JPH0657433A - Pulse cvi device - Google Patents

Pulse cvi device

Info

Publication number
JPH0657433A
JPH0657433A JP23897892A JP23897892A JPH0657433A JP H0657433 A JPH0657433 A JP H0657433A JP 23897892 A JP23897892 A JP 23897892A JP 23897892 A JP23897892 A JP 23897892A JP H0657433 A JPH0657433 A JP H0657433A
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction chamber
reaction furnace
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23897892A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shiotani
善弘 塩谷
Akihiro Kuroyanagi
聡浩 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP23897892A priority Critical patent/JPH0657433A/en
Publication of JPH0657433A publication Critical patent/JPH0657433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently pack and coat various kinds of porous materials with materials of the same kind or different kinds by setting a base material to be treated into a reaction chamber made of dense graphite and introducing gaseous raw materials into this chamber. CONSTITUTION:The end of the reaction chamber 15 made of the dense graphite formed internally with a housing space 14 is provided with a gaseous raw material introducing part 13 and a heating means 16 for heating the periphery is mounted to constitute a reaction furnace body 11. This reaction furnace body 11 is housed and installed in a hermetic vessel 12 made of metal via a heat insulating material 20, by which the reaction furnace is constituted. An inert gaseous atmosphere is formed in this vessel 12 via gas introducing and discharging ports 17, 18. The base material to be treated is set in the housing space 14 and is heated to a prescribed temp. by a heating means 16. The gas introducing part 13 is then connected to a gaseous raw material introducing system and gas discharge system and the pressure reduction and pressure increase of the gaseous raw materials are intermittently executed to form the coating by the pulse CVI method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質系やセラミック
ス系などの多孔質基材に同質もしくは異種物質を充填・
被覆するためのパルスCVI装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a carbonaceous or ceramics-based porous substrate filled with the same or different substances.
A pulsed CVI device for coating.

【0002】[0002]

【従来の技術】従来、ある種の基材面に同質もしくは異
種の物質を被覆するための化学的手段として、還元反
応、置換反応、不均化反応等を利用したCVD(Chemic
al VaporDeposition) 法が有用されている。しかしなが
ら、CVD法を適用して形成される被覆層は基材との界
面が明確に分離している関係で、加熱状態で使用すると
熱衝撃や相互の熱膨張差によって層間剥離現象が起こり
易い欠点がある。
2. Description of the Related Art Conventionally, as a chemical means for coating a substrate surface of a certain kind with the same or different substance, a CVD (Chemic) method utilizing a reduction reaction, a substitution reaction, a disproportionation reaction, etc.
al Vapor Deposition) method is used. However, the coating layer formed by applying the CVD method has a clear separation at the interface with the base material, and when used in a heated state, a delamination phenomenon easily occurs due to thermal shock or mutual thermal expansion difference. There is.

【0003】このような欠点を解消して、基材組織の内
部まで被覆物質を充填させて層間剥離現象を防止し、か
つ材質の緻密化を図る改良手段として、減圧CVD法お
よびパルスCVI法が開発されている。減圧CVD法
は、反応系内を数十〜数Torrに減圧して基材の組織空孔
内に介在する気体を排除したうえでCVD操作をおこな
う方法である。この減圧CVDによれば、原料ガスの線
流速が増大して部分的なガス濃度差がなくなり、基材上
のガス境界層が薄くなって均一な被覆膜を形成すること
が可能なるが、基材の組織内部まで被覆物質を析出充填
するという目的に対してはさほどの改善効果は認められ
ない。
As a means for eliminating such a defect and preventing the delamination phenomenon by filling the inside of the base material with the coating material and densifying the material, the low pressure CVD method and the pulse CVI method are used. Being developed. The low pressure CVD method is a method in which the CVD operation is performed after depressurizing the reaction system to several tens to several Torr to eliminate the gas existing in the tissue pores of the base material. According to this low pressure CVD, the linear flow velocity of the raw material gas is increased and the partial gas concentration difference is eliminated, and the gas boundary layer on the base material is thinned to form a uniform coating film. For the purpose of depositing and filling the coating substance to the inside of the structure of the base material, no significant improvement effect is observed.

【0004】これに対し、パルスCVI(Pulse Chemica
l Vapor Impregnation) 法は原料ガスを加熱基材にガス
状態で接触させる操作を短周期の減圧、昇圧下で間欠的
に反復するプロセスでおこなわれるため、被覆物質を基
材の組織内部まで円滑に充填させることが可能となる。
したがって、各種の多孔質基材を固相析出物で目詰め、
充填、緻密化する充填多孔質体の製造方法(特開昭62−
205278号公報) や炭素繊維強化炭素材に強固な耐酸化性
SiC被覆層を形成する方法(特開平4−42878 号公
報) 等に利用されている。
On the other hand, pulse CVI (Pulse Chemica)
The Vapor Impregnation) method is a process in which the raw material gas is brought into contact with the heated base material in a gas state in an intermittently repeated process under reduced pressure and increased pressure for a short period, so that the coating substance can be smoothly introduced into the structure of the base material. It becomes possible to fill.
Therefore, various porous substrates are packed with solid phase deposits,
A method for producing a filled porous body that is filled and densified (Japanese Patent Laid-Open No. 62-
No. 205278) and a method for forming a strong oxidation resistant SiC coating layer on a carbon fiber reinforced carbon material (Japanese Patent Laid-Open No. 4-42878).

【0005】ところが、パルスCVI法を工業的に適用
する場合には、装置構造に解決すべき課題がある。すな
わち、パルスCVI装置は基本的に加熱手段を設けた気
密性の反応炉に原料気化器を含む原料ガス導入系列と真
空ポンプを備える排気ガス系列とを組み合わせた構造と
なっており、従来、反応炉の材質は石英もしくはインコ
ネルのような耐熱合金で構成されている。しかし、石英
製の反応炉は破損し易いうえ、大型炉の製作や加工が困
難である等の問題があって工業用の炉設計は難しい。ま
た金属製の反応炉は耐蝕性や高温強度に乏しく、高温下
のパルス操作によって材質に疲労や変形が生じるため耐
久寿命に限界がある。
However, when the pulse CVI method is industrially applied, there is a problem to be solved in the device structure. That is, the pulse CVI device basically has a structure in which a source gas introduction system including a source vaporizer and an exhaust gas system including a vacuum pump are combined in an airtight reaction furnace provided with a heating means, and a conventional reaction system is used. The furnace material is made of quartz or a heat resistant alloy such as Inconel. However, a quartz reactor is easily damaged, and it is difficult to fabricate and process a large-scale furnace, which makes it difficult to design an industrial furnace. Further, a metal reaction furnace has poor corrosion resistance and high-temperature strength, and fatigue and deformation occur in the material due to pulse operation under high temperature, so that the service life is limited.

【0006】[0006]

【発明が解決しようとする課題】パルスCVI法を適用
する場合には、条件として原料ガス導入−析出反応−減
圧排気のパルスを5000〜10000回反復する必要
があるため、反応炉が大型化して反応系の内容積が大き
くなるに従って原料ガス量の増大、排気時間の長時間
化、排気ポンプの容量増加、排気ガス量の増大といった
問題が起こり、同時にパルス間隔も延びて制御が困難と
なる。このため、反応炉が大型化しても反応系の内容積
は基材寸法より余り大きくならない炉形態に設計するこ
とが好ましいが、上記の理由により石英や金属材料では
炉設計に自由度がない。
When the pulse CVI method is applied, it is necessary to repeat the pulse of raw material gas introduction-precipitation reaction-vacuum exhaustion 5000 to 10000 times as a condition, so that the reactor becomes large. As the inner volume of the reaction system increases, problems such as an increase in the amount of raw material gas, a longer exhaust time, an increase in the capacity of the exhaust pump, and an increase in the amount of exhaust gas occur, and at the same time the pulse interval also becomes longer and control becomes difficult. For this reason, it is preferable to design the reactor so that the inner volume of the reaction system does not become much larger than the size of the base material even if the reactor is upsized. However, due to the above reasons, there is no degree of freedom in designing the furnace with quartz or metal materials.

【0007】本発明は、反応炉の材質を耐熱耐蝕性、耐
熱衝撃性、加工性などに優れる緻密質黒鉛とし、これに
伴って装置に構造的な改良を加えることによって上記の
問題を一挙に解決したものである。したがって、本発明
の目的は、各種の多孔質基材に同種または異種物質を効
率よく充填・被覆することができる工業的なパルスCV
I装置を提供することにある。
According to the present invention, the material of the reaction furnace is made of dense graphite excellent in heat resistance, corrosion resistance, heat shock resistance, workability and the like, and along with this, structural improvement of the apparatus is made to solve the above problems all at once. It has been resolved. Therefore, an object of the present invention is to provide an industrial pulse CV capable of efficiently filling and coating various porous substrates with the same or different substances.
It is to provide an I device.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるパルスCVI装置は、端部にガス導入
部を備え、内部に被処理基材をセットするための収容ス
ペースを形成した緻密質黒鉛製の反応チャンバーと前記
反応チャンバーの周辺を加熱するための発熱手段となら
なる反応炉本体を、金属製の密閉系容器に収納設置して
反応炉を構成し、該反応炉を原料ガス導入系列および排
気ガス系列に接続してなることを構造上の特徴とする。
A pulse CVI device according to the present invention for achieving the above object is provided with a gas introducing portion at an end thereof and has a storage space for setting a substrate to be treated therein. A reaction chamber made of dense graphite and a reaction furnace main body serving as a heat generating means for heating the periphery of the reaction chamber are housed in a metal closed system container to form a reaction furnace, and the reaction furnace is used as a raw material. The structural feature is that it is connected to a gas introduction series and an exhaust gas series.

【0009】図1は本発明に係るパルスCVI装置を例
示した全体構成図で、反応炉1に原料ガス導入系列と排
気ガス系列が接続されている。原料ガス導入系列は、例
えば還元ガス供給ライン2とキャリアガス供給ライン3
が原料気化器4に入り、原料混合ガスとしてリザーバー
タンク5から供給バルブ6を介して反応炉1に導入する
ルートからなる。排気ガス系列は、例えば排出バルブ7
を介して真空タンク8からトラップ9、排気ポンプ10に
通ずるルートからなっている。パルスCVI操作は、反
応炉内に被処理基材をセットし、原料ガス導入系列およ
び排気ガス系列を作動させながら供給バルブ6と排気バ
ルブ7を開閉制御することによっておこなわれる。
FIG. 1 is an overall configuration diagram illustrating a pulse CVI device according to the present invention. A raw material gas introduction system and an exhaust gas system are connected to a reaction furnace 1. The raw material gas introduction line includes, for example, a reducing gas supply line 2 and a carrier gas supply line 3
Enters the raw material vaporizer 4 and is introduced as a raw material mixed gas from the reservoir tank 5 into the reaction furnace 1 via the supply valve 6. The exhaust gas series is, for example, an exhaust valve 7
A route from the vacuum tank 8 to the trap 9 and the exhaust pump 10 via the. The pulse CVI operation is performed by setting the substrate to be treated in the reaction furnace and controlling the opening and closing of the supply valve 6 and the exhaust valve 7 while operating the raw material gas introduction series and the exhaust gas series.

【0010】本発明の反応炉1は、図2の断面図に示し
たように反応炉本体11が金属製の密閉容器12に収納設置
された構造となっている。反応炉本体11は、端部に原料
混合ガスを導入するためのガス導入部13を備え、内部に
被処理基材をセットするための収納スペース14を形成し
た反応チャンバー15と、この反応チャンバー15の周辺を
加熱するための発熱手段16によって構成されている。密
閉容器12は反応チャンバー15の酸化損傷を防止する外套
部材で、操作を通じて内部を不活性ガスで保持するため
のガス導入口17、ガス導出口18が付設されている。19は
系外から挿着された測温器具である。
The reactor 1 of the present invention has a structure in which the reactor main body 11 is housed and installed in a metal hermetic container 12 as shown in the sectional view of FIG. The reaction furnace main body 11 is provided with a gas introduction portion 13 for introducing a raw material mixed gas at an end thereof, a reaction chamber 15 having a storage space 14 for setting a substrate to be treated therein, and the reaction chamber 15 It is constituted by a heat generating means 16 for heating the periphery of. The closed container 12 is an outer member that prevents oxidative damage to the reaction chamber 15, and is provided with a gas inlet 17 and a gas outlet 18 for holding the inside with an inert gas throughout the operation. Reference numeral 19 is a temperature measuring instrument inserted from outside the system.

【0011】反応チャンバー15は、緻密質黒鉛により構
成される。緻密質黒鉛とは、実質的にガス不透過性を備
える材質の黒鉛材料で、特性として平均気孔径2μm 以
下、気孔率15%以下、気体透過度0.01×10-3cm
/s(N2gas) 以下の材質を適用することが好ましい。この
ような緻密質黒鉛材は、黒鉛材の組織内部にフェノール
系樹脂やフラン系樹脂のような高炭化性の熱硬化性樹脂
液を含浸して硬化させたのち、焼成処理を施して樹脂成
分を炭化させる方法、あるいは黒鉛材の表面にCVD法
により炭素被膜を形成する方法などにより製造すること
ができる。
The reaction chamber 15 is made of dense graphite. Dense graphite is a graphite material that is substantially gas impermeable, and has characteristics of average pore diameter of 2 μm or less, porosity of 15% or less, gas permeability of 0.01 × 10 −3 cm.
It is preferable to apply a material having a density of / s (N 2 gas) or less. Such a dense graphite material is obtained by impregnating the inside of the graphite material with a highly carbonizing thermosetting resin liquid such as a phenolic resin or a furan resin and curing the same, and then subjecting it to a firing treatment to obtain a resin component. Can be manufactured by a method of carbonizing carbon, or a method of forming a carbon coating on the surface of a graphite material by a CVD method.

【0012】図3は、反応炉本体11の部分をより具体的
に示した拡大断面図である。発熱手段16としては、棒状
またはコイル状の抵抗発熱体が用いられ、その外面を断
熱材20で被包することが望ましい。ガス導入部13は、黒
鉛または金属材料によって形成することができるが、金
属材料で形成する場合には反応チャンバー15と接する部
位に水冷ジャケット21を介在させて金属部分の過熱劣化
を防止することが好ましい。また、反応チャンバー15に
形成する収納スペース14は、内部に板状の被処理基材22
をセットした際に上下に10mm程度の間隙ができ、その
内容積が被処理基材22の体積の10倍以内になるように
設計することが好適である。したがって、板状の被処理
基材22を用いる際には、反応チャンバー15および収容ス
ペース14を図4(斜視図)に示す形状にすることが良好
である。
FIG. 3 is an enlarged sectional view showing the portion of the reactor main body 11 more specifically. As the heating means 16, a rod-shaped or coil-shaped resistance heating element is used, and it is desirable that the outer surface of the resistance heating element be covered with the heat insulating material 20. The gas introducing part 13 can be formed of graphite or a metal material. However, when it is formed of a metal material, a water cooling jacket 21 can be interposed at a portion in contact with the reaction chamber 15 to prevent overheating deterioration of the metal portion. preferable. Further, the storage space 14 formed in the reaction chamber 15 has a plate-shaped substrate 22 to be processed inside.
It is preferable to design so that a gap of about 10 mm is formed vertically when the is set, and the internal volume thereof is within 10 times the volume of the substrate 22 to be treated. Therefore, when the plate-shaped substrate 22 to be treated is used, it is preferable that the reaction chamber 15 and the housing space 14 have the shapes shown in FIG. 4 (perspective view).

【0013】[0013]

【作用】本発明のパルスCVI装置は、反応チャンバー
が優れた耐熱性、耐蝕性、耐熱衝撃性を備え、かつ実質
的にガス不透過性の緻密質黒鉛により形成されているか
ら、長期間安定した耐久寿命を発揮する。また、黒鉛材
料は極めて易加工性であるため、被処理基材の収納スペ
ースを所望の形状に自由に設計加工することができる。
したがって、大型装置にした場合にも収納スペースの内
容積を被処理基材の10倍以内に形成することが容易と
なり、パルスCVI操作の効率化を図ることができる。
The pulse CVI device of the present invention is stable for a long period of time because the reaction chamber is made of dense graphite that has excellent heat resistance, corrosion resistance, and thermal shock resistance and is substantially gas impermeable. Exhibits a durable life. Further, since the graphite material is extremely easy to process, the storage space for the substrate to be processed can be freely designed and processed into a desired shape.
Therefore, even in the case of a large apparatus, it becomes easy to form the internal volume of the storage space within 10 times that of the substrate to be processed, and the efficiency of the pulse CVI operation can be improved.

【0014】さらに、反応炉の全体が金属製の密閉系容
器内に収納設置した構造となっているから、容器系内に
不活性ガスを流通させることにより緻密質黒鉛製の反応
チャンバーが酸化損傷することはない。
Furthermore, since the whole reaction furnace is housed and installed in a metal closed container, the reaction chamber made of dense graphite is oxidatively damaged by circulating an inert gas in the container system. There is nothing to do.

【0015】[0015]

【実施例】図1に示したパルスCVI装置において、反
応炉を次のように設計した。反応チャンバー15を予め組
織内部にフェノール樹脂を含浸して炭化処理した平均気
孔率2μm 以下、気孔率15%以下、気体透過度0.0
1×10-3cm/s(N2gas) 以下の材質特性をもつ緻密質黒
鉛材により構成し、収納スペース14を幅350mm、高さ
30mm、奥行350mmの断面矩形状に加工形成した。こ
の反応チャンバー15の上下面に複数本の炭化珪素発熱体
を配置し、その周りを断熱材で被包した。電源部にはサ
ーミスタを使用した。ガス導入部13はステンレス製と
し、反応チャンバー15との間に環状の水冷ジャケット21
を介設した。このようにして構成した反応炉本体を上部
にアルゴンガスを送入するためのガス導入口17とガス導
出口18を付設したステンレス製の密閉系容器12に収納設
置して反応炉とした。
EXAMPLE In the pulse CVI apparatus shown in FIG. 1, the reactor was designed as follows. The reaction chamber 15 was preliminarily impregnated with phenol resin inside the tissue and carbonized, and the average porosity was 2 μm or less, porosity was 15% or less, and gas permeability was 0.0.
The storage space 14 was formed into a rectangular cross section having a width of 350 mm, a height of 30 mm, and a depth of 350 mm, which was made of a dense graphite material having material characteristics of 1 × 10 −3 cm / s (N 2 gas) or less. A plurality of silicon carbide heating elements were arranged on the upper and lower surfaces of the reaction chamber 15, and the surroundings were covered with a heat insulating material. A thermistor was used for the power supply. The gas introducing part 13 is made of stainless steel, and an annular water cooling jacket 21 is provided between the gas introducing part 13 and the reaction chamber 15.
Was installed. The reaction furnace main body configured in this manner was housed and installed in a closed stainless steel container 12 provided with a gas inlet 17 and a gas outlet 18 for feeding an argon gas to the upper part to form a reaction furnace.

【0016】上記のパルスCVI装置を用いて収納スペ
ース14に一辺が300mmで厚さが10mmの黒鉛板基材を
セットし、1000℃に昇温したのち2時間保持した。
ついで、黒鉛板基材に対して炭化珪素の被覆形成をおこ
なった。まず、真空タンク8により反応チャンバー内を
20Torr以下に減圧し、直ちにトリクロロメチルシラン
(CH3SiCl3)とH2 の混合ガス(CH3SiCl3/H2モル比0.05)
を720Torrになるように導入し保持した。原料ガス流
量は10l/min とし、1パルス時間を20秒に設定して
1000回のパルスを繰り返した。
Using the above pulse CVI device, a graphite plate substrate having a side of 300 mm and a thickness of 10 mm was set in the storage space 14, heated to 1000 ° C. and then held for 2 hours.
Then, a coating of silicon carbide was formed on the graphite plate base material. First, the pressure inside the reaction chamber was reduced to 20 Torr or less by the vacuum tank 8 and immediately the trichloromethylsilane was immediately removed.
Mixed gas of (CH 3 SiCl 3 ) and H 2 (CH 3 SiCl 3 / H 2 molar ratio 0.05)
Was introduced and maintained at 720 Torr. The raw material gas flow rate was 10 l / min, one pulse time was set to 20 seconds, and 1000 pulses were repeated.

【0017】その結果、黒鉛板面に膜厚5μm の均質で
耐剥離性の良好な炭化珪素被膜が形成された。このパル
スCVI操作を50回に亘って反復したが、反応チャン
バーに亀裂、破損、変形等の異常現象は全く認められな
かった。
As a result, a uniform silicon carbide coating having a film thickness of 5 μm and having good peel resistance was formed on the surface of the graphite plate. This pulse CVI operation was repeated 50 times, but no abnormal phenomenon such as cracking, breakage or deformation was observed in the reaction chamber.

【0018】[0018]

【発明の効果】以上のとおり、本発明によれば効率的に
操作が進行し、長期間安定した耐久性を発揮するパルス
CVI装置が提供される。したがって、本装置を用いる
ことにより、炭素質系やセラミックス系などの多孔質基
材に同質もしくは異種物質を充填・被覆するパルスCV
I操作を工業的に実施することが可能となる。
As described above, according to the present invention, there is provided a pulse CVI device which operates efficiently and exhibits stable durability for a long period of time. Therefore, by using this apparatus, a pulse CV for filling / coating a carbonaceous or ceramics-based porous substrate with the same or different substance
It becomes possible to carry out the I operation industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るパルスCVI装置を例示した全体
構成図である。
FIG. 1 is an overall configuration diagram illustrating a pulse CVI device according to the present invention.

【図2】本発明による反応炉を示した断面図である。FIG. 2 is a sectional view showing a reaction furnace according to the present invention.

【図3】図2の反応チャンバー部分を示した拡大断面図
である。
3 is an enlarged sectional view showing a reaction chamber portion of FIG.

【図4】図2の反応チャンバー部分を示した斜視図であ
る。
FIG. 4 is a perspective view showing a reaction chamber portion of FIG.

【符号の説明】[Explanation of symbols]

1 反応炉 2 還元ガス供給ライン 3 キャリアガス供給ライン 4 原料気化器 5 リザーバータンク 6 供給バルブ 7 排気バルブ 8 真空タンク 9 トラップ 10 排気ポンプ 11 反応炉本体 12 密閉系容器 13 ガス導入部 14 収納スペース 15 反応チャンバー 16 発熱手段 17 ガス導入口 18 ガス導出口 19 測温器具 20 断熱材 21 水冷ジャケット 22 被処理基材 1 Reactor 2 Reducing Gas Supply Line 3 Carrier Gas Supply Line 4 Raw Material Vaporizer 5 Reservoir Tank 6 Supply Valve 7 Exhaust Valve 8 Vacuum Tank 9 Trap 10 Exhaust Pump 11 Reactor Main Body 12 Closed System Container 13 Gas Inlet 14 Storage Space 15 Reaction chamber 16 Exothermic means 17 Gas inlet 18 Gas outlet 19 Temperature measuring instrument 20 Heat insulating material 21 Water cooling jacket 22 Substrate to be treated

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 端部にガス導入部を備え、内部に被処理
基材をセットするための収容スペースを形成した緻密質
黒鉛製の反応チャンバーと前記反応チャンバーの周辺を
加熱するための発熱手段とからなる反応炉本体を、金属
製の密閉系容器に収納設置して反応炉を構成し、該反応
炉を原料ガス導入系列と排気ガス系列に接続してなるこ
とを特徴とするパルスCVI装置。
1. A reaction chamber made of dense graphite having a gas introducing portion at an end thereof and having a storage space for setting a substrate to be treated therein, and a heat generating means for heating the periphery of the reaction chamber. A pulse CVI device characterized in that a reaction furnace body composed of and is housed and installed in a metal closed container to constitute a reaction furnace, and the reaction furnace is connected to a source gas introduction series and an exhaust gas series. .
【請求項2】 反応チャンバーを構成する緻密質黒鉛
が、黒鉛材組織内部に熱硬化性樹脂を含浸したのち樹脂
成分を炭化させるか、黒鉛材の表面にCVD法により炭
素被膜を形成したものである請求項1記載のパルスCV
I装置。
2. The dense graphite constituting the reaction chamber is obtained by impregnating a thermosetting resin inside the graphite material structure and then carbonizing the resin component, or by forming a carbon coating on the surface of the graphite material by a CVD method. The pulse CV according to claim 1.
I device.
JP23897892A 1992-08-13 1992-08-13 Pulse cvi device Pending JPH0657433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23897892A JPH0657433A (en) 1992-08-13 1992-08-13 Pulse cvi device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23897892A JPH0657433A (en) 1992-08-13 1992-08-13 Pulse cvi device

Publications (1)

Publication Number Publication Date
JPH0657433A true JPH0657433A (en) 1994-03-01

Family

ID=17038120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23897892A Pending JPH0657433A (en) 1992-08-13 1992-08-13 Pulse cvi device

Country Status (1)

Country Link
JP (1) JPH0657433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332039A (en) * 2003-05-07 2004-11-25 Cotec Co Ltd Cvd reaction vessel
WO2008078503A1 (en) * 2006-12-25 2008-07-03 Tokyo Electron Limited Film forming apparatus and method of forming film
WO2009072187A1 (en) * 2007-12-04 2009-06-11 Full-Tech Co., Ltd. Method of pressurized gas pulse control processing and pressurized gas pulse control processing apparatus
JP2012178613A (en) * 2012-06-08 2012-09-13 Tokyo Electron Ltd Film-forming apparatus and film-forming method
JP2021007144A (en) * 2019-06-06 2021-01-21 ピコサン オーワイPicosun Oy Fluid permeable material coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332039A (en) * 2003-05-07 2004-11-25 Cotec Co Ltd Cvd reaction vessel
WO2008078503A1 (en) * 2006-12-25 2008-07-03 Tokyo Electron Limited Film forming apparatus and method of forming film
JP2008159947A (en) * 2006-12-25 2008-07-10 Tokyo Electron Ltd Apparatus and method for forming film
US20100092666A1 (en) * 2006-12-25 2010-04-15 Tokyo Electron Limited Film deposition apparatus and film deposition method
US8696814B2 (en) 2006-12-25 2014-04-15 Tokyo Electron Limited Film deposition apparatus and film deposition method
WO2009072187A1 (en) * 2007-12-04 2009-06-11 Full-Tech Co., Ltd. Method of pressurized gas pulse control processing and pressurized gas pulse control processing apparatus
JP5208128B2 (en) * 2007-12-04 2013-06-12 フルテック株式会社 Pressurized gas pulse control processing method and pressurized gas pulse control processing apparatus
JP2012178613A (en) * 2012-06-08 2012-09-13 Tokyo Electron Ltd Film-forming apparatus and film-forming method
JP2021007144A (en) * 2019-06-06 2021-01-21 ピコサン オーワイPicosun Oy Fluid permeable material coating

Similar Documents

Publication Publication Date Title
US5389152A (en) Apparatus for densification of porous billets
JP2006124831A (en) Reaction vessel for vapor phase growth, and vapor phase growth method
US3925577A (en) Silicon carbide coated graphite members and process for producing the same
KR101492648B1 (en) Apparatus for porous material densification
JP3490087B2 (en) Vapor-phase chemical infiltration of substances into porous substrates at controlled surface temperatures
JP4600893B2 (en) Chemical vapor infiltration method for refractory materials, especially for carbon and silicon carbide, and application of the method
JP2547230B2 (en) Equipment for chemical vapor infiltration of refractory materials other than carbon
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
KR19990067541A (en) How to Deliver Molten Silicon Composition to a Porous Substrate
JPH0351668B2 (en)
JPH0234788A (en) Fire-proof composite material and method for its manufacture
JPH0657433A (en) Pulse cvi device
CN113248272B (en) Preparation method and application of carbon-ceramic friction material
RU2158251C2 (en) Method of chemical infiltration of material composed of carbon and silicon and/or boron from vapor phase
US6756122B2 (en) Process for the production of improved boron coatings
US4963396A (en) Method for making an impregnated ceramic material
JPH06345569A (en) Pulse cvi device
CA2258999C (en) Method for densifying and refurbishing brakes
JPH09507465A (en) Method for densifying porous structure with boron nitride and porous structure densified with boron nitride
EP1054847A1 (en) Partially densified carbon preform
JPH08259209A (en) Furnace for highly purifying graphite member
JPH0676357U (en) Reaction chamber of pulse CVI device
JPH0597548A (en) Method for producing high-density material and apparatus therefor
AU714238B2 (en) Method for densification of porous billets