KR100789103B1 - Polylactic composite comprising carbon nanotube and manufacturing method thereof - Google Patents

Polylactic composite comprising carbon nanotube and manufacturing method thereof

Info

Publication number
KR100789103B1
KR100789103B1 KR1020060120505A KR20060120505A KR100789103B1 KR 100789103 B1 KR100789103 B1 KR 100789103B1 KR 1020060120505 A KR1020060120505 A KR 1020060120505A KR 20060120505 A KR20060120505 A KR 20060120505A KR 100789103 B1 KR100789103 B1 KR 100789103B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
polylactide
lactide
composite
carbon nanotube
Prior art date
Application number
KR1020060120505A
Other languages
Korean (ko)
Inventor
박병식
이상하
박인철
Original Assignee
도레이새한 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이새한 주식회사 filed Critical 도레이새한 주식회사
Priority to KR1020060120505A priority Critical patent/KR100789103B1/en
Application granted granted Critical
Publication of KR100789103B1 publication Critical patent/KR100789103B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0251Compounds of Si, Ge, Sn, Pb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Abstract

A method for preparing a polylactide composite containing a carbon nanotube is provided to improve thermal and electrical properties and electromagnetic interference shielding property, to increase a melting point and to reduce surface resistance. A method for preparing a polylactide composite comprises the steps of adding lactic acid to a container and condensing it at a temperature of 120-180 deg.C in vacuum to prepare a polylactide prepolymer having a molecular weight of 1,000-5,000; adding a tin catalyst to the obtained prepolymer to prepare a lactide of a cyclic monomer by pyrolysis; and mixing the obtained lactide with a carbon nanotube and a tin catalyst, dispersing them by ultrasonication, stirring it, and leaving it alone for ring opening polymerization.

Description

탄소나노튜브가 첨가된 전도성 및 전자파 차폐 특성을 가지는 폴리락타이드 복합체 및 그 제조방법{Polylactic composite comprising carbon nanotube and manufacturing method thereof}Polylactide composite having carbon nanotubes and conductive and electromagnetic shielding properties and a method of manufacturing the same

본 발명은 탄소나노튜브가 첨가된 전도성 및 전자파 차폐 특성을 가지는 폴리락타이드 복합체 및 그 제조방법에 관한 것으로, 보다 자세하게는 뛰어난 탄성율과 전기 전도성 및 기계적인 특성과 더불어 전자파 차폐특성을 지니고 있는 탄소나노튜브를 이용하여 탄소나노튜브/폴리락타이드 복합체를 합성함으로 전자파 차폐제, 전도성 시트 및 필름, 전도성 섬유, 생분해성 내열제 등으로의 사용될 수 있는 탄소나노튜브 함유 폴리락타이드 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a polylactide composite having a conductive and electromagnetic wave shielding property to which carbon nanotubes are added, and a method of manufacturing the same. More specifically, the present invention relates to carbon nanotubes having electromagnetic shielding properties as well as excellent elastic modulus, electrical conductivity, and mechanical properties. Carbon nanotube-containing polylactide composite which can be used as electromagnetic wave shielding agent, conductive sheet and film, conductive fiber, biodegradable heat-resistant agent, etc. by synthesizing carbon nanotube / polylactide composite using tube will be.

탄소나노튜브(Carbon Nanotubes, CNTs)는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집(comb) 모양의 흑연 면이 나노 크기의 직경으로 둥글게 말린 형태를 가리키고 있으며, 크기나 형태에 따라 독특한 물리적 성질을 갖는 거대 분자이다. 이러한 탄소나노튜브는 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 원통형을 이루는 결합 구조에 따라 일부러 불순물을 넣지 않아도 튜브와 튜브가 상호 작용하면서 도체에서 반도체로 변한다. 또한, 말려진 형태에 따라서 단층벽 나노튜브(Single walled carbon nanotube, SWNT), 다중벽 나노튜브(Multi-walled carbon nanotube, MWNTs), 다발형 나노튜브(Rope nanotube)로 구분하기도 한다. Carbon Nanotubes (CNTs) are hexagonal comb-shaped graphite faces in which one carbon atom is bonded to three other carbon atoms, which are rounded to a nano-sized diameter. It is a macromolecule with properties. These carbon nanotubes are hollow, lightweight and have electrical conductivity as good as copper, thermal conductivity as good as diamond and tensile strength as steel. According to the cylindrical coupling structure, the tube and the tube interact with each other and change from conductor to semiconductor without intentionally adding impurities. In addition, according to the curled form, it may be classified into single walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNTs), and bundle nanotubes (Rope nanotubes).

이러한 구조적 특징으로 인해 나노과학 기술 분야 중에서 특히 탄소나노튜브는 도체, 반도체, 뛰어난 화학적 안정성, 물리적 강도 등의 특성을 지니고 있으므로 기초 연구의 중요성과 산업적 응용성이 크게 각광을 받고 있다. 따라서, 이러한 특성과 장점을 가진 탄소나노튜브를 이용한 여러 응용분야 중에 특히 탄소나노튜브/고분자 복합체에 대한 연구가 활발히 진행되고 있다. Due to these structural features, carbon nanotubes, especially in the field of nanoscience and technology, have characteristics such as conductors, semiconductors, excellent chemical stability, and physical strength, and thus, the importance of basic research and industrial applicability have gained great attention. Therefore, among many application fields using carbon nanotubes having such characteristics and advantages, research on carbon nanotubes / polymer composites is being actively conducted.

또한 전 세계적으로 다양한 용도로 사용되고 있는 합성플라스틱은 그 장점이자 단점인 분해가 잘 일어나지 않는 문제로 인하여 최근 각국에서 이에 대한 해결책을 찾으려 관심을 모으고 있다. 그동안 매립, 소각 및 재생이라는 방법을 주로 활용해 왔으나, 이들 방법으로는 환경오염 문제를 완전히 해결할 수가 없다. 따라서 사용이 완료된 플라스틱이 스스로 분해가 가능하도록 만드는 소위 분해성 플라스틱 개발에 관심이 집중되고 있다. 분해성 플라스틱과 관련된 기술을 세분하면 생분해 기술, 광분해 기술 그리고 이들 두 기술을 조합한 생·광분해 기술로 나뉘어진다. 생분해성 플라스틱으로는 PHB(Poly--hydroxybutylate) 등과 같은 미생물 생산 고분자, 미생물 생산 바이오케미칼(Biochemical)을 합성원료로 한 고분자 화학적으로 합성된 지방족 폴리에스테르, 키틴(chitin) 등의 천연고분자 및 전분 등을 첨가한 플라스틱 등 여러 형태가 있다. 하지만, 이들 플라스틱은 기존 플라스틱에 비해 기계적 물성이 떨어지며 또한 화학적 성질이 떨어지는 단점을 가지고 있다. In addition, synthetic plastics, which are used for various purposes all over the world, have been attracting attention in recent years to find a solution for this problem because of its problems that are not easily decomposed. In the past, landfilling, incineration and regeneration have been mainly used, but these methods cannot completely solve the environmental problem. Therefore, attention is focused on the development of so-called degradable plastics, which make the used plastics self-degradable. The subdivision of technology related to degradable plastics is divided into biodegradation technology, photodegradation technology and bio-photodegradation technology combining these two technologies. Biodegradable plastics include microorganism-producing polymers such as poly-hydroxybutylate (PHB), macromolecular-producing polymers made of microbial-producing biochemicals, and synthetic polymers such as aliphatic polyesters, natural polymers such as chitin, and starch. There are many forms such as added plastics. However, these plastics have disadvantages of low mechanical properties and low chemical properties compared to conventional plastics.

따라서, 본 발명자 등은 상기한 바와 같은 플라스틱 소재의 이용에 있어서의 여러 가지 문제점들을 해결하기 위하여 새로운 소재에 대해 예의 연구한 결과 우수한 물리·화학적 특성을 가지고 있는 탄소나노튜브와 락타이드를 이용함으로 물리·화학적 특성이 우수하게 개선된 탄소나노튜브/폴리락타이드 복합체를 제조할 수 있어 본 발명을 완성하게 되었다, Accordingly, the present inventors have studied the new material to solve various problems in the use of the plastic material as described above. As a result, the present inventors have found that the physical properties of the carbon nanotube and lactide have excellent physical and chemical properties. Carbon nanotubes / polylactide composites with excellent chemical properties can be prepared to complete the present invention.

본 발명의 목적은 뛰어난 전기 전도성 및 열적인 특성과 더불어 전자파 차폐특성을 지니는 소재를 제공하기 위한 것으로, 특히 탄소나노튜브를 사용하여 전자파 차폐제, 전도성 시트 및 필름, 전도성 섬유 , 생분해성 내열제 등으로의 사용될 수 있는 탄소나노튜브 함유 폴리락타이드 복합체 및 그 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a material having electromagnetic shielding properties as well as excellent electrical conductivity and thermal properties, in particular using carbon nanotubes as an electromagnetic shielding agent, conductive sheet and film, conductive fiber, biodegradable heat-resistant, etc. To provide a carbon nanotube-containing polylactide composite and a method for preparing the same.

본 발명의 다른 목적은 전도성 기계부품, 전도성 섬유, 전도성 시트 및 필름, 전자파 차단제, 생분해성 내열제 등으로 사용하기 위한 열적특성 및 전기적 특성이 향상된 탄소나노튜브/폴리락타이드 복합체를 제공하기 위한 것이다. Another object of the present invention is to provide a carbon nanotube / polylactide composite with improved thermal and electrical properties for use as a conductive machine part, conductive fiber, conductive sheet and film, electromagnetic wave shield, biodegradable heat resistant agent, and the like. .

상기 본 발명의 목적은 뛰어난 전기적 특성과 기계적 특성을 가지고 있는 탄소나노튜브를 이용한 탄소나노튜브/폴리락타이드 복합체를 합성하여 향상된 열적 특성을 발현시키고 전도성 및 전자파 차폐특성 등을 가지는 복합소재를 제공함으로서 달성되었다.An object of the present invention by synthesizing a carbon nanotube / polylactide composite using carbon nanotubes having excellent electrical and mechanical properties to express improved thermal properties and to provide a composite material having conductivity and electromagnetic shielding properties, etc. Was achieved.

상기 목적을 달성하기 위한 본 발명의 탄소나노튜브가 첨가된 폴리락타이드 복합체는;The polylactide composite to which the carbon nanotubes of the present invention are added to achieve the above object;

폴리락타이드(polylactide) 90 내지 99.9 중량%와 탄소나노튜브가 0.1 ~ 10 중량%로 조성된 것임을 특징으로 한다.Polylactide (polylactide) is characterized in that 90 to 99.9% by weight and carbon nanotubes are composed of 0.1 to 10% by weight.

상기 탄소나노튜브의 함유량이 0.1 중량%에 미치지 못하면 내열성의 향상이나 표면저항 등과 같은 전기적 특성 및 열적 특성의 개선효과가 전혀 없으며, 반대로 10 중량%를 초과하더라도 전기적 특성 및 열적 특성에 있어서 부가적인 개선효과를 더 이상 나타내는 것이 아니므로 바람직하지 않다.If the carbon nanotube content is less than 0.1% by weight, there is no improvement in electrical and thermal properties such as heat resistance or surface resistance, and on the contrary, an additional improvement in electrical and thermal properties even when it exceeds 10% by weight. It is not preferable because the effect is no longer exhibited.

본 발명의 다른 구성에 따르면, 상기 탄소나노튜브는 그 표면에 카르복실 작용기(-COOH) 및 하이드록시 작용기(-OH)를 도입시켜 표면처리된 것임을 특징으로 한다.According to another configuration of the present invention, the carbon nanotubes are surface-treated by introducing carboxyl functional groups (-COOH) and hydroxy functional groups (-OH) on their surfaces.

본 발명의 다른 목적을 달성하기 위한 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조방법은;Method for producing a polylactide complex to which carbon nanotubes are added to achieve another object of the present invention;

진공상태가 가능하고 교반기가 장착 가능한 용기에 락틱엑시드(Latic acid)를 첨가하여 120~180℃의 온도에서 진공 하에서 축합반응시켜 분자량이 1,000~5,000인 폴리락타이드 프리-폴리머(pre-polymer)를 제조하는 단계;Lactic acid is added to a container capable of vacuum and equipped with a stirrer to condense under vacuum at a temperature of 120 to 180 ° C. to obtain a polylactide pre-polymer having a molecular weight of 1,000 to 5,000. Manufacturing step;

상기의 단계에서 얻어진 반응물에 주석 촉매(Tin catalyst)를 첨가하여 열분해반응을 시켜 고리모양의 단량체인 락타이드(Lactide)를 제조하는 단계; 및 Preparing a lactide which is a ring-shaped monomer by pyrolysis by adding a tin catalyst to the reactant obtained in the above step; And

상기의 단계에서 얻어진 락타이드에 탄소나노튜브 및 주석 촉매를 혼합한 후 초음파로 분산시키고 교반 후, 약 180℃에서 12시간 동안 유지하여 개환중합 반응을 진행시키는 단계로 이루어지는 것을 특징으로 한다. After mixing the carbon nanotube and the tin catalyst in the lactide obtained in the above step, it is dispersed by ultrasonication, and after stirring, it is characterized by consisting of the step of proceeding the ring-opening polymerization reaction by maintaining at about 180 ℃.

본 발명의 다른 구성에 따르면, 상기 본 발명에 따라 제조된 탄소나노튜브가 첨가된 폴리락타이드 복합체를 전도성 섬유, 전자파 차단제, 전도성 기계부품 또는 생분해성 내열제의 어느 하나에 사용하는 것을 특징으로 한다. According to another configuration of the present invention, the polylactide composite containing the carbon nanotubes prepared according to the present invention is used for any one of a conductive fiber, an electromagnetic wave shield, a conductive mechanical part, or a biodegradable heat resistant agent. .

상기한 바와 같이 본 발명에 따른 탄소나노튜브가 첨가된 폴리락타이드 복합체는 종래 플라스틱 소재의 이용에 있어서의 제반 문제점들을 해결하고자 제안된 것으로 우수한 물리·화학적 특성을 가지고 있는 탄소나노튜브를 물리·화학적으로 처리하여 카르복실 작용기(-COOH) 및 하이드록시 작용기(-OH)를 가지는 탄소나노튜브를 제조하고 이를 락타이드에 분산시켜 물리·화학적 성질이 개선된 탄소나노튜브/폴리락타이드 복합체를 제공함으로서, 본 발명에 따른 탄소나노튜브/폴리락타이드 복합체는 순수한 폴리락타이드보다 전기전도성이 크게 증가되고, 매우 가벼우며 고온에서도 오래 견딜 수 있으며, 특히 전자파 차단 효과도 가진다. 또한 개환중합법으로 제조된 탄소나노튜브/폴리락타이드 복합체는 전기전도성이 요구되는 전자파 차단 플라스틱, 전도성 섬유, 전도성 필름 및 시트 또는 내열성이 요구되는 기계부품 등으로 이용 가능한 새로운 형태의 폴리머 복합체이다. 현재, 탄소섬유나 제올라이트 등을 이용한 고분자 복합체를 사용하여 고강도 플라스틱 및 전자파 차단 플라스틱으로 사용하고 있으나, 탄소나노튜브는 이들 탄소섬유나 제올라이트에 비해 전도성이 크게 높고, 고분자나 유기용매 내에서 분산성이 뛰어나기 때문에, 기존의 탄소섬유나 제올라이트를 탄소나노튜브로 대체한다면 복합체의 전기전도성 및 내열 특성이 매우 뛰어날 수 있다. 또한, 현재 전자파 차폐를 위한 방법으로는, 전도성 고분자를 이용하는 방법, 카본블랙이나 탄소섬유의 고분자 복합체를 이용하는 방법, 무전해 도금법 및 구리나 은을 코팅하는 방법 등이 있으나, 이들 방법들에 사용되는 전도성 고분자는 유기용매에 낮은 용해성 및 낮은 내열성을 가지며, 카본블랙, 탄소섬유 및 금속 입자들은 고분자 내에서 탄소나노튜브에 비해 낮은 분산성, 고중량비 등의 단점들이 있지만, 탄소나노튜브는 소량의 첨가로도 전자파 특성이 크게 개선되며 열적, 전기적 특성이 동시에 증가한다.As described above, the polylactide composite to which the carbon nanotubes according to the present invention are added is proposed to solve various problems in the use of conventional plastic materials, and the physical and chemical properties of the carbon nanotubes having excellent physical and chemical properties. To prepare a carbon nanotube having a carboxyl functional group (-COOH) and a hydroxy functional group (-OH) and disperse it in lactide to provide a carbon nanotube / polylactide complex having improved physical and chemical properties. In addition, the carbon nanotube / polylactide composite according to the present invention has significantly increased electrical conductivity than pure polylactide, is very light and can withstand high temperatures for long periods of time. In addition, the carbon nanotube / polylactide composite produced by the ring-opening polymerization method is a new type of polymer composite that can be used as electromagnetic shielding plastics, conductive fibers, conductive films and sheets requiring electrical conductivity, or mechanical parts requiring heat resistance. Currently, polymer composites using carbon fibers or zeolites are used as high-strength plastics and electromagnetic wave shielding plastics, but carbon nanotubes have significantly higher conductivity than those of carbon fibers or zeolites and dispersibility in polymers or organic solvents. Because of its superiority, if the existing carbon fiber or zeolite is replaced with carbon nanotubes, the electrical conductivity and heat resistance of the composite may be excellent. In addition, current methods for shielding electromagnetic waves include a method of using a conductive polymer, a method of using a polymer composite of carbon black or carbon fiber, an electroless plating method, and a method of coating copper or silver, and the like. Conductive polymers have low solubility and low heat resistance in organic solvents. Carbon black, carbon fiber and metal particles have disadvantages such as low dispersibility and high weight ratio compared to carbon nanotubes in polymers. Electromagnetic properties are also greatly improved and thermal and electrical properties increase simultaneously.

이하에는 첨부된 도면을 참조하여 본 발명의 탄소나노튜브가 첨가된 전도성 및 전자파 차폐 특성을 가지는 폴리락타이드 복합체의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing a polylactide composite having conductive and electromagnetic shielding properties to which carbon nanotubes of the present invention are added will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조공정도이다. 1 is a manufacturing process diagram of a polylactide composite to which carbon nanotubes are added according to the present invention.

