine oxide (2,4,6-Trimethyl benzoil diphenyl phosp hine oxide), methyl phenyl glyoxylate, benzil, 9,10-phenanthrenequinone (9,10- Phenanthlene quinone, Camphorquinone, Dibenzosuberone, 2-Ethyleanthraquinone, 4,4'-Diethylisophthalophenone (4,4'-Diethylisophthalophenone), or 3,3 ', 4,4'-tetra (t- butyl peroxy carbonyl) benzophenone (3, 3' - pattern forming method characterized in that, 4,4'-tetra (t butylperoxycarbonyl) benzophenone). 제 2항에 있어서, 광중합 개시제는 하기 화학식 1 내지 4로 나타내어지는 화합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 패턴형성방법:The method of claim 2, wherein the photopolymerization initiator is selected from the group consisting of compounds represented by the following Chemical Formulas 1 to 4: [화학식 1][Formula 1] (R은 아크릴기이다);(R is an acrylic group); [화학식 2][Formula 2] ; ; [화학식 3][Formula 3] ; 및 ; And [화학식 4][Formula 4] . . 제 2항에 있어서, ⅱ) 단계의 광중합성 유기용액은 광중합 개시제 이외에, 트리에탄올아민 (triethanolamine), 메틸디에탄올아민 (methyldiethanolamine), 트리이소프로필아민 (triisopropanolamine), 4,4'-디메틸아미노벤조페논 (4,4'-dimethylamino benzophenone), 4,4'-디에틸아미노 벤조페논 (4,4'-diethylamino benzophenone), 2-디메틸아미노 에틸벤조에이트 (2-dimethylamino ethylbenzoate), 4-디메틸아미노 에틸벤조에이트 (4-dimethylamino ethylbenzoate), 2-n-부톡시에틸 -4-디메틸아미노벤조에이트 (2-n-buthoxyethyl-4-dimethylaminobenzoate), 4-디메틸아미노 이소아밀벤조에이트 (4-dimethylamino isoamylbenzoate), 4-디메틸아미노 -2-에틸헥실 벤조에이트 (4-dimethylamino-2-ethylhexyl benzoate), 또는 에오신 Y (Eosin Y)을 광개시조제로써 포함하는 것을 특징으로 하는 방법.The method of claim 2, wherein the photopolymerizable organic solution of step ii), in addition to the photopolymerization initiator, triethanolamine, methyldiethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (4,4'-dimethylamino benzophenone), 4,4'-diethylamino benzophenone, 2-dimethylamino ethylbenzoate, 4-dimethylamino ethylbenzo 4-dimethylamino ethylbenzoate, 2-n-butoxyethyl-4-dimethylaminobenzoate, 4-dimethylamino isoamylbenzoate, 4 4-dimethylamino-2-ethylhexyl benzoate, or Eosin Y as photoinitiator. 제1항에 따른 방법으로 수득한 필름.Film obtained by the method according to claim 1. 제 2항에 따른 방법으로 수득한 패턴.Pattern obtained by the method according to claim 2.
KR1020030036265A 2003-06-05 2003-06-05 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube KR20040106947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030036265A KR20040106947A (en) 2003-06-05 2003-06-05 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030036265A KR20040106947A (en) 2003-06-05 2003-06-05 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube

Publications (1)

Publication Number Publication Date
KR20040106947A true KR20040106947A (en) 2004-12-20

Family

ID=37381250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030036265A KR20040106947A (en) 2003-06-05 2003-06-05 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube

Country Status (1)

Country Link
KR (1) KR20040106947A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599053B1 (en) * 2005-04-22 2006-07-12 삼성전기주식회사 Conductive ink, method for forming conductive wiring, and conductive substrate
KR100663326B1 (en) * 2005-01-14 2007-01-02 고려대학교 산학협력단 Photoconductive bilayer composite nanotube, method for preparing the same and nano photoelectric element using the same
KR100671000B1 (en) * 2005-08-23 2007-01-17 주식회사 에이엠아이 씨 Coating materials for electromagnetic interference shielding and manufacturing method thereof
KR100727857B1 (en) * 2005-03-26 2007-06-14 재단법인서울대학교산학협력재단 Thin Film Employing Mixtures Of Inorganic Resists And Colloid Nanoparticles
KR100763980B1 (en) * 2006-03-20 2007-10-08 도레이새한 주식회사 Polyester nanocomposite
KR100789103B1 (en) * 2006-12-01 2007-12-26 도레이새한 주식회사 Polylactic composite comprising carbon nanotube and manufacturing method thereof
KR100867628B1 (en) * 2007-06-04 2008-11-10 한국표준과학연구원 Method of controlling density and conductance of carbon nanotubes on substrate
KR100869161B1 (en) * 2007-07-13 2008-11-19 한국전기연구원 Polymer binder composition for transparent conductive films containing carbon nanotubes
KR100951730B1 (en) * 2007-05-30 2010-04-07 삼성전자주식회사 Carbon nanotube having improved conductivity, process for preparing the same, and electrode comprising the carbon nanotube
KR101011447B1 (en) * 2009-01-20 2011-01-28 부산대학교 산학협력단 Manufacturing Method of Aligned Metal Nanowires Film by Stretching
WO2011021794A2 (en) * 2009-08-20 2011-02-24 ㈜엘지하우시스 Carbon nanotube/metal particle complex composition and heated steering wheel using same
KR101034863B1 (en) * 2007-09-28 2011-05-17 한국전기연구원 Fabrication method of ESD films using carbon nanotubes, and the ESD films
WO2011078537A2 (en) * 2009-12-24 2011-06-30 한국기계연구원 Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same
US8079943B2 (en) 2005-06-23 2011-12-20 Samsung Electronics Co., Ltd. Developing roller including carbon nanotubes for electrophotographic device and method for fabricating the developing roller
KR101153746B1 (en) * 2010-10-04 2012-06-13 부산대학교 산학협력단 Method of Manufacturing conductive polyaniline/actMethod of Manufacturing conductive polyaniline/activate carbon composites for electrode material of ivate carbon composites for electrode material of capacitor capacitor
KR101221765B1 (en) * 2006-12-26 2013-01-14 주식회사 엘지화학 Electrically conductive films by self patterned carbon nanotubes
KR101239371B1 (en) * 2011-04-01 2013-03-18 한국과학기술연구원 Conductive particles and preparation method thereof
KR101251091B1 (en) * 2009-10-08 2013-04-04 (주)엘지하우시스 Heated paint composition, method of forming the heated layer and automobile knob
US8501529B2 (en) 2007-05-30 2013-08-06 Samsung Electronics Co., Ltd. Carbon nanotube having improved conductivity, process of preparing the same, and electrode comprising the carbon nanotube
KR101313812B1 (en) * 2007-09-07 2013-09-30 삼성전자주식회사 Method of fabrication of liquid film, method of arranging nano paticles and substrate to have liquid thin film manufactured by using the same
US8790552B2 (en) 2006-02-06 2014-07-29 Samsung Display Co., Ltd. Conductive wet coating composition and thin-film prepared therefrom
WO2014157856A1 (en) * 2013-03-25 2014-10-02 전자부품연구원 Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
KR101468496B1 (en) * 2013-07-25 2014-12-04 전자부품연구원 Coating solution having conductive nano material and coated conductive film
KR101468975B1 (en) * 2008-07-03 2014-12-04 주식회사 그라프 High conducting film using low-dimensional materials
KR101498187B1 (en) * 2013-10-10 2015-03-04 전자부품연구원 Photosensitive coating solution and coated conductive film for transparent electrode using the same
TWI549786B (en) * 2012-11-08 2016-09-21 Kun-Zhe Wu Torque control method, device, module and electric wrench
KR20170033391A (en) * 2014-07-22 2017-03-24 알파 어셈블리 솔루션스 인크. Stretchable interconnects for flexible electronic surfaces
KR20210093505A (en) * 2020-01-20 2021-07-28 전남대학교산학협력단 Manufacturing method of Nickel-palladium carbon nanotube microcomposite, electromagnetic wave shielding agent using same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663326B1 (en) * 2005-01-14 2007-01-02 고려대학교 산학협력단 Photoconductive bilayer composite nanotube, method for preparing the same and nano photoelectric element using the same
KR100727857B1 (en) * 2005-03-26 2007-06-14 재단법인서울대학교산학협력재단 Thin Film Employing Mixtures Of Inorganic Resists And Colloid Nanoparticles
KR100599053B1 (en) * 2005-04-22 2006-07-12 삼성전기주식회사 Conductive ink, method for forming conductive wiring, and conductive substrate
US8079943B2 (en) 2005-06-23 2011-12-20 Samsung Electronics Co., Ltd. Developing roller including carbon nanotubes for electrophotographic device and method for fabricating the developing roller
KR100671000B1 (en) * 2005-08-23 2007-01-17 주식회사 에이엠아이 씨 Coating materials for electromagnetic interference shielding and manufacturing method thereof
US8790552B2 (en) 2006-02-06 2014-07-29 Samsung Display Co., Ltd. Conductive wet coating composition and thin-film prepared therefrom
KR100763980B1 (en) * 2006-03-20 2007-10-08 도레이새한 주식회사 Polyester nanocomposite
KR100789103B1 (en) * 2006-12-01 2007-12-26 도레이새한 주식회사 Polylactic composite comprising carbon nanotube and manufacturing method thereof
KR101221765B1 (en) * 2006-12-26 2013-01-14 주식회사 엘지화학 Electrically conductive films by self patterned carbon nanotubes
KR100951730B1 (en) * 2007-05-30 2010-04-07 삼성전자주식회사 Carbon nanotube having improved conductivity, process for preparing the same, and electrode comprising the carbon nanotube
US8586458B2 (en) 2007-05-30 2013-11-19 Samsung Electronics Co., Ltd. Process of preparing carbon nanotube having improved conductivity
US8501529B2 (en) 2007-05-30 2013-08-06 Samsung Electronics Co., Ltd. Carbon nanotube having improved conductivity, process of preparing the same, and electrode comprising the carbon nanotube
KR100867628B1 (en) * 2007-06-04 2008-11-10 한국표준과학연구원 Method of controlling density and conductance of carbon nanotubes on substrate
KR100869161B1 (en) * 2007-07-13 2008-11-19 한국전기연구원 Polymer binder composition for transparent conductive films containing carbon nanotubes
KR101313812B1 (en) * 2007-09-07 2013-09-30 삼성전자주식회사 Method of fabrication of liquid film, method of arranging nano paticles and substrate to have liquid thin film manufactured by using the same
KR101034863B1 (en) * 2007-09-28 2011-05-17 한국전기연구원 Fabrication method of ESD films using carbon nanotubes, and the ESD films
KR101468975B1 (en) * 2008-07-03 2014-12-04 주식회사 그라프 High conducting film using low-dimensional materials
KR101011447B1 (en) * 2009-01-20 2011-01-28 부산대학교 산학협력단 Manufacturing Method of Aligned Metal Nanowires Film by Stretching
WO2011021794A2 (en) * 2009-08-20 2011-02-24 ㈜엘지하우시스 Carbon nanotube/metal particle complex composition and heated steering wheel using same
WO2011021794A3 (en) * 2009-08-20 2011-06-30 ㈜엘지하우시스 Carbon nanotube/metal particle complex composition and heated steering wheel using same
CN102471050A (en) * 2009-08-20 2012-05-23 乐金华奥斯有限公司 Carbon nanotube/metal particle complex composition and heated steering wheel using same
CN102471050B (en) * 2009-08-20 2014-08-06 乐金华奥斯有限公司 Carbon nanotube/metal particle complex composition and heated steering wheel using same
KR101251091B1 (en) * 2009-10-08 2013-04-04 (주)엘지하우시스 Heated paint composition, method of forming the heated layer and automobile knob
WO2011078537A3 (en) * 2009-12-24 2011-11-03 한국기계연구원 Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same
WO2011078537A2 (en) * 2009-12-24 2011-06-30 한국기계연구원 Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same
KR101153746B1 (en) * 2010-10-04 2012-06-13 부산대학교 산학협력단 Method of Manufacturing conductive polyaniline/actMethod of Manufacturing conductive polyaniline/activate carbon composites for electrode material of ivate carbon composites for electrode material of capacitor capacitor
KR101239371B1 (en) * 2011-04-01 2013-03-18 한국과학기술연구원 Conductive particles and preparation method thereof
TWI549786B (en) * 2012-11-08 2016-09-21 Kun-Zhe Wu Torque control method, device, module and electric wrench
WO2014157856A1 (en) * 2013-03-25 2014-10-02 전자부품연구원 Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
US9977327B2 (en) 2013-03-25 2018-05-22 Korea Electronics Technology Institute Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
KR101468496B1 (en) * 2013-07-25 2014-12-04 전자부품연구원 Coating solution having conductive nano material and coated conductive film
KR101498187B1 (en) * 2013-10-10 2015-03-04 전자부품연구원 Photosensitive coating solution and coated conductive film for transparent electrode using the same
KR20170033391A (en) * 2014-07-22 2017-03-24 알파 어셈블리 솔루션스 인크. Stretchable interconnects for flexible electronic surfaces
KR20200142115A (en) * 2014-07-22 2020-12-21 알파 어셈블리 솔루션스 인크. Stretchable interconnects for flexible electronic surfaces
US11139089B2 (en) 2014-07-22 2021-10-05 Alpha Assembly Solutions Inc. Stretchable interconnects for flexible electronic surfaces
US11830640B2 (en) 2014-07-22 2023-11-28 Alpha Assembly Solutions, Inc. Stretchable interconnects for flexible electronic surfaces
KR20210093505A (en) * 2020-01-20 2021-07-28 전남대학교산학협력단 Manufacturing method of Nickel-palladium carbon nanotube microcomposite, electromagnetic wave shielding agent using same
WO2021149970A1 (en) * 2020-01-20 2021-07-29 전남대학교산학협력단 Method for preparing microcomposite of nickel-palladium and carbon nanotubes, and electromagnetic wave-shielding material using same

Similar Documents

Publication Publication Date Title
KR20040106947A (en) Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
JP4384554B2 (en) Photosensitive metal nanoparticles, photosensitive composition containing the same, and conductive pattern forming method using the photosensitive composition
KR100801820B1 (en) Method for forming a patterned monolayer of surface-modified carbon nanotubes
EP2843667B1 (en) Transparent conductive ink, and method for producing transparent conductive pattern
KR101317599B1 (en) Novel metal nanoparticle and formation method of conducting pattern using the same
CN106928773B (en) Graphene composite conductive ink for ink-jet printing and preparation method thereof
JP3503546B2 (en) Method of forming metal pattern
WO2002018080A1 (en) Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
JP2007182547A (en) Highly electroconductive ink composition and method for producing metallic electroconductive pattern
WO2004106223A1 (en) Carbon nanotube device, process for producing the same and carbon nanotube transcriptional body
KR20050011867A (en) Method of producing conducting film using Carbon Nano Tube and Nano Metal
JP2008107795A (en) Method for forming organic layer pattern, organic layer formed by the same, and organic memory device comprising the same
JP2007270179A (en) Method of manufacturing plated film with patterned metal film using reducing polymer particle deposited thereon
JP6216646B2 (en) Transparent conductive film and touch panel using the same
KR101291855B1 (en) Novel metal nanoparticle and formation method of conducting pattern using the same
JP2006249399A (en) Composition, image forming method using composition and electrically conductive pattern forming method using composition
US9953740B2 (en) Dispersant, metal particle dispersion for electroconductive substrates, and method for producing electroconductive substrate
US20090114430A1 (en) Method for patterning of conductive polymer
KR100801821B1 (en) Surface-modified carbon nanotubes
KR100821443B1 (en) Surface-modified carbon nanotube composition
US20140061543A1 (en) Method of manufacturing non-firing type electrode using photosensitive paste
JP2005277213A (en) Conductive pattern and method of forming the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application