KR19980030293A - Thermal Gradient Chemical Vapor Infiltration for the Preparation of Carbon / Carbon Composites - Google Patents

Thermal Gradient Chemical Vapor Infiltration for the Preparation of Carbon / Carbon Composites Download PDF

Info

Publication number
KR19980030293A
KR19980030293A KR1019960049673A KR19960049673A KR19980030293A KR 19980030293 A KR19980030293 A KR 19980030293A KR 1019960049673 A KR1019960049673 A KR 1019960049673A KR 19960049673 A KR19960049673 A KR 19960049673A KR 19980030293 A KR19980030293 A KR 19980030293A
Authority
KR
South Korea
Prior art keywords
carbon
preform
chemical vapor
thermal gradient
reactor
Prior art date
Application number
KR1019960049673A
Other languages
Korean (ko)
Other versions
KR100198154B1 (en
Inventor
최우철
박상효
김광수
Original Assignee
추호석
대우중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19479511&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR19980030293(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 추호석, 대우중공업 주식회사 filed Critical 추호석
Priority to KR1019960049673A priority Critical patent/KR100198154B1/en
Publication of KR19980030293A publication Critical patent/KR19980030293A/en
Application granted granted Critical
Publication of KR100198154B1 publication Critical patent/KR100198154B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite

Abstract

본 발명은 탄소/탄소 복합재료를 제조하기 위한 열구배 화학기상침투법(thermal gradient CVD) 및 그 장치에 관한 것으로, 탄소섬유 프리폼(1)을 장착한 반응관 혹은 반응로(10)내에 탄화수소 가스를 주입하고 열분해시켜 상기 프리폼(1)에 열분해 탄소가 증착되도록 함으로써 탄소/탄소 복합재료를 제조해 주는 화학기상침투법에 있어서, 상기 프리폼(1)의 중심부에 발열체(11)를 장착하고 이 발열체(11)를 통해 가열해 줌으로써 프리폼(1)의 두께 방향으로 온도구배가 유도되도록 해 주는 것을 특징으로 하는 구성으로 되어, 탄소섬유 프리폼에 탄화수소 가스의 열분해 탄소를 증착시켜 탄소/탄소 복합재료를 제조할 때 공정시간을 단축시키면서도 균일한 탄소증착층을 형성시켜 주는 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thermal gradient CVD and apparatus therefor for producing a carbon / carbon composite material, comprising a hydrocarbon gas in a reaction tube or reactor 10 equipped with a carbon fiber preform 1. In the chemical vapor permeation method of manufacturing a carbon / carbon composite material by injecting and pyrolyzing to deposit pyrolytic carbon on the preform (1), the heating element (11) is mounted in the center of the preform (1) and the heating element It is characterized in that the temperature gradient is induced in the thickness direction of the preform (1) by heating through the (11), the carbon fiber preform by depositing pyrolysis carbon of hydrocarbon gas to produce a carbon / carbon composite material When the process time is shortened while forming a uniform carbon deposition layer.

Description

탄소/탄소 복합재료를 제조하기 위한 열구배 화학기상침투법 (A thermal gradient CVD for manufacturing C/C composites, and device thereof)A thermal gradient CVD for manufacturing C / C composites, and device

본 발명은 탄소/탄소 복합재료를 제조하기 위한 화학기상침투법(chemical vapor deposition, CVD) 및 그 장치에 관한 것으로, 더욱 상세하게는 탄소섬유(carbon fiber)로 직조된 프리폼(preform)을 반응관 혹은 반응로내에 장착하고 탄화수소 가스의 열분해에 의해 프리폼에 탄소기지물질을 형성시켜 탄소/탄소 복합재료를 제조할 때, 상기 프리폼의 내부에서 외부로 열구배를 유도함으로써 공정시간을 단축시키면서도 균일한 탄소 증착층을 형성시켜 주는 열구배 화학기상침투 방법 및 그 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to chemical vapor deposition (CVD) and apparatus for producing a carbon / carbon composite material, and more particularly, to a reaction tube for preform woven from carbon fiber. Alternatively, when carbon / carbon composite materials are manufactured by forming carbon base materials in the preform by pyrolysis of hydrocarbon gas and incorporating them into the reactor, a uniform carbon is reduced while inducing a thermal gradient from the inside of the preform to the outside. A thermal gradient chemical vapor permeation method and apparatus for forming a deposition layer are provided.

일반적으로 탄소/탄소 복합재료의 제조방법은 탄소섬유로 직조된 프리폼에 탄소기지물질을 형성시켜 주는 방법에 따라 액상함침법과 화학기상침투법으로 대별할 수 있는데, 이중 액상함침법은 프리폼에 수지를 함침시킨 후 그 수지를 열분해 시켜 탄소/탄소 복합재료를 제조하는 방법으로, 제조장치가 비교적 간단하고 제조경비가 경제적인 장점은 있지만, 탄화과정에서 발생되는 휘발성 물질들로 인해 많은 기공이 발생하고 탄소섬유와 탄소기지물질간의 계면접착이 좋지 않기 때문에, 제조된 탄소/탄소 복합재료의 밀도가 낮고 기계적 물성이 좋지 않은 단점이 있다.In general, the carbon / carbon composite material manufacturing method can be roughly classified into a liquid impregnation method and a chemical vapor permeation method according to a method of forming a carbon base material on a preform made of carbon fiber. It is a method of manufacturing carbon / carbon composites by thermal decomposition of the resin after impregnation. Although the manufacturing apparatus is relatively simple and the manufacturing cost is economically advantageous, many pores are generated due to the volatiles generated during the carbonization process. Since the interface adhesion between the fiber and the carbon base material is not good, there is a disadvantage that the density of the produced carbon / carbon composite material is low and the mechanical properties are not good.

이에 따라 양호한 물성의 탄소/탄소 복합재료를 얻기 위해 화학기상침투법이 많이 이용되고 있는데, 이 화학기상침투법은 메탄이나 프로판 등의 탄화수소 가스를 열분해시켜 프리폼에 탄소기지물질을 형성시켜 주는 방법으로, 종래에는 소위 '등온법(isothermal CVD)'이 이용되어 왔다.Accordingly, chemical vapor permeation is widely used to obtain a carbon / carbon composite material having good physical properties. The chemical vapor permeation method is a method of thermally decomposing hydrocarbon gas such as methane or propane to form a carbon base material in a preform. In the related art, so-called 'isothermal CVD' has been used.

이 등온법에 의한 종래의 화학기상침투법은, 그 개념이 도 5에 도시적으로 표현되어 있는 바와 같이, 탄소섬유 프리폼(1)을 장착하는 반응관 혹은 반응로(10')가 그 내벽 둘레를 따라 발열체 혹은 히터(11')가 설치된 구조로 되어 있어서, 그 중심부에 프리폼(1)을 장착하고 반응관(10')내의 탄화수소 가스를 열분해시켜 그 열분해 탄소를 프리폼(1)에 기상증착시켜 주는 방법이다.In the conventional chemical vapor permeation method by this isothermal method, as the concept is shown in FIG. 5, the reaction tube or reactor 10 'to which the carbon fiber preform 1 is mounted is circumferentially surrounded by its inner wall. The heating element or heater 11 'is provided along the structure, and the preform 1 is mounted at the center thereof, and the hydrocarbon gas in the reaction tube 10' is thermally decomposed to vapor-deposit the pyrolyzed carbon onto the preform 1. How to give.

이와같은 등온법에서는 가열에 의한 탄화수소 가스의 열분해시 프리폼(1)의 내부온도(T1)와 외부온도(T2)가 균일한 상태로 되기 때문에, 프리폼(1)의 내외부에서 동시에 탄화수소 가스의 열분해반응 및 기상증착이 일어나게 된다. 이때 탄화수소 가스가 프리폼(1)의 내부로 확산되지 않고 외부에서 열분해된 기상의 열분해탄소는, 프리폼(1)의 표면에 쉽게 우선증착을 일으키게 되고, 이에 따라 프리폼의 표면기공이 막히면서 탄화수소 가스의 프리폼 내부로의 침투가 방해받아 표면우선증착이 더욱 심화되게 되므로, 프리폼의 두께방향으로 균일한 밀도를 갖는 탄소/탄소 복합재료를 제조하는 데 어려움이 따르게 된다.In this isothermal method, the internal temperature T 1 and the external temperature T 2 of the preform 1 become uniform during thermal decomposition of the hydrocarbon gas by heating. Pyrolysis and vapor deposition occur. At this time, the thermally decomposed thermally decomposed carbon without the hydrocarbon gas being diffused into the preform 1 easily causes preferential deposition on the surface of the preform 1, thereby blocking the surface pores of the preform and thus preforming the hydrocarbon gas. Since penetration into the interior is hindered and the surface priority deposition is further intensified, it is difficult to produce a carbon / carbon composite material having a uniform density in the thickness direction of the preform.

이와 같이 등온법에 의한 종래의 화학기상침투법에 있어서는 열분해 탄소가 프리폼에 증착될 때 프리폼의 내부보다 표면에 우선적으로 증착되기 때문에 프리폼의 두께방향으로 균일한 탄소 증착층이 형성되지 않는 문제점이 있었던 것이다.As described above, in the conventional chemical vapor permeation method by isothermal method, when pyrolytic carbon is deposited on the surface rather than the inside of the preform, the uniform carbon deposition layer is not formed in the thickness direction of the preform. will be.

이에 본 발명은 상기와 같은 등온법에 의한 종래의 화학기상침투법의 문제점을 해소시키기 위해 새로운 방법의 화학기상침투법을 제공하는 것으로, 탄소섬유 프리폼에 탄화수소 가스의 열분해 의해 탄소기지물질을 형성시켜 탄소/탄소 복합재료를 제조할 때 공정시간을 단축시키면서도 균일한 탄소증착층을 형성시켜 주는 이른바 '열구배 화학기상침투법'(thermal gradient CVD)과 '열구배 화학기상침투장치'를 제공하는 데 그 목적이 있다.Accordingly, the present invention provides a novel chemical vapor permeation method to solve the problems of the conventional chemical vapor permeation method by the isothermal method as described above, by forming a carbon base material by thermal decomposition of hydrocarbon gas on the carbon fiber preform To provide the so-called 'thermal gradient CVD' and 'thermal gradient chemical vapor permeation apparatus' which forms a uniform carbon deposition layer while reducing the process time when manufacturing a carbon / carbon composite material. Its purpose is.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 따른 열구배 화학기상침투법은, 탄소섬유 프리폼을 장착한 반응관 혹은 반응로내에 탄화수소 가스를 주입하고 열분해시켜 상기 프리폼에 열분해 탄소가 증착되도록 함으로써 탄소/탄소 복합재료를 제조해 주는 화학기상침투법에 있어서, 상기 프리폼의 중심부에 발열체를 장착하고 이 발열체를 통해 가열해 줌으로써 프리폼의 두께 방향으로 온도구배가 유도되도록 해 주는 것을 특징으로 한다.The thermal gradient chemical vapor permeation method according to the present invention for achieving the above object, by injecting and pyrolyzing a hydrocarbon gas into a reaction tube or a reactor equipped with a carbon fiber preform to deposit pyrolysis carbon on the preform In the chemical vapor permeation method for producing a / carbon composite material, by mounting a heating element in the center of the preform and heating through the heating element it is characterized in that the temperature gradient is induced in the thickness direction of the preform.

이와같은 본 발명의 열구배 화학기상침투법에서는, 프리폼의 내부에서 외부로 온도구배가 유도되기 때문에 탄화수소 가스의 열분해 반응이 프리폼의 내부에서부터 외부로 점차 진행되게 되므로, 표면기공막힘과 같은 현상은 발생할 여지가 없이 프리폼의 내외부에 열분해 탄소가 균일하게 증착되게 된다. 또 이러한 열분해 탄소의 증착과정에서는 표면기공의 막힘 등이 없기 때문에 증착속도가 빨라지게 됨은 물론이다.In the thermal gradient chemical vapor permeation method of the present invention, since a temperature gradient is induced from the inside of the preform to the outside, the thermal decomposition reaction of the hydrocarbon gas proceeds gradually from the inside of the preform to the outside, so that a phenomenon such as surface pore clogging may occur. There is no room for the thermal decomposition of carbon to be deposited uniformly inside and outside the preform. In addition, during the deposition of the pyrolytic carbon, there is no surface pore blockage, so that the deposition rate is of course faster.

도 1은 본 발명에 따른 열구배 화학기상침투법의 개념도,1 is a conceptual diagram of a thermal gradient chemical vapor permeation method according to the present invention,

도 2는 본 발명에 따른 열구배 화학기상침투장치의 개략적인 구성도,2 is a schematic configuration diagram of a thermal gradient chemical vapor penetration device according to the present invention;

도 3은 본 발명에 따라 제조한 탄소/탄소 복합재료의 직경방향에 대한 밀도변화를 나타낸 그래프,3 is a graph showing the density change of the carbon / carbon composite material prepared in accordance with the present invention in the radial direction,

도 4는 본 발명에 따라 제조한 탄소/탄소 복합재료의 길이방향에 대한 밀도변화를 나타낸 그래프,Figure 4 is a graph showing the density change in the longitudinal direction of the carbon / carbon composite material prepared according to the present invention,

도 5는 종래의 화학기상침투법인 등온법의 개념도이다.5 is a conceptual diagram of an isothermal method which is a conventional chemical vapor permeation method.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 탄소섬유프리폼 2 : 카본펠트1: carbon fiber preform 2: carbon felt

10,10' : 반응관 혹은 반응로 11, 11': 발열체10,10 ': reactor or reactor 11, 11': heating element

12: 전극 20: 가스주입장치12: electrode 20: gas injection device

21: 가스통 22: 유량조절장치21: gas cylinder 22: flow control device

30: 배기장치 31: 진공펌프30: exhaust device 31: vacuum pump

32: 수조 33: 필터32: tank 33: filter

이하, 본 발명을 첨부된 도면을 참조하여 자세히 설명한다.Hereinafter, with reference to the accompanying drawings the present invention will be described in detail.

도 1은 본 발명의 열구배 화학기상침투법을 도식적으로 표현한 개념도로서, 반응관 혹은 반응로(10) 내부에 장착한 탄소섬유 프리폼(1)의 중심부에 발열체(11)를 설치하고, 이 발열체(11)를 통해 가열해 줌으로써, 반응관 혹은 반응로(10) 내부에 투입된 탄화수소 가스가 반응온도에 도달하여 열분해되도록 해 주는 것을 나타낸다.1 is a conceptual diagram schematically illustrating the thermal gradient chemical vapor permeation method of the present invention, in which a heating element 11 is provided in the center of a carbon fiber preform 1 mounted inside a reaction tube or a reactor 10, and this heating element is provided. By heating through (11), it shows that the hydrocarbon gas injected into the reaction tube or the reactor 10 reaches the reaction temperature and is thermally decomposed.

이와같이 프리폼(1)의 중심부에 발열체(11)가 장착되어 있기 때문에, 이 발열체(11)가 가열되면 프리폼(1)은 중심부에서 외부로 열전도가 일어나게 되므로, 프리폼의 내외부간에 온도구배가 발생된다.Since the heating element 11 is mounted at the center of the preform 1 as described above, when the heating element 11 is heated, the thermal conductivity is generated from the center to the outside, so that a temperature gradient is generated between the inside and the outside of the preform.

따라서 상대적으로 먼저 반응온도에 도달되는 프리폼(1)의 중심부에서 탄화수소 가스가 먼저 열분해되어 증착이 이루어지게 되고, 이와같은 증착에 의해 프리폼 중심부는 밀도가 높아져서 열전도도가 높아지게 되며, 열전도도에 의해 반응온도범위가 중심부에서 표면쪽으로 점차 확대됨에 따라 탄화수소 가스의 반응영역도 표면쪽으로 이동되면서 최종적으로 프리폼의 표면까지 증착이 이루어지게 된다.Therefore, the hydrocarbon gas is first thermally decomposed at the center of the preform 1 that reaches the reaction temperature relatively, and the deposition is performed. As a result of this deposition, the center of the preform is densified, resulting in high thermal conductivity, and reaction by thermal conductivity. As the temperature range gradually extends from the center to the surface, the reaction region of the hydrocarbon gas is also moved toward the surface, and finally the deposition is performed to the surface of the preform.

이와같이 프리폼의 중심부에서부터 표면쪽으로 증착이 진행되므로, 표면기공이 막히는 문제는 발생할 여지도 없이 전체적으로 균일한 증착이 이루어지게 되는 것이다.In this way, since the deposition proceeds from the center of the preform toward the surface, the problem that the surface pores are blocked does not occur, and the overall uniform deposition is made.

또한, 종래에는 탄소원자수가 많은 탄화수소 가스는 증착속도가 높기는 하지만 표면기공 막힘이 심하게 발생되어 반응가스로 이용하기에 어려움이 많았는 데, 본 발명에서는 표면우선 증착문제가 발생되지 않기 때문에, 탄소원자수가 많은 탄화수소 가스도 반응가스로 용이하게 이용할 수 있어 부수적으로 공정시간을 단축시켜 주는 효과도 있게 된다.In addition, although a hydrocarbon gas having a large number of carbon atoms has a high deposition rate, it is difficult to use it as a reaction gas due to severe surface pore blockage. In the present invention, since the surface priority deposition problem does not occur, the number of carbon atoms A large number of hydrocarbon gases can also be easily used as a reaction gas, thereby additionally shortening the process time.

상기에서 프리폼(1) 중심부에 장착해 주는 발열체(11)는 흑연봉을 사용하고 여기에 전류를 직접 흘려 주는 방식으로 가열해 주면 용이하게 가열이 가능하여 바람직하다.The heating element 11 mounted at the center of the preform 1 is preferably heated by using a graphite rod and being heated in such a manner as to directly flow a current thereto.

그리고 상기 프리폼(1)의 길이방향으로는 온도를 균일하게하여 열분해 탄소가 길이방향으로 균일하게 증착되도록 해 줄 필요가 있는 데, 이를 위해 상기 프리폼(1)의 상하부에 각각 카본펠트(carbon felt)(2)를 장착해 주면 바람직하다.The temperature of the preform 1 needs to be uniform in the longitudinal direction so that pyrolytic carbon is uniformly deposited in the longitudinal direction. To this end, carbon felts are respectively formed on upper and lower portions of the preform 1. It is preferable to attach (2).

한편, 본 발명의 열구배법에서의 공정조건은, 반응가스로 사용하는 탄화수소가스는 1 내지 6개의 탄소원자를 포함하는 것이 바람직하고, 반응온도는 700 - 1,200℃, 반응가스 농도는 10 - 100%, 반응압력은 250 - 1,500mbar의 범위에서 바람직하게 공정을 수행할 수 있다.On the other hand, the process conditions in the thermal gradient method of the present invention, the hydrocarbon gas used as the reaction gas preferably contains 1 to 6 carbon atoms, the reaction temperature is 700-1,200 ℃, the reaction gas concentration is 10-100% The reaction pressure can preferably be carried out in the range of 250-1,500 mbar.

상기한 바와 같은 본 발명의 열구배 화학기상침투법에 의해 탄소/탄소 복합재료를 제조할 수 있는 열구배 화학기상침투장치가 도 2에 도시되어 있는 데, 이 장치는 프리폼(1)이 장착되는 반응로(10)에 가스주입장치(20)와 배기장치(30)가 각각 연결 설치된 구성으로 되어 있되, 상기 반응로(10)는 흑연블록으로 되어 있으면서 그 내부가 상하 2개의 전극(12) 사이에 발열체인 흑연봉(11)과 카본펠트(2)를 장착한 프리폼(1)이 장착될 수 있도록 되어 있으며, 프리폼(1)의 온도측정을 위해 열전대(미도시)가 구비되어 있다.A thermal gradient chemical vapor permeation apparatus capable of producing a carbon / carbon composite material by the thermal gradient chemical vapor permeation method of the present invention as described above is shown in FIG. 2, which is equipped with a preform 1. The gas injection device 20 and the exhaust device 30 are connected to each other in the reactor 10, and the reactor 10 is made of graphite blocks, the inside of which is disposed between two electrodes 12 above and below. The preform 1 equipped with the graphite rod 11 and the carbon felt 2, which are heating elements, may be mounted on the heating element, and a thermocouple (not shown) may be provided to measure the temperature of the preform 1.

상기 가스주입장치(20)는 반응가스인 탄화수소 가스와 불활성 가스인 질소 가스를 각각 내장하는 가스통(21)이 유량조절장치(22)를 통해 반응로(10)와 연결된 통상적인 구조로 되어 있고, 상기 배기장치(30)는 반응로(10)에 연결된 진공펌프(31)로 되어 있되, 그 중간에 반응압력을 물이나 기름 등의 수위에 의해 일정하게 조절 유지시켜 줄 수 있는 수조(32)와, 배기가스에 의한 진공펌프(31)와 수조(32)내의 유체의 오염을 방지해 주기 위한 필터(33)가 설치된 구조로 되어 있다.The gas injection device 20 has a conventional structure in which a gas cylinder 21 containing a hydrocarbon gas as a reaction gas and a nitrogen gas as an inert gas, respectively, is connected to the reactor 10 through a flow control device 22. The exhaust device 30 is composed of a vacuum pump 31 connected to the reactor 10, in the middle of the tank 32 that can maintain a constant control by the level of water or oil, such as the reaction pressure and The vacuum pump 31 and the filter 33 which prevent the contamination of the fluid in the water tank 32 by exhaust gas are provided.

이상에서 설명한 바와 같은 본 발명의 열구배 화학기상침투법은, 다음과 같은 그 구체적인 실시예에 따라 탄소/탄소 복합재료를 제조하여 그 물성을 테스트해 본 결과, 짧은 공정시간 동안에도 균일한 고밀도의 탄소/탄소 복합재료를 제조해 줄 수 있음을 직접 확인할 수 있었다.As described above, the thermal gradient chemical vapor permeation method of the present invention produces a carbon / carbon composite material and tests its properties according to the following specific examples. It could be directly confirmed that the carbon / carbon composite material can be produced.

즉, 인발성형공정으로 만든 직경 1 - 2mm의 탄소사(carbon rod)로 3차원적으로 직조하여 직경 110mm, 길이 100mm의 탄소섬유 프리폼을 제조한 후, 이를 PVA 수지로 고정시키고 그 중심에 흑연봉을 장착하는 한편, 길이방향으로의 온도균일성을 위해 프리폼 상하부에 카본펠트를 장착하였다. 이와같은 프리폼을 열전대가 프리폼의 길이방향 중간부분에 설치되도록하여 도 3에 도시된 화학기상침투장치의 반응로(10)내에 장착한 후 밀도화 공정을 수행하였다.That is, a three-dimensional weaving of carbon rods having a diameter of 1-2 mm made by a drawing process is performed to prepare carbon fiber preforms having a diameter of 110 mm and a length of 100 mm, and then fixed with PVA resin and a graphite rod at the center thereof. On the other hand, the carbon felt was mounted on the upper and lower parts of the preform for temperature uniformity in the longitudinal direction. Such a preform was installed in the reactor 10 of the chemical vapor permeation apparatus shown in FIG. 3 so that the thermocouple was installed in the middle part of the longitudinal direction of the preform, and then a densification process was performed.

이때 진공펌프(31)을 이용하여 초기 진공도를 0.1mbar 이하로 한후, 승온속도 10 - 20℃/min으로 흑연봉(11)을 반응속도로 승온시키고 공정가스를 반응로(10)내부로 주입시켜 주었는 데, 공정가스는 99% 순도의 프로판 가스외 99.99% 순도의 질소를 사용하여 각각 5 - 50slm(standard liter per minute)과 0 - 30slm의 유량으로 주입하였으며, 이때 반응로(10)내의 압력은 1020 - 1060mbar였다. 프리폼의 표면까지 열분해 탄소가 증착되도록 공정을 수행한 후에는 탄화수소 가스의 주입은 중단하고 질소가스만 주입상태에서 상온까지 냉각시켰다.At this time, after the initial vacuum degree to 0.1 mbar or less using the vacuum pump 31, the graphite rod 11 at a temperature increase rate of 10 to 20 ℃ / min at a reaction rate and the process gas is injected into the reactor 10 The process gas was injected at a flow rate of 5-50 slm (standard liter per minute) and 0-30 slm, respectively, using 99% pure propane gas and 99.99% pure nitrogen, and the pressure in the reactor 10 was 1020-1060 mbar. After the process was carried out to deposit the pyrolysis carbon to the surface of the preform, the injection of hydrocarbon gas was stopped and only nitrogen gas was cooled to room temperature.

이상과 같은 실시예에 따라 제조한 탄소/탄소 복합재료의 물성실험결과, 공정전 밀도 0.45g/cc의 프리폼이 밀도 1.70g/cc로 되었고, 기공율은 12%로 되었으며, 프리폼 직경방향과 길이방향으로의 밀도편차는 도 3 및 도 4에 도시되어 있는 바와 같이, 거의 차이가 없음을 확인할 수 있었다.As a result of the physical properties of the carbon / carbon composites prepared according to the above examples, the preform having a preprocess density of 0.45 g / cc had a density of 1.70 g / cc, and the porosity was 12%. As shown in FIGS. 3 and 4, the density deviation in γ was confirmed to have almost no difference.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 열구배 화학기상침투법에서는, 프리폼의 내부에서 외부로 온도구배가 유도되기 때문에 탄화수소 가스의 열분해 반응이 프리폼의 내부에서부터 외부로 점차 진행되게 되므로, 표면기공막힘과 같은 현상은 발생할 여지가 없이 프리폼의 내외부에 열분해 탄소가 균일하게 증착하게 되며, 또 이러한 증착과정에서는 표면기공의 막힘 등이 없기 때문에 증착속도도 부수적으로 빨라지게 되는 효과가 있다.As described in detail above, in the thermal gradient chemical vapor permeation method according to the present invention, since a temperature gradient is induced from the inside of the preform to the outside, the thermal decomposition reaction of the hydrocarbon gas proceeds gradually from the inside of the preform to the outside. Phenomena such as clogging does not occur, and pyrolytic carbon is uniformly deposited on the inside and outside of the preform, and in this deposition process, since there is no blockage of surface pores, the deposition rate is also incidentally increased.

Claims (7)

탄소섬유 프리폼(1)을 장착한 반응관 혹은 반응로(10)내에 탄화수소 가스를 주입하고 열분해시켜 상기 프리폼(1)에 열분해 탄소가 증착되도록 함으로써 탄소/탄소 복합재료를 제조해 주는 화학기상침투법에 있어서, 상기 프리폼(1)의 중심부에 발열체(11)를 장착하고 이 발열체(11)를 통해 가열해 줌으로써 프리폼(1)의 두께 방향으로 온도구배가 유도되도록 해 주는 것을 특징으로 하는 열구배 화학기상침투법.Chemical vapor permeation method for producing carbon / carbon composite materials by injecting pyrolyzed hydrocarbon gas into the reaction tube or reactor 10 equipped with the carbon fiber preform 1 so that pyrolytic carbon is deposited on the preform 1. The thermal gradient chemistry of the present invention is characterized in that the temperature gradient is induced in the thickness direction of the preform (1) by mounting the heating element (11) in the center of the preform (1) and heating it through the heating element (11). Meteorological penetration. 제 1 항에 있어서, 상기 발열체(11)는 흑연봉을 사용하고 여기게 전류를 직접 흘려 주는 방식으로 가열해 주는 것을 특징으로 하는 열구배 화학기상침투법.The method of claim 1, wherein the heat generating element (11) is a thermal gradient chemical vapor permeation method, characterized in that the heating by using a graphite rod to direct current flow. 제 1 항에 있어서, 상기 프리폼(1)의 상하부에 각각 카본펠트(carbon felt, 2)를 장착해 주는 것을 특징으로 하는 열구배 화학기상침투법.The thermal gradient chemical vapor permeation method according to claim 1, wherein carbon felts (2) are attached to upper and lower portions of the preform (1), respectively. 제 1 항에 있어서, 상기 탄화수소 가스는 1 내지 6개의 탄소원자를 포함하는 것을 사용하고, 탄화수소가스 농도는 10 - 100%, 열분해 반응온도는 700-1,200℃, 반응압력은 250 - 1,500mbar의 범위로 해주는 것을 특징으로 하는 열구배 화학기상침투법.According to claim 1, wherein the hydrocarbon gas is used to include 1 to 6 carbon atoms, the hydrocarbon gas concentration is 10 to 100%, pyrolysis reaction temperature is 700-1,200 ℃, reaction pressure in the range of 250-1,500 mbar Thermal Gradient Chemical Vapor Infiltration. 프리폼(1)을 장착하는 반응로(10)에 가스주입장치(20)와 배기장치(30)가 각각 연결 설치되어 이루어진 탄소/탄소 복합재료 제조용 화학기상침투장치에 있어서, 상기 반응로(10)가 흑연블록으로 되어 있으면서 그 내부가 상하 2개의 전극(12) 사이에 전류를 통해 줌으로써 상기 발열체(11)가 가열되도록 된 것을 특징으로 하는 열구배 화학기상침투장치.In the chemical vapor permeation apparatus for manufacturing a carbon / carbon composite material, in which a gas injection device 20 and an exhaust device 30 are connected to a reactor 10 on which a preform 1 is mounted, the reactor 10 is provided. Is a graphite block, the inside of the heat gradient chemical vapor penetration device, characterized in that the heating element 11 is heated by passing a current between the upper and lower two electrodes (12). 제 5 항에 있어서, 상기 배기장치(30)는 반응로(10)에 연결된 진공펌프(31)로 되어 있되, 그 중간에 반응압력을 유체 수위의 조절에 의해 일정하게 조절 유지시켜 줄 수 있는 수조(32)가 연결 설치된 것을 특징으로 하는 열구배 화학기상침투장치.The water tank according to claim 5, wherein the exhaust device (30) comprises a vacuum pump (31) connected to the reactor (10), in which the reaction pressure can be maintained constant by adjusting the fluid level. Thermal gradient chemical vapor penetration device, characterized in that 32 is installed connected. 제 5 항에 있어서, 상기 반응로(10)와 진공펌프(31)의 중간에 배기가스에 의한 오염을 방지해 주도록 필터(33)가 추가 설치된 것을 특징으로 하는 열구배 화학기상침투장치.The thermal gradient chemical vapor permeation apparatus according to claim 5, wherein a filter (33) is additionally installed between the reactor (10) and the vacuum pump (31) to prevent contamination by exhaust gas.
KR1019960049673A 1996-10-29 1996-10-29 A thermal gradient cvd for manufacturing c/c composite, and device thereof KR100198154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960049673A KR100198154B1 (en) 1996-10-29 1996-10-29 A thermal gradient cvd for manufacturing c/c composite, and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960049673A KR100198154B1 (en) 1996-10-29 1996-10-29 A thermal gradient cvd for manufacturing c/c composite, and device thereof

Publications (2)

Publication Number Publication Date
KR19980030293A true KR19980030293A (en) 1998-07-25
KR100198154B1 KR100198154B1 (en) 1999-06-15

Family

ID=19479511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960049673A KR100198154B1 (en) 1996-10-29 1996-10-29 A thermal gradient cvd for manufacturing c/c composite, and device thereof

Country Status (1)

Country Link
KR (1) KR100198154B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624094B1 (en) * 2004-05-28 2006-09-19 주식회사 데크 The method of producing carbon fiber reinforced ceramic matrix composites
KR101038141B1 (en) * 2009-06-29 2011-06-01 경북대학교 산학협력단 Apparatus for making carbon-carbon composites and Manufacturing method for carbon-carbon composites using the same
KR101494237B1 (en) * 2013-12-10 2015-02-17 김성재 Hybrid type isothermal-thermal gradient Chemical Vapor Infilteration(H-CVI) for Carbon-carbon composite manufacturing
KR20190068316A (en) * 2017-12-08 2019-06-18 한국세라믹기술원 Chemical vapor infiltration device
CN113125027A (en) * 2021-04-19 2021-07-16 福建康碳复合材料科技有限公司 Anti-adhesion method between ceramic thermocouple and corundum ceramic protection tube for vapor deposition furnace

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000046418A (en) * 1998-12-31 2000-07-25 추호석 Manufacturing method of brake disc
KR20000046436A (en) * 1998-12-31 2000-07-25 추호석 Method for densifying complex material
CN103993292B (en) * 2014-04-30 2017-01-04 洛阳八佳电气科技股份有限公司 A kind of carbon carbon composite fast preparation method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624094B1 (en) * 2004-05-28 2006-09-19 주식회사 데크 The method of producing carbon fiber reinforced ceramic matrix composites
KR101038141B1 (en) * 2009-06-29 2011-06-01 경북대학교 산학협력단 Apparatus for making carbon-carbon composites and Manufacturing method for carbon-carbon composites using the same
KR101494237B1 (en) * 2013-12-10 2015-02-17 김성재 Hybrid type isothermal-thermal gradient Chemical Vapor Infilteration(H-CVI) for Carbon-carbon composite manufacturing
KR20190068316A (en) * 2017-12-08 2019-06-18 한국세라믹기술원 Chemical vapor infiltration device
CN113125027A (en) * 2021-04-19 2021-07-16 福建康碳复合材料科技有限公司 Anti-adhesion method between ceramic thermocouple and corundum ceramic protection tube for vapor deposition furnace

Also Published As

Publication number Publication date
KR100198154B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3490087B2 (en) Vapor-phase chemical infiltration of substances into porous substrates at controlled surface temperatures
CA2107830C (en) Method and apparatus for densification of porous billets
Feron et al. On kinetic and microstructural transitions in the CVD of pyrocarbon from propane
KR101179769B1 (en) Control or modeling of a method for chemical infiltration in a vapor phase for the densification of porous substrates by carbon
US4265843A (en) Method of producing shaped silicon-carbide bodies
US5916633A (en) Fabrication of carbon/carbon composites by forced flow-thermal gradient chemical vapor infiltration
US5462800A (en) Silicon carbide coated carbon composite material and method for making same
RU2163228C2 (en) Method of chemical infiltration from vapor phase with variable infiltration parameters
CN101636367A (en) Make the method for thermostructural composite part
KR100198154B1 (en) A thermal gradient cvd for manufacturing c/c composite, and device thereof
Vaidyaraman et al. Forced flow-thermal gradient chemical vapor infiltration (FCVI) for fabrication of carbon/carbon
JP2000143368A (en) Compacting of porous structure by cvi
US6994886B2 (en) Methods for calefaction densification of a porous structure
KR100198153B1 (en) A vacuum pressure impregnation carbonization for densifying c/c composite
JPH09504262A (en) CVI method of infiltrating a pyrolytic carbon matrix into a porous substrate having a temperature gradient
JP4077601B2 (en) Method for producing C / C crucible for pulling single crystal
KR102153918B1 (en) Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
Naslain et al. Processing of ceramic matrix composites by pulsed-CVI and related techniques
US7235132B2 (en) Durable CFC support crucible for high-temperature processes in the pulling of semiconductor single crystals
KR101589965B1 (en) Apparatus for densifying c/c composite material
KR100471045B1 (en) Thermal gradient chemical vapor infiltration apparatus for preparation composites using halogen lamp
US20170165626A1 (en) Element for Injecting Fuel into a Regenerator of a Fluid Catalytic Cracking Unit
KR0143792B1 (en) A method for manufactuning c/c composite
KR100198152B1 (en) A cvd method for manufacturing c/c composites using modified process gas
JPH0657433A (en) Pulse cvi device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131127

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 17