US20140061543A1 - Method of manufacturing non-firing type electrode using photosensitive paste - Google Patents

Method of manufacturing non-firing type electrode using photosensitive paste Download PDF

Info

Publication number
US20140061543A1
US20140061543A1 US13/597,519 US201213597519A US2014061543A1 US 20140061543 A1 US20140061543 A1 US 20140061543A1 US 201213597519 A US201213597519 A US 201213597519A US 2014061543 A1 US2014061543 A1 US 2014061543A1
Authority
US
United States
Prior art keywords
photosensitive paste
electrode
conductive powder
substrate
type electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/597,519
Inventor
Tomonori Oki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US13/597,519 priority Critical patent/US20140061543A1/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKI, TOMONORI
Publication of US20140061543A1 publication Critical patent/US20140061543A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/0325Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polysaccharides, e.g. cellulose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Definitions

  • the present invention relates to a method of manufacturing a non-firing type electrode using a photosensitive paste.
  • non-firing type electrode is defined as an electrode formed without a heat treatment at temperature of 350° C. or higher. When manufacturing such non-firing type electrode in fine pattern, a photolithography method is available.
  • JP2003162921 discloses a photosensitive conductive composition for the non-firing type electrode that comprises (A) a conductive powder, (B) an organic binder, (C) a photopolymerizable monomer, (D) a photoinitiator, (E) a thermosetting resin and (F) a solvent, wherein the conductive powder of the component (A) is formulated in a ratio of 70-90 mass % in the composition excluding the solvent.
  • An objective is to provide a photolithography method of manufacturing a non-firing type electrode, which enables the formation of a fine pattern with a low resistivity.
  • An aspect of the invention relates to a method of manufacturing a non-firing type electrode comprising steps of: (a) applying on a substrate a photosensitive paste comprising, (i) a conductive powder, (ii) an organic polymer comprising acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1, (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound; (b) exposing the applied photosensitive paste to light; and (c) developing the exposed photosensitive paste by an aqueous solution, wherein the electrode comprises fine line of width of 5 to 30 ⁇ m.
  • a photosensitive paste comprising, (i) a conductive powder, (ii) an organic polymer comprising acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1, (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound; (b) exposing the
  • Another aspect of the invention relates to a device having the non-firing type electrode manufactured by the method above.
  • the non-firing type electrode of a fine pattern with a low resistivity can be formed by the present invention.
  • FIG. 1 (A) to (E), explains a photolithography method of manufacturing the non-firing type electrode.
  • the non-firing type electrode is formed by the method using a photosensitive paste.
  • the photolithography method of manufacturing the electrode and the photosensitive paste is explained respectively below.
  • the electrode is formed by applying a photosensitive paste onto a substrate to form a photosensitive paste layer, exposing and developing the photosensitive paste layer.
  • the photosensitive paste is applied onto a substrate 102 by an applying tool 106 , for example a screen printing machine, to form a photosensitive paste layer 104 as illustrated in FIG. 1(A) .
  • an applying tool 106 for example a screen printing machine
  • the photosensitive paste can be applied onto the entire surface of the substrate 102 in an embodiment.
  • the photosensitive paste can be applied onto part of the substrate. For example, if a fine pattern is necessary for part of the electrodes, part of the electrodes is formed by the photolithography method and the rest of the electrodes is formed with a heat-curable conductive paste.
  • the photosensitive paste layer 104 can be multiple layers by applying the photosensitive paste twice or more by using two different paste compositions in another embodiment.
  • the substrate 102 can be selected depending on electrical devices; for example, a transparent substrate made of glass or polymer for a touch panel, a semiconductor substrate for solar cell, and a ceramic substrate for capacitor electrode.
  • the substrate 102 can be selected from the group consisting of a glass substrate, a polymer substrate, a semiconductor substrate, a ceramic substrate and a metal substrate.
  • the substrate 102 is a metal substrate or a semiconductor substrate
  • an insulating layer can be formed on the substrate.
  • the substrate is a glass substrate, polymer substrate, or ceramic substrate, a transparent electrode can be formed on the substrate.
  • the photosensitive paste can be applied on the insulating layer or the transparent electrode formed on the substrate 102 .
  • the way of applying the photosensitive paste on the substrate can be screen printing that can apply a paste on a substrate 102 in a short time.
  • the photosensitive paste layer 104 can be optionally dried.
  • the drying condition can be 50 to 250° C. for 1 to 30 minutes in an oven or dryer.
  • the photosensitive paste layer 104 is then patterned by being exposed to light.
  • the light 110 such as ultraviolet light is irradiated through a photo mask 108 having a desired pattern so that the exposed area which is same as the desired pattern is cured as illustrated in FIG. 1(B) .
  • the gap between the photo mask 108 and the photosensitive paste layer 104 can be 0 to 600 ⁇ m.
  • the exposing condition can be controlled according to photosensitivity of the photosensitive paste and thickness of the photosensitive paste layer 104 .
  • the cumulative exposure is 50 to 2000 mJ/cm 2 in an embodiment, 100 to 1000 mJ/cm 2 in another embodiment.
  • the non-firing type electrode is formed by being developed by an aqueous solution 112 as illustrated in FIG. 1(C) .
  • the aqueous solution is an alkaline solution such as a 0.4% sodium carbonate solution in an embodiment.
  • the aqueous solution 112 can be sprayed to the photosensitive paste layer 104 to remove the unexposed area of the photosensitive paste layer 104 so that the cured pattern shows up.
  • the alkaline solution 112 is sprayed at 0.1 to 0.4 MPa for 5 to 100 seconds.
  • the patterned photosensitive paste layer 104 after the development is optionally dried as illustrated in FIG. 1(D) .
  • the drying condition can be 50 to 250° C. for 1 to 60 minutes in an oven or drier in an embodiment.
  • the electrode 114 after the development as illustrated in FIG. 1(E) can have width of 5 to 30 ⁇ m. In another embodiment the width is 5 to 15 ⁇ m, in another embodiment 5 to 13 ⁇ m.
  • the thickness of the formed electrode can be 1 to 30 ⁇ m in an embodiment, 1 to 20 ⁇ m in another embodiment, 1 to 10 ⁇ m in another embodiment.
  • the method of manufacturing the electrode can be applicable to any electrode formed in electrical devices such as solar cell, resistor, capacitor, heater, touch panel, and defogger on an automotive window.
  • the photolithographic method can be applicable to manufacturing a touch panel that needs a fine line electrode formed without high temperature treatment.
  • the photosensitive paste comprises at least (i) a conductive powder, (ii) an organic polymer (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound.
  • the conductive powder is made of any conductive material having electrical conductivity.
  • Such conductive powder can be selected from the group consisting of iron (Fe), aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), gold (Au), molybdenum (Mo), magnesium (Mg), tungsten (W), cobalt (Co), carbon black, graphite, and a mixture thereof.
  • the conductive powder can be selected from the group consisting of Al, Cu, Ag and a mixture thereof in another embodiment.
  • the conductive powder is flaky.
  • the flaky conductive powder could increase contact area of the each other, consequently rendering sufficient conductivity to the formed electrode.
  • the particle diameter (D50) of the conductive powder can be 1 to 10 ⁇ m in an embodiment, 1 to 8 ⁇ m in another embodiment, 1.5 to 5 ⁇ m in another embodiment.
  • the particle diameter within the range can be dispersed well in the paste.
  • the conductive powder comprising a mixture of two or more of conductive powders with different particle diameters can be used in an embodiment.
  • the smaller particles can fill interspaces of the larger particles so as to enhance the conductivity of the electrode.
  • the conductive powder can be a mixture of a conductive powder with the particle diameter of 0.1 to 3 ⁇ m and a conductive powder with the particle diameter of 4 to 10 ⁇ m.
  • the average diameter (D50) is obtained by measuring the distribution of the powder diameters by using a laser diffraction scattering method with Microtrac model X-100.
  • the conductive powder can be 60 to 89 weight percent (wt %) in an embodiment, 62 to 80 wt % in another embodiment, 65 to 75 wt % in another embodiment, based on the weight of the photosensitive paste. Within the range of conductive powder content, conductivity of the electrode can be sufficient.
  • the organic polymer is composed of repeating structural units comprising carbon atoms in the main frame.
  • the conductive powder is dispersed into the organic polymer to form a viscous composition called “paste”, having suitable viscosity for applying on a substrate with a desired pattern.
  • the solvent that can dissolve the organic polymer can be mixed with the organic polymer to impart a proper viscosity.
  • the organic polymer contains acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1.
  • the weight ratio of the acrylic polymer and HPC (acrylic polymer: HPC) can be 4:1 to 2:1 in another embodiment, and 3:1 to 2:1 in still another embodiment.
  • the photosensitive paste can form a fine line having a sufficient conductivity as shown in Example below.
  • the acrylic polymer having a side chain with a hydroxyl group or a carboxyl group which is soluble in the alkaline solution can render developability for an aqueous solution to the photosensitive paste.
  • the acrylic polymer is homopolymer or copolymer which is polymerized with one or more of compounds selected from the group consisting of acrylic acid, acrylic acid ester, methacrylate acid, methacrylate acid ester, acrylate compound, methacrylate compound, acrylamide compound, and methacrylamide compound.
  • the acrylic polymer can be poly(methacrylic acid-co-methyl methacrylate) (CAS No.: 25086-15-1) in an embodiment.
  • the average molecular weight of the acrylic polymer is 2,000 to 100,000 in an embodiment.
  • HPC is a partially-etherified cellulose reacted with propylene oxide to replace a part of hydroxy group (—OH) out of three per anhydroglucose unit of the cellulose with 2-hydroxypropoxyl group.
  • CAS No. of HPC is 9004-64-2.
  • HPC can be expressed by the following formula in an embodiment.
  • the organic polymer can further contain cellulose, ethylhydroxyethyl cellulose, wood rosin, epoxy resin, phenolic resin or a mixture thereof in an amount of not more than 10 wt % of the total weight of the acrylic polymer and HPC in an embodiment.
  • the total weight of the acrylic polymer and HPC is 90 wt % or more of the organic polymer in an embodiment.
  • the organic polymer can be 3 to 25 wt % based on the weight of the photosensitive paste.
  • the photopolymerization initiator is a chemical compound that decomposes into free radicals when exposed to light.
  • the photopolymerization initiator is thermally inactive at 185° C. or lower, but it generates free radicals when being exposed to an actinic ray.
  • a compound that has two intra-molecular rings in the conjugated carboxylic ring system can be used as the photo-polymerization initiator, for example ethyl 4-dimethyl aminobenzoate (EDAB), diethylthioxanthone (DETX), and 2-Methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one.
  • the photopolymerization initiator can be 0.1 to 5 wt % based on the weight of the photosensitive paste.
  • the photopolymerizable compound is a molecule that may bind chemically to other molecules to form a polymer.
  • the photopolymerizable compound can comprise an organic monomer or an oligomer that includes ethylenically unsaturated compounds having at least one polymerizable ethylene group.
  • Examples of the photopolymerizable compound are ethoxylated (3) trimethylolpropane triacrylate, and dipentaerythritol pentaacrylate.
  • the photo-polymerization compound can be 5 to 15 wt % based on the weight of the photosensitive paste.
  • the solvent such as Texanol or terpineol can be optionally added to the photosensitive paste to adjust the viscosity of the photosensitive paste to be preferable for applying onto the substrate.
  • the viscosity of the photosensitive paste can be 5 to 300 Pascal second measured on a viscometer Brookfield HBT using a spindle #14 at 10 rpm at 25° C. in an embodiment.
  • Wt % is weight percent based on the weight of the photosensitive paste, unless especially mentioned.
  • the organic polymer was a mixture of Poly(methacrylic acid-co-methyl methacrylate) as an acrylic polymer and HPC (HPC-L, NIPPON SODA CO., LTD.) in different mixing ratio as shown in Table 1.
  • the photosensitive paste was screen printed through a 350 mesh screen mask onto an indium titan oxide (ITO) transparent electrode that had been already formed on a glass substrate.
  • ITO indium titan oxide
  • the applied photosensitive paste layer was exposed to UV light of 365 nm wave length by using a collimated UV radiation source (exposure: 200 mJ/cm 2 ) through a photo-mask.
  • the photo-mask had L-shaped line patterns having different width of 10 ⁇ m, 12.5 ⁇ m, 15 ⁇ m, 17.5 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m and 50 ⁇ m.
  • the exposed paste layer was placed on a conveyor going in a spray developing device filled with 0.4% sodium carbonate aqueous solution which was kept at a temperature of 30° C., and was sprayed for 40 seconds at 0.2 MPa to the exposed paste layer.
  • the non-firing type electrode of L-shaped having different line width from 10 ⁇ m to 50 ⁇ m as the photo-mask had was formed.
  • the thickness of the electrode was 5 ⁇ m.
  • the non-firing type electrode was dried under the condition 130° C. for 30 minutes in an oven.
  • the “finest line width” of the electrode was determined as the smallest number of the line width ( ⁇ m) that could be formed out of 10 ⁇ m to 50 ⁇ m wide electrodes.
  • the PDP electrode of line pattern sized 100 ⁇ m wide and 5 ⁇ m thick and 15 mm long was formed directly on the glass substrate without the ITO.
  • the volume resistivity ( ⁇ cm) was calculated by the following equation (1).
  • the resistance ( ⁇ ) was measured with a multimeter (34401A from Hewlett-Packard Company). The width, the thickness, and the length of the electrode were measured by the microscope having the measurement system.
  • volume resistivity ( ⁇ cm) Resistance ( ⁇ ) ⁇ width (cm) of the electrode ⁇ thickness (cm) of the electrode/length (cm) of the electrode (1)
  • the volume resistivity was 1.3 ⁇ 10 ⁇ 4 ⁇ cm or 1.2 ⁇ 10 ⁇ 4 ⁇ cm when acrylic polymer:HPC was 4.6:1, 3.3:1 and2.4:1 as in Example 1 to 3, while the volume resistivity was 1.4 ⁇ 10 ⁇ 4 ⁇ cm or 2 ⁇ 10 ⁇ 4 ⁇ cm when acrylic polymer:HPC was 1:0 and 6.1:1 as in Com.
  • the volume resistivity of Com. Example 3 was not measurable because the electrode was not formed as mentioned above.
  • Example 1 Example 2
  • Example 2 Example 3
  • Finest line 45 35 25 17.5 15 —* width ( ⁇ m) Volume 2 1.4 1.2 1.2 1.3 —* resistance ( ⁇ 10 ⁇ 4 ⁇ ⁇ cm) *Not developable.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Conductive Materials (AREA)

Abstract

A method of manufacturing a non-firing type electrode comprising steps of: (a) applying on a substrate a photosensitive paste comprising, (i) a conductive powder, (ii) an organic polymer comprising acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1, (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound; b) exposing the applied photosensitive paste to light; and (c) developing the exposed photosensitive paste by an aqueous solution, wherein the electrode comprises fine line of width of 5 to 30 μm.

Description

    FIELD OF INVENTION
  • The present invention relates to a method of manufacturing a non-firing type electrode using a photosensitive paste.
  • TECHNICAL BACKGROUND OF THE INVENTION
  • Electrical devices or substrates which can be damaged by high temperature treatment during manufacturing process need a non-firing type electrode. The term “non-firing type electrode” is defined as an electrode formed without a heat treatment at temperature of 350° C. or higher. When manufacturing such non-firing type electrode in fine pattern, a photolithography method is available.
  • JP2003162921 discloses a photosensitive conductive composition for the non-firing type electrode that comprises (A) a conductive powder, (B) an organic binder, (C) a photopolymerizable monomer, (D) a photoinitiator, (E) a thermosetting resin and (F) a solvent, wherein the conductive powder of the component (A) is formulated in a ratio of 70-90 mass % in the composition excluding the solvent.
  • BRIEF SUMMARY OF THE INVENTION
  • An objective is to provide a photolithography method of manufacturing a non-firing type electrode, which enables the formation of a fine pattern with a low resistivity.
  • An aspect of the invention relates to a method of manufacturing a non-firing type electrode comprising steps of: (a) applying on a substrate a photosensitive paste comprising, (i) a conductive powder, (ii) an organic polymer comprising acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1, (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound; (b) exposing the applied photosensitive paste to light; and (c) developing the exposed photosensitive paste by an aqueous solution, wherein the electrode comprises fine line of width of 5 to 30 μm.
  • Another aspect of the invention relates to a device having the non-firing type electrode manufactured by the method above.
  • The non-firing type electrode of a fine pattern with a low resistivity can be formed by the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1, (A) to (E), explains a photolithography method of manufacturing the non-firing type electrode.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The non-firing type electrode is formed by the method using a photosensitive paste. The photolithography method of manufacturing the electrode and the photosensitive paste is explained respectively below.
  • Method of Manufacturing an Electrode
  • The electrode is formed by applying a photosensitive paste onto a substrate to form a photosensitive paste layer, exposing and developing the photosensitive paste layer.
  • An example of the method of manufacturing the electrode is explained with reference to FIG. 1.
  • The photosensitive paste is applied onto a substrate 102 by an applying tool 106, for example a screen printing machine, to form a photosensitive paste layer 104 as illustrated in FIG. 1(A). In the event the non-firing type electrode is formed throughout the substrate 102, the photosensitive paste can be applied onto the entire surface of the substrate 102 in an embodiment. In the event part of the electrodes on the substrate 102 consists of the non-firing type electrodes, the photosensitive paste can be applied onto part of the substrate. For example, if a fine pattern is necessary for part of the electrodes, part of the electrodes is formed by the photolithography method and the rest of the electrodes is formed with a heat-curable conductive paste.
  • The photosensitive paste layer 104 can be multiple layers by applying the photosensitive paste twice or more by using two different paste compositions in another embodiment.
  • There is no restriction on type of the substrate 102. The substrate 102 can be selected depending on electrical devices; for example, a transparent substrate made of glass or polymer for a touch panel, a semiconductor substrate for solar cell, and a ceramic substrate for capacitor electrode. In an embodiment, the substrate 102 can be selected from the group consisting of a glass substrate, a polymer substrate, a semiconductor substrate, a ceramic substrate and a metal substrate.
  • When the substrate 102 is a metal substrate or a semiconductor substrate, an insulating layer can be formed on the substrate. When the substrate is a glass substrate, polymer substrate, or ceramic substrate, a transparent electrode can be formed on the substrate. The photosensitive paste can be applied on the insulating layer or the transparent electrode formed on the substrate 102.
  • The way of applying the photosensitive paste on the substrate can be screen printing that can apply a paste on a substrate 102 in a short time.
  • The photosensitive paste layer 104 can be optionally dried. When the drying step is carried out, the drying condition can be 50 to 250° C. for 1 to 30 minutes in an oven or dryer.
  • The photosensitive paste layer 104 is then patterned by being exposed to light. The light 110 such as ultraviolet light is irradiated through a photo mask 108 having a desired pattern so that the exposed area which is same as the desired pattern is cured as illustrated in FIG. 1(B). The gap between the photo mask 108 and the photosensitive paste layer 104 can be 0 to 600 μm.
  • The exposing condition can be controlled according to photosensitivity of the photosensitive paste and thickness of the photosensitive paste layer 104. For fine patterns, the cumulative exposure is 50 to 2000 mJ/cm2 in an embodiment, 100 to 1000 mJ/cm2 in another embodiment.
  • The non-firing type electrode is formed by being developed by an aqueous solution 112 as illustrated in FIG. 1(C). The aqueous solution is an alkaline solution such as a 0.4% sodium carbonate solution in an embodiment. The aqueous solution 112 can be sprayed to the photosensitive paste layer 104 to remove the unexposed area of the photosensitive paste layer 104 so that the cured pattern shows up. In an embodiment, the alkaline solution 112 is sprayed at 0.1 to 0.4 MPa for 5 to 100 seconds.
  • The patterned photosensitive paste layer 104 after the development is optionally dried as illustrated in FIG. 1(D). The drying condition can be 50 to 250° C. for 1 to 60 minutes in an oven or drier in an embodiment.
  • The electrode 114 after the development as illustrated in FIG. 1(E) can have width of 5 to 30 μm. In another embodiment the width is 5 to 15 μm, in another embodiment 5 to 13 μm. The thickness of the formed electrode can be 1 to 30 μm in an embodiment, 1 to 20 μm in another embodiment, 1 to 10 μm in another embodiment.
  • The method of manufacturing the electrode can be applicable to any electrode formed in electrical devices such as solar cell, resistor, capacitor, heater, touch panel, and defogger on an automotive window. In an embodiment, the photolithographic method can be applicable to manufacturing a touch panel that needs a fine line electrode formed without high temperature treatment.
  • Next, the photosensitive paste composition is explained in detail below. The photosensitive paste comprises at least (i) a conductive powder, (ii) an organic polymer (iii) a photopolymerization initiator, and (iv) a photopolymerizable compound.
  • (i) Conductive Powder
  • The conductive powder is made of any conductive material having electrical conductivity. Such conductive powder can be selected from the group consisting of iron (Fe), aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), gold (Au), molybdenum (Mo), magnesium (Mg), tungsten (W), cobalt (Co), carbon black, graphite, and a mixture thereof. The conductive powder can be selected from the group consisting of Al, Cu, Ag and a mixture thereof in another embodiment.
  • There is no limitation on shape of the conductive powder. However, a flaky conductive powder, spherical conductive powder or a mixture thereof are generally often used. In an embodiment, the conductive powder is flaky. The flaky conductive powder could increase contact area of the each other, consequently rendering sufficient conductivity to the formed electrode.
  • The particle diameter (D50) of the conductive powder can be 1 to 10 μm in an embodiment, 1 to 8 μm in another embodiment, 1.5 to 5 μm in another embodiment. The particle diameter within the range can be dispersed well in the paste.
  • The conductive powder comprising a mixture of two or more of conductive powders with different particle diameters can be used in an embodiment. The smaller particles can fill interspaces of the larger particles so as to enhance the conductivity of the electrode. For example, the conductive powder can be a mixture of a conductive powder with the particle diameter of 0.1 to 3 μm and a conductive powder with the particle diameter of 4 to 10 μm.
  • The average diameter (D50) is obtained by measuring the distribution of the powder diameters by using a laser diffraction scattering method with Microtrac model X-100.
  • The conductive powder can be 60 to 89 weight percent (wt %) in an embodiment, 62 to 80 wt % in another embodiment, 65 to 75 wt % in another embodiment, based on the weight of the photosensitive paste. Within the range of conductive powder content, conductivity of the electrode can be sufficient.
  • (ii) Organic Polymer
  • The organic polymer is composed of repeating structural units comprising carbon atoms in the main frame. The conductive powder is dispersed into the organic polymer to form a viscous composition called “paste”, having suitable viscosity for applying on a substrate with a desired pattern. When the organic polymer is solid or not viscous enough to disperse the conductive powder, the solvent that can dissolve the organic polymer can be mixed with the organic polymer to impart a proper viscosity.
  • The organic polymer contains acrylic polymer and hydroxypropyl cellulose (HPC) at weight ratio of 5:1 to 2:1. The weight ratio of the acrylic polymer and HPC (acrylic polymer: HPC) can be 4:1 to 2:1 in another embodiment, and 3:1 to 2:1 in still another embodiment. When the acrylic polymer and HPC are contained with such ratio, the photosensitive paste can form a fine line having a sufficient conductivity as shown in Example below.
  • The acrylic polymer having a side chain with a hydroxyl group or a carboxyl group which is soluble in the alkaline solution can render developability for an aqueous solution to the photosensitive paste. The acrylic polymer is homopolymer or copolymer which is polymerized with one or more of compounds selected from the group consisting of acrylic acid, acrylic acid ester, methacrylate acid, methacrylate acid ester, acrylate compound, methacrylate compound, acrylamide compound, and methacrylamide compound. The acrylic polymer can be poly(methacrylic acid-co-methyl methacrylate) (CAS No.: 25086-15-1) in an embodiment. The average molecular weight of the acrylic polymer is 2,000 to 100,000 in an embodiment.
  • HPC is a partially-etherified cellulose reacted with propylene oxide to replace a part of hydroxy group (—OH) out of three per anhydroglucose unit of the cellulose with 2-hydroxypropoxyl group. CAS No. of HPC is 9004-64-2. HPC can be expressed by the following formula in an embodiment.
  • Figure US20140061543A1-20140306-C00001
    • R is H or —[CH2—CH(CH3)O]mH; m is integer of 1 or larger; n is 100 to 2,500.
  • Besides the acrylic polymer and HPC, the organic polymer can further contain cellulose, ethylhydroxyethyl cellulose, wood rosin, epoxy resin, phenolic resin or a mixture thereof in an amount of not more than 10 wt % of the total weight of the acrylic polymer and HPC in an embodiment. The total weight of the acrylic polymer and HPC is 90 wt % or more of the organic polymer in an embodiment.
  • The organic polymer can be 3 to 25 wt % based on the weight of the photosensitive paste.
  • (iii) Photopolymerization Initiator
  • The photopolymerization initiator is a chemical compound that decomposes into free radicals when exposed to light. The photopolymerization initiator is thermally inactive at 185° C. or lower, but it generates free radicals when being exposed to an actinic ray. A compound that has two intra-molecular rings in the conjugated carboxylic ring system can be used as the photo-polymerization initiator, for example ethyl 4-dimethyl aminobenzoate (EDAB), diethylthioxanthone (DETX), and 2-Methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one. The photopolymerization initiator can be 0.1 to 5 wt % based on the weight of the photosensitive paste.
  • (iv) Photopolymerizable Compound
  • The photopolymerizable compound is a molecule that may bind chemically to other molecules to form a polymer. The photopolymerizable compound can comprise an organic monomer or an oligomer that includes ethylenically unsaturated compounds having at least one polymerizable ethylene group. Examples of the photopolymerizable compound are ethoxylated (3) trimethylolpropane triacrylate, and dipentaerythritol pentaacrylate. The photo-polymerization compound can be 5 to 15 wt % based on the weight of the photosensitive paste.
  • (v) Solvent
  • The solvent such as Texanol or terpineol can be optionally added to the photosensitive paste to adjust the viscosity of the photosensitive paste to be preferable for applying onto the substrate. The viscosity of the photosensitive paste can be 5 to 300 Pascal second measured on a viscometer Brookfield HBT using a spindle #14 at 10 rpm at 25° C. in an embodiment.
  • EXAMPLE
  • The present invention is illustrated by, but is not limited to, the following examples. Wt % is weight percent based on the weight of the photosensitive paste, unless especially mentioned.
  • 16 wt % of Texanol and 5 wt % of the organic polymer were mixed together at 100° C. until all of the organic polymer had dissolved. The organic polymer was a mixture of Poly(methacrylic acid-co-methyl methacrylate) as an acrylic polymer and HPC (HPC-L, NIPPON SODA CO., LTD.) in different mixing ratio as shown in Table 1.
  • 1 wt % of the photopolymerization initiator and the stabilizer were added to the mixture and stirred at 75° C. The mixture was filtered through a 20 micron filter. 8 wt % of the photolymerizable monomer was added to the filtered mixture and further mixed well. 70 wt % of flake type silver (Ag) powder having D50 of 2 pm was dispersed well into the organic mixture to form the photosensitive paste.
  • The process was carried out under yellow light. Precautions were taken to avoid dirt contamination, as contamination by dirt during the preparation of the paste and the manufacture of the parts would have resulted in defects.
  • The photosensitive paste was screen printed through a 350 mesh screen mask onto an indium titan oxide (ITO) transparent electrode that had been already formed on a glass substrate.
  • The applied photosensitive paste layer was exposed to UV light of 365 nm wave length by using a collimated UV radiation source (exposure: 200 mJ/cm2) through a photo-mask. The photo-mask had L-shaped line patterns having different width of 10 μm, 12.5 μm, 15 μm, 17.5 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm and 50 μm.
  • The exposed paste layer was placed on a conveyor going in a spray developing device filled with 0.4% sodium carbonate aqueous solution which was kept at a temperature of 30° C., and was sprayed for 40 seconds at 0.2 MPa to the exposed paste layer. After the development the non-firing type electrode of L-shaped having different line width from 10 μm to 50 μm as the photo-mask had was formed. The thickness of the electrode was 5 μm. The non-firing type electrode was dried under the condition 130° C. for 30 minutes in an oven.
  • Measurement
  • Finest Line Width:
  • The “finest line width” of the electrode was determined as the smallest number of the line width (μm) that could be formed out of 10 μm to 50 μm wide electrodes.
  • Volume Resistance:
  • To measure volume resistance, the PDP electrode of line pattern sized 100 μm wide and 5 μm thick and 15 mm long was formed directly on the glass substrate without the ITO. The volume resistivity (Ω·cm) was calculated by the following equation (1). The resistance (Ω) was measured with a multimeter (34401A from Hewlett-Packard Company). The width, the thickness, and the length of the electrode were measured by the microscope having the measurement system.

  • Volume resistivity (Ω·cm)=Resistance (Ω)×width (cm) of the electrode×thickness (cm) of the electrode/length (cm) of the electrode  (1)
  • Result
  • The finest line width was 20 μm or even finer when acrylic polymer:HPC was 4.6:1, 3.3:1 and 2.4:1 as in Example 1 to 3, while such fine line could not formed when acrylic polymer:HPC was 1:0, 6.1:1 and 1.8:1 as in Comparative (Com.) example 1 to 3. When acrylic polymer:HPC was 1.8:1, the photosensitive paste was not developable enough that the cured pattern appeared.
  • The volume resistivity was 1.3×10−4 Ω·cm or 1.2×10−4 Ω·cm when acrylic polymer:HPC was 4.6:1, 3.3:1 and2.4:1 as in Example 1 to 3, while the volume resistivity was 1.4×10−4 Ω·cm or 2×10−4 Ω·cm when acrylic polymer:HPC was 1:0 and 6.1:1 as in Com. Example 1 and 2. The volume resistivity of Com. Example 3 was not measurable because the electrode was not formed as mentioned above.
  • TABLE 1
    Com. Com. Com.
    Example 1 Example 2 Example 1 Example 2 Example 3 Example 3
    Acrylic 1:0 6.1:1 4.6:1 3.3:1 2.4:1 1.8:1
    polymer:HPC
    Acrylic resin 100 86 82 77 71 64
    (wt %)
    HPC (wt %) 0 14 18 23 29 36
    Finest line 45 35 25 17.5 15 —*
    width (μm)
    Volume 2 1.4 1.2 1.2 1.3 —*
    resistance
    (×10−4 Ω · cm)
    *Not developable.

Claims (8)

What is claimed is:
1. A method of manufacturing a non-firing type electrode comprising steps of:
(a) applying on a substrate a photosensitive paste comprising,
(i) a conductive powder,
(ii) an organic polymer comprising acrylic polymer and hydroxypropyl cellulose (H PC) at weight ratio of 5:1 to 2:1,
(iii) a photopolymerization initiator, and
(iv) a photopolymerizable compound;
(b) exposing the applied photosensitive paste to light; and
(c) developing the exposed photosensitive paste by an aqueous solution, wherein the electrode comprises fine line of width of 5 to 30 μm.
2. The method of claim 1, wherein the conductive powder is 60 to 89 wt %, the organic polymer is 3 to 25 wt %, the photopolymerization initiator is 0.1 to 5 wt %, the photopolymerizable compound is 5 to 15 wt %, based on the weight of the photosensitive paste.
3. The method of claim 1, wherein the conductive powder is flaky.
4. The method of claim 1, wherein the average particle size of the conductive powder is 1 to 10 μm.
5. The method of claim 1, wherein the cumulative exposure of the applied photosensitive paste to the light is 50 to 2000 mJ/cm2.
6. The method of claim 1, wherein the aqueous solution is sprayed to the exposed photosensitive paste at 0.1 to 0.4 MPa for 5 to 100 seconds.
7. The method of claim 1, wherein the thickness of the electrode is 1 to 30 μm.
8. A device having the non-firing type electrode manufactured by the method of claim 1.
US13/597,519 2012-08-29 2012-08-29 Method of manufacturing non-firing type electrode using photosensitive paste Abandoned US20140061543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/597,519 US20140061543A1 (en) 2012-08-29 2012-08-29 Method of manufacturing non-firing type electrode using photosensitive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/597,519 US20140061543A1 (en) 2012-08-29 2012-08-29 Method of manufacturing non-firing type electrode using photosensitive paste

Publications (1)

Publication Number Publication Date
US20140061543A1 true US20140061543A1 (en) 2014-03-06

Family

ID=50186147

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/597,519 Abandoned US20140061543A1 (en) 2012-08-29 2012-08-29 Method of manufacturing non-firing type electrode using photosensitive paste

Country Status (1)

Country Link
US (1) US20140061543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168678A (en) * 2018-03-23 2019-10-03 株式会社ノリタケカンパニーリミテド Photosensitive composition and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372601A (en) * 1941-05-27 1945-03-27 Nat Cotton Council Of America Cord and method of making same
US20030215747A1 (en) * 2002-05-20 2003-11-20 Lg Electronics Inc. Photopolymerization type photosensitive electrode paste composition for plasma display panel and fabricating method thereof
US6749994B2 (en) * 2001-05-01 2004-06-15 Tokyo Ohka Kogyo Co., Ltd. Photosensitive insulating paste composition and photosensitive film made therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372601A (en) * 1941-05-27 1945-03-27 Nat Cotton Council Of America Cord and method of making same
US6749994B2 (en) * 2001-05-01 2004-06-15 Tokyo Ohka Kogyo Co., Ltd. Photosensitive insulating paste composition and photosensitive film made therefrom
US20030215747A1 (en) * 2002-05-20 2003-11-20 Lg Electronics Inc. Photopolymerization type photosensitive electrode paste composition for plasma display panel and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168678A (en) * 2018-03-23 2019-10-03 株式会社ノリタケカンパニーリミテド Photosensitive composition and use thereof

Similar Documents

Publication Publication Date Title
JP5654588B2 (en) Electrode and manufacturing method thereof
JP4440861B2 (en) Photosensitive paste composition, electrode and green sheet using photosensitive paste composition
TWI597740B (en) Conductive paste, production method of conductive pattern and touch panel
TWI578099B (en) Photocurable resin composition containing metal particle and use thereof
KR100637174B1 (en) Positive type photosensitive paste composition for a PDP electrode, a PDP electrode prepared therefrom, and a PDP comprising the same
JP5393402B2 (en) Photosensitive conductive paste and method for producing the same
JP2011141973A (en) Conductive paste and manufacturing method of conductive pattern
JP2013206050A (en) Method of manufacturing touch panel
JP2013101861A (en) Photosensitive conductive paste, conductive circuit pattern, touch panel sensor, and display device
US20140061543A1 (en) Method of manufacturing non-firing type electrode using photosensitive paste
JP5846829B2 (en) Photosensitive conductive paste
JP6349844B2 (en) Photosensitive resin composition, photosensitive resin paste comprising the same, cured film obtained by curing them, and electrode circuit having the same
CN113412688A (en) Method for manufacturing conductive pattern
KR101081320B1 (en) Conductive paste composition
JP4751773B2 (en) Photocurable composition and fired product pattern formed using the same
WO2014156844A1 (en) Thermoplastic resin film base for optical firing, conductive circuit board using same, and method for manufacturing said conductive circuit board
JP2007264270A (en) Photosetting conductive composition, baked product pattern and plasma display panel
KR101306778B1 (en) Photosensitive paste composition for forming fine electrode patterns in touch panels, method of fabrication the composition and application thereof
JP5916482B2 (en) Photosensitive conductive paste and conductive circuit
JP5927004B2 (en) Conductive paste and conductive circuit
TWI550643B (en) Conductive paste and conductive circuit
TW201533534A (en) Conductive paste, method for producing pattern, method for producing conductive pattern and sensor
WO2023189415A1 (en) Electroconductive paste
JP2017003706A (en) Photosensitive resin composition
TW201800850A (en) Photosensitive conductive paste and method for manufacturing substrate provided with conductive pattern

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OKI, TOMONORI;REEL/FRAME:028930/0292

Effective date: 20120830

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION