KR102560554B1 - Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity - Google Patents

Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity Download PDF

Info

Publication number
KR102560554B1
KR102560554B1 KR1020200176469A KR20200176469A KR102560554B1 KR 102560554 B1 KR102560554 B1 KR 102560554B1 KR 1020200176469 A KR1020200176469 A KR 1020200176469A KR 20200176469 A KR20200176469 A KR 20200176469A KR 102560554 B1 KR102560554 B1 KR 102560554B1
Authority
KR
South Korea
Prior art keywords
poms
molecular sieve
carbon nanotubes
walled carbon
electrical conductivity
Prior art date
Application number
KR1020200176469A
Other languages
Korean (ko)
Other versions
KR20220086221A (en
Inventor
최영철
이상원
김지연
정무창
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020200176469A priority Critical patent/KR102560554B1/en
Publication of KR20220086221A publication Critical patent/KR20220086221A/en
Application granted granted Critical
Publication of KR102560554B1 publication Critical patent/KR102560554B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Abstract

본 발명은 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브가 합성될 수 있게, 1차적으로 상부가 개방된 특정 POMs 분자체를 합성한 후, 2차적으로 상기 특정 POMs 분자체의 개방된 상부에 특정 전이금속을 부착시켜 POMs 촉매를 제조한다. 이러한 POMs 촉매를 기반으로 전기전도성이 조절된 단일벽 탄소나노튜브를 제조할 수 있다.The present invention firstly synthesizes a specific POMs molecular sieve having an open top so that chiral single-walled carbon nanotubes with set electrical conductivity can be synthesized, and then secondarily attaches a specific transition metal to the open top of the specific POMs molecular sieve to prepare a POMs catalyst. Based on these POMs catalysts, single-walled carbon nanotubes with controlled electrical conductivity can be manufactured.

Description

전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법{Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity}Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity

본 발명은 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법에 관한 것이다.The present invention relates to a method for manufacturing chiral single-walled carbon nanotubes having controlled electrical conductivity.

탄소나노튜브(carbon nanotube)는 육각형으로 배열된 탄소원자들이 튜브 형태를 이루고 있는 물질이다.A carbon nanotube is a material in which carbon atoms arranged in a hexagon form a tube shape.

탄소나노튜브는 탄소 원자들이 강력한 공유결합으로 연결되어 있어, 인장강도가 강철보다 대략 100 배 이상 크고, 유연성과 탄성이 뛰어나고, 화학적 안정된 특성을 가지므로, 우주항공, 연료전지, 복합재료, 생명공학, 의약, 전기전자, 반도체 등 다양한 분야에서 사용된다.Since carbon atoms are connected by strong covalent bonds, carbon nanotubes have tensile strength approximately 100 times greater than steel, excellent flexibility and elasticity, and chemically stable properties.

탄소나노튜브는 벽수에 따라, 한 겹으로 구성되며 직경이 약 1nm인 단일벽 탄소나노튜브(single-walled carbon nanotube)와, 두 겹으로 구성되며 직경이 약 1.4 내지 3nm인 이중벽 탄소나노튜브(double-walled carbon nanotube)와, 셋 이상의 복수의 겹으로 구성되며 직경이 약 5 내지 100 nm인 다중벽 탄소나노튜브 (multi-walled carbon nanotube)로 구분될 수 있다.Carbon nanotubes are composed of one layer depending on the number of walls, and a single-walled carbon nanotube with a diameter of about 1 nm, and two layers of double-layered double-wall carbon nanotube with a diameter of about 1.4 to 3 nm, It can be divided into multi-walled carbon nanotube (multi-walled carbon nanotube) with more than 5 to 100 nm diameter.

여기서, 단일벽 탄소나노튜브는 대칭성에 따라 다시, 대칭구조를 가진 지그재그(Zigzag)형 단일벽 탄소나노튜브와, 대칭구조를 가진 안락의자(Armchair)형 단일벽 탄소나노튜브와, 비대칭 구조를 카이럴성(Chirality) 단일벽 탄소나노튜브로 구분될 수 있다.Here, the single-walled carbon nanotubes may be classified into zigzag-type single-walled carbon nanotubes having a symmetric structure, armchair-type single-walled carbon nanotubes having a symmetrical structure, and chiral single-walled carbon nanotubes having an asymmetric structure according to symmetry.

한편, 카이럴성 단일벽 탄소나노튜브는 비대칭 정도에 따라, 전기전도도가 달라지는데, 종래 방법으로 카이럴성 단일벽 탄소나노튜브를 합성하면, 서로 다른 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브들이 혼재되어 만들어진다.On the other hand, chiral single-walled carbon nanotubes have different electrical conductivity depending on the degree of asymmetry. When synthesizing chiral single-walled carbon nanotubes in a conventional method, chiral single-walled carbon nanotubes having different electrical conductivities are mixed.

이 경우, 사용 용도에 따라, 전기전도도가 같은 것끼리 분리해내는 작업이 필요하다. 이러한 분리과정에서 다량의 분산제가 필요하며, 분산제 사용으로 인해 탄소나노튜브의 물성이 저하되고, 분리 과정에 많이 비용이 소요된다.In this case, it is necessary to separate materials having the same electrical conductivity according to the purpose of use. In this separation process, a large amount of dispersant is required, and the physical properties of the carbon nanotubes are deteriorated due to the use of the dispersant, and a lot of cost is required for the separation process.

국제공개특허(WO2017/052349)International Publication Patent (WO2017/052349)

본 발명의 목적은, 상술한 문제점을 해결할 수 있는 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity that can solve the above problems.

상기 목적을 달성하기 위한 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법은,A method for producing chiral single-walled carbon nanotubes with controlled electrical conductivity for achieving the above object,

POMs 분자체에 전이금속을 부착시켜 POMs 촉매를 제조하는 제1단계;A first step of preparing a POMs catalyst by attaching a transition metal to a POMs molecular sieve;

상기 POMs 촉매가 혼합된 용액을 웨이퍼 상에 떨어뜨린 상태에서, 상기 웨이퍼를 소성로에 넣고 700 내지 900℃로 가열하여 상기 POMs 분자체를 태우고, 상기 전이금속이 뭉쳐진 클러스터를 상기 웨이퍼 상에 남기는 제2단계; 및A second step of dropping the mixed solution of the POMs catalyst onto a wafer, putting the wafer into a firing furnace and heating the POMs molecular sieve at 700 to 900° C. to burn the POMs molecular sieve and leaving clusters of the transition metal agglomerated on the wafer; and

상기 클러스터가 남겨진 웨이퍼를 합성로에 넣고, 상기 합성로 내부의 온도를 950 내지 1100℃로 만든 상태에서, 탄소소스를 상기 합성로 내부로 흘려보내서, 상기 클러스터를 기반으로, 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브를 합성하는 제3단계를 포함하는 것을 특징으로 한다.A third step of synthesizing chiral single-walled carbon nanotubes having a set electrical conductivity based on the cluster by putting the wafer in which the cluster remains in a synthesis furnace, and flowing a carbon source into the synthesis furnace while the temperature inside the synthesis furnace is set to 950 to 1100 ° C.

본 발명은 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브가 합성될 수 있게, 1차적으로 상부가 개방된 특정 POMs 분자체를 합성한 후, 2차적으로 상기 특정 POMs 분자체의 개방된 상부에 특정 전이금속을 부착시켜 POMs 촉매를 제조한다. 이러한 POMs 촉매를 기반으로 전기전도성이 조절된 단일벽 탄소나노튜브를 제조할 수 있다.The present invention firstly synthesizes a specific POMs molecular sieve having an open top so that chiral single-walled carbon nanotubes with set electrical conductivity can be synthesized, and then secondarily attaches a specific transition metal to the open top of the specific POMs molecular sieve to prepare a POMs catalyst. Based on these POMs catalysts, single-walled carbon nanotubes with controlled electrical conductivity can be manufactured.

따라서, 본 발명을 사용하면, 서로 다른 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브들이 혼재됨으로 인해, 사용 용도에 따라, 전기전도도가 같은 것끼리 분리해내는 작업이 필요 없다. 또한, 분리작업으로 인한 다량의 분산제를 사용할 필요가 없어, 분산제 사용으로 인해 탄소나노튜브의 물성이 저하되고, 분리 과정에 많이 비용이 소요되는 문제가 해결된다.Therefore, when the present invention is used, since chiral single-walled carbon nanotubes having different electrical conductivities are mixed, there is no need to separate the ones having the same electrical conductivity according to the purpose of use. In addition, since there is no need to use a large amount of dispersant due to the separation operation, the problem of deterioration of physical properties of carbon nanotubes and high cost in the separation process due to the use of the dispersant is solved.

도 1은 본 발명의 일 실시예에 따른 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법을 나타낸 순서도다.
도 2는 POMs 분자체의 여러 가지 구조를 나타낸 도면이다.
도 3은 POMs 촉매 제조방법을 설명하기 위한 모식도다.
도 4는 도 1에 도시된 제2단계 및 제3단계를 설명하기 위한 모식도다.
1 is a flowchart illustrating a method for manufacturing chiral single-walled carbon nanotubes having controlled electrical conductivity according to an embodiment of the present invention.
2 is a diagram showing various structures of POMs molecular sieve.
Figure 3 is a schematic diagram for explaining a method for preparing a POMs catalyst.
FIG. 4 is a schematic diagram for explaining the second and third steps shown in FIG. 1 .

이하, 본 발명의 일 실시예에 따른 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법을 자세히 설명한다.Hereinafter, a method for manufacturing chiral single-walled carbon nanotubes having controlled electrical conductivity according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법은,As shown in FIG. 1, the method for manufacturing chiral single-walled carbon nanotubes having controlled electrical conductivity according to an embodiment of the present invention,

POMs 분자체에 전이금속을 부착시켜 POMs 촉매를 제조하는 제1단계(S11);A first step (S11) of preparing a POMs catalyst by attaching a transition metal to a POMs molecular sieve;

상기 POMs 촉매가 혼합된 용액을 웨이퍼 상에 떨어뜨린 상태에서, 상기 웨이퍼를 소성로에 넣고 700 내지 900℃로 가열하여 상기 POMs 분자체를 태우고, 상기 전이금속이 뭉쳐진 클러스터를 상기 웨이퍼 상에 남기는 제2단계(S12); 및In a state where the solution mixed with the POMs catalyst is dropped on the wafer, the wafer is placed in a firing furnace and heated to 700 to 900 ° C. to burn the POMs molecular sieve, and a second step (S12) of leaving a cluster in which the transition metals are agglomerated on the wafer; and

상기 클러스터가 남겨진 웨이퍼를 합성로에 넣고, 상기 합성로 내부의 온도를 950 내지 1100℃로 만든 상태에서, 탄소소스를 상기 합성로 내부로 흘려보내서, 상기 클러스터를 기반으로, 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브를 합성하는 제3단계(S13)로 구성된다.A third step (S13) of synthesizing chiral single-walled carbon nanotubes having a set electrical conductivity based on the cluster by putting the wafer with the remaining cluster into a synthesis furnace, and flowing a carbon source into the synthesis furnace while the temperature inside the synthesis furnace is set to 950 to 1100 ° C.

이하, 제1단계(S11)를 설명한다.Hereinafter, the first step (S11) will be described.

[POMs 분자체 합성][Synthesis of POMs molecular sieve]

설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브가 합성될 수 있게, 1차적으로 특정 POMs 분자체를 합성한다.To synthesize chiral single-walled carbon nanotubes with set electrical conductivity, specific POMs molecular sieve is first synthesized.

POMs 분자체는 알칼리 금속 기반으로 합성된다. 알칼리 금속은 Na, K, Rb 중 어느 하나이다. POMs 분자체 합성에 알카리 금속을 사용하면 POMs 분자체를 보다 쉽게 합성할 수 있다.POMs molecular sieve is synthesized on an alkali metal basis. Alkali metal is any one of Na, K, and Rb. The use of alkali metals in the synthesis of POMs molecular sieves makes it easier to synthesize POMs molecular sieves.

POMs(polyoxometalates, 폴리 옥소 메탈 레이트) 분자체는, 다면체 구조로 전자들이 풍부하며, 친환경적이고, 화학적구조가 안정적이며, 카이럴성 단일벽 탄소나노튜브 제조에 적합하다. 또한, POMs 분자체는 상부가 개방되어 있어, 개방된 상부에 전이금속을 쉽게 부착시킬 수 있다.Polyoxometalates (POMs) molecular sieve has a polyhedral structure, is rich in electrons, is environmentally friendly, has a stable chemical structure, and is suitable for manufacturing chiral single-walled carbon nanotubes. In addition, since the POMs molecular sieve has an open top, transition metals can be easily attached to the open top.

도 2에 도시된 바와 같이, POMs 분자체는, Keggin 구조, Dawson 구조, Anderson 구조, Lindqvist 구조, Waugh 구조, Silverton 구조를 가질 수 있다.As shown in FIG. 2, the POMs molecular sieve may have a Keggin structure, a Dawson structure, an Anderson structure, a Lindqvist structure, a Waugh structure, or a Silverton structure.

POMs 분자체의 구조에 따라, 카이럴성 단일벽 탄소나노튜브가 전기전도도가 조절될 수 있다. 이는 실험을 통해 확인된다.Depending on the structure of the POMs molecular sieve, the electrical conductivity of chiral single-walled carbon nanotubes can be controlled. This is confirmed through experimentation.

일 예로, POMs 분자체의 구조 중 Keggin 구조를 사용할 경우, Dawson 구조를 사용한 경우 보다, 카이럴성 단일벽 탄소나노튜브의 전기전도성이 좋아진다. 따라서, 카이럴성 단일벽 탄소나노튜브의 전기전도성을 높이려면, POMs 분자체의 구조 중 Dawson 구조 보다 Keggin 구조를 사용해야 한다.For example, when the Keggin structure is used among the structures of the POMs molecular sieve, the electrical conductivity of the chiral single-walled carbon nanotubes is better than when the Dawson structure is used. Therefore, in order to increase the electrical conductivity of chiral single-walled carbon nanotubes, the Keggin structure should be used rather than the Dawson structure among the structures of POMs molecular sieve.

이하, POMs 분자체의 구조 중 Keggin 구조 POMs 분자체와, Dawson 구조 POMs 분자체 합성방법을 설명한다.Hereinafter, the Keggin structure POMs molecular sieve and the Dawson structure POMs molecular sieve synthesis method among the structures of the POMs molecular sieve will be described.

keggin 구조 POMs 분자체(Nakeggin structure POMs molecular sieve (Na 1212 PP 44 WW 1414 OO 5858 ]] dot 36H36H 22 O) 합성방법O) Synthesis method

1) 나트륨 텅스텐(Sodium tungstate) 1M과 인산 수소이 나트륨(disodium hydrgen phosphate) 0.3M을 60℃의 탈이온수(Deionized Water, DIW)에 녹인다.1) Dissolve 1M of sodium tungstate and 0.3M of disodium hydrogen phosphate in 60℃ deionized water (DIW).

2) 용액을 상온까지 식힌 후, 빙초산(glacial acetatic acid)을 투입하여, pH를 8.5-9.0로 맞춘다.2) After cooling the solution to room temperature, add glacial acetic acid to adjust the pH to 8.5-9.0.

3) 결정이 남은 용기 안에 에탄올을 붓고 용기를 씻어내고 결정만 걸러내어 건조시킨다.3) Pour ethanol into the container where the crystals remain, wash the container, and filter out only the crystals and dry them.

그러면, keggin 구조 POMs 분자체(Na12P4W14O58]ㆍ36H2O)가 85~90%수율로 수득된다.Then, keggin structure POMs molecular sieve (Na 12 P 4 W 14 O 58 ]ㆍ36H 2 O) was obtained in 85~90% yield.

Dawson 구조 POMs 분자체(NaDawson structure POMs molecular sieve (Na 99 [α-PW[α-PW 99 OO 3434 ]) 합성방법]) Synthesis method

1) 탈이온수(Deionized Water, DIW)에 1M 텅스텐 산 나트륨 이수화 물(sodium tungstate dihydrate, (Na9WO4ㆍ2H2O)) 0.5M을 넣은 후, 1시간 동안 섞는다.1) After adding 0.5M of 1M sodium tungstate dihydrate (Na 9 WO 4 ㆍ2H 2 O) to deionized water (DIW), mix for 1 hour.

2) 인산(Phosphoric acid)를 떨어뜨리고 섞으면서, pH를 8.5~9.0로 맞춘다.2) Adjust the pH to 8.5~9.0 by dropping phosphoric acid and mixing.

3) 빙초산(glacial acetic acid)을 추가한 후, 1시간동안 저어서 pH를 7.0 ~ 7.5로 맞추고 충분히 섞이면 흰색 침전물이 생성된다.3) After adding glacial acetic acid, stir for 1 hour to adjust the pH to 7.0 ~ 7.5 and mix sufficiently to form a white precipitate.

4) 흰색 침전물을 거름종이로 걸러서 건조한다. 그러면, Dawson 구조 POMs 분자체(Na9[α-PW9O34])가 85~90% 수율로 수득된다.4) Filter the white precipitate with filter paper and dry it. Then, Dawson structure POMs molecular sieve (Na 9 [α-PW 9 O 34 ]) is obtained in 85-90% yield.

[POMs 촉매 제조방법][Method for preparing POMs catalyst]

2차적으로 특정 POMs 분자체의 개방된 상부에 특정 전이금속을 부착시켜 POMs 촉매를 제조한다.Secondly, a specific transition metal is attached to the open top of a specific POMs molecular sieve to prepare a POMs catalyst.

전이금속으로, 코발트(Co), 철(Fe), 니켈(Ni)등과, FeCo, FeNi, FeRu, FeCu 등 합금 형태가 있다.As transition metals, there are alloy forms such as cobalt (Co), iron (Fe), nickel (Ni), and the like, and FeCo, FeNi, FeRu, and FeCu.

전이금속 중 코발트는 판상(시트) 형태로 POMs 분자체의 개방된 상부에 부착되며, 전이금속 중 철, 니켈은 구형 형태로 POMs 분자체의 개방된 상부에 부착된다.Among the transition metals, cobalt is attached to the open top of the POMs molecular sieve in the form of a plate (sheet), and among the transition metals, iron and nickel are attached to the open top of the POMs molecular sieve in a spherical shape.

전이금속으로 코발트(Co)가 부착한 POMs 촉매를 기반으로 만들어진 카이럴성 단일벽 탄소나노튜브는, 전이금속 철(Fe), 니켈(Ni)이 부착된 POMs 촉매를 기반으로 만들어진 카이럴성 단일벽 탄소나노튜브 또는, FeCo, FeNi, FeRu, FeCu 등 합금형태의 전이금속이 부착된 POMs 촉매를 기반으로 만들어진 카이럴성 단일벽 탄소나노튜브 보다 높은 전기전도성을 가진다. 이는 실험을 통해 확인할 수 있다.Chiral single-walled carbon nanotubes made based on POMs catalysts attached to cobalt (Co) as a transition metal have higher electrical conductivity than chiral single-walled carbon nanotubes made based on POMs catalysts attached to transition metals iron (Fe) and nickel (Ni) or chiral single-walled carbon nanotubes made based on POMs catalysts attached with alloy-type transition metals such as FeCo, FeNi, FeRu, and FeCu. This can be verified through experimentation.

이렇게 카이럴성 단일벽 탄소나노튜브의 전기전도도는, 1차적으로 어떤 구조의 POMs 분자체를 선택하느냐에 따라 조절되고, 2차적으로 어떤 종류의 전이금속을 POMs 분자체의 개방된 상부에 부착하느냐에 따라 조절될 수 있다.In this way, the electrical conductivity of chiral single-walled carbon nanotubes is primarily controlled by the structure of the POMs molecular sieve selected, and secondarily controlled by the type of transition metal attached to the open top of the POMs molecular sieve.

POMs 촉매 제조예Preparation of POMs catalyst

일예로, 도 3에 도시된 바와 같은, keggin 구조 POMs 분자체에 코발트(Co)가 부착된 POMs 촉매를 제조하는 방법을 설명한다.As an example, a method for preparing a POMs catalyst in which cobalt (Co) is attached to a keggin structure POMs molecular sieve as shown in FIG. 3 will be described.

1) 탈이온수(Deionized Water, DIW)에, 코발트 클로라이드(CoCl2) 1.0 M를 용해한다.1) Dissolve 1.0 M of cobalt chloride (CoCl 2 ) in deionized water (DIW).

2) keggin 구조 POMs 분자체를 0.1 M을 넣고 섞는다. 코발트(Co)가 포함된 투명 보라색 용액이 만들어진다.2) Add 0.1 M of keggin-structured POMs molecular sieve and mix. A transparent purple solution containing cobalt (Co) is made.

3) 투명 보란색 용액에 Na2HPO4 1.0 M 넣고, 1.0 M 수산화칼륨 용액을 사용하여 pH를 8.5~9로 맞춘다.3) Add 1.0 M of Na 2 HPO 4 to the transparent purple solution and adjust the pH to 8.5~9 using 1.0 M potassium hydroxide solution.

4) 보라색 침전물을 만든 후, 침전물을 거름종이로 걸러서 제거한다.4) After making a purple precipitate, remove the precipitate by filtering it with filter paper.

5) 1.0 M 염화칼륨을 보라색 침전물이 제거된 용액에 넣고 30분간 젓는다. 거름종이로 용액 속 불순물을 걸러서 제거한다.5) Add 1.0 M potassium chloride to the solution from which the purple precipitate was removed and stir for 30 minutes. Filter the impurities in the solution with filter paper to remove them.

6) 불순물이 걸러진 용액을 고체화하기 위하여 유리접시에 넣고 드라이오븐에서 27℃ 가열하여 증발시킨다. 그러면, keggin 구조 POMs 분자체에 전이금속 코발트(Co)가 부착된“POMs 촉매”가 제조된다.6) In order to solidify the solution filtered out of impurities, put it in a glass dish and evaporate it by heating it in a dry oven at 27℃. Then, a “POMs catalyst” in which the transition metal cobalt (Co) is attached to the keggin structure POMs molecular sieve is prepared.

이하, 제2단계(S12)를 설명한다.Hereinafter, the second step (S12) will be described.

탈이온수(Deionized Water, DIW)와 에탄올을 1:9로 혼합한다. 탈이온수와 에탄올이 혼합된 용액에, 0.1 M의 POMs 촉매를 넣는다.Mix deionized water (DIW) and ethanol in a ratio of 1:9. A 0.1 M POMs catalyst is added to a mixture of deionized water and ethanol.

POMs 촉매가 혼합된 용액을 웨이퍼 상에 스포일러로 한 방울씩 떨어뜨린다. 웨이퍼는 SiO2/Si 기판이다.A solution mixed with POMs catalyst is dropped on the wafer drop by drop using a spoiler. The wafer is a SiO 2 /Si substrate.

본 실시예에서는 도 4(a)에 도시된 바와 같이, POMs 촉매를 혼합한 용액을 웨이퍼 상에 5방울을 떨어뜨린다. 물론, 합성하려는 탄소나노튜브의 개수에 따라 웨이퍼에 떨어뜨리는 방울의 개수는 달라질 수 있다.In this embodiment, as shown in FIG. 4(a), 5 drops of a solution mixed with POMs catalyst are dropped on a wafer. Of course, the number of droplets dropped on the wafer may vary depending on the number of carbon nanotubes to be synthesized.

POMs 촉매를 혼합한 용액을 웨이퍼 위에 떨어뜨린 상태에서, 웨이퍼를 소성로에 넣고 700 내지 900℃로 가열한다. POMs 촉매를 혼합한 용액이 증발되고, 특정 POMs 분자체가 타고, 도 4(b)에 도시된 바와 같이 특정 전이금속이 뭉쳐진(재구조화) 클러스터가 웨이퍼 위에 남겨진다. 클러스터는 0.8 ~ 2 nm 직경의 구형이다. 클러스터가 구형이고 직경이 작을수록, 클러스터를 기반으로 카이럴성 단일벽 탄소나노튜브가 보다 쉽게 합성될 수 있다.In a state in which the solution mixed with the POMs catalyst is dropped on the wafer, the wafer is put into a firing furnace and heated at 700 to 900°C. The solution mixed with the POMs catalyst is evaporated, and the specific POMs molecular sieve is burned, leaving clusters in which specific transition metals are agglomerated (restructured) on the wafer, as shown in FIG. 4(b). The clusters are spherical with a diameter of 0.8 to 2 nm. As the clusters are spherical and have a smaller diameter, chiral single-walled carbon nanotubes can be more easily synthesized based on the clusters.

이하, 제3단계(S13)를 설명한다.Hereinafter, the third step (S13) will be described.

클러스터가 남겨진 웨이퍼를 합성로에 넣는다. 합성로 내부의 온도를 950 내지 1100℃로 만든 상태에서, 아르곤(Ar)과 수소(H2)와 탄소소스인 메탄 (CH4)를 합성로 내부로 흘려보낸다. 도 4(c)에 도시된 바와 같이, 클러스터를 기반으로, 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브가 성장하면서 합성된다. 한편, 카이럴성 단일벽 탄소나노튜브가 합성된 후, 클러스터는 산 처리 등 다양한 방법으로 제거될 수 있다.The wafer with remaining clusters is put into a synthesis furnace. With the temperature inside the synthesis furnace set at 950 to 1100° C., argon (Ar), hydrogen (H 2 ), and methane (CH 4 ) as a carbon source are flowed into the synthesis furnace. As shown in FIG. 4(c), based on the cluster, chiral single-walled carbon nanotubes having set electrical conductivity are grown and synthesized. Meanwhile, after the chiral single-walled carbon nanotubes are synthesized, clusters may be removed by various methods such as acid treatment.

한편, 제1단계(S11)에서 특정 POMs 분자체의 개방된 상부에, 전이금속(Co, Ni, Fe) 뿐만 아니라, 고융점 전이금속(W, Mo 등)와 탄소(C)를 함께 부착할 경우, 제3단계(S13)의 고온(1200℃) 조건에서, 고융점 전이금속과 탄소가 클러스터 구조를 무너지지 않게 지지할 수 있다. 이로 인해, 전이금속(Co, Ni, Fe)으로부터 카이럴성 단일벽 탄소나노튜브가 보다 안정적으로 합성될 수 있다.On the other hand, in the case where transition metals (Co, Ni, Fe) as well as high melting point transition metals (W, Mo, etc.) and carbon (C) are attached to the open top of the specific POMs molecular sieve in the first step (S11), the high melting point transition metal and carbon can support the cluster structure so as not to collapse under the high temperature (1200 ° C) condition of the third step (S13). As a result, chiral single-walled carbon nanotubes can be more stably synthesized from transition metals (Co, Ni, Fe).

Claims (5)

POMs 분자체에 전이금속을 부착시켜 POMs 촉매를 제조하는 제1단계; 상기 POMs 촉매가 혼합된 용액을 웨이퍼 상에 떨어뜨린 상태에서, 상기 웨이퍼를 소성로에 넣고 700 내지 900℃로 가열하여 상기 POMs 분자체를 태우고, 상기 전이금속이 뭉쳐진 클러스터를 상기 웨이퍼 상에 남기는 제2단계; 및 상기 클러스터가 남겨진 웨이퍼를 합성로에 넣고, 상기 합성로 내부의 온도를 950 내지 1100℃로 만든 상태에서, 탄소소스를 상기 합성로 내부로 흘려보내서, 상기 클러스터를 기반으로, 설정된 전기전도도를 가진 카이럴성 단일벽 탄소나노튜브를 합성하는 제3단계를 포함하며,
상기 POMs 분자체는, Keggin 구조, Dawson 구조, Anderson 구조, Lindqvist구조, Waugh 구조, Silverton 구조 중 어느 하나의 구조를 가지며, 상기 전이금속은, Co, Fe, Ni, FeCo, FeNi, FeRu, FeCu 중 어느 하나이며,
상기 카이럴성 단일벽 탄소나노튜브의 전기전도도를,
1차적으로, 상기 POMs 분자체의 Keggin 구조, Dawson 구조, Anderson 구조, Lindqvist구조, Waugh 구조, Silverton 구조 중 어느 하나를 선택하여 조절하고,
2차적으로, 선택된 구조를 가진 POMs 분자체의 개방된 상부에, Co, Fe, Ni, FeCo, FeNi, FeRu, FeCu 중 어느 하나의 전이금속를 부착하여 조절하는 것을 특징으로 하는 전기전도도가 조절된 카이럴성 단일벽 탄소나노튜브 제조방법.
A first step of preparing a POMs catalyst by attaching a transition metal to a POMs molecular sieve; A second step of dropping the mixed solution of the POMs catalyst onto a wafer, putting the wafer into a firing furnace and heating the POMs molecular sieve at 700 to 900° C. to burn the POMs molecular sieve and leaving clusters of the transition metal agglomerated on the wafer; And a third step of synthesizing chiral single-walled carbon nanotubes having a set electrical conductivity based on the clusters by putting the wafer with the remaining clusters into a synthesis furnace, and flowing a carbon source into the synthesis furnace while the temperature inside the synthesis furnace is set to 950 to 1100 ° C.
The POMs molecular sieve has a Keggin structure, a Dawson structure, an Anderson structure, a Lindqvist structure, a Waugh structure, and a Silverton structure, and the transition metal is any one of Co, Fe, Ni, FeCo, FeNi, FeRu, FeCu,
The electrical conductivity of the chiral single-walled carbon nanotubes,
First, select and adjust any one of the Keggin structure, Dawson structure, Anderson structure, Lindqvist structure, Waugh structure, and Silverton structure of the POMs molecular sieve,
Secondarily, the electrical conductivity is controlled by attaching any one transition metal of Co, Fe, Ni, FeCo, FeNi, FeRu, FeCu to the open top of the POMs molecular sieve having the selected structure and controlling it. Method for producing chiral single-walled carbon nanotubes.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020200176469A 2020-12-16 2020-12-16 Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity KR102560554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200176469A KR102560554B1 (en) 2020-12-16 2020-12-16 Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200176469A KR102560554B1 (en) 2020-12-16 2020-12-16 Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity

Publications (2)

Publication Number Publication Date
KR20220086221A KR20220086221A (en) 2022-06-23
KR102560554B1 true KR102560554B1 (en) 2023-07-26

Family

ID=82221718

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200176469A KR102560554B1 (en) 2020-12-16 2020-12-16 Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity

Country Status (1)

Country Link
KR (1) KR102560554B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224651A (en) 2003-01-24 2004-08-12 Hisanori Shinohara Method of producing double layer carbon nanotube, double layer carbon nanotube, double layer carbon nanotube composition, and electron emission material
WO2005085132A2 (en) 2003-10-14 2005-09-15 William Marsh Rice University Amplification of carbon nanotubes via seeded-growth methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019837B1 (en) 2015-09-25 2019-10-18 주식회사 엘지화학 Process for preparing carbon nanotubes with controlled selectivity and composite comprising the carbon nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224651A (en) 2003-01-24 2004-08-12 Hisanori Shinohara Method of producing double layer carbon nanotube, double layer carbon nanotube, double layer carbon nanotube composition, and electron emission material
WO2005085132A2 (en) 2003-10-14 2005-09-15 William Marsh Rice University Amplification of carbon nanotubes via seeded-growth methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. Am. Chem. Soc., Vol.124, p.13688-13689 (2002.10.26.)*
Nature, Vol.510, p.522-524 (2014.06.26.)*
Sci. Rep., Vol. 3, p.1460, 2013

Also Published As

Publication number Publication date
KR20220086221A (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Harris Carbon nanotube science: synthesis, properties and applications
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
US20040265212A1 (en) Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
DE112007002082T5 (en) One-dimensional metal and metal oxide nanostructures
JP5544503B2 (en) Marimo carbon and method for producing the same
Luo et al. Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene
CN110586115B (en) High-rate carbon nanotube catalyst, carbon nanotube and preparation method thereof
JP4565384B2 (en) Method for producing carbon nanofibers with excellent dispersibility in resin
Lv et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH
JP2007239148A (en) Fine carbon fiber structure
JP4020410B2 (en) Catalyst for carbon material production
Sun et al. Controlled synthesis of pointed carbon nanotubes
JP2023078128A (en) Fibrous carbon nanostructure, evaluation method of fibrous carbon nanostructure and production method of surface-modified fibrous carbon nanostructure
Han et al. Narrow-chirality distributed single-walled carbon nanotube synthesized from oxide promoted Fe–SiC catalyst
Ye et al. Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source
KR102560554B1 (en) Method for manufacturing chiral single-walled carbon nanotubes with controlled electrical conductivity
JP6028189B2 (en) A method for producing carbon nanofibers containing metallic cobalt.
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
Takahashi et al. Synthesis of carbon nanofibers from poly (ethylene glycol) with controlled structure
KR102176630B1 (en) Method for preparing single-walled carbon nanotube fiber
JP5854314B2 (en) Marimo carbon and method for producing the same
KR101040928B1 (en) Platelet carbon nano fiber and method for fabricating thereof
Liu et al. Controlled growth of Ni particles on carbon nanotubes for fabrication of carbon nanotubes
KR100901735B1 (en) Sol-gel fabrication method of catalyst for synthesizing thin multiwalled carbonnanotube and carbonnanotube mass synthesizing method using the catalyst
KR100771848B1 (en) Monodispersed highly crystallized carbon nanotubes and there's manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant