KR20020094069A - The Manufacturing Method Of Fine Powder Of Nickel - Google Patents

The Manufacturing Method Of Fine Powder Of Nickel Download PDF

Info

Publication number
KR20020094069A
KR20020094069A KR1020010031770A KR20010031770A KR20020094069A KR 20020094069 A KR20020094069 A KR 20020094069A KR 1020010031770 A KR1020010031770 A KR 1020010031770A KR 20010031770 A KR20010031770 A KR 20010031770A KR 20020094069 A KR20020094069 A KR 20020094069A
Authority
KR
South Korea
Prior art keywords
nickel
organic solvent
powder
fine powder
neutralizing agent
Prior art date
Application number
KR1020010031770A
Other languages
Korean (ko)
Other versions
KR100399716B1 (en
Inventor
배동식
한경섭
김상우
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0031770A priority Critical patent/KR100399716B1/en
Publication of KR20020094069A publication Critical patent/KR20020094069A/en
Application granted granted Critical
Publication of KR100399716B1 publication Critical patent/KR100399716B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Abstract

PURPOSE: A method for manufacturing fine nickel powder with a particle size distribution of 100 to 1000 nm using liquid reaction method is provided. CONSTITUTION: The method includes the steps of reacting a neutralizing agent with one metal precursor selected from (Ni(NO3)2·6H2O), (NiCl2x·H2O) and (NiSO4·6H2O) in aqueous solution to obtain precipitates; solving the precipitates in an organic solvent; treating above slurry at 200 to 300 deg.C under a pressure of 0.1 to 4 MPa to obtain fine metal powder; and extracting the organic solvent from the obtained fine metal powder by using solvents such as ethanol, acetone, isopropyl alcohol a methanol. The method is characterized in that the neutralizing agent is selected from KOH, NaOH and NH4OH; the organic solvent is selected from ethylene glycol, polyethylene glycol and butanediol.

Description

니켈 미분말의 제조방법{The Manufacturing Method Of Fine Powder Of Nickel}Manufacturing Method Of Fine Powder Of Nickel

본 발명은 니켈 미분말의 제조방법에 관한 것으로, 보다 상세하게는 유기용매를 이용하고 고온,고압에서 니켈 미분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a fine nickel powder, and more particularly to a method for producing a fine nickel powder using an organic solvent at high temperature, high pressure.

니켈은 페이스트 성상이 양호하고, 도체 부분의 미세한 패턴화나 박층화가 가능한 것으로, 전자회로의 도체 형성용으로서 수요가 급격히 높아지고 있다. 종래 적층 세라믹 콘덴서의 내부 전극용 재료로는 팔라듐(Pd), 백금(Pt) 등의 귀금속이주로 사용되었다. 그러나 콘덴서의 고용량화를 위해 적층수가 증가하고 귀금속은 원료가 고가이어서 최근에는 비용절감을 위해서 내부 전극용 재료로는 니켈 분말이 많이 사용되고 있다.Nickel has good paste properties, enables fine patterning and thinning of conductor portions, and demand for nickel for conductor formation in electronic circuits is rapidly increasing. As an internal electrode material of a multilayer ceramic capacitor, noble metals such as palladium (Pd) and platinum (Pt) have been mainly used. However, in order to increase the capacity of the capacitor, the number of stacked layers is increased, and precious metals are expensive in raw materials. In recent years, nickel powder is widely used as an internal electrode material for cost reduction.

니켈 분말을 제조하기 위한 방법으로 한국특허출원 제1999-7009697호에 개시된 바와 같이, 염화니켈의 증기에 수소 등의 환원성 가스를 접촉시켜 니켈 분말을 환원, 석출하는 기상 환원법이 있고, 액상 방법으로는 수산화나트륨 수용액과 황산 니켈 수용액을 혼합하여 수산화 니켈을 생성시키고 뒤이어서 니켈을 하이드라진으로 환원하고 생성 니켈 분말을 회수하는 방법 등이 선진국을 중심으로 활발히 진행되고 있다.As a method for preparing nickel powder, as disclosed in Korean Patent Application No. 1999-7009697, there is a gas phase reduction method in which nickel powder is reduced and precipitated by contacting a reducing gas such as hydrogen with nickel vapor. A method of mixing nickel aqueous solution and aqueous nickel sulfate solution to produce nickel hydroxide, followed by reducing nickel to hydrazine and recovering the produced nickel powder is actively progressing in developed countries.

상기 기술 중 전자는 가스 상태에서 순간적인 반응에 의하여 입자를 형성하기 때문에 크기, 형상 및 입도 조절에 어려운 문제점이 있고, 후자는 유독한 환원제를 사용하여 환원 반응하는 복잡한 공정 단계가 요구되는 문제점이 있다.Since the former forms particles by an instantaneous reaction in the gas state, it is difficult to control the size, shape, and particle size, and the latter requires a complicated process step of reducing the reaction using a toxic reducing agent. .

한편, 금속분말의 구조와 모양을 제어하는 것은 새로운 전자적, 광학적, 자기적, 전자화학적 그리고 기계적인 물성을 창출하는 것으로, 여러 분야에 적용될 수 있는 무한한 잠재력을 가지고 있기 때문에 금속분말의 합성에 관한 연구와 그 응용에 관한 관심이 최근에 크게 증가하고 있다. 즉, 금속 분말을 합성하고 그들의 물성을 제어하는 것은 반도체, 촉매, 수소저장 소재, 콘덴서 전극용 소재 등의 분야에서 핵심적인 기술이기 때문에 금속입자의 크기 및 형상을 제어하기 위한 연구가 활발히 수행되고 있는 것이다.On the other hand, controlling the structure and shape of metal powders creates new electronic, optical, magnetic, electrochemical and mechanical properties, and studies on the synthesis of metal powders have unlimited potential for application in various fields. And interest in its application has increased greatly in recent years. In other words, synthesizing metal powders and controlling their physical properties is a key technology in the fields of semiconductors, catalysts, hydrogen storage materials, capacitor electrode materials, and the like, and researches to control the size and shape of metal particles have been actively conducted. will be.

또한, 지금까지 액상 반응을 이용하여 니켈 분말을 제조하기 위한 연구는 많이 수행되었지만 산화가 되지 않은 니켈 금속 입자를 직접 제조하기 위한 연구는 거의 없었으며, 일반적으로 분말 합성에 사용되고 있는 여러 가지의 공정 즉, 분쇄나 고상반응을 이용한 분말제조, 기상합성법, 졸-겔 법, 수열합성법 등으로는 금속 분말의 직접적인 합성이 용이하지 않아 직접 금속분말 합성기술의 개발의 필요성은 여전히 요구되고 있다.In addition, there have been many studies for preparing nickel powder by using a liquid phase reaction, but few studies have been conducted to directly manufacture non-oxidized nickel metal particles, and various processes generally used for powder synthesis, namely In the manufacture of powders using pulverization or solid phase reaction, gas phase synthesis method, sol-gel method, hydrothermal synthesis method, etc., it is not easy to directly synthesize metal powder, and there is still a need for development of direct metal powder synthesis technology.

본 발명은 니켈 분말을 환원처리 없이 직접 제조할 수 있는 제조방법을 제공하는 것을 목적으로 한다. 본 발명의 다른 목적은 니켈 분말의 크기를 직경 100-1000㎚ 범위 내에서 자유롭게 조절할 수 있는 니켈 미분말의 제조방법을 제공하는 것이다.An object of the present invention is to provide a production method that can directly produce nickel powder without reducing treatment. It is another object of the present invention to provide a method for preparing a fine nickel powder which can freely adjust the size of the nickel powder within a range of 100-1000 nm in diameter.

도1은 본 발명의 니켈 미분말의 제조공정도이고,1 is a manufacturing process diagram of the fine nickel powder of the present invention,

도2는 실시예 1에 의하여 얻어진 니켈 미분말의 전자현미경 사진이고,2 is an electron micrograph of the nickel fine powder obtained in Example 1,

도3은 실시예 1에 의하여 얻어진 니켈 미분말의 X-선 회절도이고,3 is an X-ray diffraction diagram of the fine nickel powder obtained in Example 1,

도4는 실시예 2에 의하여 얻어진 니켈 미분말의 전자현미경 사진이고,4 is an electron micrograph of the nickel fine powder obtained in Example 2,

도5는 실시예 2에 의하여 얻어진 니켈 미분말의 X-선 회절도이다.5 is an X-ray diffraction diagram of the nickel fine powder obtained in Example 2. FIG.

본 발명은 금속 전구체를 수용액에서 중화제로 처리하여 침전물을 만드는 단계와, 이를 유기용매와 반응시켜 금속분말을 얻는 단계, 그리고 얻어진 분말을 사용된 유기용매와 분리하는 단계를 포함하는 것으로 구성된다.The present invention comprises the steps of preparing a precipitate by treating the metal precursor with an neutralizing agent in an aqueous solution, reacting it with an organic solvent to obtain a metal powder, and separating the obtained powder from the used organic solvent.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 금속 전구체는 니켈나이트라헥사하이드레이드(Ni(NO3)2ㆍ6H2O),니켈클로라이드하이드레이드(NiCl2ㆍxH2O),니켈설파이드헥사하이드레이드(NiSO4ㆍ6H2O) 중에서 선택된 1종이다. 본 발명에서 사용되는 중화제는 칼륨 하이드록사이드(KOH), 나트륨 하이드록사이드(NaOH), 암모늄 하이드록사이드(NH4OH) 중에서 선택된 1종이다. 본 발명에서 사용되는 유기용매는 에틸렌 글리콜(ethylene glycol), 폴리에틸렌 글리콜(polyethylene glycol), 부탄디올(butanediol) 중에서 선택된 1종이다.Metal precursors used in the present invention are nickel nitrate hexahydride (Ni (NO 3 ) 2 6H 2 O), nickel chloride hydride (NiCl 2 xH 2 O), nickel sulfide hexahydride (NiSO 4 · 6H 2 O) It is 1 type selected from. The neutralizing agent used in the present invention is one selected from potassium hydroxide (KOH), sodium hydroxide (NaOH), and ammonium hydroxide (NH 4 OH). The organic solvent used in the present invention is one selected from ethylene glycol, ethylene glycol, butanediol.

본 발명에서 유기용매의 첨가량은 용질/유기용매의 무게비가 0.01-0.1 범위인 것이 바람직하다. 그 이유는 유기용매 속에서 입자들의 핵 생성 및 성장이 일어날 때 용액 속에 존재하는 금속 입자의 수가 작으면 입자들이 재결정화가 잘나지 않고, 너무 과다할 경우에는 입자들이 재결정화 반응을 완결하지 않고 침전되어 입자의 크기, 형상 및 결정화도의 조절이 일정하지 못하기 때문이다.In the present invention, the addition amount of the organic solvent is preferably a weight ratio of the solute / organic solvent is in the range of 0.01-0.1. The reason is that when the nucleation and growth of the particles in the organic solvent occurs, if the number of metal particles in the solution is small, the particles will not recrystallize well, and if too large, the particles will precipitate without completing the recrystallization reaction. This is because control of the size, shape and crystallinity of the particles is not constant.

상기 금속 전구체 용액과 중화제를 반응시키게 되면 금속 수산화물이 얻어지며, 이를 상기 유기용매에 녹인 다음 반응을 시킨 후, 이소프로필 알콜로 반응에 사용된 유기용매를 세척하게 되면 입자 직경이 100-1000㎚이며, 산소와 결합하지 아니한 니켈 미분말이 얻어진다.When the metal precursor solution is reacted with a neutralizing agent, a metal hydroxide is obtained. The metal hydroxide is dissolved in the organic solvent and then reacted. After washing the organic solvent used in the reaction with isopropyl alcohol, the particle diameter is 100-1000 nm. The fine powder of nickel which does not bond with oxygen is obtained.

상기 반응에 있어서, 반응온도는 200-300℃가 적절하며, 이 범위 미만의 경우에는 반응 속도가 너무 느린 문제점이 있고, 이 범위를 초과하게 되면 반응이 급속히 진행되어 입자가 너무 크게 성장하는 문제점이 발생한다. 반응시간은 30분 - 120시간의 범위에서 적절히 선택될 수 있다. 반응압력은 0.1-4MPa의 범위 내에서 선택된다.In the reaction, the reaction temperature is appropriately 200-300 ℃, if less than this range there is a problem that the reaction rate is too slow, if exceeding this range is a problem that the reaction proceeds rapidly and the particles grow too large Occurs. The reaction time may be appropriately selected in the range of 30 minutes-120 hours. The reaction pressure is selected in the range of 0.1-4 MPa.

본 발명의 실시예는 아래와 같다.An embodiment of the present invention is as follows.

<실시예 1><Example 1>

1몰의 Ni(NO3)2ㆍ6H2O을 KOH 1몰 용액과 반응시켜 니켈 하이드록사이드 침전물을 생성시키고, 이를 이소프로필 알콜로 5번 세척한 다음 Ni(OH)2을 수득하였다. 수득된 Ni(OH)21g을 에틸렌 글리콜 60ml에 녹인 다음, 온도 230℃의 반응기에서 6시간 동안 반응시켰다.One mole of Ni (NO 3 ) 2 .6H 2 O was reacted with a 1 mole solution of KOH to produce a nickel hydroxide precipitate, which was washed five times with isopropyl alcohol to give Ni (OH) 2 . 1 g of Ni (OH) 2 obtained was dissolved in 60 ml of ethylene glycol, and then reacted in a reactor at a temperature of 230 ° C. for 6 hours.

반응 후 얻어진 분말을 이소프로필 알콜로 5회 세척한 후 투과 전자현미경으로 관찰한 결과는 도2와 같았으며, 입자 크기는 300-500㎚ 이었다. 얻어진 분말의 X-선 회절 분석결과는 도3과 같으며, 이에 의하여 산소가 없는 니켈이 합성되었음을 알 수 있었다.The powder obtained after the reaction was washed five times with isopropyl alcohol and observed with a transmission electron microscope as shown in FIG. 2, and the particle size was 300-500 nm. X-ray diffraction analysis of the obtained powder is shown in Figure 3, whereby it can be seen that the oxygen-free nickel was synthesized.

<실시예 2><Example 2>

1몰의 Ni(NO3)2ㆍ6H2O을 KOH 1몰 용액과 반응시켜 니켈 하이드록사이드 침전물을 생성시키고, 이를 이소프로필 알콜로 5번 세척한 다음 Ni(OH)2을 수득하였다. 수득된 Ni(OH)21g을 에틸렌 글리콜 60ml에 녹인 다음, 온도 220℃의 반응기에서 6시간 동안 반응시켰다.One mole of Ni (NO 3 ) 2 .6H 2 O was reacted with a 1 mole solution of KOH to produce a nickel hydroxide precipitate, which was washed five times with isopropyl alcohol to give Ni (OH) 2 . 1 g of Ni (OH) 2 obtained was dissolved in 60 ml of ethylene glycol, and then reacted in a reactor at a temperature of 220 ° C. for 6 hours.

반응 후 얻어진 분말을 이소프로필 알콜로 5회 세척한 후 투과 전자현미경으로 관찰한 결과는 도4와 같았으며, 입자 크기는 100-300㎚ 이었다. 얻어진 분말의 X-선 회절 분석결과는 도5와 같았으며, 이에 의하여 순수한 니켈이 합성되었음을 알 수 있었다.The powder obtained after the reaction was washed five times with isopropyl alcohol and observed with a transmission electron microscope as shown in FIG. 4, and the particle size was 100-300 nm. X-ray diffraction analysis of the obtained powder was as shown in Figure 5, whereby it can be seen that pure nickel was synthesized.

<비교예>Comparative Example

1몰의 Ni(NO3)2ㆍ6H2O을 KOH 1몰 용액과 반응시켜 니켈 하이드록사이드 침전물을 생성시키고, 이를 이소프로필 알콜로 5번 세척한 다음 Ni(OH)2을 수득하였다. 수득된 Ni(OH)21g을 에틸렌 글리콜 60ml에 녹인 다음, 온도 190℃의 반응기에서 6시간 동안 반응시켰다.One mole of Ni (NO 3 ) 2 .6H 2 O was reacted with a 1 mole solution of KOH to produce a nickel hydroxide precipitate, which was washed five times with isopropyl alcohol to give Ni (OH) 2 . 1 g of Ni (OH) 2 obtained was dissolved in 60 ml of ethylene glycol, and then reacted in a reactor at a temperature of 190 ° C. for 6 hours.

반응 후 얻어진 분말을 이소프로필 알콜로 5회 세척한 후 투과 전자현미경으로 관찰한 결과는 입자 모양을 구별할 수 없었다.The powder obtained after the reaction was washed five times with isopropyl alcohol and observed with a transmission electron microscope.

이상의 실시예를 통하여 알 수 있는 바와 같이, 본 발명의 제조방법은 설비가 간단하고 대량생산이 용이한 액상 반응방법을 사용하여 니켈 미분말을 입자 크기 100-1000㎚의 범위 내에서 원하는 크기로 얻을 수 있으며, 특히 얻어진 니켈 미분말은 산소와 결합되지 아니한 것이므로 별도의 환원공정이 불필요하여 생산단가를 줄일 수 있다.As can be seen through the above embodiment, the production method of the present invention can obtain the fine nickel powder in the desired size within the range of particle size 100-1000nm using a liquid phase reaction method that is simple equipment and easy to mass production In addition, in particular, the obtained fine nickel powder is not combined with oxygen, so that a separate reduction process is unnecessary, thereby reducing the production cost.

Claims (6)

니켈나이트라헥사하이드레이드(Ni(NO3)2ㆍ6H2O), 니켈클로라이드하이드레이드 (NiCl2ㆍxH2O), 니켈설파이드헥사하이드레이드(NiSO4ㆍ6H2O) 중에서 선택된 1종의 금속 전구체를 수용액에서 중화제로 처리하여 침전물을 만드는 단계와, 이를 유기용매에 녹인 다음 반응기에서 반응시켜 금속분말을 얻는 단계, 그리고 얻어진 분말에서 사용된 유기용매와 분리하는 단계를 포함하는 것을 특징으로 하는 니켈 미분말의 제조방법.1 type selected from nickel nitra hexahydride (Ni (NO 3 ) 2 ㆍ 6H 2 O), nickel chloride hydride (NiCl 2 xH 2 O), nickel sulfide hexahydride (NiSO 4 6H 2 O) Treating the metal precursor with an neutralizing agent in an aqueous solution to form a precipitate, dissolving it in an organic solvent, and then reacting in a reactor to obtain a metal powder, and separating the organic solvent from the organic solvent used in the obtained powder. Method for producing nickel fine powder. 제1항에 있어서, 중화제는 칼륨 하이드록사이드(KOH), 나트륨 하이드록사이드(NaOH), 암모늄 하이드록사이드(NH4OH) 중 선택된 1종 인 것을 특징으로 하는 니켈 미분말의 제조방법.The method of claim 1, wherein the neutralizing agent is one selected from potassium hydroxide (KOH), sodium hydroxide (NaOH), and ammonium hydroxide (NH 4 OH). 제1항에 있어서, 유기용매는 에틸렌 글리콜(ethylene glycol), 폴리에틸렌 글리콜(polyethylene glycol), 부탄디올(butanediol) 중에서 선택된 1종인 것을 특징으로 하는 니켈 미분말의 제조방법.The method of claim 1, wherein the organic solvent is one selected from ethylene glycol, polyethylene glycol, and butanediol. 제1항에 있어서, 반응온도는 200-300℃인 것을 특징으로 하는 니켈 미분말의 제조방법.The method for preparing nickel fine powder according to claim 1, wherein the reaction temperature is 200-300 ° C. 제1항에 있어서, 반응압력은 0.1-4 MPa 것을 특징으로 하는 니켈 미분말의 제조방법.The method of claim 1, wherein the reaction pressure is 0.1-4 MPa. 제1항에 있어서, 얻어진 분말에서 사용된 유기용매를 분리하는 용매로 에탄올, 아세톤, 이소프로필 알콜, 메탄올 중 선택된 1종이 사용되는 것을 특징으로 하는 니켈 미분말의 제조방법.The method for producing nickel fine powder according to claim 1, wherein one selected from ethanol, acetone, isopropyl alcohol and methanol is used as a solvent for separating the organic solvent used in the obtained powder.
KR10-2001-0031770A 2001-06-07 2001-06-07 The Manufacturing Method Of Fine Powder Of Nickel KR100399716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031770A KR100399716B1 (en) 2001-06-07 2001-06-07 The Manufacturing Method Of Fine Powder Of Nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031770A KR100399716B1 (en) 2001-06-07 2001-06-07 The Manufacturing Method Of Fine Powder Of Nickel

Publications (2)

Publication Number Publication Date
KR20020094069A true KR20020094069A (en) 2002-12-18
KR100399716B1 KR100399716B1 (en) 2003-09-29

Family

ID=27708109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0031770A KR100399716B1 (en) 2001-06-07 2001-06-07 The Manufacturing Method Of Fine Powder Of Nickel

Country Status (1)

Country Link
KR (1) KR100399716B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211126B2 (en) * 2003-05-27 2007-05-01 Samsung Electronics Co., Ltd. Method for preparing non-magnetic nickel powders
US7238221B2 (en) * 2003-04-08 2007-07-03 Samsung Electronics Co., Ltd. Metallic nickel powders, method for preparing the same, conductive paste, and MLCC
US7399336B2 (en) 2003-04-09 2008-07-15 Samsung Electronics Co., Ltd. Non-magnetic nickel powders and method for preparing the same
US7520915B2 (en) 2004-08-26 2009-04-21 Samsung Electro-Mechanics Co., Ltd. Method of preparing nano scale nickel powders by wet reducing process
US7727303B2 (en) 2003-04-09 2010-06-01 Samsung Electronics Co., Ltd. Non-magnetic nickel powders and method for preparing the same
CN102145388A (en) * 2011-03-25 2011-08-10 中北大学 Method for synthesizing nano nickel powder at room temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230605A (en) * 1985-08-02 1987-02-09 Nippon Mining Co Ltd Production of fine powder
JP2900650B2 (en) * 1991-08-20 1999-06-02 株式会社村田製作所 Method for producing nickel fine powder
JPH07278619A (en) * 1994-04-13 1995-10-24 Murata Mfg Co Ltd Production of nickel powder
JP2735157B2 (en) * 1996-01-18 1998-04-02 科学技術庁無機材質研究所長 Method for producing ultrafine powder with suppressed aggregation
CA2242890A1 (en) * 1997-09-11 1999-03-11 Takayuki Araki Method for preparing nickel fine powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238221B2 (en) * 2003-04-08 2007-07-03 Samsung Electronics Co., Ltd. Metallic nickel powders, method for preparing the same, conductive paste, and MLCC
US7399336B2 (en) 2003-04-09 2008-07-15 Samsung Electronics Co., Ltd. Non-magnetic nickel powders and method for preparing the same
US7727303B2 (en) 2003-04-09 2010-06-01 Samsung Electronics Co., Ltd. Non-magnetic nickel powders and method for preparing the same
US7211126B2 (en) * 2003-05-27 2007-05-01 Samsung Electronics Co., Ltd. Method for preparing non-magnetic nickel powders
US7520915B2 (en) 2004-08-26 2009-04-21 Samsung Electro-Mechanics Co., Ltd. Method of preparing nano scale nickel powders by wet reducing process
CN102145388A (en) * 2011-03-25 2011-08-10 中北大学 Method for synthesizing nano nickel powder at room temperature

Also Published As

Publication number Publication date
KR100399716B1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
EP0154534B1 (en) Amorphous metal alloy powders and synthesis of same by solid state chemical reduction reactions
US10529460B2 (en) Method for preparing metal/molybdenum oxide nanoparticles
WO2011027864A1 (en) Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
JP2000087121A (en) Metal powder, its production and electrically conductive paste
US20160362303A1 (en) Method for preparing molybdenum oxide nanoparticles
KR100399716B1 (en) The Manufacturing Method Of Fine Powder Of Nickel
JP5678437B2 (en) Synthesis method of nanocrystalline alloys
WO2012123442A1 (en) Manufacture of base metal nanoparticles using a seed particle method
US10141082B2 (en) Oxidation resistant copper nanoparticles and method for producing same
KR20100091533A (en) Preparing method of cobalt powder
KR102408091B1 (en) method for tetramine dichloropalladium(Ⅱ) and tetramine dichloropalladium(Ⅱ) manufactured with this
KR101044726B1 (en) A method for producing ultrafine nickel powder by chemical reduction
KR100405970B1 (en) Synthesis of Cu Fine Particles by Glycothermal Process
KR100407805B1 (en) Metal catalysts for production of carbon nano fiber/nano tube and preparation method of the same
CN110950311A (en) Preparation method of nickel selenide micro-nano flower, product and application thereof
Şişman et al. Surfactant-assisted polyol preparation of nickel powders with different morphologies
KR20200107175A (en) Perovskite compound, a catalyst for fuel cell including the same, and a process for producing the same
US11591235B2 (en) Method for producing metal oxide nanoparticles
KR102560213B1 (en) Manufacturing method of rutheniumdioxide-silver complex
KR100449369B1 (en) Preparation of flake-type fine silver powders
CN115634693B (en) Preparation method of nanocomposite with hollow tube structure and application of nanocomposite in catalyzing aminoborane alcoholysis to produce hydrogen
CN111517356B (en) Cu2O nanotube and method for producing the same
CN117798368A (en) Preparation method and application of 3D printing silver-ruthenium co-doped copper nanowire electrode
Zhao et al. Hydrothermal treatment of submicrometer copper powders for the improved anti-oxidative capacity
Parkash Fabrication and Growth Mechanism of Nano-Octahedrons: A Study on Cu2O Core-Shell Structures for Oxygen Evolution Reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080905

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee