JPH11283629A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH11283629A
JPH11283629A JP10100037A JP10003798A JPH11283629A JP H11283629 A JPH11283629 A JP H11283629A JP 10100037 A JP10100037 A JP 10100037A JP 10003798 A JP10003798 A JP 10003798A JP H11283629 A JPH11283629 A JP H11283629A
Authority
JP
Japan
Prior art keywords
positive electrode
conductive agent
organic electrolyte
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10100037A
Other languages
Japanese (ja)
Inventor
Takao Fukunaga
福永  孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10100037A priority Critical patent/JPH11283629A/en
Publication of JPH11283629A publication Critical patent/JPH11283629A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte battery excellent in highly efficient discharging characteristics or charging/discharging cycle characteristics by improving conductivity between positive electrode active material. SOLUTION: An organic electrolyte battery comprises a positive electrode 1 in which a mixture layer having positive electrode active material and a conductive agent and a binder is formed on a metal base, a negative electrode 2 and an organic electrolyte, wherein the positive electrode active material is lithium composite oxide containing manganese as main constituent. The conductive agent is a carbon nano-tube. The use of the carbon nano-tube as the conductive agent can improve highly efficient discharging characteristics. An effect can be produced with a small quantity of the conductive agent, thus increasing a battery capacity, with a remarkably great industrial merit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポータブル機器の駆
動用電源や電気自動車等の動力としての有機電解質電池
の正極の導電剤の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a conductive agent for a positive electrode of an organic electrolyte battery used as a power source for driving a portable device or a power source for an electric vehicle.

【0002】[0002]

【従来の技術】近年、ラップトップコンピューター、ワ
ープロ等の携帯情報機器、カメラ一体型VTR、液晶テ
レビ等のAV機器や携帯電話等の移動通信機器さらには
電気自動車用動力電源としての電池に対し大電流、大出
力を要求する機器が多種多様に発達し、より高エネルギ
ー密度の電池が要望されており、その要望に応えるべ
く、有機電解質電池が提案され、実用化に至っている。
しかしながらこれらの電池はまだ満足するには至ってお
らず、さらなる高出力、長寿命が要求されている。
2. Description of the Related Art In recent years, portable information devices such as laptop computers and word processors, AV devices such as camera-integrated VTRs and liquid crystal televisions, mobile communication devices such as mobile phones, and batteries as power sources for electric vehicles have become increasingly important. Devices that require high current and large output have been developed in various ways, and batteries with higher energy density have been demanded. To meet the demand, organic electrolyte batteries have been proposed and have been put to practical use.
However, these batteries are not yet satisfactory, and higher output and longer life are required.

【0003】一般に、有機電解質電池の正極活物質には
コバルト酸リチウムが用いられているが、資源、コスト
の観点から、マンガン酸リチウムが有望視されている。
In general, lithium cobaltate is used as a positive electrode active material of an organic electrolyte battery, but lithium manganate is considered promising from the viewpoint of resources and cost.

【0004】[0004]

【発明が解決しようとする課題】しかし、このマンガン
酸リチウムはコバルト酸リチウムに比較し、電子伝導性
が低く、それ故、高率放電特性に劣り、機器の要求に十
分に応えられないのいが現状である。また、高率放電特
性を高めるには導電剤を多く用いればよいが、そうする
ことにより、正極合剤中に占める活物質量が減るため、
放電容量が減少する。本発明は、従来技術に見られる前
記問題を解決し、高率放電特性に優れた正極を提供する
ことを課題とする。
However, this lithium manganate has a lower electron conductivity than lithium cobalt oxide, and therefore has a poor high-rate discharge characteristic and cannot sufficiently meet the demands of equipment. Is the current situation. In addition, a high amount of conductive agent may be used to enhance the high-rate discharge characteristics, but by doing so, the amount of active material in the positive electrode mixture is reduced,
The discharge capacity decreases. An object of the present invention is to solve the above-mentioned problems found in the prior art and to provide a positive electrode having excellent high-rate discharge characteristics.

【0005】[0005]

【課題を解決するための手段】本発明有機電解質電池
は、正極活物質と導電剤とバインダーを備えた合剤層が
金属の基材に形成されてなる正極1と、負極2と有機電
解質よりなり、この正極活物質がマンガンを主体とする
リチウム複合酸化物である有機電解質電池において、導
電剤がカーボンナノチューブであること、また、カーボ
ンナノチューブの割合が正極活物質と導電剤とバインダ
ーの合計重量に対して2重量部以上15重量部以下であ
ることを特徴とする。
The organic electrolyte battery of the present invention comprises a positive electrode 1 in which a mixture layer comprising a positive electrode active material, a conductive agent and a binder is formed on a metal substrate, a negative electrode 2 and an organic electrolyte. In the organic electrolyte battery in which the positive electrode active material is a lithium composite oxide mainly composed of manganese, the conductive agent is a carbon nanotube, and the ratio of the carbon nanotube is the total weight of the positive electrode active material, the conductive agent, and the binder. Is not less than 2 parts by weight and not more than 15 parts by weight.

【0006】[0006]

【発明の実施の形態】本発明による有機電解質電池で
は、導電剤としてカーボンナノチューブを使用し、ま
た、その添加量を2重量部以上15重量部以下とする。
このようにすることにより、正極活物質同士の導電性を
改良し、高率放特性や充放電サイクル特性に優れた有機
電解質電池を実現することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In an organic electrolyte battery according to the present invention, carbon nanotubes are used as a conductive agent, and the addition amount is 2 to 15 parts by weight.
By doing so, it is possible to improve the conductivity between the positive electrode active materials and realize an organic electrolyte battery having excellent high rate discharge characteristics and charge / discharge cycle characteristics.

【0007】[0007]

【実施例】以下、本発明の具体的な実施例について説明
するが、本発明がこれらの実施例に限定されるものでな
いことは言うまでもない。
EXAMPLES Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

【0008】本実施例は正極活物質にLiMn2 4
負極に天然黒鉛、正極および負極のバインダーとしてポ
リフッ化ビニリデン樹脂を用いた円筒型有機電解質電池
に適用したものである。
In this embodiment, LiMn 2 O 4 ,
The present invention is applied to a cylindrical organic electrolyte battery using natural graphite as a negative electrode and polyvinylidene fluoride resin as a binder for the positive and negative electrodes.

【0009】図1は本発明有機電解質電池の一実施例を
示す構造図である。図1において、正極1と負極2とを
セパレータ3を介して渦巻状に巻いてなる電極群を、内
径15.3mmのニッケルメッキを施した鉄製の有底円
筒型電池ケース4に挿入している。ここで、電池ケース
に鉄製を用いるため、この電池ケースが負極側に相当す
ることになる。
FIG. 1 is a structural view showing one embodiment of the organic electrolyte battery of the present invention. In FIG. 1, an electrode group formed by spirally winding a positive electrode 1 and a negative electrode 2 through a separator 3 is inserted into a nickel-plated iron bottomed cylindrical battery case 4 having an inner diameter of 15.3 mm. . Here, since the battery case is made of iron, the battery case corresponds to the negative electrode side.

【0010】5は正極1と負極2とをセパレータ3を介
して巻き取る際のセンターピンで外径3mm、長さ26
mmのアルミニウムよりなる。セパレータ3は、厚さ2
5μmのポリエチレン製微多孔膜を用いた。
Reference numeral 5 denotes a center pin for winding the positive electrode 1 and the negative electrode 2 through the separator 3 and has an outer diameter of 3 mm and a length of 26 mm.
mm of aluminum. The separator 3 has a thickness of 2
A 5 μm polyethylene microporous membrane was used.

【0011】正極1には厚み20μmのアルミニウム箔
の両面に、LiMn2 4 に結着剤であるポリフッ化ビ
ニリデン樹脂と、導電剤としてカーボンナノチューブ
(Hyperion Catalysis Inter
national製 外径約0.01μ 長さ1〜10
μ 比表面積250m2 /g)を表1に示す割合で加
え、ペースト状に混合し、塗布、乾燥、圧延後、長さ4
70mm、幅24mmに切断したものを用いた。
The cathode 1 has a 20 μm-thick aluminum foil on both sides, a polyvinylidene fluoride resin as a binder for LiMn 2 O 4 , and carbon nanotubes (Hyperion Catalyst Interference) as a conductive agent.
made by national, outer diameter about 0.01μ, length 1-10
μ specific surface area of 250 m 2 / g) at a ratio shown in Table 1, mixed in a paste, applied, dried and rolled, and
A piece cut to 70 mm and a width of 24 mm was used.

【0012】[0012]

【表1】 負極2には厚み14μmの銅箔の両面に、天然黒鉛と結
着剤であるポリフッ化ビニリデンを90:10重量部
(固形分比)の割合でペースト状に混合し、塗布、乾
燥、圧延後、長さ490mm、幅26mmに切断したも
のを用いた。
[Table 1] The negative electrode 2 was prepared by mixing natural graphite and polyvinylidene fluoride as a binder in a paste form at a ratio of 90:10 parts by weight (solid content ratio) on both sides of a copper foil having a thickness of 14 μm, coating, drying and rolling. 490 mm in length and 26 mm in width were used.

【0013】6は蓋体で、ガスケット7を介して電池ケ
ース4にかしめ封口されている。なお、この蓋体6の内
面には正極1と接続されている正極リード8が溶接され
ている。電解質にはLiPF6 を1mol/l 含むエチレン
カーボネート:ジエチルカーボネート=1:1(体積
比)の混合液を用いた。9は負極リード、10はPCT
素子、11は安全弁である。
Reference numeral 6 denotes a lid which is swaged and sealed in the battery case 4 via a gasket 7. A positive electrode lead 8 connected to the positive electrode 1 is welded to the inner surface of the lid 6. As the electrolyte, a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiPF 6 was used. 9 is a negative electrode lead, 10 is PCT
Element 11 is a safety valve.

【0014】以上により、外径15.9mm、高さ33
mmの円筒型電池A〜電池Iを組み立てた。また、比較
例として、導電剤にカーボンナノチューブの代わりにグ
ラファイト(日本黒鉛工業製SP−20)を10%添加
したことを除き、全て実施例と同じ条件の円筒型有機電
解質電池を組み立てた。この電池を比較例電池Jとす
る。
As described above, the outer diameter is 15.9 mm and the height is 33
mm cylindrical batteries A to I were assembled. In addition, as a comparative example, a cylindrical organic electrolyte battery was assembled under the same conditions as in the example except that 10% of graphite (SP-20 manufactured by Nippon Graphite Industries) was added to the conductive agent instead of the carbon nanotube. This battery is referred to as Comparative Example Battery J.

【0015】これらの電池A〜電池Jについて放電試験
を行った。
A discharge test was performed on these batteries A to J.

【0016】試験方法として、充電電流1A,充電上限
電圧4.1Vの定電流・定電圧で5時間充電を行い、
0.1Aの電流で2.75Vまで放電し、次に、充電電
流1A,充電上限電圧4.1Vの定電流・定電圧で5時
間充電を行い、1Aの電流で2.75Vまで放電し、
0.1A放電に対する、1A放電での容量保持率を求め
た。試験数量はそれぞれ5個である。
As a test method, charging was performed for 5 hours at a constant current and a constant voltage of a charging current of 1 A and a charging upper limit voltage of 4.1 V.
Discharging at a current of 0.1 A to 2.75 V, then charging at a constant current and a constant voltage of 1 A of charging current and a charging upper limit voltage of 4.1 V for 5 hours, and discharging at a current of 1 A to 2.75 V;
The capacity retention at 1A discharge with respect to 0.1A discharge was determined. The test quantity is five each.

【0017】表2に0.1Aと1Aで放電した場合の放
電容量と容量保持率[(1A放電時の放電容量/0.1
A放電時の放電容量)×100)]の結果を示した。
Table 2 shows the discharge capacity and the capacity retention when discharging at 0.1 A and 1 A [(discharge capacity at 1 A discharge / 0.1
A) (discharge capacity during A discharge) × 100)].

【0018】[0018]

【表2】 試験結果より、本発明のカーボンナノチューブを添加し
た電池は高率放電特性が優れていることがわかる。特
に、その添加量が2重量部以上であればその効果は著し
く、4%以上であれば高率放電特性の容量保持率に有意
差はなくなるが、20%添加した場合は、比較例電池J
に比べ放電容量が少なくなるため、好ましくは添加量が
15%以下がよい。
[Table 2] The test results show that the battery to which the carbon nanotube of the present invention is added has excellent high-rate discharge characteristics. In particular, when the addition amount is 2 parts by weight or more, the effect is remarkable. When the addition amount is 4% or more, there is no significant difference in the capacity retention of the high-rate discharge characteristics.
Since the discharge capacity is smaller than that of the above, the addition amount is preferably 15% or less.

【0019】また、実施例電池Dのように、導電剤の添
加量が2重量部であるにも関わらず、導電剤を10重量
部添加した実施例電池Jとほぼ同程度の容量保持率があ
るため、本発明電池は高容量化を図ることができる。
As in Example Battery D, the capacity retention was almost the same as that of Example Battery J in which 10 parts by weight of the conductive agent was added, although the amount of the conductive agent was 2 parts by weight. Therefore, the battery of the present invention can achieve high capacity.

【0020】表3に寿命試験を行った場合の500サイ
クル時の放電容量と初期放電容量に対する容量保持率
[(500サイクル時の放電容量/初期放電容量)×1
00)]を示した。試験方法として、充電電流1A,充
電上限電圧4.1Vの定電流・定電圧で5時間充電を行
い、1Aの電流で2.75Vまで放電した。試験数量は
それぞれ5個である。
Table 3 shows the capacity retention ratio with respect to the discharge capacity at 500 cycles and the initial discharge capacity when the life test was performed [(discharge capacity at 500 cycles / initial discharge capacity) × 1].
00)]. As a test method, the battery was charged at a constant current and a constant voltage of a charging current of 1 A and a charging upper limit voltage of 4.1 V for 5 hours, and discharged at a current of 1 A to 2.75 V. The test quantity is five each.

【0021】[0021]

【表3】 試験結果より、本発明のカーボンナノチューブを添加し
た電池は寿命特性が優れていることがわかる。また、そ
の添加量が2重量部以上であればその効果は認められ
る。
[Table 3] From the test results, it is understood that the battery to which the carbon nanotube of the present invention is added has excellent life characteristics. If the amount is 2 parts by weight or more, the effect is recognized.

【0022】[0022]

【発明の効果】本発明により、導電剤としてカーボンナ
ノチューブを使用することにより、高率放電特性が改善
され、また、少量の導電剤で効果があるため、電池容量
を多くすることができ、その工業的価値は極めて大であ
る。
According to the present invention, by using carbon nanotubes as the conductive agent, the high-rate discharge characteristics are improved, and since a small amount of the conductive agent is effective, the battery capacity can be increased. The industrial value is extremely large.

【0023】さらに本発明でわかったことに、このカー
ボンナノチューブは繊維状になっているため、正極活物
質の充電および放電での体積の膨張または収縮によって
生ずる正極活物質粒子同士の分離がもたらす電子の導電
パスの分断を防ぎ、高率放電のみならず、寿命特性の改
善もはかることができる。
Further, it has been found in the present invention that since the carbon nanotubes are in a fibrous form, the electrons generated by the separation of the positive electrode active material particles caused by the expansion or contraction of the volume during charging and discharging of the positive electrode active material. Of the conductive path can be prevented, and not only the high-rate discharge but also the life characteristics can be improved.

【0024】なお、本実施例では正極の活物質にLiM
2 4 を用いたが、マンガンの一部を鉄、マグネシウ
ム、クロム、アルミで置換したLiMn1.9 Fe0.1
2 、LiMn1.9 Mg0.1 2 、LiMn1.9 Cr0.1
2 等を用いても同様の効果が得られる。
In this embodiment, the active material of the positive electrode is LiM
n 2 O 4 was used, but LiMn 1.9 Fe 0.1 O in which part of manganese was replaced with iron, magnesium, chromium, and aluminum
2 , LiMn 1.9 Mg 0.1 O 2 , LiMn 1.9 Cr 0.1
The same effect can be obtained by using O 2 or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明有機電解質電池の一実施例を示す構造図FIG. 1 is a structural view showing one embodiment of the organic electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 5 センターピン 6 蓋体 7 ガスケット 8 正極リード 9 負極リード 10 PTC素子 11 安全弁 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Center pin 6 Lid 7 Gasket 8 Positive electrode lead 9 Negative electrode lead 10 PTC element 11 Safety valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と導電剤とバインダーを備え
た合剤層が金属の基材に形成されてなる正極(1)と、
負極(2)と有機電解質よりなり、該正極活物質がマン
ガンを主体とするリチウム複合酸化物である有機電解質
電池において、該導電剤がカーボンナノチューブである
有機電解質電池。
1. A positive electrode (1) comprising a mixture layer comprising a positive electrode active material, a conductive agent and a binder formed on a metal substrate;
An organic electrolyte battery comprising a negative electrode (2) and an organic electrolyte, wherein the positive electrode active material is a lithium composite oxide mainly composed of manganese, wherein the conductive agent is a carbon nanotube.
【請求項2】 該カーボンナノチューブの割合が正極活
物質と導電剤とバインダーの合計重量に対して2重量部
以上15重量部以下である請求項1記載の有機電解質電
池。
2. The organic electrolyte battery according to claim 1, wherein the ratio of the carbon nanotubes is 2 to 15 parts by weight based on the total weight of the positive electrode active material, the conductive agent, and the binder.
JP10100037A 1998-03-27 1998-03-27 Organic electrolyte battery Pending JPH11283629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10100037A JPH11283629A (en) 1998-03-27 1998-03-27 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10100037A JPH11283629A (en) 1998-03-27 1998-03-27 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH11283629A true JPH11283629A (en) 1999-10-15

Family

ID=14263338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10100037A Pending JPH11283629A (en) 1998-03-27 1998-03-27 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH11283629A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013553A (en) * 2001-08-08 2003-02-15 엘지전자 주식회사 Secondary battery using conducting material of carbon nanotube
KR20040009381A (en) * 2002-07-23 2004-01-31 한국과학기술원 The fabrication of cathode with carbon nanotubes for rechargeable Li/S cell
WO2004040678A1 (en) * 2002-10-31 2004-05-13 Mitsubishi Chemical Corporation Additive to positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery and, prepared from the positive electrode material, positive electrode and lithium secondary battery
KR100444140B1 (en) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 Conducting materials for high quality secondary battery and secondary batteries using them
JP2004273433A (en) * 2003-02-19 2004-09-30 Matsushita Electric Ind Co Ltd Electrode for battery and manufacturing method of the same
WO2003067699A3 (en) * 2002-02-08 2005-02-10 Electrovaya Carbon fibre containing negative electrode for lithium battery
JP2005521563A (en) * 2002-03-25 2005-07-21 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル How to collect nano objects
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP2006004724A (en) * 2004-06-17 2006-01-05 Nikko Materials Co Ltd Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
KR100590113B1 (en) 2005-01-24 2006-06-14 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100790833B1 (en) 2005-09-06 2008-01-02 주식회사 엘지화학 Composite Binder Containing Carbon Nanotube and Lithium Secondary Battery Employing the Same
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
CN100395896C (en) * 2003-12-05 2008-06-18 鸿富锦精密工业(深圳)有限公司 Dye sensitized solar batter and its electrode
WO2009081704A1 (en) 2007-12-25 2009-07-02 Kao Corporation Composite material for positive electrode of lithium battery
JP2009170410A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Electrode, lithium battery, manufacturing method for electrode, and composition for electrode coating
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
CN103022554A (en) * 2012-12-27 2013-04-03 天津力神电池股份有限公司 Rechargeable lithium ion battery
WO2013094100A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Positive electrode for secondary batteries, and secondary battery using same
JP2015095423A (en) * 2013-11-14 2015-05-18 Fdk株式会社 Electrode material for lithium secondary battery and lithium secondary battery
JP2015514284A (en) * 2012-04-18 2015-05-18 エルジー・ケム・リミテッド Secondary battery electrode and secondary battery including the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444140B1 (en) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 Conducting materials for high quality secondary battery and secondary batteries using them
KR20030013553A (en) * 2001-08-08 2003-02-15 엘지전자 주식회사 Secondary battery using conducting material of carbon nanotube
WO2003067699A3 (en) * 2002-02-08 2005-02-10 Electrovaya Carbon fibre containing negative electrode for lithium battery
JP2005521563A (en) * 2002-03-25 2005-07-21 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル How to collect nano objects
KR20040009381A (en) * 2002-07-23 2004-01-31 한국과학기술원 The fabrication of cathode with carbon nanotubes for rechargeable Li/S cell
WO2004040678A1 (en) * 2002-10-31 2004-05-13 Mitsubishi Chemical Corporation Additive to positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery and, prepared from the positive electrode material, positive electrode and lithium secondary battery
JP2004273433A (en) * 2003-02-19 2004-09-30 Matsushita Electric Ind Co Ltd Electrode for battery and manufacturing method of the same
JP4659367B2 (en) * 2003-02-19 2011-03-30 パナソニック株式会社 Battery electrode and manufacturing method thereof
CN100395896C (en) * 2003-12-05 2008-06-18 鸿富锦精密工业(深圳)有限公司 Dye sensitized solar batter and its electrode
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP2006004724A (en) * 2004-06-17 2006-01-05 Nikko Materials Co Ltd Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
KR100590113B1 (en) 2005-01-24 2006-06-14 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100790833B1 (en) 2005-09-06 2008-01-02 주식회사 엘지화학 Composite Binder Containing Carbon Nanotube and Lithium Secondary Battery Employing the Same
US8241794B2 (en) 2005-11-30 2012-08-14 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8105716B2 (en) 2005-11-30 2012-01-31 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2009081704A1 (en) 2007-12-25 2009-07-02 Kao Corporation Composite material for positive electrode of lithium battery
US8426064B2 (en) 2007-12-25 2013-04-23 Kao Corporation Composite material for positive electrode of lithium battery
JP2009170410A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Electrode, lithium battery, manufacturing method for electrode, and composition for electrode coating
US9397330B2 (en) 2008-01-15 2016-07-19 Samsung Electronics Co., Ltd. Electrode, lithium battery, method of manufacturing electrode, and composition for coating electrode
WO2013094100A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Positive electrode for secondary batteries, and secondary battery using same
JP2015514284A (en) * 2012-04-18 2015-05-18 エルジー・ケム・リミテッド Secondary battery electrode and secondary battery including the same
US9508993B2 (en) 2012-04-18 2016-11-29 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
US10153480B2 (en) 2012-04-18 2018-12-11 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
CN103022554A (en) * 2012-12-27 2013-04-03 天津力神电池股份有限公司 Rechargeable lithium ion battery
JP2015095423A (en) * 2013-11-14 2015-05-18 Fdk株式会社 Electrode material for lithium secondary battery and lithium secondary battery

Similar Documents

Publication Publication Date Title
JPH11283629A (en) Organic electrolyte battery
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US6709471B2 (en) Single layer carbon nanotube electrode battery
WO2000062356A1 (en) Secondary battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JPH08171917A (en) Cell
JPH10144298A (en) Lithium secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
CN115295767A (en) Positive plate and lithium ion battery
JP2000011991A (en) Organic electrolyte secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2000294229A (en) Nonaqueous electrolytic secondary battery
JPH1027601A (en) Nonaqueous electrolyte secondary battery
JP2004296305A (en) Lithium ion secondary battery
JPH11283671A (en) Organic electrolyte secondary battery
JP4365633B2 (en) Lithium secondary battery
US20210036385A1 (en) Electrode with enhanced state of charge estimation
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2004134175A (en) Electrode for battery and battery using the same
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JP2003068365A (en) Secondary battery of nonaqueous electrolytic solution