본 발명에서 사용되는 탄소나노튜브는 높은 기계적 강도와 높은 영스모듈러스(Young's modulus)와 높은 종횡비(aspect ratio) 등의 기계적 특성을 가지는 물질이다. 또한, 탄소나노튜브는 높은 전기전도성과 높은 열안정성을 가지는 물질이다. 이러한 우수한 여러 가지 특성을 지닌 탄소나노튜브를 고분자 복합체에 응용하여 기계적, 열적, 전기적 특성이 향상된 탄소나노튜브/고분자 복합체를 제공한다.Carbon nanotubes used in the present invention are materials having high mechanical strength, high Young's modulus, high aspect ratio and other mechanical properties. In addition, carbon nanotubes are materials having high electrical conductivity and high thermal stability. By applying carbon nanotubes having various excellent properties to a polymer composite, a carbon nanotube / polymer composite having improved mechanical, thermal and electrical properties is provided.

탄소나노튜브를 합성하는 방법은 최초로 나노튜브를 합성하는데 사용되었던 전기 방전법 (Arc-discharge), 열분해법(pyrolysis), 레이저 증착법 (Laser vaporization), 플라즈마 화학기상증착법 (Plasma Enhanced Chemical Vapor Deposition), 열화학 기상증착법 (Thermal Chemical Vapor Deposition), 전기분해법, Flame 합성법 등의 어느 것이나 이용할 수 있으며, 특정한 것에 한정되지 않으나 본 발명에서 사용된 탄소나노튜브는 대량의 탄소나노튜브를 합성할 수 있는 방법인 열화학 기상증착법을 이용하여 합성하는 것이 바람직하다. Synthesis of carbon nanotubes is the first method used in synthesizing nanotubes such as arc-discharge, pyrolysis, laser vaporization, plasma enhanced chemical vapor deposition, Any one of thermal chemical vapor deposition, electrolysis, flame synthesis, and the like may be used, and the present invention is not limited thereto, but the carbon nanotubes used in the present invention are thermochemical methods that can synthesize a large amount of carbon nanotubes. It is preferable to synthesize | combine using the vapor deposition method.

상기와 같이 하여 얻어진 탄소나노튜브의 표면에 카르복실 작용기(-COOH)나 하이드록실 작용기(-OH)를 도입시켜 고분자 내에서의 분산성을 향상시키기 위해서 탄소나노튜브를 황산과 질산의 혼합 용액 속에서 처리한 후 필터하여 사용한다. 진공상태가 가능하고 교반기가 장착 가능한 용기에 락틱엑시드(Latic acid)를 넣고 120~180℃의 온도에서 100mmHg의 진공으로 4시간 정도 축합반응시켜 분자량이 1,000~5,000 정도가 되는 폴리락타이드 프리-폴리머(PLA pre-polymer)를 제조한 후 이를 다시 200℃, 10mmHg에서 1시간 동안 열분해반응을 시켜 고리모양의 단량체인 락타이드를 제조한다. In order to improve dispersibility in the polymer by introducing a carboxyl functional group (-COOH) or a hydroxyl functional group (-OH) to the surface of the carbon nanotubes obtained as described above, the carbon nanotubes are mixed in a mixed solution of sulfuric acid and nitric acid. Filter after use in the process. The polylactide pre-polymer having a molecular weight of about 1,000 to 5,000 by putting lactic acid in a container capable of vacuum and a condenser equipped with condensation reaction at a temperature of 120 to 180 ° C. for 4 hours in a vacuum of 100 mmHg. (PLA pre-polymer) is prepared and then pyrolyzed at 200 ° C. and 10 mmHg for 1 hour to prepare lactide, a cyclic monomer.

본 고리모양의 락타이드를 단량체에 탄소나노튜브를 혼합한 후 초음파로 분산시키고 교반한 후, 180℃, ATM 압력에서 12시간 동안 개환(RING OPENING) 중합을 진행시키면 탄소나노튜브가 첨가된 고분자량의 폴리락타이드 복합체가 제조된다.After dispersing the ring-shaped lactide in the monomer with carbon nanotubes, dispersing with ultrasonic wave, stirring, and then performing ring opening polymerization at 180 ° C. and ATM pressure for 12 hours, the high molecular weight of carbon nanotubes was added. Polylactide complex is prepared.

상기의 방법으로 제조된 탄소나노튜브가 첨가된 폴리락타이드 복합체는 락타이드 단량체 상태에서 표면개질된 탄소나노튜브와의 친화력(Lactide와 -OH, -COOH간의 친화력)때문에 폴리락타이드 내에서의 탄소나노튜브는 우수한 분산성을 나타낸다. 이러한 이유로 본 발명에 따른 탄소나노튜브/폴리락타이드 복합체는 열적, 전기적 특성이 요구되는 전도성 기계부품, 전도성 섬유, 전자파 차단제, 생분해성 내열제 등으로 사용되는 고분자 재료에 적용 가능하다.The polylactide complex containing the carbon nanotubes prepared by the above method has carbon in the polylactide due to its affinity with the surface-modified carbon nanotubes (Lactide, -OH, -COOH) in the lactide monomer state. Nanotubes show good dispersibility. For this reason, the carbon nanotube / polylactide composite according to the present invention is applicable to polymer materials used as conductive mechanical parts, conductive fibers, electromagnetic wave blocking agents, biodegradable heat-resistant agents, etc., which require thermal and electrical properties.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1Example 1

탄소나노튜브가 첨가된 열적, 전기적 특성이 향상된 폴리락타이드의 제조는 다음과 같이 실시하였다. 열화학 기상증착법으로 합성된 탄소나노튜브의 분산성을 향상시키기 위해서 탄소나노튜브를 황산과 질산의 혼합 용액 속에서 6시간 동안 처리한 후 필터 및 동결 건조하여 사용한다.The production of polylactide with improved thermal and electrical properties added with carbon nanotubes was carried out as follows. In order to improve the dispersibility of the synthesized carbon nanotubes by thermochemical vapor deposition, the carbon nanotubes are treated in a mixed solution of sulfuric acid and nitric acid for 6 hours, and then used by filtration and freeze drying.

진공상태가 가능하고 교반기가 장착 가능한 용기에 락타이드(Latic acid)를 넣고 약 150℃의 온도에서 100mmHg의 진공으로 4시간 정도 축합반응시켜 분자량이 1,000~5,000정도가 되는 폴리락타이드 프리-폴리머를 제조한 후 0.5% 주석 촉매를 첨가하여 다시 200℃, 10mmHg에서 1시간 동안 열분해반응을 시켜 고리모양의 단량체인 락타이드를 제조하였다. Put lactide (Latic acid) in a container that can be vacuumed and equipped with a stirrer and condensation reaction for about 4 hours in a vacuum of 100mmHg at a temperature of about 150 ℃ to obtain a polylactide pre-polymer having a molecular weight of about 1,000 ~ 5,000 After the preparation, 0.5% tin catalyst was added thereto, followed by pyrolysis reaction at 200 ° C. and 10 mmHg for 1 hour to prepare lactide, a cyclic monomer.

상기와 같이 하여 얻어진 고리모양의 락타이드를 단량체로 하여 락타이드 단량체에 산처리한 탄소나노튜브 및 주석 촉매를 혼합한 후 초음파로 분산시키고 교반한 후, 180℃, ATM 압력에서 12시간 동안 개환중합을 진행시키면 탄소나노튜브가 첨가된 고분자량의 폴리락타이드 복합체를 제조하였다. 여기서 탄소나노튜브와 폴리락틱엑시드의 조성비는 0.1 중량% : 99.9 중량%로 하였다.Using the ring-shaped lactide obtained as described above as a monomer, the carbon nanotubes and tin catalysts acid-treated with the lactide monomers were mixed, ultrasonically dispersed and stirred, and then ring-opening polymerization at 180 ° C. and ATM pressure for 12 hours. Proceed to prepare a high molecular weight polylactide composite to which carbon nanotubes were added. Herein, the composition ratio of the carbon nanotubes and the polylactic acid was 0.1 wt%: 99.9 wt%.

상기의 방법으로 얻어진 성형체를 고온압축기(hot press)를 사용하여 필름형태로 만든 후 표면저항, 열적특성을 측정하여 그 결과를 표 1에 나타냈다. The molded article obtained by the above method was made into a film form using a hot press, and the surface resistance and thermal characteristics were measured, and the results are shown in Table 1.

실시예 2 ~ 7Examples 2-7

첨가되는 탄소나노튜브와 폴리락틱엑시드의 조성비를 다음 표 1과 같이 하는 외에는 실시예1과 동일하게 하여 탄소나노튜브가 첨가된 고분자량의 폴리락타이드 복합체를 제조하였다. A high molecular weight polylactide composite to which carbon nanotubes were added was prepared in the same manner as in Example 1 except that the composition ratio of the added carbon nanotubes and polylactic acid was as shown in Table 1 below.

실시예 8 ~ 14Examples 8-14

탄소나노튜브를 산처리 하지 않고 사용하는 것을 제외하고는 다음 표 1에 나타난 바와 같이 각각 대응하는 실시예 1 ~ 7과 동일하게 하여 탄소나노튜브가 첨가된 고분자량의 폴리락타이드 복합체를 제조하였다. Except for using carbon nanotubes without acid treatment, as shown in Table 1, the same as in Examples 1 to 7, respectively, to prepare a high molecular weight polylactide composite to which carbon nanotubes were added.

비교예 1 ~ 2Comparative Examples 1 and 2

다음 표1에 나타난 바와 같이 탄소나노튜브를 사용하지 않거나 0.05중량%를 사용하는 것을 제외하고는 실시예 1과 동일하게 하여 고분자량의 폴리락타이드를 제조하였다. As shown in Table 1, polylactide of high molecular weight was prepared in the same manner as in Example 1 except for not using carbon nanotubes or using 0.05% by weight.

구분division 중량% (CNT/PLA)Weight% (CNT / PLA) 표면저항 (MΩ)Surface resistance (MΩ) Tm (℃)Tm (℃) 비교예1Comparative Example 1 0/1000/100 > 300> 300 160160 비교예2Comparative Example 2 0.05/99.950.05 / 99.95 > 300> 300 160160 실시예1Example 1 0.1/99.90.1 / 99.9 > 300> 300 160160 실시예2Example 2 0.5/99.50.5 / 99.5 > 300> 300 161161 실시예3Example 3 1/991/99 > 300> 300 163163 실시예4Example 4 3/973/97 3.73.7 165165 실시예5Example 5 5/955/95 0.90.9 166166 실시예6Example 6 10/9010/90 0.90.9 167167 실시예7Example 7 15/8515/85 1.01.0 166166 실시예8Example 8 0.1/99.90.1 / 99.9 > 300> 300 160160 실시예9Example 9 0.5/99.50.5 / 99.5 > 300> 300 160160 실시예10Example 10 1/991/99 > 300> 300 162162 실시예11Example 11 3/973/97 3.13.1 163163 실시예12Example 12 5/955/95 1.31.3 164164 실시예13Example 13 10/9010/90 1.11.1 165165 실시예14Example 14 15/8515/85 1.01.0 165165

상기와 같이 구성되는 본 발명에 따른 탄소나노튜브가 첨가된 열적, 전기적 특성이 향상된 폴리락타이드 복합체는 내열성과 녹는점을 증가시키고 표면저항을 감소시킴으로써 전도성 기계부품, 전도성 섬유, 전자파 차단제, 생분해성 내열제 등으로 사용되는 고분자 재료에 적용할 수 있는 매우 유용한 발명이다.The polylactide composites having improved thermal and electrical properties added with carbon nanotubes according to the present invention configured as described above can increase the heat resistance and melting point and reduce the surface resistance of conductive mechanical parts, conductive fibers, electromagnetic wave shielding agents, and biodegradability. It is a very useful invention that can be applied to a polymer material used as a heat resistant agent.

도 1은 본 발명에 따른 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조공정도이다. 1 is a manufacturing process diagram of a polylactide composite to which carbon nanotubes are added according to the present invention.

Claims (6)

삭제delete 삭제delete 진공상태가 가능하고 교반기가 장착 가능한 용기에 락틱엑시드(Latic acid)를 첨가하여 120~180℃의 온도에서 진공 하에서 축합반응시켜 분자량이 1,000~5,000인 폴리락타이드 프리-폴리머(pre-polymer)를 제조하는 단계;Lactic acid is added to a container capable of vacuum and equipped with a stirrer to condense under vacuum at a temperature of 120 to 180 ° C. to obtain a polylactide pre-polymer having a molecular weight of 1,000 to 5,000. Manufacturing step; 상기의 단계에서 얻어진 반응물에 주석 촉매(Tin catalyst)를 첨가하여 열분해반응을 시켜 고리모양의 단량체인 락타이드(Lactide)를 제조하는 단계; 및 Preparing a lactide which is a ring-shaped monomer by pyrolysis by adding a tin catalyst to the reactant obtained in the above step; And 상기의 단계에서 얻어진 락타이드에 탄소나노튜브 및 주석 촉매를 혼합한 후 초음파로 분산시키고 교반 후 정치하여 개환중합 반응을 진행시키는 단계로 이루어지는 것을 특징으로 하는 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조방법.After mixing the carbon nanotubes and the tin catalyst to the lactide obtained in the above step, dispersed by ultrasonication, and left to stir after stirring, the ring-opening polymerization reaction of the carbon nanotubes added polylactide composite, characterized in that Manufacturing method. 제 3항에 있어서, 상기 분산 교반된 탄소나노튜브와 락타이드의 개환중합 반응이 진행된 반응 혼합물을 핫 프레스를 사용하여 압출(Extrusion)하는 단계를 더 포함함을 특징으로 하는 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조방법.[Claim 4] The carbon nanotubes of claim 3, further comprising extruding the reaction mixture in which the ring-opening polymerization reaction of the dispersed agitated carbon nanotubes and lactide is performed by using a hot press. Method for producing a polylactide composite. 제 3항에 있어서, 상기 탄소나노튜브는 산으로 표면처리된 것임을 특징으로 하는 탄소나노튜브가 첨가된 폴리락타이드 복합체의 제조방법. The method of claim 3, wherein the carbon nanotubes are surface treated with an acid. 삭제delete
KR1020060120505A 2006-12-01 2006-12-01 Polylactic composite comprising carbon nanotube and manufacturing method thereof KR100789103B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060120505A KR100789103B1 (en) 2006-12-01 2006-12-01 Polylactic composite comprising carbon nanotube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060120505A KR100789103B1 (en) 2006-12-01 2006-12-01 Polylactic composite comprising carbon nanotube and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR100789103B1 true KR100789103B1 (en) 2007-12-26

Family

ID=39148115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060120505A KR100789103B1 (en) 2006-12-01 2006-12-01 Polylactic composite comprising carbon nanotube and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100789103B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143340B2 (en) 2010-02-01 2012-03-27 Hyundai Motor Company Polylactic acid composites
KR101162268B1 (en) 2011-10-13 2012-07-04 (주)프리모 Led lamp unit for vehicle
KR101225950B1 (en) * 2008-12-09 2013-01-24 제일모직주식회사 Natural fiber reinforced polylactic acid resin composition
CN113133297A (en) * 2021-04-20 2021-07-16 合肥工业大学 Super-crosslinked polystyrene based composite carbon aerogel electromagnetic shielding material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020005325A (en) * 2000-07-10 2002-01-17 구자홍 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
KR20040106947A (en) * 2003-06-05 2004-12-20 삼성전자주식회사 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
KR20060001829A (en) * 2005-08-04 2006-01-06 에스케이네트웍스 주식회사 Biodegradable synthetic resin composition and its products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020005325A (en) * 2000-07-10 2002-01-17 구자홍 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
KR20040106947A (en) * 2003-06-05 2004-12-20 삼성전자주식회사 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
KR20060001829A (en) * 2005-08-04 2006-01-06 에스케이네트웍스 주식회사 Biodegradable synthetic resin composition and its products

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
한국공개특허공보(A) 10-2004-0106947
한국공개특허공보(A) 10-2006-0001829
한국공개특허공보(A) 특2002-0005325

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225950B1 (en) * 2008-12-09 2013-01-24 제일모직주식회사 Natural fiber reinforced polylactic acid resin composition
US8143340B2 (en) 2010-02-01 2012-03-27 Hyundai Motor Company Polylactic acid composites
KR101124989B1 (en) 2010-02-01 2012-03-27 현대자동차주식회사 Polylactic acid Composites
KR101162268B1 (en) 2011-10-13 2012-07-04 (주)프리모 Led lamp unit for vehicle
CN113133297A (en) * 2021-04-20 2021-07-16 合肥工业大学 Super-crosslinked polystyrene based composite carbon aerogel electromagnetic shielding material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101135672B1 (en) Conductive thermosets by extrusion
Laird et al. Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites
Khare Carbon nanotube based composites-a review
Wu et al. Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application.
Xu et al. Coffee grounds to multifunctional quantum dots: extreme nanoenhancers of polymer biocomposites
US20100308279A1 (en) Conductive Silicone and Methods for Preparing Same
Yoon et al. Functionalization of Shortened Single‐Walled Carbon Nanotubes with Poly (p‐dioxanone) by “Grafting‐From” Approach
KR100789103B1 (en) Polylactic composite comprising carbon nanotube and manufacturing method thereof
Wu Antibacterial and static dissipating composites of poly (butylene adipate-co-terephthalate) and multi-walled carbon nanotubes
Ma et al. Modified treatment for carbonized cellulose nanofiber application in composites
Kausar A study on high-performance poly (azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers
Fan et al. Enhancing multiwalled carbon nanotubes/poly (amide-imide) interfacial strength through grafting polar conjugated polymer on multiwalled carbon nanotubes
JP2008007699A (en) Heat-resistant resin composite composition and method for producing the same
JP4971643B2 (en) Resin composition with improved heat resistance and mechanical properties and method for producing the same
KR20050075858A (en) Synthesis of carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property
KR101056311B1 (en) Carbon nanotube-g-polylactide polymer, polylactide / carbon nanotube-g-polylactide composite, and preparation method thereof
Liu et al. Multi-interfaces investigation on the PLA composites toughened by modified MWCNTs
Bhat et al. Bioplastics and Bionanocomposites Based on Nanoclays and Other Nanofillers
KR100954293B1 (en) Poly LA/MWNT-g-poly LA including MWNT-g-poly LA and method for preparing the same
Gupta et al. Synergistic influence of multi-walled carbon nanotubes and graphene nanoparticles on the structural, thermal and mechanical characteristics of poly (3-hydroxybutyrate) films
JP5048955B2 (en) Heat resistant resin composition and process for producing the same
un Nisa et al. Coconut shell char-based nanocomposites of polyamide-6: An investigation of thermal, morphological, and crystalline properties
Zhao et al. Processing and Characterizations of Nanofiller-Modulated poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Composites
Bharti et al. Mechanical and Thermal Characterization of Additively Manufactured CNT/PLA Nanocomposites
Wang et al. Reinforcement of polyethylene terephthalate via addition of carbon-based materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee