KR20030013553A - Secondary battery using conducting material of carbon nanotube - Google Patents

Secondary battery using conducting material of carbon nanotube Download PDF

Info

Publication number
KR20030013553A
KR20030013553A KR1020010047618A KR20010047618A KR20030013553A KR 20030013553 A KR20030013553 A KR 20030013553A KR 1020010047618 A KR1020010047618 A KR 1020010047618A KR 20010047618 A KR20010047618 A KR 20010047618A KR 20030013553 A KR20030013553 A KR 20030013553A
Authority
KR
South Korea
Prior art keywords
battery
secondary battery
carbon nanotubes
carbon
conductive material
Prior art date
Application number
KR1020010047618A
Other languages
Korean (ko)
Inventor
신진국
한영수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020010047618A priority Critical patent/KR20030013553A/en
Publication of KR20030013553A publication Critical patent/KR20030013553A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A secondary battery is provided, to improve the discharging capacity and to enhance the rate capability by using the carbon nanotube as a conducting material. CONSTITUTION: The secondary battery comprises a positive electrode, an electrolyte and a negative electrode, wherein carbon nanotubes are used as a conducting material providing the moving channel of reactant materials and the moving channel of electrons. The carbon nanotube can be replaced by carbon nano-wire or carbon nano-particle. Optionally the mixture of the carbon nanotube and carbon black is used as a conducting material. Preferably the secondary battery is a sulfur-based secondary battery comprising a Li/S battery, a Li/FeS battery, a Li/Ti2S battery and a Li/organosulfur battery, or a lithium-based secondary battery comprising a lithium ion battery, a lithium polymer battery and a Li/MnO2 battery.

Description

탄소나노튜브를 도전재로 이용한 이차전지{Secondary battery using conducting material of carbon nanotube}Secondary battery using conducting material of carbon nanotubes

본 발명은 이차전지에 관한 것으로서, 특히 양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브(CNT:Carbon NanoTube)를 이용함으로써, 방전용량을 증진시키고 고율방전특성(rate capability)을 향상시킬 수 있는 탄소나노튜브를 도전재로 이용한 이차전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and in particular, in a secondary battery composed of a positive electrode / electrolyte / negative electrode, carbon nanotubes (CNT: Carbon) are provided as a conducting material that provides a movement path of a reactant and an electron path. By using NanoTube), the present invention relates to a secondary battery using carbon nanotubes as a conductive material, which can improve discharge capacity and improve high rate capability.

오늘날, 각종 정보-통신기기들이 소형/휴대품화, 특히 3C(laptop computer,cellular-phone, camcoder)의 폭발적인 수요 증가로 인하여, 휴대전자기기는 시장이 계속 확대되고 있다. 휴대전자기기에 있어 경량화 및 장시간 사용 가능성 등은 매우 중요한 기술이다. 이러한 이동 정보통신기기의 중량 및 사용시간을 좌우하는 핵심부품 중의 하나가 동력원으로 사용되는 이차전지(secondary battery)이다. 따라서, 효율적인 휴대정보통신 시스템을 구축하기 위해서는 고성능, 고효율 이차 전지의 개발이 절실한 실정이다.Today, the market for portable electronic devices continues to expand due to the miniaturization / portability of various information-communication devices, especially the explosive demand of 3C (laptop computer, cellular-phone, camcoder). In portable electronic devices, weight reduction and long-term use are very important technologies. One of the key components that determine the weight and use time of such mobile information and communication equipment is a secondary battery used as a power source. Therefore, in order to build an efficient portable information communication system, development of high performance and high efficiency secondary batteries is urgently needed.

현재 사용되고 있는 소형 이차전지로는 니켈-카드늄전지, 니켈-수소전지, 리튬이온전지, 리튬폴리머전지 등이 있다. 이중에서 리튬전지는 기존의 전지시스템 중에서 가장 성능이 우수하며 가볍다는 장점으로 인하여, 매년 판매량이 급증하고 있으며, 고가의 이동통신기기 제품에는 거의 리튬전지를 채택하고 있는 추세이다.Small secondary batteries currently used include nickel-cadmium batteries, nickel-hydrogen batteries, lithium ion batteries, and lithium polymer batteries. Among them, lithium batteries have the highest performance and light weight among the existing battery systems, and the sales volume is rapidly increasing every year, and lithium batteries are almost adopted for expensive mobile communication products.

최근, 일본 및 미국을 중심으로 많이 연구되고 있는 리튬/유황(lithium/ sulfur)전지는 이론방전용량이 2600Wh/Kg으로 현재 연구되고 있는 다른 전지시스템의 이론 방전용량에 비하여 3배~6배 이상의 매우 큰 이론방전용량을 나타내기 때문에 차세대 이차전지로 각광받고 있다.Recently, lithium / sulfur batteries, which have been studied a lot in Japan and the United States, have a theoretical discharge capacity of 2600 Wh / Kg, which is three to six times higher than the theoretical discharge capacity of other battery systems currently being studied. Because of its large theoretical discharge capacity, it has been spotlighted as a next-generation secondary battery.

또한, 유황은 자원이 매우 많은 원소이며, 가격이 다른 전극재료에 비하여 매우 저렴하므로 전지의 제조단가를 낮출 수 있는 가장 좋은 전극재료의 하나이다. 그러나, 유황은 전기부도체이며, 반응성이 강해 전해질 선택이 매우 어려워서 전지개발에 매우 큰 어려움이 있다. 즉, 전해질 내로 유황이 용해됨에 따라 사이클 수명이 낮아지고, 이로 인하여 실용화에는 이르지 못하고 있는 상황이다.In addition, sulfur is an element having a lot of resources, and is one of the best electrode materials that can lower the manufacturing cost of the battery because it is very cheap compared to other electrode materials. However, sulfur is an electrical insulator and its reactivity is very difficult to select the electrolyte, which is a great difficulty in battery development. In other words, as the sulfur is dissolved into the electrolyte, the cycle life is lowered, and thus, the practical use is not achieved.

그러나, 리튬/유황 전지시스템은 제조원가가 저렴하며 에너지 밀도가 매우높으므로 차세대의 유망한 이차전지이다. 한편, 전지의 성능을 좌우하는 가장 중요한 요소기술은 양전극(cathode, 정극), 음전극(anode, 부극) 그리고 전해질 (electrolyte)이다. 도 1은 종래 리튬/유황 이차전지의 일반적인 구조를 나타낸 도면이다.However, lithium / sulfur battery systems are the next generation of promising secondary batteries because of their low manufacturing cost and very high energy density. On the other hand, the most important element technology that determines the performance of the battery is the positive electrode (cathode, positive electrode), the negative electrode (anode, negative electrode) and the electrolyte (electrolyte). 1 is a view showing a general structure of a conventional lithium / sulfur secondary battery.

이때, 정극(양전극) 활물질로는 유황(sulfur)이 사용되며, 부극(음전극)으로는 리튬금속(Li-metal)이 사용된다. 리튬/유황 이차전지의 경우는 특히 정극인 유황전극의 특성에 의해 전체 전지특성이 결정된다. 따라서, 고성능/고용량의 리튬/유황 이차전지 개발을 위해서는 우수한 유황 정극의 개발이 선행되어야 한다.In this case, sulfur is used as the positive electrode (positive electrode) active material, and lithium metal (Li-metal) is used as the negative electrode (negative electrode). In the case of a lithium / sulfur secondary battery, overall battery characteristics are determined by the characteristics of the sulfur electrode which is a positive electrode. Therefore, in order to develop a high performance / high capacity lithium / sulfur secondary battery, development of an excellent sulfur positive electrode should be preceded.

또한, 실용 가능한 전지를 구성하기 위해서는 작동온도가 상온이어야 하고, 충방전수명(cycle life)이 길어야 한다. 리튬/유황전지에서 초고용량의 에너지 밀도를 나타내는 것은 (반응식 1)과 같이 정극에서 일어나는 리튬과 유황의 화학반응에 기인한 것으로 추정되고 있다.In addition, in order to construct a practical battery, the operating temperature should be at room temperature, and the cycle life should be long. The ultra-high energy density of lithium / sulfur batteries is estimated to be due to the chemical reaction of lithium and sulfur in the positive electrode as shown in (Scheme 1).

2Li + S <===> Li2S2Li + S <===> Li 2 S

한편, 도 2는 종래 리튬/유황 이차전지의 일반적인 방전곡선을 나타낸 도면이다. 상기 (반응식 1)에 나타낸 반응에 의해 약 2.1V vs. Li/Li+부근에서 긴 평탄구간(plateau)이 나타나는 것으로 알려져 있다. 따라서, 정극활물질인 유황이 손실 (loss) 없이 완전히 리튬과 반응하기 위해서는 전극 제조시 첨가하는 도전재 (conducting material)의 역할이 매우 중요하다.2 is a view showing a general discharge curve of a conventional lithium / sulfur secondary battery. By the reaction shown in (Scheme 1) above about 2.1V vs. Long plateaus are known to appear in the vicinity of Li / Li + . Therefore, in order for sulfur, which is a positive electrode active material, to react completely with lithium without loss, the role of a conducting material added during electrode production is very important.

특히, 유황은 절연체이므로 단독으로는 사용이 전혀 불가능하므로 도전재의 첨가는 필수적으로 요구된다. 여기서, 도전재는 전해질과 유황을 전기적으로 연결 (contact) 시켜주어 전해질 내에 녹아 있는 리튬이온이 유황까지 이동하여 반응하게 하는 경로(path)의 역할뿐만 아니라, 전류 집속부(current collector)로부터 전자가 유황까지 이동하는 경로의 역할도 동시에 하게 된다.In particular, since sulfur is an insulator, it is impossible to use it alone, and therefore, the addition of a conductive material is required. Here, the conductive material electrically connects the electrolyte and the sulfur, so that lithium ions dissolved in the electrolyte move to the sulfur to react with the sulfur, as well as electrons from the current collector. It will also play the role of a route that moves up to.

따라서, 도전재 양이 충분하지 않거나 역할을 제대로 수행하지 못하게 되면 전극내 유황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량감소를 일으키게 된다. 또한, 고율방전특성(rate capability, 고속 충방전 특성)과 충방전 사이클 수명(cycle life)에도 악영향을 미치게 된다.Therefore, when the amount of the conductive material is not sufficient or does not perform the role properly, the unreacted portion of the sulfur in the electrode increases, eventually causing a capacity reduction. In addition, high rate discharge characteristics (rate capability, high-speed charge-discharge characteristics) and charge and discharge cycle life (cycle life) is adversely affected.

현재 사용되고 있는 도전재는 주로 카본 블랙(carbon black)의 일종인 활성화 카본(active carbon)이 사용되고 있다. 이러한 활성화 카본들은 비표면적 (specific surface area)이 넓기 때문에, 유황과 전해질 간의 접촉면적을 증가시키는 면에서는 매우 유리하다. 하지만, 활성화 카본(active carbon)은 비정질 탄소계 (amorphous carbon)이므로 리튬이온의 삽입(intercalation) 특성이 나쁠 뿐만 아니라, 비가역용량(irreversible capacity) 발생의 원인이 되기도 한다.Currently, the conductive material used is mainly activated carbon, which is a kind of carbon black. These activated carbons have a large specific surface area, which is very advantageous in increasing the contact area between sulfur and the electrolyte. However, since active carbon is amorphous carbon, not only is the intercalation property of lithium ions poor, but also causes irreversible capacity.

본 발명은 상기와 같은 여건을 감안하여 창출된 것으로서, 양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브를 이용함으로써, 방전용량을 증진시키고 고율방전특성(rate capability)을 향상시킬 수 있는 탄소나노튜브를도전재로 이용한 이차전지를 제공함에 그 목적이 있다.The present invention has been made in view of the above conditions, and in a secondary battery composed of a positive electrode / electrolyte / negative electrode, a carbon nanotube is used as a conductive material to provide a movement path of a reaction material and a movement path of an electron. The purpose of the present invention is to provide a secondary battery using carbon nanotubes as a conductive material that can improve discharge capacity and improve high rate discharge characteristics.

도 1은 종래 리튬/유황 이차전지의 일반적인 구조를 나타낸 도면.1 is a view showing a general structure of a conventional lithium / sulfur secondary battery.

도 2는 종래 리튬/유황 이차전지의 일반적인 방전곡선을 나타낸 도면.2 is a view showing a general discharge curve of a conventional lithium / sulfur secondary battery.

도 3은 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지와 종래 이차전지의 방전용량을 비교한 도면.Figure 3 is a view comparing the discharge capacity of the secondary battery and the conventional secondary battery using a carbon nanotube according to the present invention as a conductive material.

도 4는 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지와 종래 이차전지의 고율방전특성을 나타낸 도면.Figure 4 is a view showing a high rate discharge characteristics of a secondary battery and a conventional secondary battery using a carbon nanotube according to the present invention as a conductive material.

상기의 목적을 달성하기 위하여 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지는, 양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브가 이용되는 점에 그 특징이 있다.In order to achieve the above object, the secondary battery using the carbon nanotube according to the present invention as a conductive material is a secondary battery composed of a positive electrode / electrolyte / negative electrode, which provides a movement path of a reactant and a movement path of an electron. This feature is characterized by the use of carbon nanotubes as a conducting material.

여기서, 상기 이차전지는 리튬/유황전지, Li/FeS전지, Li/Ti2S전지, Li/ organo-sulfur 전지 등의 황화물계 이차전지 중에서 어느 하나인 점에 그 특징이 있다.Here, the secondary battery is characterized in that any one of the sulfide-based secondary battery, such as lithium / sulfur battery, Li / FeS battery, Li / Ti 2 S battery, Li / organo-sulfur battery.

또한, 상기 이차전지는 리튬이온전지, 리튬폴리머전지, Li/MnO2전지 등의 리튬계 이차전지 중에서 어느 하나인 점에 그 특징이 있다.In addition, the secondary battery is characterized in that it is any one of a lithium-based secondary battery, such as lithium ion battery, lithium polymer battery, Li / MnO 2 battery.

또한, 상기 도전재로 이용되는 탄소나노튜브는 단일겹 탄소나노튜브(single-wall carbon nanotube) 및/또는 다겹 탄소나노튜브(multi-wall carbon nanotube)인 점에 그 특징이 있다.In addition, the carbon nanotubes used as the conductive material are characterized in that they are single-wall carbon nanotubes and / or multi-wall carbon nanotubes.

또한, 상기 도전재로 탄소나노튜브 이외에 탄소나노와이어(carbon nano-wire) 또는 탄소나노입자(carbon nano-particle)가 더 혼합되어 사용되며, 상기 도전재로 탄소나노튜브 이외에 카본 블랙(carbon black)이 더 혼합되어 사용되는 점에 그 특징이 있다.In addition, carbon nanotubes or carbon nano-particles may be further mixed as the conductive material, and carbon black other than carbon nanotubes may be used as the conductive material. This feature is characterized in that it is used more mixed.

이와 같은 본 발명에 의하면, 양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브를 이용함으로써, 방전용량을 증진시키고 고율방전특성 (rate capability)을 향상시킬 수 있는 장점이 있다.According to the present invention, in the secondary battery consisting of a positive electrode / electrolyte / negative electrode, by using carbon nanotubes as a conducting material (conducting material) to provide the movement path of the reaction material and the movement path of the electron, the discharge capacity is increased There is an advantage to promote and improve the rate capability (rate capability).

이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지는 도 1에 나타낸 일반적인 이차전지의 구조와 유사하다. 다만, 유황전극(양극)은 유황, PEO(Poly Ethylene Oxide), 도전재, 리튬염을 균질하게 혼합한 후 건조시켜 제조하였다. 이때, 탄소나노튜브는 단일겹 탄소나노튜브(single wall carbon nanotube)와 다겹 탄소나노튜브(multi-wall carbon nanotube)를 모두 사용하였다. 그리고, 도전재로는 다양한 양의 탄소나노튜브가 홀로 사용될 수도 있으며, 탄소나노튜브와 카본 블랙(carbon black)이 다양한 혼합비로 섞여 사용될 수도 있다.The secondary battery using the carbon nanotube according to the present invention as a conductive material is similar to the structure of the general secondary battery shown in FIG. However, the sulfur electrode (anode) was produced by homogeneously mixing sulfur, poly ethylene oxide (PEO), a conductive material, and a lithium salt, followed by drying. At this time, the carbon nanotubes were used both single-walled carbon nanotubes (single wall carbon nanotube) and multi-wall carbon nanotubes (multi-wall carbon nanotube). In addition, as the conductive material, various amounts of carbon nanotubes may be used alone, and carbon nanotubes and carbon black may be used in various mixing ratios.

그리고, 고분자 전해질은 PEO 분말을 아세토니트릴(acetonitrile) 용액과 혼합한 후, 유황전극과 같은 방법으로 만들었다. 이렇게 제조된 전극 및 전해질을 리튬(lithium)/폴리머 전해질(polymer electrolyte)/유황전극(sulfur electrode) 순으로 아르곤 분위기 내의 글로브 박스(Glove box)에서 적층하여 전지(cell)를 구성하였다. 그리고, 전지의 전기화학적 특성을 알아보기 위하여 방전 시험은 상온~90℃에서 행하였다. 이때 방전 전류는 50㎂/cell로 하였으며, 컷 오프(cut off) 전압은 1.5V로 하였다.The polymer electrolyte was mixed with acetonitrile solution with PEO powder, and then made by the same method as a sulfur electrode. The electrode and electrolyte thus prepared were stacked in a glove box in an argon atmosphere in order of lithium / polymer electrolyte / sulfur electrode to form a cell. And, in order to find out the electrochemical characteristics of the battery, the discharge test was carried out at room temperature ~ 90 ℃. At this time, the discharge current was 50 mA / cell, and the cut off voltage was 1.5 V.

도 3은 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지와 종래 이차전지의 방전용량을 비교한 도면이다. 도 3에 나타낸 바와 같이, 탄소나토튜브를도전재로 첨가하였을 경우에 유황전극의 방전용량은 10% 이상 크게 증가한다. 이는 탄소나노튜브가 도전재의 역할을 충분히 할 수 있을 뿐만 아니라 매우 우수한 특성을 갖고 있음을 알 수 있다.3 is a view comparing discharge capacity of a secondary battery using a carbon nanotube according to the present invention as a conductive material and a conventional secondary battery. As shown in FIG. 3, when the carbon nanotube is added as the conductive material, the discharge capacity of the sulfur electrode increases by more than 10%. It can be seen that the carbon nanotubes not only can play a sufficient role as the conductive material but also have very excellent characteristics.

한편 도 4는 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지와 종래 이차전지의 고율방전특성(rate capability)을 나타낸 도면이다. 고율방전특성은 고속 충방전시 전극의 효율을 나타내는 것으로, 도 4에 나타낸 바와 같이, 탄소나노튜브를 도전재로 사용한 경우 고율 충방전 특성이 매우 향상됨을 알 수 있다.On the other hand, Figure 4 is a view showing the high rate discharge (rate capability) of the secondary battery and the conventional secondary battery using the carbon nanotubes according to the present invention as a conductive material. The high rate discharge characteristic indicates the efficiency of the electrode during high speed charge and discharge, and as shown in FIG. 4, it can be seen that the high rate charge and discharge characteristic is greatly improved when carbon nanotubes are used as the conductive material.

이상에서 설명된 바와 같이, 탄소나노튜브가 도전재로 사용된 경우 방전용량이 증가하고, 고율방전특성이 향상되는 것은 탄소나노튜브가 넓은 비표면적을 가지므로 전해질과 유황 간의 접촉면적을 증가시킬 수 있기 때문이다. 또한, 탄소나노튜브는 고결정질 탄소계이므로 전기 전도성 및 리튬 이온의 전도성이 우수하여 전극 내의 유황이 리튬 이온과 반응할 수 있는 경로(path)의 역할을 할 수 있기 때문이다. 또한, 도전재로 탄소나노튜브가 사용된 유황전극은 사이클 수명(cycle life) 측면에서도 우수한 특성을 나타내었다.As described above, when the carbon nanotubes are used as the conductive material, the discharge capacity increases and the high rate discharge characteristics are improved, so that the carbon nanotubes have a large specific surface area, thereby increasing the contact area between the electrolyte and the sulfur. Because there is. In addition, since carbon nanotubes are highly crystalline carbon-based, excellent electrical conductivity and conductivity of lithium ions may serve as a path through which sulfur in the electrode may react with lithium ions. In addition, the sulfur electrode using carbon nanotubes as the conductive material exhibited excellent characteristics in terms of cycle life.

본 발명에서는 기존의 카본 블랙(carbon black) 도전재에 탄소나노튜브를 혼합하여 사용한 경우에도 유황전극의 특성이 향상됨을 확인하였다. 여기서, 탄소나노튜브란 단일겹 탄소나노튜브(single-wall carbon nanotube)와 다겹 탄소나노튜브 (multi-wall carbon nanotube)를 모두 포함하며, 탄소나노튜브 외에 탄소나노와이어(carbon nano-wire)와 탄소나노입자(carbon nano-particle)를 도전재로 사용해도 우수한 전극 특성을 보여준다.In the present invention, even when carbon nanotubes were mixed with the existing carbon black conductive material, the characteristics of the sulfur electrode were confirmed to be improved. Here, carbon nanotubes include both single-wall carbon nanotubes and multi-wall carbon nanotubes, and in addition to carbon nanotubes, carbon nano-wires and carbon Carbon nano-particles can be used as a conductive material to show excellent electrode properties.

그리고, 탄소나노튜브는 유황전극용 도전재 뿐만 아니라, 다른 황화물계 리튬전지(Li/FeS 전지, Li/Ti2S 전지, Li/organo-sulfur 전지 등)와 다른 리튬계 이차전지(리튬이온전지, 리튬폴리머전지, Li/MnO2전지 등) 및 다른 이차전지(Ni/MH 전지, Na/S 전지 등)의 전극용 도전재로 사용됨으로써, 전지특성을 향상시킬 수 있다.In addition, carbon nanotubes are not only conductive materials for sulfur electrodes, but also other sulfide lithium batteries (Li / FeS batteries, Li / Ti 2 S batteries, Li / organo-sulfur batteries, etc.) and other lithium secondary batteries (lithium ion batteries). , Lithium polymer batteries, Li / MnO 2 batteries, etc.) and other secondary batteries (Ni / MH batteries, Na / S batteries, etc.) can be used as the conductive material for electrodes, thereby improving battery characteristics.

이상의 설명에서와 같이 본 발명에 따른 탄소나노튜브를 도전재로 이용한 이차전지에 의하면, 양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브를 이용함으로써, 방전용량을 증진시키고 고율방전특성(rate capability)을 향상시킬 수 있는 장점이 있다.According to the secondary battery using the carbon nanotube according to the present invention as a conductive material as described above, in the secondary battery consisting of a positive electrode / electrolyte / negative electrode, a conductive material for providing a movement path of the reaction material and a movement path of electrons By using carbon nanotubes as a conducting material, there is an advantage of improving discharge capacity and improving high rate capability.

Claims (6)

양전극/전해질/음전극으로 구성되는 이차전지에 있어, 반응 물질의 이동경로 및 전자의 이동경로를 제공하는 도전재(conducting material)로 탄소나노튜브가 이용되는 것을 특징으로 하는 탄소나노튜브를 도전재로 이용한 이차전지.In a secondary battery composed of a positive electrode / electrolyte / negative electrode, a carbon nanotube is used as a conductive material, characterized in that carbon nanotubes are used as a conducting material that provides a path of movement of a reactant and a path of electrons. Used secondary battery. 제 1항에 있어서,The method of claim 1, 상기 이차전지는 리튬/유황전지, Li/FeS전지, Li/Ti2S전지, Li/organo-sulfur 전지 등의 황화물계 이차전지 중에서 어느 하나인 것을 특징으로 하는 탄소나노튜브를 도전재로 이용한 이차전지.The secondary battery is a secondary battery using carbon nanotubes as a conductive material, characterized in that any one of a sulfide-based secondary battery, such as lithium / sulfur battery, Li / FeS battery, Li / Ti 2 S battery, Li / organo-sulfur battery battery. 제 1항에 있어서,The method of claim 1, 상기 이차전지는 리튬이온전지, 리튬폴리머전지, Li/MnO2전지 등의 리튬계 이차전지 중에서 어느 하나인 것을 특징으로 하는 탄소나노튜브를 도전재로 이용한 이차전지.The secondary battery is a secondary battery using carbon nanotubes as a conductive material, characterized in that any one of a lithium-based secondary battery, such as lithium ion battery, lithium polymer battery, Li / MnO 2 battery. 제 1항에 있어서,The method of claim 1, 상기 도전재로 이용되는 탄소나노튜브는 단일겹 탄소나노튜브(single-wall carbon nanotube) 및/또는 다겹 탄소나노튜브(multi-wall carbon nanotube)인 것을특징으로 하는 탄소나노튜브를 도전재로 이용한 이차전지.The carbon nanotubes used as the conductive material may be single-wall carbon nanotubes and / or multi-wall carbon nanotubes. Secondary uses of carbon nanotubes as a conductive material battery. 제 1항에 있어서,The method of claim 1, 상기 도전재로 탄소나노튜브 이외에 탄소나노와이어(carbon nano-wire) 또는 탄소나노입자(carbon nano-particle)가 더 혼합되어 사용되는 것을 특징으로 하는 탄소나노튜브를 이용한 이차전지.The secondary battery using carbon nanotubes, characterized in that the carbon nanotubes (carbon nano-wire) or carbon nano-particles (carbon nano-particles) in addition to the carbon nanotubes are used as the conductive material. 제 1항에 있어서,The method of claim 1, 상기 도전재로 탄소나노튜브 이외에 카본 블랙(carbon black)이 더 혼합되어 사용되는 것을 특징으로 하는 탄소나노튜브를 이용한 이차전지.Secondary battery using carbon nanotubes, characterized in that the carbon black (carbon black) in addition to the carbon nanotubes are used as the conductive material.
KR1020010047618A 2001-08-08 2001-08-08 Secondary battery using conducting material of carbon nanotube KR20030013553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010047618A KR20030013553A (en) 2001-08-08 2001-08-08 Secondary battery using conducting material of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010047618A KR20030013553A (en) 2001-08-08 2001-08-08 Secondary battery using conducting material of carbon nanotube

Publications (1)

Publication Number Publication Date
KR20030013553A true KR20030013553A (en) 2003-02-15

Family

ID=27718291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010047618A KR20030013553A (en) 2001-08-08 2001-08-08 Secondary battery using conducting material of carbon nanotube

Country Status (1)

Country Link
KR (1) KR20030013553A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444140B1 (en) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 Conducting materials for high quality secondary battery and secondary batteries using them
KR100590113B1 (en) * 2005-01-24 2006-06-14 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100612894B1 (en) * 2005-05-02 2006-08-14 삼성전자주식회사 Nanowire device and fabrication method of the same
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
WO2012064702A3 (en) * 2010-11-09 2012-07-12 Cornell University Sulfur containing nanoporous materials, nanoparticles, methods and applications
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8771878B2 (en) 2011-07-28 2014-07-08 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101429842B1 (en) * 2013-01-11 2014-08-12 한국과학기술원 Electrode including mixed composites of self―assembled carbon nanotube and sulphur for lithium sulphur battery, and the fabrication method thereof
WO2015099379A1 (en) * 2013-12-27 2015-07-02 주식회사 엘지화학 Conductive composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
KR20150077321A (en) * 2013-12-27 2015-07-07 주식회사 엘지화학 Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
EP3349280A4 (en) * 2015-09-10 2018-08-22 LG Chem, Ltd. Conductive material for secondary battery, and secondary battery containing same
KR20190139339A (en) * 2011-06-03 2019-12-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode, lithium ion secondary battery, moving object, vehicle, system, and electronic appliance
US11848447B2 (en) 2020-07-20 2023-12-19 Sk On Co., Ltd. Multi layer electrode for secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714582A (en) * 1993-06-24 1995-01-17 Nec Corp Electrode black mix and nonaqueous electrolytic battery
JPH11283629A (en) * 1998-03-27 1999-10-15 Japan Storage Battery Co Ltd Organic electrolyte battery
KR20010042303A (en) * 1998-03-31 2001-05-25 크레머, 포프 Lithium battery and electrode
KR20030006746A (en) * 2001-07-14 2003-01-23 주식회사 뉴턴에너지 Cathodic material and lithium-sulfur battery having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714582A (en) * 1993-06-24 1995-01-17 Nec Corp Electrode black mix and nonaqueous electrolytic battery
JPH11283629A (en) * 1998-03-27 1999-10-15 Japan Storage Battery Co Ltd Organic electrolyte battery
KR20010042303A (en) * 1998-03-31 2001-05-25 크레머, 포프 Lithium battery and electrode
KR20030006746A (en) * 2001-07-14 2003-01-23 주식회사 뉴턴에너지 Cathodic material and lithium-sulfur battery having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
참고 자료(SWNT bundle을 이용한 battery aplication, 2000.8.21) *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444140B1 (en) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 Conducting materials for high quality secondary battery and secondary batteries using them
KR100590113B1 (en) * 2005-01-24 2006-06-14 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100612894B1 (en) * 2005-05-02 2006-08-14 삼성전자주식회사 Nanowire device and fabrication method of the same
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
US8105716B2 (en) 2005-11-30 2012-01-31 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
US8241794B2 (en) 2005-11-30 2012-08-14 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
US9882199B2 (en) 2010-11-09 2018-01-30 Cornell University Sulfur containing nanoporous materials, nanoparticles, methods and applications
WO2012064702A3 (en) * 2010-11-09 2012-07-12 Cornell University Sulfur containing nanoporous materials, nanoparticles, methods and applications
US10886524B2 (en) 2010-11-09 2021-01-05 Cornell University Sulfur containing nanoporous materials, nanoparticles, methods and applications
KR20190139339A (en) * 2011-06-03 2019-12-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode, lithium ion secondary battery, moving object, vehicle, system, and electronic appliance
US8771878B2 (en) 2011-07-28 2014-07-08 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101429842B1 (en) * 2013-01-11 2014-08-12 한국과학기술원 Electrode including mixed composites of self―assembled carbon nanotube and sulphur for lithium sulphur battery, and the fabrication method thereof
WO2015099379A1 (en) * 2013-12-27 2015-07-02 주식회사 엘지화학 Conductive composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
KR20150077321A (en) * 2013-12-27 2015-07-07 주식회사 엘지화학 Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
US10033044B2 (en) 2013-12-27 2018-07-24 Lg Chem, Ltd. Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
EP3349280A4 (en) * 2015-09-10 2018-08-22 LG Chem, Ltd. Conductive material for secondary battery, and secondary battery containing same
US10665890B2 (en) 2015-09-10 2020-05-26 Lg Chem, Ltd. Conductive material for secondary battery, and secondary battery containing same
US11848447B2 (en) 2020-07-20 2023-12-19 Sk On Co., Ltd. Multi layer electrode for secondary battery

Similar Documents

Publication Publication Date Title
US10147987B2 (en) Rechargeable electrochemical energy storage device
US11075381B2 (en) Boron-doped graphene sheet as sodium-ion battery anode
JP5397533B2 (en) Non-aqueous electrolyte type secondary battery and non-aqueous electrolyte solution for non-aqueous electrolyte type secondary battery
KR101876826B1 (en) Cathode composite and all solid lithium secondary battery comprising the same
CN108306000A (en) Porous cellulose matrix for lithium ion cell electrode
WO2011023110A1 (en) Lithium sulphur battery
KR100758383B1 (en) Sulfur electrode coated with carbon for using in the li/s secondary battery
JP2021510904A (en) Rechargeable metal halide battery
KR20030013553A (en) Secondary battery using conducting material of carbon nanotube
WO2005078849A1 (en) Electrochemical device
CN103367791A (en) Novel lithium ion battery
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
CN110192294A (en) Lithium electrode and lithium secondary battery comprising the lithium electrode
KR100570747B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR20210000886A (en) All solid battery unit cell, bipolar all solid battery comprising the same, and method for preparing the same
KR100673987B1 (en) Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery
CN113054191A (en) Binder solution for all-solid-state battery and electrode slurry including the same
JPH09283116A (en) Nonaqueous electrolyte secondary battery
KR20230096581A (en) Anode containing multiple composite conductive agents and lithium secondary battery comprising the same
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
KR101940405B1 (en) Active material for Anode, And Lithium Ion Secondary Battery and Lithium Ion Capacitor including the Same
WO2009124894A1 (en) Electrode material comprising p-doped nanotubes
JP2009252431A (en) Nonaqueous electrolyte secondary battery
KR20040009381A (en) The fabrication of cathode with carbon nanotubes for rechargeable Li/S cell
Chen et al. Lithium-Ion Battery Development with High Energy Density

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application