KR20020069328A - Carbon nanotubes for fuel cells and manufacturing method thereof - Google Patents

Carbon nanotubes for fuel cells and manufacturing method thereof Download PDF

Info

Publication number
KR20020069328A
KR20020069328A KR1020010009532A KR20010009532A KR20020069328A KR 20020069328 A KR20020069328 A KR 20020069328A KR 1020010009532 A KR1020010009532 A KR 1020010009532A KR 20010009532 A KR20010009532 A KR 20010009532A KR 20020069328 A KR20020069328 A KR 20020069328A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
mixture
tube
carbon nano
fuel cell
Prior art date
Application number
KR1020010009532A
Other languages
Korean (ko)
Inventor
홍병선
김호석
신미남
Original Assignee
홍병선
김호석
신미남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍병선, 김호석, 신미남 filed Critical 홍병선
Priority to KR1020010009532A priority Critical patent/KR20020069328A/en
Publication of KR20020069328A publication Critical patent/KR20020069328A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: A manufacturing method of carbon nano-tube for fuel cell is provided, which can produce economically nano-tube of homogeneous and high quality by using atmospheric catalytic chemical gaseous deposition process. The carbon nano-tube is very stable in chemical and environmental-friendly, so that it is used as hydrogen storage vessel of fuel cell, thus enabling the fuel cell to be smaller and lighter. CONSTITUTION: The method comprises the following steps: (i) mix by mechanochemical treating the mixture of nickel, the catalyst, and graphite, the carrier; (ii) etch the mixture prepared by step 1 by hydrogen gas; (iii) grow the mixture to carbon nano-tube at a temperature range of 500-700 deg.C by using acetylene, a carbon raw material, the etching and growing steps being carried out simultaneously by catalytic chemical gaseous deposition process; and (iv) cool the carbon nano-tube in an argon atmosphere.

Description

연료전지용 탄소 나노튜브 제조방법{Carbon nanotubes for fuel cells and manufacturing method thereof}Carbon nanotubes for fuel cells and manufacturing method

다이아몬드, 흑연, 풀러린(fullerene) 및 탄소 나노튜브의 네가지 결정질 구조를 갖는 탄소는 그 결정구조에 따라 독특한 특성을 가진다. 이 중에서도 탄소 나노튜브는 속이 비어있는 나노미터 크기의 구조로써 우수한 탄력성, 강도, 유연성 등의 특징을 구비하여 여러 분야에 그 응용이 가능하다.Carbon having four crystalline structures of diamond, graphite, fullerene and carbon nanotubes has unique properties depending on its crystal structure. Among these, carbon nanotubes are hollow nanometer-sized structures, which have excellent elasticity, strength, and flexibility, and are applicable to various fields.

특히, 탄소 나노튜브는 속이 비어있고 상대적으로 표면적이 넓기 때문에 다량의 수소를 가역적으로 흡착 및 저장시키는 것이 가능하여 미래의 에너지원으로 각광받고 있는 연료전지의 수소 저장용기로 사용할 수 있다.In particular, since the carbon nanotubes are hollow and have a relatively large surface area, carbon nanotubes can be reversibly adsorbed and stored in a large amount of hydrogen, and thus can be used as a hydrogen storage container of a fuel cell, which has been spotlighted as a future energy source.

연료전지(Fuel Cells)의 기본원리는 수소와 산소로부터 전기와 물을 만들어 내는 것으로 외부에서 연속적으로 공급되는 연료(수소)와 공기(산소)를 연소에 의하지 않고 전기화학반응에 의하여 연료가 갖고 있는 화학에너지를 직접 전기에너지와 열로 변환시키는 발전장치이다. 연료전지의 발전원으로 사용하기 위해서는 수소를 저장해야 하는데, 그 방법으로는 저온이나 상온에서 고압으로 수소를 저장하는 방법과 전기 화학적으로 충방전법에 의해 수소를 저장하는 방법이 있다.The basic principle of fuel cells is to generate electricity and water from hydrogen and oxygen, and the fuel has an electrochemical reaction instead of combustion of fuel (hydrogen) and air (oxygen) continuously supplied from the outside. It is a power generation device that converts chemical energy directly into electric energy and heat. In order to use the fuel cell as a power generation source, hydrogen must be stored. As a method, hydrogen is stored at a high pressure at a low temperature or room temperature, and a method of storing hydrogen by an electrochemical charge / discharge method.

수소저장용 탄소 나노튜브를 제조하는 방법에는 두 흑연봉 사이에 아아크방전을 통하여 생성된 것이 최초로 발견되었고[S. lijima, Nature 354, 56(1991)], 주로 이 방법이 많이 사용되고 있으나 이 방법으로 생성된 나노튜브는 전체 물질 중 약 15% 정도 밖에 되지 않아 실제 응용을 위해서는 복잡한 정제 과정을 거쳐야 하는 단점이 있다. 또 다른 제조방법으로는 흑연의 레이저 증발법, 벤젠 등의 탄화수소의 기상열분해법, 전기전해법 등이 있지만, 이들 방법은 경제성이 없거나 고품위 탄소 나노튜브를 제조하는 데 여러 가지 문제점이 발생된다.The method of producing carbon nanotubes for hydrogen storage was first discovered through arc discharge between two graphite rods [S. lijima, Nature 354, 56 (1991)], but this method is mainly used, but the nanotubes produced by this method are only about 15% of the total material, which has the disadvantage of undergoing a complicated purification process for actual application. Further manufacturing methods include laser evaporation of graphite, gas phase pyrolysis of hydrocarbons such as benzene, and electrolysis. However, these methods are not economical or have various problems in producing high-quality carbon nanotubes.

본 발명의 목적은 연료전지용 탄소 나노튜브 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 촉매 및 지지체의 효율적인 혼합과 활성화를 위하여 메카노케미컬 처리한 후 탄화수소(C2H2) 및 수소(H2) 처리하여 고품위의 탄소 나노튜브를 제조하는 방법에 관한 것이다.An object of the present invention relates to a carbon nanotube for a fuel cell and a method of manufacturing the same, and more particularly, to a high quality by treating hydrocarbon (C2H2) and hydrogen (H2) after mechanochemical treatment for efficient mixing and activation of the catalyst and support. It relates to a method for producing carbon nanotubes.

본 발명은 촉매인 니켈(Ni) 및 지지체인 흑연을 사용하여 이들을 메카노케미컬 처리한 후, 탄소 나노튜브의 원료로서 탄화수소(C2H2) 및 수소(H2) 처리하여 고품위의 탄소 나노튜브를 합성하는 방법에 의해, 생성밀도가 높고 대면적 제작이 가능한 탄소 나노튜브 제조방법을 제공하며, 또한 연료전지에 사용하기 위한 고효율 수소 저장용 탄소 나노튜브 및 그 제조방법을 제공하는 데 그 목적이 있다.The present invention is a method of synthesizing high quality carbon nanotubes by mechanochemical treatment of nickel (Ni) as a catalyst and graphite as a support, followed by hydrocarbon (C2H2) and hydrogen (H2) as raw materials of carbon nanotubes. It is an object of the present invention to provide a method for producing carbon nanotubes having a high production density and making a large area, and to provide a highly efficient hydrogen storage carbon nanotube for use in a fuel cell and a method of manufacturing the same.

[도 1] 본 발명의 탄소 나노튜브 제조 공정흐름도.1 is a flow chart of the carbon nanotube manufacturing process of the present invention.

[도 2] 본 발명의 탄소 나노튜브 제조 장치의 구조도.2 is a structural diagram of a carbon nanotube manufacturing apparatus of the present invention.

[도 3a] 메카노케미컬 처리를 거치지 않은 탄소 나노튜브의 주사전자현미경 사진.3a is a scanning electron micrograph of carbon nanotubes not subjected to mechanochemical treatment.

[도 3b] 본 발명에 관한 60분간 메카노케미컬 처리를 거친 탄소 나노튜브의 주사전자현미경 사진.FIG. 3b is a scanning electron micrograph of carbon nanotubes subjected to mechanochemical treatment for 60 minutes according to the present invention. FIG.

[도 4] 본 발명에 의하여 제조된 탄소 나노튜브의 라만 스펙트라 프로파일.4 is a Raman spectra profile of carbon nanotubes prepared according to the present invention.

본 발명에 따른 연료전지용 탄소 나노튜브의 제조방법은 촉매로 니켈, 지지체로 흑연을 사용하여 이를 메카노케미컬 처리하는 단계와 상기 혼합단계에서 획득된 혼합물을 수소가스를 이용하여 식각(etch)하는 단계와 상기 식각(etch)한 혼합물을 탄소원료인 아세틸렌을 사용하여 800℃이하에서 탄소 나노튜브를 성장시키는 단계 및 냉각 등의 후처리단계로 구성되는 것을 특징으로 한다. 도 1에 본 발명의 탄소 나노튜브 제조공정흐름도를 도시하였다.Method for producing carbon nanotubes for fuel cells according to the present invention is a step of mechanochemical treatment using nickel as a catalyst, graphite as a support, and etching the mixture obtained in the mixing step using hydrogen gas. And etching the mixture (etched) using carbonaceous material acetylene, and growing carbon nanotubes at 800 ° C. or less, and a post-treatment step such as cooling. Figure 1 shows a carbon nanotube manufacturing process flow chart of the present invention.

본 발명에 따른 탄소 나노튜브는 화학적으로 대단히 안정한 물질로, 특히 효율적으로 수소의 저장이 가능하며 환경적으로 유해하지 않으므로 연료전지용 수소저장원으로 적합하다.The carbon nanotubes according to the present invention are chemically very stable materials, and are particularly suitable for hydrogen storage for fuel cells because they can efficiently store hydrogen and are not environmentally harmful.

특히, 본 발명에서는 탄소 나노튜브의 성장에 앞서 촉매인 니켈과 지지체인 흑연을 균일한 혼합 및 결정질에 비해 반응성이 풍부한 비정질(무정형화)로 변화, 활성화를 위하여 메카노케미컬 처리함과 더불어, 상기 혼합물 표면에 미세한 그레인(grain)을 형성시키기 위하여 수소가스로 식각(etch) 처리하여 고품위의 탄소 나노튜브를 얻을 수 있는 특징이 있다.In particular, in the present invention, before the growth of the carbon nanotubes, the catalyst nickel and the support graphite are transformed into amorphous (amorphous), which is more reactive than the uniform mixture and crystalline, and treated with mechanochemical for activation. In order to form a fine grain (grain) on the surface of the mixture has a feature that can be obtained by etching (hydrogen) with high-quality carbon nanotubes.

본 발명의 탄소 나노튜브 제조방법은 다음과 같다.Carbon nanotube manufacturing method of the present invention is as follows.

우선, 니켈과 흑연을 중량비로 1:1이 되도록 평량하고 보다 효과적인 혼합을 위해 에탄올 용매 하에서 마노유발과 같은 혼합기를 이용하여 균일한 조성이 되도록 충분히 혼합한다. 상기의 혼합물이 메카노케미컬 효과가 일어나도록 mixer mill을 사용하여 240분 이내로 혼합 분쇄한다. 다음 단계로 상기 혼합물을 오븐에 넣고 100℃내지 150℃에서 24시간 동안 건조한다. 건조한 혼합물을 고순도 알루미나 보트에 넣고 전기로를 사용하여 수소로 식각(etch) 처리하고 아세틸렌을 사용하여 400℃∼800℃에서 1시간 동안 탄소 나노튜브를 성장시킨다. 탄소 나노튜브의 성장온도는 매우 중요한데 만일 성장온도가 400℃ 미만이면 탄소 나노튜브가 성장되지 못하고, 700℃를 초과하면 탄화수소가 촉매로부터 탈착속도가 확산속도 보다 크므로 탄소입자로 생성되는 문제점이 있을 수 있다. 본 발명에 관한 탄소 나노튜브의 바람직한 성장온도는 500℃∼600℃ 사이의 온도 구간이다. 탄소 나노튜브를 성장시킨 후, 시간당 200℃의 온도로 낮추어 아르곤(Ar) 분위기에서 냉각한다.First, nickel and graphite are mixed in a weight ratio of 1: 1 and mixed sufficiently so as to have a uniform composition using a mixer such as agate induction under ethanol solvent for more effective mixing. The mixture is mixed and ground within 240 minutes using a mixer mill to produce a mechanochemical effect. In the next step the mixture is placed in an oven and dried at 100 ° C. to 150 ° C. for 24 hours. The dry mixture is placed in a high purity alumina boat, etched with hydrogen using an electric furnace, and carbon nanotubes are grown for 1 hour at 400 ° C. to 800 ° C. using acetylene. The growth temperature of the carbon nanotubes is very important. If the growth temperature is less than 400 ° C., the carbon nanotubes cannot grow. If the growth temperature exceeds 700 ° C., the hydrocarbon desorption rate from the catalyst is greater than the diffusion rate. Can be. The preferred growth temperature of the carbon nanotubes according to the present invention is a temperature range between 500 ° C and 600 ° C. After growing the carbon nanotubes, it is cooled to a temperature of 200 ℃ per hour and cooled in an argon (Ar) atmosphere.

상기 분말에 대하여 주사전자현미경(SEM)을 사용하여 생성된 입형을 조사하고, 라만 분광기를 사용하여 측정한 결과, 100nm 정도의 고품위 탄소 나노튜브가 수득되었다. 본 발명에서 제조한 탄소 나노튜브는 화학적으로 매우 안정하며 연료전지의 수소 저장소재로 이용이 가능하다.The powders were examined using a scanning electron microscope (SEM), and measured using a Raman spectrometer. As a result, high-quality carbon nanotubes of about 100 nm were obtained. The carbon nanotubes prepared in the present invention are chemically very stable and can be used as hydrogen storage materials for fuel cells.

본 발명을 이하의 실시 예에 의거하여 상세하게 설명하였는데 , 이 실시 예는 예시적인 것으로서 이해되어야 하며, 본 발명이 실시 예에 한정되는 것은 아니다.The present invention has been described in detail based on the following examples, which are to be understood as illustrative, and the present invention is not limited to the examples.

실시 예) 촉매 화학기상증착법에 의한 탄소 나노튜브의 제조EXAMPLES Preparation of Carbon Nanotubes by Catalytic Chemical Vapor Deposition

니켈과 흑연을 1:1의 중량비로 평량하고, 이것을 마노유발 및 믹서밀(mixer mill)을 사용하여 에탄을 중에서 충분히 고르게 혼합한다. 혼합한 시료를 오븐을 사용하여 130℃에서 24시간 동안 건조한다. 얻어진 혼합물을 고순도 알루미나 보트에 넣고 전기로를 사용하여 수소 분위기에서 30분 동안 식각(etch)한다. 에칭 후에 얻어진 혼합물을 800℃ 이하의 아세틸렌 분위기에서 탄소 나노튜브를 성장시킨 후, 아르곤(Ar) 분위기 하에서 냉각시켜 탄소 나노튜브를 제조한다.Nickel and graphite are weighed in a weight ratio of 1: 1, and this is mixed evenly in ethane using agate induction and a mixer mill. The mixed samples are dried at 130 ° C. for 24 hours using an oven. The resulting mixture is placed in a high purity alumina boat and etched for 30 minutes in a hydrogen atmosphere using an electric furnace. The mixture obtained after the etching is grown carbon nanotubes in an acetylene atmosphere of 800 ° C. or less, and then cooled under argon (Ar) atmosphere to prepare carbon nanotubes.

실험 예 1) 촉매 화학기상증착법에 의한 탄소 나노튜브 제조 장치Experimental Example 1) Carbon nanotube manufacturing apparatus by catalytic chemical vapor deposition

고품위 탄소 나노튜브를 제조하기 위하여 상압을 이용한 촉매 화학기상증착법의 장치를 도 2에 도시하였다.The apparatus of catalytic chemical vapor deposition using atmospheric pressure to prepare high quality carbon nanotubes is shown in FIG. 2.

도 2에 도시된 바와 같이, 본 발명에 사용하는 장치는 매우 간단하며 진공을 사용하지 않으므로 경제성이 우수함을 확인할 수 있다.As shown in FIG. 2, the device used in the present invention is very simple and does not use a vacuum, so it can be confirmed that the economy is excellent.

실험 예 2) 메카노케미컬 처리에 따른 탄소 나노튜브의 입형변화Experimental Example 2) Change in Particle Size of Carbon Nanotubes by Mechanochemical Treatment

상기 실시 예와 동일한 방법으로 하되, 촉매와 지지체를 마노유발 및 mixer mill을 사용하여 혼합물을 제조하고 이를 수소 식각(etch) 처리 후 아세틸렌을 사용하여 탄소 나노튜브를 성장시킨 후 냉각하여 탄소 나노튜브를 제조한다. 상기의 탄소 나노튜브에 대하여 주사전자현미경을 사용하여 관찰한 표면 형상을 도 3에 나타내었다.In the same manner as in the above embodiment, the catalyst and the support were prepared using agate induction and mixer mill, and after the hydrogen etching (etch), the carbon nanotubes were grown using acetylene and cooled to cool the carbon nanotubes. Manufacture. The surface shape observed using the scanning electron microscope for the carbon nanotubes is shown in FIG. 3.

도 3에 나타난 바와 같이, 본 발명에 의해 얻어진 탄소 나노튜브 분말은 봉형이고, 비교적 입경이 100nm 정도로 균일한 입자임을 확인할 수 있었다.As shown in FIG. 3, the carbon nanotube powders obtained by the present invention were rod-shaped, and it was confirmed that the particles were relatively uniform in particle size of about 100 nm.

한편, 도 3a 및 도 3b를 비교하면, 혼합물을 메카노케미컬 처리과정을 거처서 성장시킨 탄소 나노튜브가 더 균일하며 고품위임을 알 수 있다.Meanwhile, comparing FIGS. 3A and 3B, it can be seen that the carbon nanotubes grown through the mechanochemical treatment of the mixture are more uniform and of higher quality.

실험 예 3) 탄소 나노튜브의 라만 스펙트라Experimental Example 3) Raman Spectra of Carbon Nanotubes

상기 실시 예에서 수득된 탄소 나노튜브에 대하여 상온에서 라만 분광법으로 분석하고, 그 결과를 도 4에 나타내었다.The carbon nanotubes obtained in the above example were analyzed by Raman spectroscopy at room temperature, and the results are shown in FIG. 4.

도 4에 나타낸 바와 같이, 본 발명에 의하여 제조한 시료는 1593cm-1에서 나타난 G-band의 탄소 나노튜브 임을 확인할 수 있었다.As shown in Figure 4, the sample prepared by the present invention was confirmed that the carbon nanotubes of G-band shown in 1593cm-1.

본 발명에 의하여 촉매인 니켈과 지지체인 흑연을 메카노케미컬 처리함에 따라 상압의 촉매 화학기상증착법에 의한 탄소 나노튜브 제조 시에, 균일하며 고품위인 탄소 나노튜브를 경제적으로 제조할 수 있다. 상기의 탄소 나노튜브는 화학적으로 매우 안정하며 환경 친화적 물질이므로 연료전지의 수소 저장용기로 효과적으로 사용할 수 있어, 연료전지의 소형화와 경량화에 커다란 기여를 할 수 있다.According to the present invention, by the mechanochemical treatment of nickel as the catalyst and graphite as the support, uniform and high-quality carbon nanotubes can be economically produced in the production of carbon nanotubes by a catalytic chemical vapor deposition method at atmospheric pressure. Since the carbon nanotubes are chemically very stable and environmentally friendly materials, the carbon nanotubes can be effectively used as hydrogen storage containers of fuel cells, which can contribute to miniaturization and weight reduction of fuel cells.

Claims (2)

화학기상증착법에 의한 탄소 나노튜브 제조방법에 있어서,In the method for producing carbon nanotubes by chemical vapor deposition, (A) 촉매인 니켈, 지지체인 흑연의 혼합물을 메카노케미컬 처리하여 혼합하는 단계와(A) mechanochemically mixing a mixture of nickel as a catalyst and graphite as a support; (B) 상기 (A)단계의 혼합물을 수소가스로 식각(etch)하는 단계와(B) etching the mixture of step (A) with hydrogen gas; (C) 상기 (B)단계의 혼합물을 탄소원료인 아세틸렌을 사용하여 500℃∼700℃의 온도구간에서 탄소 나노튜브를 성장시키는 단계와(C) growing carbon nanotubes in a temperature range of 500 ° C. to 700 ° C. using acetylene as a carbon raw material in the mixture of step (B); (D) 아르곤 분위기 하에서 냉각하는 단계로 구성되는 연료전지용 탄소 나노튜브 제조방법.(D) A method for producing carbon nanotubes for fuel cells, comprising the steps of cooling under an argon atmosphere. 제1항에 있어서 상기 (B)단계의 수소가스로 식각함과 동시에 연속적으로 상기 (C)단계의 아세틸렌을 사용하여 탄소 나노튜브를 성장시킬 수 있는 촉매 화학기상증착법의 장치를 특징으로 하는 연료전지용 탄소 나노튜브 제조방법.The method of claim 1, characterized in that the catalytic chemical vapor deposition apparatus capable of growing carbon nanotubes using the acetylene of step (C) while etching with hydrogen gas of step (B). Carbon nanotube manufacturing method.
KR1020010009532A 2001-02-24 2001-02-24 Carbon nanotubes for fuel cells and manufacturing method thereof KR20020069328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010009532A KR20020069328A (en) 2001-02-24 2001-02-24 Carbon nanotubes for fuel cells and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010009532A KR20020069328A (en) 2001-02-24 2001-02-24 Carbon nanotubes for fuel cells and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20020069328A true KR20020069328A (en) 2002-08-30

Family

ID=27695478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010009532A KR20020069328A (en) 2001-02-24 2001-02-24 Carbon nanotubes for fuel cells and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20020069328A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478359B1 (en) * 2002-05-10 2005-03-24 한국화학연구원 Methode of Manufacturing Carbon Nanomaterials By Utilizing Mechanochemical Treatment technology and Carbon Nanomaterials
KR100759547B1 (en) * 2002-07-29 2007-09-18 삼성에스디아이 주식회사 Carbon nanotube for fuel cell, method for preparing the same and fuel cell using the carbon nanotube
KR100771848B1 (en) * 2002-12-30 2007-10-31 전자부품연구원 Monodispersed highly crystallized carbon nanotubes and there's manufacturing method
WO2011025110A1 (en) * 2009-08-31 2011-03-03 인하대학교 산학협력단 Fabrication method of hydrogen storage material which contains graphite powder and fabricated hydrogen storage material thereof
KR20200117527A (en) * 2019-04-04 2020-10-14 국방과학연구소 Catalyst supporter for supporting catalyst of fuel cell and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188509A (en) * 1996-01-12 1997-07-22 Nec Corp Production of monolayer carbon manotube
US5965267A (en) * 1995-02-17 1999-10-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide and the nanoencapsulates and nanotubes formed thereby
KR20020009875A (en) * 2000-07-27 2002-02-02 최규술 Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965267A (en) * 1995-02-17 1999-10-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide and the nanoencapsulates and nanotubes formed thereby
JPH09188509A (en) * 1996-01-12 1997-07-22 Nec Corp Production of monolayer carbon manotube
KR20020009875A (en) * 2000-07-27 2002-02-02 최규술 Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478359B1 (en) * 2002-05-10 2005-03-24 한국화학연구원 Methode of Manufacturing Carbon Nanomaterials By Utilizing Mechanochemical Treatment technology and Carbon Nanomaterials
KR100759547B1 (en) * 2002-07-29 2007-09-18 삼성에스디아이 주식회사 Carbon nanotube for fuel cell, method for preparing the same and fuel cell using the carbon nanotube
KR100771848B1 (en) * 2002-12-30 2007-10-31 전자부품연구원 Monodispersed highly crystallized carbon nanotubes and there's manufacturing method
WO2011025110A1 (en) * 2009-08-31 2011-03-03 인하대학교 산학협력단 Fabrication method of hydrogen storage material which contains graphite powder and fabricated hydrogen storage material thereof
KR20200117527A (en) * 2019-04-04 2020-10-14 국방과학연구소 Catalyst supporter for supporting catalyst of fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Kumar et al. Carbon nanotube synthesis and growth mechanism
US7687109B2 (en) Apparatus and method for making carbon nanotube array
RU2213050C2 (en) Method for preparing carbon
US7563425B2 (en) Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
US7682658B2 (en) Method for making carbon nanotube array
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
Yu et al. Single-source-precursor synthesis of porous W-containing SiC-based nanocomposites as hydrogen evolution reaction electrocatalysts
WO2006135378A2 (en) Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
CN110255626B (en) Method for preparing surface-active onion-shaped carbon nanospheres based on vapor deposition
Liu et al. Synthesis of structure controlled carbon nanomaterials by AC arc plasma process
US20070042903A1 (en) Lanthanum doping catalyst for preparing carbon nanotubes having uniform diameter and producing method thereof
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
Kumar et al. Gigas Growth of Carbon Nanotubes.
KR20020069328A (en) Carbon nanotubes for fuel cells and manufacturing method thereof
Dikio et al. Carbon nanotubes synthesis by catalytic decomposition of ethyne using Fe/Ni catalyst on aluminium oxide support
CN111943722A (en) Controllable method for synthesizing carbon nano tube on surface of foamed ceramic and application thereof
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR20120092344A (en) Fabrication method of carbon nanotube or carbon nanofiber using metal-organic frameworks, and the carbon nanotube or carbon nanofiber thereby
KR100500210B1 (en) Method of preparing carbon nanotubes using mechanochemically treated catalysts
Zhu Detonation of molecular precursors as a tool for the assembly of nano-sized materials
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
CN111617700B (en) Diamond and preparation method thereof
KR100599875B1 (en) Method of manufacturing carbon nanofibers using mechanochemically activated catalyst
Huczko et al. Plasma synthesis of nanocarbons
KR101580928B1 (en) synthetic method of Si-CNFs based on Co-Cu catalysts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application