KR102474915B1 - 동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법 - Google Patents

동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법 Download PDF

Info

Publication number
KR102474915B1
KR102474915B1 KR1020177020574A KR20177020574A KR102474915B1 KR 102474915 B1 KR102474915 B1 KR 102474915B1 KR 1020177020574 A KR1020177020574 A KR 1020177020574A KR 20177020574 A KR20177020574 A KR 20177020574A KR 102474915 B1 KR102474915 B1 KR 102474915B1
Authority
KR
South Korea
Prior art keywords
junction
kinetically
electromagnetic beam
bulk
bonding
Prior art date
Application number
KR1020177020574A
Other languages
English (en)
Other versions
KR20170100598A (ko
Inventor
마이클 에스. 샌들린
데이비드 에이. 루벤
레이몬드 엠. 카람
조지스 루소스
토마스 엠. 윈
Original Assignee
메드트로닉 인코포레이티드
인베니오스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 메드트로닉 인코포레이티드, 인베니오스 filed Critical 메드트로닉 인코포레이티드
Publication of KR20170100598A publication Critical patent/KR20170100598A/ko
Application granted granted Critical
Publication of KR102474915B1 publication Critical patent/KR102474915B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • B32B2310/0887Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/18Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Ceramic Products (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질은 제공된다. 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질은 투명 물질, 흡수성 물질을 포함한다. 상기 투명 물질은 선택 파장의 전자기 빔이 최소 이상의 에너지 흡수 없이 통과하는 특성을 갖는다. 상기 흡수성 물질은 전자기 빔으로부터 에너지를 상당히 흡수하는 성질을 갖는다. 상기 확산 접합은 투명 물질을 흡수성 물질에 접합시키는 전자기 빔에 의해 형성된다. 게다가, 상기 확산 접합은 1000 nm 미만의 두께를 갖는다.

Description

동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법
본 개시는 동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법에 관한 것이다.
접합 제품을 형성하기 위해 다른 타입의 벌크 물질 (bulk material)을 함께 접합시키는 것은 다양한 산업 분야에서 많은 적용을 갖는다. 예를 들어, 반도체 산업에서, 절연 물질 (insulator material)을 전도성 물질에 접합시키는 역량은 매우 요구된다. 게다가, 티타늄과 같은, 금속에 사파이어와 같은, 절연 물질을 부착시키는 것은, 광소자 (photonic device) 및 의료 기기 (medical device)용 패키지의 형성을 포함하는 많은 적용을 갖는다. 티타늄에 사파이어를 효과적으로 부착할 수 있는 역량을 원하는 또 다른 대표 산업은, 고가품 보석의 제작이다. 이 방법은 또한 고진공 시스템, 및 군용 및 우주선에서 사파이어 창 (sapphire windows)을 접합하기 위한 적용 가능성을 갖는다.
이들 타입의 물질을 함께 접합시키는 전통적인 방법은 고온 및 고압을 사용하여 통상적으로 수십에서 수백 마이크론 (microns) 두께 범위인 확산 접합 (diffusion bond)을 생성한다. 사용된 온도는 대략 600-1000℃일 수 있다. 이러한 고온은 형성되는 제품에 해를 끼칠 수 있다. 예를 들어, 장치용 패키지를 형성하는 경우, 패키지 내에 접합을 형성하는데 사용되는 고온은, 패키지 내에 있는 구성요소의 손상을 각오해야 한다. 이것은 또한 다결정 물질에서 입자 성장을 결과하고, 이들의 물리적 특성을 변경시킨다. 게다가, 접합의 강도 또는 인성에 영향을 미칠 수 있는 긴 형성 시간에 걸친 고온의 사용으로, 원하지 않은 화합물은 접합 영역에 형성된다. 부가적으로, 확산 접합 기술을 사용하여 접합된 물질의 열팽창계수의 차이는 어셈블리가 고온에서 냉각됨에 따라 계면 응력 (interfacial stresses)의 발생을 초래할 수 있다. 이들 응력은 종종 균열 발생을 결과한다. 계면 응력으로 인해 생성된 균열의 크기는 연결될 물질의 상호작용 존 (interaction zone)의 크기에 따라 조정되는 경향이 있다. 통상적인 확산 접합이 비교적 큰 상호작용 존을 생성하기 때문에, 발생된 균열은 수 마이크론에서 수 밀리미터로 확장되는 경향이 있다. 균열이 임계 흠 크기 (critical flaw size)를 초과하면, 작은 하중하에서도 취성 물질 (Brittle materials)은 파국적으로 자연스럽게 파손될 것이다. 따라서, 더 큰 균열은 감소된 신뢰성 및 수명을 결과할 것이다. 이러한 이유로, 전통적인 확산 접합 기술은, 다른 열팽창계수를 갖는 물질 사이에 기계적으로 강력한 접합을 생성하는데 제한된 성공을 거두었다. 티타늄 및 사파이어를 접합시키는 다른 공지된 방법은, 사파이어를 니오븀의 박막으로 금속화하는 단계 및 구성요소를 금 또는 다른 적절한 납땜 물질 (braze material)와 함께 납땜하는 단계를 포함한다. 일반적인 온도는 450 내지 1200℃이다.
패키지의 내부 구성요소를 손상시키지 않기를 바라는 이종 물질을 접합하는데 사용되는 비교적 저온인 몇 가지 방법은, 솔더링 (soldering), 유리 프릿, 또는 열압착 (thermocompression) 접합과 같은, 중간층을 활용한다. 이들 공정은, 접합 조인트 (bond joint)를 달성하기 위한 적절한 압력, 및 100℃ 내지 400℃의 적당한 온도를 사용한다. 예를 들어, 주석-인듐-은, 또는 주석-납, 주석-구리-은의 솔더링은 사용될 수 있다. 그러나, 이 접근법은 몇 가지 단점이 있다. 솔더링에 사용되는 플럭스 (flux)는, 특히 접합이 인클로저 (enclosure)를 밀봉하는데 사용되는 경우, 감지하기 어려운 오염을 유발하기 쉽다. 접합의 강도는 벌크 물질의 강도보다 떨어지며, 이들 솔더링 합금은 혹독한 환경에 노출되면 부식에 민감하다. 또 다른 예로는 나노-다공성 금의 사용 및 벌크 물질에 고압의 적용으로 영향받는 열 압착 접합이 있다. 그러나, 이들 기술로는 접합의 무결성 (integrity)을 결정하는 것이 어렵고, 및 접합 강도는 벌크 물질의 강도보다 훨씬 낮다. 접착제를 사용하는 다른 방법이 접합을 형성하는데 사용되지만, 접합은 본질적으로 약하고 비-기밀적 (non-hermetic)이다.
전술된 이유 및 본 명세서를 읽고 이해할 때 당업자에게 명백해질 후술될 다른 이유들로 인하여, 저온에서 형성되고, 벌크 물질만큼 강한 강도를 갖는, 절연체와 전도성 벌크 물질 사이에 접합을 생성하는 방법에 대한 당 업계내에 요구가 있다.
현 시스템의 전술한 문제점은 본 발명의 구체 예에 의해 다루어지며, 이하 명세서를 읽고 검토하여 이해될 것이다. 다음의 과제의 해결 수단은 제한의 방식이 아닌 일례의 방식으로 이루어진다. 이것은 단지 본 발명의 관점 중 몇몇을 이해하는 것을 돕기 위해 제공된다.
하나의 구체 예에서, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질은 제공된다. 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질은, 투명 물질 및 흡수성 물질을 포함한다. 상기 투명 물질은 선택 파장의 전자기 빔이 최소 에너지를 초과하여 흡수하지 않고(without more than minimal energy absorption) 통과하는 특성을 갖는다. 상기 흡수성 물질은 상기 전자기 빔으로부터 에너지를 상당히 흡수하는 특성을 갖는다. 상기 확산 접합은 상기 전자기 빔에 의해 투명 물질을 흡수성 물질에 접합시켜 형성된다. 상기 확산 접합은 1000 nm 미만의 두께를 갖는다.
또 다른 구체 예에서, 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성시키는 방법은 제공된다. 상기 방법은 투명 물질의 접합될 제1표면을 흡수성 물질의 접합될 제2표면에 대해 위치시키는 단계를 포함한다. 상기 투명 물질은 선택 파장의 전자기 빔이 최소 에너지를 초과하여 흡수하지 않고(without more than minimal energy absorption) 통과하는 것이 가능한 특성을 갖고, 및 상기 흡수성 물질은 전자기 빔으로부터 에너지를 현저하게 흡수하는 특성을 갖는다. 압력은 그 다음 상기 투명 물질 및 흡수성 물질에 가한다. 상기 전자기 빔은 상기 투명 물질을 통해 상기 흡수성 불투명 물질의 접합될 제2표면에 선택적으로 통과된다. 상기 전자기 빔은 동력학적으로 제한된 나노-스케일 확산 접합을 생성되도록 한다.
본 발명은, 상세한 설명 및 하기의 도면을 고려하는 경우, 좀 더 용이하게 이해될 수 있고, 또 다른 장점 및 이의 용도는 좀 더 쉽게 명백해질 것이다:
도 1은 본 발명의 일 구체 예에서 접합의 형성을 나타낸 개략도이다.
도 2는 본 발명의 일 구체 예의 티타늄 준비 흐름도이다.
도 3은 본 발명의 구체 예의 사파이어 준비 흐름도가다.
도 4a는 본 발명의 구체 예의 일반적인 세정 흐름도이다.
도 4b는 본 발명의 구체 예의 티타늄 세정 흐름도이다.
도 5는 본 발명의 구체 예의 초기 설정 흐름도이다.
도 6은 본 발명의 구체 예의 접합 흐름도이다.
도 7은 본 발명의 구체 예의 레이저 펄스 스팟 크기 (spot size)-중첩 예시이다.
도 8은 본 발명의 구체 예의 급속-온도 벌크 물질 접합 시스템의 블록도이다.
도 9a는 본 발명의 구체 예의 티타늄-사파이어 벌크 물질에서 접합의 확산 영역의 나노-스케일 투과 전자 현미경 (TEM) 이미지이다.
도 9b는 본 발명의 구체 예의 티타늄-사파이어 벌크 물질에서 계면 접합 조인트의 나노-스케일 TEM 이미지이다.
도 9c는 본 발명의 구체 예의 접합된 티타늄-사파이어 벌크 물질의 미세-스케일 주사 전자 현미경 (SEM) 이미지이다.
도 10은 본 발명의 구체 예의 접합 고정구 어셈블리 (bonding fixture assembly)의 측면 사시도이다.
도 11은 본 발명의 구체 예의 물질 홀딩 어셈블리의 측면도이다.
도 12는 본 발명의 구체 예의 물질 홀딩 어셈블리 (holding assembly )의 부분 단면 측면 사시도이다.
도 13은 본 발명의 또 다른 구체 예에서 접합의 형성을 나타낸 개략도이다.
보통 실무에 따르면, 다양한 기재된 특색들은 스케일대로 도시되지 않고, 본 발명과 관련된 특정 특색을 강조하기 위해 도시된다. 참조 문자는 도면 및 문서 전체에서 같은 요소 (elements)를 나타낸다.
이하 상세한 설명에서, 상세한 설명의 일부를 형성하고, 본 발명이 실시될 수 있는 특정 구체 예를 예시하는 방식으로 나타낸 첨부된 도면을 참조하여 언급된다. 이들 구체 예들은 당업자가 본 발명을 실시할 수 있도록 충분히 상세하게 기재되며, 본 발명의 사상 및 범위를 벗어나지 않고, 다른 구체 예들이 활용될 수 있으며, 변화가 이루어질 수 있는 것으로 이해되어야 한다. 따라서, 이하 상세한 설명은 제한적인 의미로 해석되지 않으며, 본 발명의 범주는 청구 범위 및 이의 균등물에 의해서 오직 한정된다.
본 발명의 구체 예들은 급속 실온 공정으로 다른 벌크 물질의 접합을 제공한다. 접합될 벌크 물질은, 도 1에 일반적으로 예시된 바와 같이, 투명 물질 (104) (비금속 (절연) 물질) 및 흡수성 불투명 물질 (106) (금속 (도체) 물질)를 포함한다. 투명 물질 (104)은 레이저 (102)로부터 전자기 빔 (103) (전자기 방사선 (electromagnetic radiation), 전자기 신호 또는 일반적으로 레이저 신호)의 파장을 적어도 부분적으로 통과시킨다. 그러므로, 투명 물질 (104)는, 전자기 빔이 최소 에너지를 초과하여 흡수하지 않고(without more than minimal energy absorption) 통과되는 특성을 갖는다. 구체 예에서, 1000nm 미만의 두께를 갖는 확산 접합은 다른 벌크 물질을 함께 접합시키는데 생성된다.
흡수성 물질 (106)는 전자기 방사선 (103)의 에너지를 흡수 및 상호작용하고, 접합 계면 (108)은 흡수성 물질과 투명 물질 (106 및 104) 사이에 확산 (투명 물질 (104)로 불투명 물질 (106) 또는 불투명 물질 (106)로 투명 물질 (104)의 확산)에 의해 벌크 물질들 (104 및 106) 사이에서 생성된다. 더욱이, 몇몇 구체 예에서, 확산은 두 물질이 서로 확산하는 상호확산을 포함한다. 대표 투명 물질 (104)은, 사파이어 및 석영과 같은, 그러나 이에 제한되지 않는, 다결정 또는 단결정 물질들, 또는 유리를 포함한다. 다른 투명 물질의 예로는 지르코니아, 다이아몬드, 금속 산화물 및 커런덤 변형들 (corundum variations)을 포함하지만, 이에 한정되는 것은 아니다. 흡수성 물질 (106)은, 티타늄과 같은, 그러나 이에 제한되지 않는, 금속을 포함한다. 게다가, 흡수성 물질 (106)은 티타늄의 합금일 수 있다. 원하는 접합을 형성하기 위해 흡수성 물질 (106)과 상호작용하는 동안 투명 물질 (104)을 통한 최소 에너지 흡수는, 일반적으로 다음의 이중 요건을 충족시킬 필요가 있다: (1) 투명 물질 (104)을 통해 투과되는 에너지는, 불투명 물질 (106)에 의한 흡수를 통해 계면에서 접합 공정을 활성화하기에 충분해야 하고, 및 동시에 (2) 투명 물질 (104)에 의해 흡수된 임의의 에너지는, 접합 계면 (108)으로부터 떨어진 투명 물질 (104)의 벌크를 용융, 뒤틀림, 또는 그렇지 않으면 영향을 미치기에 충분하지 않아야 한다. 일반적으로, 물질의 에너지 흡수 곡선은 파장의 함수에 따라 상대적으로 빠르게 상승한다. 공정 제어 및 반복성을 위해, 흡수 곡선의 고경사 영역에 있지 않은 파장은 투명 물질 (104)에 대해 선택될 수 있다. 게다가, 하나의 구체 예에서, 투명 물질 (104)에 의한 최소 에너지 흡수는, 전자기 방사선 (103)의 전체 에너지의 50% 미만이다.
하기에 기재된 바와 같은, 생성된 접합은, 벌크 물질 (104 및 106) 중 적어도 하나의 강도와 유사한 (몇몇 구체 예에서 동일한) 표면 인성 (강도)을 갖는다. 게다가, 몇몇 구체 예에서, 생성된 접합은, 조인트에 포함된 투명 물질의 벌크 파괴 인성보다 낮은 수준으로 조인트의 측정된 파괴 인성을 감소시키기에 충분히 큰 균열 또는 결함 (imperfections)을 함유하지 않는다. 몇몇 구체 예에서, 생성된 접합은 일반적으로 연속적이고, 균일하며 및 균열이 없다. 부가적으로, 하나의 구체 예에서, 접합은 내부식성이고, 생물학적으로 안정한, 기밀 밀봉을 제공한다. 게다가, 구체 예에서, 접합 계면 (108) (혼합 또는 확산 존)은 짧은 가열 시간으로 인해 비교적으로 얇은 계면 (서브 마이크론 (즉, 나노-스케일) 범위)이다. 선택 물질의 사용 및 짧은 국부 접합 시간 및 벌크 가열의 부재로 인해, 접합을 약화시킬 수 있는 계면 또는 그 부근에서 원하지 않는 화합물의 형성은, 최소화되거나 제거된다. 흡수성 물질 (106)로서 티타늄 및 투명 물질 (104)로서 사파이어의 사용의 실시 예에서, 균일한 계면 영역 (108)은 생성된다. 티타늄 및 사파이어의 열팽창계수가 비교적 비슷할지라도, 여기서 기재된 기술은, 금 및 사파이어, 또는 알루미늄 및 사파이어와 같이 크게 다른 열팽창계수를 갖는 다른 이종 물질을 함께 접합시키는데 적용될 수 있다.
구체 예에서, 벌크 물질은 먼저 가공되어 접합될 이들을 준비한다. 티타늄-사파이어 예에서 벌크 물질의 준비는, 도 2의 티타늄 준비 흐름도 (200) 및 도 3의 사파이어 준비 흐름도 (220)에 제공된다. 티타늄과 관련하여, 하나의 구체 예에서, 사용될 티타늄의 등급은 선택된다. 하나의 구체 예에서, 티타늄은 2개의 평평한 평행 표면 (204)을 형성하도록 기계 가공된다. 평평한 표면 중 하나는 사파이어에 접합하는데 사용되고 및 다른 하나는 힘이 가해질 수 있는 비교적 평평한 표면을 제공하는데 사용된다. 다른 구체 예에서, 티타늄의 단지 하나의 표면만이 평탄하게 기계 가공된다. 하나의 구체 예에서, 랩핑 공정 (lapping process) 및 연마 공정은, 표면 품질을 개선하기 위해 사파이어에 접합될 티타늄의 표면 (206)에 적용된다. 하나의 구체 예에서, 랩핑은 브랑차드 그라인딩 (Blanchard grinding) 및 12㎛ 직경의 산화알루미늄 (Al2O3) 슬러리 (알루미나)의 조합의 사용을 포함한다. 하나의 구체 예에서, 기계 가공 표면 (204) 및 랩핑 및 연마 표면 (206)의 순서는 역전된다. 게다가, 몇몇 구체 예에서, 기계 가공 표면 (204) 및 랩핑 및 연마 표면 (206)은 뒤섞여 진다. 더욱이, 하나의 구체 예에서, 티타늄의 접합 표면은 표면 품질을 개선하기 위해 2단계 공정으로 연마된다. 첫 번째 연마 단계는 1.5㎛ 다이아몬드 슬러리의 혼합물을 사용한다. 두 번째 및 최종 연마 단계에서는 0.5㎛ 다이아몬드 슬러리를 사용한다. 몇몇 구체 예에서, 서브-마이크론 범위의 평탄도 (flatness)는, 그들이 쌍을 이룰 경우 접합될 표면의 밀접한 접촉 (intimate contact)을 보장하여 바람직하다. 대체 슬러리 및 방법은 필요한 평탄도 및 표면 마무리를 달성하기 위해 사용될 수 있다. 100nm 미만의 거칠기 (Ra)를 갖는 매끄러운 스크래치 없는 표면은 원하는 기밀 접합 조인트를 가능하게 한다는 것을 확인하였다. 그러나, 기밀 접합은 200 nm 이상의 거칠기로 달성될 수 있다. 게다가, 비-기밀 접합은, 모폴로지 (morphology)에 따라 500 nm 이상의 거칠기로 달성될 수 있다. 접합으로 생성되는 기밀 밀봉을 요구하지 않은 구체 예에서, 몇몇의 미세 연마는 제거될 수 있다. 사파이어를 준비하는 것과 관련하여, 사파이어는 먼저 연마된다 (222). 하나의 구체 예에서, C 또는 R 평면 결정 배향 (plane crystal orientation)은 사용된다. 사파이어는 그 다음 필요한 경우 크기별로 다이싱 (dicing)된다 (224).
티타늄 및 사파이어가 준비되면, 이들은 모두 세정된다. 하나의 대표 구체 예에서, 티타늄 및 사파이어는 일반적으로, 도 4a의 일반적인 세정 흐름도 (225)에 예시된 바와 같이, 필요에 따라 이온성 및 비-이온성 용액으로 세정되고 (226) 및 그 다음 스핀 건조된다 (228). 티타늄을 위한 특정 세정의 또 다른 예로는, 도 4b의 티타늄 세정 흐름도 (230)에 예시된다. 티타늄은 비눗물 (232)로 세척한 다음, 탈이온수 (234)로 세척한다. 벌크 티타늄 물질 (104)은 그 다음, 하나의 구체 예에서, 아세톤 (236)으로 헹궈지고 및 깨끗이 닦는다 (238). 벌크 티타늄 물질 (104)은 그 다음, 하나의 구체 예에서, 메탄올 (240)로 헹궈지고, 및 그 다음 깨끗이 닦는다 (250). 티타늄 물질은 그 다음 에어 건 (air gun) 등으로 블로우 건조된다 (252). 하나의 구체 예에서, 티타늄을 세정 및 건조하기 위한 웨이퍼 제조 공정은 사용된다. 하나의 구체 예에서, 티타늄이 세정된 후에, 표면의 와이핑 (wiping)은 회피된다.
벌크 물질 (104 및 106)이 준비되고 세정된 후에, 이들은, 도 5의 초기 설정 흐름도 (260)에 설정된 바와 같이, 선조립된다 (262). 벌크 물질 (104 및 106)은 사파이어의 표면 다음에 티타늄의 접합될 표면을 배치하여 선조립된다. 일단 티타늄 및 사파이어가 서로에 대해 적절하게 위치되면, 이들은 접합 고정구 어셈블리 (308)의 홀딩 프레임 (550)으로 로딩된다 (도 9 내지 도 11에 나타내고, 이하 기재됨) (264). 홀딩 프레임 (550)은 서로 연관된 위치에 티타늄 및 사파이어를 보유한다. 압력은 그 다음 사파이어에 대해 티타늄을 가압하기 위해 적용된다 (266). 벌크 물질을 여기에 기재된 공정으로 접합시키는데 필요한 압력의 양은, 벌크 물질의 형태 및 크기뿐만 아니라 접합될 물질에 적어도 부분적으로 의존한다. 일반적으로, 압력은, 레이저에 의해 조사되는 경우, 접합이 발생하도록 접합 표면의 밀접한 접촉을 보장하기에 충분할 정도만 필요하다. 게다가, 몇몇 구체 예에서, 계면 표면의 높은 점 접촉을 야기하는 계면에서 압력의 양은 일반적으로 접합을 보장하기에 충분하다. 벌크 물질이 고정구에 있고, 압력이 가해지면, 물질들 사이의 접합은 생성된다. 물질 내에 접합을 형성하는 공정은, 실온에서, 도 6의 접합 흐름도 (270) 내에서 시작된다. 도 6에 예시된 바와 같이, 레이저 (102)는, 도 1에 예시된 바와 같이, 투명 물질 (104) (본 실시 예에서는 사파이어)를 통해 흡수성 물질 (106) (본 실시 예에서는 티타늄)의 표면으로 향한다. 구체 예에서, 레이저 접합 파라미터는 펄스 에너지, 펄스 폭, 펄스 주파수, 스팟 크기, 및 스팟 중첩 또는 피치를 포함한다. 접합의 형성에서, 파라미터의 값은 일반적으로 서로 의존한다. 그러므로, 하나의 파라미터 값을 선택하면, 원하는 동력학적 제한된 접합을 형성하기 위한 또 다른 파라미터에 대한 선택 값을 결과할 것이다. 접합을 형성하는데 필요한 모두는, 원하는 대로 함께 구조를 접합하는 방식에서 에너지의 전달이다. 따라서, 본 발명은 특정 파라미터에 제한되지 않는다. 스팟 크기 및 스팟 중첩은 도 7을 고려하여 하기에 논의된다.
스팟 크기는 표면 (280) 상에 레이저 빔 (전자기 빔)의 폭/직경 (282)이다. 도 7은 전자기 빔이 이의 타겟에 대해 이동함에 따라 시간에 걸친 펄스들 (282) (전자기 펄스들 또는 레이저 펄스들)을 예시한다. 도 7에 나타낸 실시 예에서, 초점을 맞춘 레이저 펄스 (280)는 일반적으로 원형이다. 스팟 중첩 (284)은 이전의 펄스 (280)와 중첩되는 펄스 (280)의 퍼센트이다. 티타늄-사파이어의 실시 예에서, 레이저 펄스 (280)의 스팟 크기 (282)는 5-15 ㎛ 범위일 수 있다. 우수한 결과는 티타늄-사파이어 실시 예에서 0-50%의 범위에서 중첩되어 달성된다. 더 많은 중첩은 또한 허용 가능하지만 처리 시간의 낭비를 결과한다. 유사한 결과는 펄스당 더 높은 에너지 및 적은 중첩, 또는 펄스당 적은 에너지 및 더 많은 중첩일 때 얻을 수 있다. 티타늄-사파이어 벌크 물질의 실시 예에서, 티타늄-사파이어 벌크 물질에 대해 5mm/s - 600mm/s의 속도로 이동되는 전자기 빔으로 1-80 kHz 범위의 주파수, 1-5 μJ의 펄스 에너지는 분석되었다. 실험을 통해, 5mm/s 내지 600mm/s의 속도로 티타늄-사파이어 벌크 물질에 대해 이동되는 레이저 신호, UV 355nm - IR 1064 파장, 2.1mW-100mW의 평균 출력 (power), 및 약 1kHz의 반복률 (펄스의 주파수)을 갖는 레이저가, 균일하고, 강하며, 연속적인 접합을 생성한다는 것을 알아냈다. 평균 출력은 약 0.6 내지 2.1μJ의 펄스 에너지에 1kHz 반복률을 곱한 것과 같다 (평균 출력 = 펄스 에너지 × 반복률). 반복률 및 평균 레이저 출력은 일상적인 접합을 위해 원하는 펄스 에너지 및 펄스 중첩을 생성하도록 설정된다. 티타늄-사파이어의 실시 예에서, 1-10%의 중첩은 바람직하다. 출력 수준은 구체 예에서 약 10 마이크론인 스팟 크기에 의존하고, 동등한 효과를 달성하는 파라미터로 유사한 결과를 기대할 수 있다. 또한, 실험을 통해, 다른 파라미터를 전술된 대로 유지하면서, 펄스 에너지를 2.5μJ 이상으로 증가시키면, 접합은 생성되지만, 균열이 나타나기 시작하고, 및 펄스 에너지가 2.0μJ보다 훨씬 적으면, 접합은 형성되지 않을 것이라는 것을 알아냈다. 부가적으로, 전술된 바와 동일한 다른 파라미터와 함께, 12kHz의 주파수 및 1μJ의 펄스 에너지에서, 원하는 접합은 형성된다. 그러므로, 더 낮은 에너지를 갖는 더 높은 주파수는 사용될 수 있다. 부가적으로, 더 많은 중첩을 갖는 더 낮은 주파수는, 접합을 형성하기 위해 동등한 에너지 침적 (energy deposit)을 달성하는데 사용될 수 있다. 게다가, 전체 UV, 가시광선 및 적외선 스펙트럼을 가로지르는 파장을 포함하여, 다른 파장의 사용은 고려된다. 예를 들어, 파장이 532 nm인 레이저는 사용될 수 있다. 이 실시 예에서, 레이저 공정 파라미터의 바람직한 설정은, 1 μJ의 펄스 에너지, 10 ㎛의 스팟 크기, 1kHz의 펄스 주파수, 및 50%의 펄스 중첩을 포함한다. 퀀칭 밴드 (Quenching bands)는, 벌크 물질을 함께 접합하는 경우, 접합 공정 동안 접합 물질이 얼마나 빨리 냉각되는지의 결과에 따라 형성될 수 있다. 퀀칭 밴드는 접합 구조의 특성을 한정한다. 물질이 얼마나 빨리 냉각되는지는 펄스 폭 및 출력의 함수 중 적어도 일부이다. 그러므로, 펄스 모양의 변화는 접합 구조를 변화시킬 수 있다. 전술한 바와 같이, 상기에서 주어진 파라미터는 대표 파라미터이다. 접합될 물질 및 원하는 접합에 의존하여, 다른 파라미터는 사용될 수 있다. 예를 들어, 펄스 또는 연속파 (continuous wave)를 사용하여 접합을 형성할 수 있다. 게다가, 0 내지 100%의 중첩 범위는 물질들 사이에 원하는 접합을 형성하는데 사용될 수 있다. 그러므로, 본 발명은 특정 주파수, 스팟 크기, 중첩 또는 파장과 같은 특정 파라미터에 제한되지 않는다.
작동 파라미터가 설정되면, 레이저는 기준 피쳐 (reference features)로 정렬된다 (278). 그 다음, 프로그램은 컨트롤러 (302)에 의해 실행되어 레이저를 작동시키고 및 접합 고정구 어셈블리 (308)의 스테이지 (307)를 이동시켜, 도 8과 관련하여 더욱 후술된 대로 접합을 형성한다 (280). 대체 구체 예에서, 벌크 물질을 이동시키는데 사용되는 스테이지 (307) 대신에 레이저 (102)를 이동시키기 위해 스캐너 (305)는 사용된다. 게다가, 스테이지 및 빔 이동의 조합은 또한 사용될 수 있다. 티타늄-사파이어의 실시 예에서, 벌크 물질 (티타늄 및 사파이어) 또는 레이저는 0-100%의 초점을 맞춘 레이저 스팟에서 중첩을 달성하는데 필요한 속도로 이동하는 동안, 레이저는 작동되어 균열이 없고, 균일하며, 연속적인 접합을 형성한다는 것을 알아냈다. 이 설정은 또한 접합될 벌크 물질의 선택 부분에 레이저를 선택적으로 향하게 함으로써 패턴 접합 (patterned bonding)을 가능하게 한다. 접합 동안에, 전자기 방사선은, 계면에서 벌크 물질들 사이에 화학적 접합을 생성하기에 충분하지만, 이들의 기계적 특성 또는 화학적 저항성 (chemical resistance)을 저하시키는 방식으로 벌크 물질을 변경하기에는 불충분한, 국부적인 원자 이동성 (localized atomic mobility)을 자극하도록 적절한 기간 및 강도로 계면에 절연체 기판 (이 실시 예에서 사파이어)를 통해 향해진다. 특히, 펄스의 짧은 지속 시간은 열팽창 불일치 및 열 충격으로 인해 자연적으로 발생하는 계면 응력장 (stress field)의 크기를 제한한다. 최종 흠 크기가 국부적인 응력장의 크기에 따라 조정되기 때문에, 접합 동안에 발생된 통상적인 계면 흠은, 통상적으로 대략 나노미터로 작을 것이다. 따라서, 전파 임계치 (propagation threshold)를 만족시키기 위해 국부 응력 강도를 상승시키는 충분한 치수의 흠은 생성되지 않는다.
급속 실-온 벌크 물질 접합 시스템 (300)의 블록도는 도 8에 예시된다. 시스템 (300)은 컨트롤러 (302)를 포함한다. 컨트롤러 (302)는 지시의 저장을 위한 메모리 (301) 및 지시를 처리하기 위한 프로세서 (303)를 포함한다. 사용자 인터페이스 (304)는 컨트롤러 (302)와 소통한다. 사용자는 사용자 인터페이스 (304)을 통해 반복률, 평균 레이저 출력 및 스테이지 이동 및/또는 스캐너 속도를 설정하는 것과 같은 지시를 컨트롤러 (302)에 제공한다. 또한, 도 8에서 예시된 것은 접합 고정구 어셈블리 (308)이다. 접합 고정구 어셈블리 (308)는 레이저 (102)에 대해 벌크 물질을 보유하고 위치시키는데 사용된다. 이 구체 예에서, 고정구 (308)는 벌크 물질이 장착되는 스테이지 (307)를 포함한다. 스테이지 (307)는 컨트롤러 (302)의 제어하에 X, Y 및 Z 방향으로 이동하도록 설계된다. 전술한 바와 같이, 하나의 구체 예에서, 컨트롤러 (302)의 제어하에 있는 스캐너 (305)는, 고정구 (308)에 의해 보유되는 접합될 벌크 물질에 대해 레이저 (102)를 이동시키도록 실행된다. 시스템 (300)은 또한 컨트롤러에 정보를 제공하는 하나 이상의 센서 (310)를 포함할 수 있다. 예를 들어, 센서 (310)는 위치 센서, 출력계, 카메라, 등을 포함할 수 있다.
도 9a는 전술된 단계들에 의해 형성된 바와 같이 접합된 티타늄 (402) 및 사파이어 (404)의 확산 존 (406)의 투과 전자 현미경 (TEM) 이미지를 예시한다. 전술한 바와 같이, 티타늄과 상호작용하는, 전자기 빔의 에너지의 결과로서, 티타늄은 알루미나 (사파이어) 내로 확산되어 확산 존 (406)을 형성한다. 예시된 바와 같이, 이 실시 예에서 확산 존 (406)은, 균일하고 두께가 60nm 미만이다. 게다가, 티타늄 (402)은 계면을 가로질러 일정하게 줄어들고 및 확산 존 (406)이 사파이어 (404)에 접근함에 따라 0에 접근한다. 이러한 구조는 통상적인 고온의, 장시간 확산 접합에 대해 기대되는 것이 아니다. 예를 들어, 레이저 접합 공정으로부터 결과하는 농도 구배의 기울기는 통상적인 확산 접합에서 생성되는 것과 다르다. 또한, 응력 및/또는 원하지 않는 상 (phases)을 다루기 위해 유리 및/또는 금속 (예를 들어, 니오븀)의 중간층을 부가하지 않고, 당 업계에 공지된 기술로 직접 사파이어에 티타늄을 확산 접합시키는 것은 거의 불가능하다. 티타늄-사파이어의 실시 예에서, 접합된 계면 영역은, 벌크 물질로 우수하게 전환된 티타늄, 알루미늄 및 산소를 함유한다. 전술한 바와 같이, 전술된 기술은 사용된 벌크 물질 중 적어도 하나만큼 강한 접합을 결과한다. 티타늄-사파이어 실시 예에서, 접합은 사파이어만큼 강하다. 도 9b를 참조하면, 나노미터 (nm) 범위의 TEM 이미지 (410)는 또한 제공된다. 이 이미지는 나노-스케일 계면 접합 조인트 (412)가 200nm 미만의 두께로 형성되는 것을 예시한다. 200 nm 미만의 계면 접합 조인트를 넘어서, 티타늄 (402) 및 사파이어 (404)는 변화되지 않는다. 즉, 전술한 바와 같이, 접합의 형성은, 이 실시 예에서, 200 nm 미만인 나노미터 스케일의 계면 접합 조인트 (412)를 넘어서 티타늄 (402) 및 사파이어 (404)의 특성을 변화시키지 않는다. 도 9b의 TEM 이미지 (410)가 예시하는 바와 같이, 접합은, 확산 존 (406)이 생성되는, 계면 접합 조인트 (412)를 포함한다. 도 9c를 참조하면, 마이크로미터 (㎛) 스케일의 주사 전자 현미경 (SEM) 이미지 (418)는 제공된다. 여기서 다시, 상기 이미지는, 벌크 사파이어 (404) 및 벌크 티타늄 (402)이, 전술한 바와 같이 함께 접합된 벌크 물질 표면 근처의 나노미터 스케일 계면 접합 조인트 (412) 구역을 제외하고, 접합 (422)의 형성에 의해 변화되지 않음을 예시한다. 도 9c는 또한 벌크 물질이 패턴 접합될 수 있음을 예시한다. 특히, 도 9c는 접합되지 않은 구역 (420 및 424) 및 접합된 구역 (422)을 예시한다. 그러므로, 전술된 기술은, 전자기 빔 형성 접합에 대한 정확한 위치 제어를 가능하게 하기 때문에, 이격된 접합 구역의 패턴은, 원하는 경우, 벌크 물질의 접촉 표면 구역들 사이에 형성될 수 있다. 상기는 티타늄-사파이어 접합에서 60nm 미만의 확산 존을 설명하고 예시한다. 그러나, 접합될 물질 및 파라미터를 변화시켜, 구체 예에서, 10nm 내지 1000nm 범위의 확산 존은 예측된다.
도 10은, 하나의 구체 예에 사용되는 접합 고정구 어셈블리 (308)의 일례를 예시한다. 접합 고정구 어셈블리 (308)는 벌크 물질을 보유 및 위치시킬 뿐만 아니라 벌크 물질상으로 레이저를 향하도록 하는데 사용된다. 이 대표 접합 고정구 어셈블리 (308)는 X-축 이동 스테이지 (504), Y-축 이동 스테이지 (506) 및 Z-축 이동 스테이지 (508)가 장착되는 베이스 (502)를 포함한다. X-축 이동 스테이지 (504), Y-축 이동 스테이지 (506) 및 Z-축 이동 스테이지 (508)는 전술한 스테이지 (307)를 구성한다. 이들은 컨트롤러 (302)의 제어하에 벌크 물질을 위치시킨다. 접합 고정구 어셈블리 (308)는 또한 접합 공정에 사용되는 초점 광학기기 어셈블리 (focus optic assembly) (510), 카메라 어셈블리 (512) 및 정렬 광학기기 (514)를 포함하는 것으로 예시된다. 유사한 고정구의 예로는 "Room Temperature Glass-To-Glass, Glass-to-Plastic and Glass-To-Ceramic/Semiconductor Bonding"이라는 명칭의 미국 특허출원 제13/291,956호에서 확인되며, 이의 전체적인 내용은 여기에 참조로 혼입된다. 접합 고정구 어셈블리 (308)는, 도 11 및 12의 관점에서 상세하게 더욱 기재되는, 물질 홀딩 어셈블리 (520)를 더욱 포함한다.
물질 홀딩 어셈블리 (520)는 맞물림 지지부 (524) 및 고정 플레이트 (538)를 포함한다. 맞물림 지지부 (524) 및 고정 플레이트 (538) 사이에 연결은, 4개의 이격 로드 (539) 및 4개의 병진 로드 (translation rods) (528)의 세트이다. 더욱이, 맞물림 지지부 (524)과 고정 플레이트 (538) 사이에는 팽창 어셈블리 (expansion assembly) (530)가 위치된다. 팽창 어셈블리 (530)는 컨트롤러 (302)의 제어하에 있는 적어도 하나의 공압 팽창 장치를 포함한다. 슬라이드 플레이트 (532)는 팽창 어셈블리 (530) 위에 위치된다. 슬라이드 플레이트 (532)는 각각의 병진 로드 (528)을 수신하는 이격 슬롯 (slots)을 포함한다. 사용시, 팽창 어셈블리 (530)는 병진 로드 (528)를 따라 슬라이드 플레이트 (532)를 선택적으로 이동시킨다. 접합될 벌크 물질을 보유하는 홀딩 프레임 (550)은 슬라이드 플레이트 (532) 위에 위치된다. 광학 플랫 (optical flat) (534)은 차례로 홀딩 프레임 (550)에 위에 위치된다. 광학 플랫 (534)은 레이저를 통과하는 물질로 구성된다. 전술한 바와 같이, 고정 플레이트 (538)는, 광학 플랫 (534), 홀딩 프레임 (550), 슬라이드 플레이트 (532) 및 팽창 어셈블리 (530)가 맞물림 지지부 (524)와 고정 플레이트 (538) 사이에 샌드위치되는, 방식으로 맞물림 지지부 (524)에 스페이서 (539)를 통해 연결된다. 고정 플레이트 (538)는 전자기 빔이 통과하는 (도 12에 예시된 바와 같은) 중앙 통로 (540)를 포함한다. 고정 플레이트 (538)의 중앙 통로 (540)는 광학 플랫 (534)의 직경보다 작은 직경을 갖는다. 사용시, 접합될 물질이 홀딩 프레임 (550)에 배치되고 및 홀딩 프레임 (550)이 물질 홀딩 어셈블리 (520) 내에 위치되자마자, (도 8에 나타낸) 컨트롤러 (302)는 팽창 어셈블리(530)를 선택적으로 작동시켜 병진 로드 (528)를 따라 슬라이드 플레이트 (532)를 이동시킨다. 이러한 작용은 홀딩 고정구 (550)에 압력을 가하고, 차례로, 홀딩 플랫 (534)이 고정 플레이트 (538)을 통해 제 위치에 보유되기 때문에 접합될 벌크 물질상에 압력을 가한다. 또 다른 구체 예에서, 다수의 분리된 티타늄 구성요소가 단일 사파이어 기판에 접합될 수 있으며, 각각의 티타늄 구성요소는 적절히 제시되고 정렬된다. 마찬가지로, 다수의 분리된 사파이어 기판 또는 구성요소는 단일 티타늄 부분에 접합될 수 있다.
도 12에서, 홀딩 프레임 (550)에 보유된 벌크 물질들 (600 및 602)을 갖는 물질 홀딩 어셈블리 (520)의 부분 단면도는 예시된다. 이 실시 예에서, 벌크 물질은 티타늄 (600) 및 사파이어의 층 (602)을 포함한다. 티타늄의 두께는 일반적으로 10㎛ 이상이고 및 통상적으로 10㎛ 내지 100㎜의 범위이다. 사용된 사파이어의 두께는, 다른 두께가 사용될 수 있지만, 50㎛ 내지 50mm의 범위이다. 도 12에서 예시하는 바와 같이, 벌크 물질들 (600 및 602)은 광학 플랫 (534)과 홀더 프레임 (550) 사이에 샌드위치된다. 사용시, 사파이어 및 티타늄은 접합될 표면이 서로 접촉하도록 물질 홀딩 어셈블리 (520)를 통해 함께 눌려지는 동안, 티타늄 (600)에 고정 플레이트의 중앙 통로 (540)을 통해 및 사파이어 층 (602) 및 광학 플랫 (534)을 통해, 전자기 빔은 투과된다. 전술한 바와 같이, 티타늄 상에 전자기 빔의 상호작용은, 티타늄을 사파이어 내로 확산시켜, 사파이어를 티타늄에 접합시키는 무정질 확산 존 (406)을 갖는 계면 접합 조인트 (412)를 생성시킨다. 도 12는 또한, 구체 예에서, 티타늄 (600)이 패턴화된 것을 예시한다. 이 구체 예에서, 티타늄은 제품 디자인에 대해 원하는 대로 구조화된다. 티타늄 벌크 물질 (600)의 상호연결 웹 (Interconnecting webs)은 원하는 측면 안정성 (lateral stability) 및 수직 컴플라이언스 (vertical compliance)를 제공한다. 티타늄 벌크 물질 (웨이퍼)의 구성은, 티타늄 웨이퍼의 각각 형성된 부분이 여전히 인접하게 보유되지만 개별적으로 플렉서블한 사파이어에 이를 수 있도록 호환적으로 만든다. 이것은 티타늄 및 사파이어의 표면들의 보통의 비-평탄성을 보상하도록 접합될 구역에서 티타늄과 사파이어 사이에서 밀접한 표면 대 표면 접촉을 제공한다. 전체 표면에 걸친 어떤 보통의 비교적 큰 면적의 비-평탄도는, 사파이어에 대해 가압된 플렉서블 구조의 티타늄 웨이퍼를 가짐으로써 완화될 수 있고, 그래서 이것은 접합될 국부적으로 편평한 구역이 밀접한 접촉에 놓이는 것을 확실하게 하기 위하여 항상 아주 약간 구부리거나/압축한다.
다른 구체 예에서, 얇은 중간층 (708)은 접합될 벌크 물질들 (704 및 706) 사이에 위치된다. 이는 도 13에 예시된다. 하나의 구체 예에서, 중간층 (708)은 접합 전에 투명 물질 (704) 또는 흡수성 불투명 물질 (706) (또는 모두) 상에 침착된다. 얇은 중간층 (708)의 예로는, 티타늄, 니오븀, 탄탈륨, 알루미늄, 지르코늄, 크롬, 질화규소 (Si3N4), 등과 같은 얇은 금속 필름을 포함하지만, 이에 제한되는 것은 아니다. 얇은 전도성 중간층은, 다른 장치 구조 및/또는 전기 구성요소에 (티타늄과 같은) 흡수성 불투명 물질의 전기적 연결을 용이하게 할 수 있다. 얇은 중간층 (708)은 또한 표면 마감 요건을 감소시키고, 레이저 에너지를 흡수하기 위해 좀 더 일관된 표면을 제공할 수 있다. 얇은 중간층 (708)의 두께는 nm 내지 수 ㎛ 범위이다. 전술된 구체 예에서와 같이, 레이저 (102)는, 이것이 얇은 중간층 (708) 및 흡수성 불투명 물질 (706)에 도달될 때까지, 투명 물질 (704)을 통해 이동하는 레이저 신호 (103)를 제공한다. 레이저 신호 (103)의 에너지에 답하여, 얇은 중간층 (708)은, 투명 물질 (704) 및 흡수성 불투명 물질 (706) 모두에 접합하여 상기 투명 물질 (704)과 흡수성 불투명 물질 (706) 사이에 접합을 형성한다. 흡수성 불투명 물질 (706)에 적용된 더 두꺼운 (㎛ 범위) 중간층 (708)의 경우에서, 형성된 접합은 중간층과 투명 물질 (704) 사이에서만 존재할 수 있다. 게다가, 하나의 구체 예에서, 중간층 (708)은 반사방지 (AR) 코팅을 포함한다. 이 구체 예는 균열을 생성시키지 않으면서 낮은 에너지에서 접합을 향상시키는 것을 돕는다. 게다가, 하나의 구체 예에서, AR 코팅은 역 반사된 빔 및 더 낮은 출력으로 더 양호한 흡수을 위해 사용된다. 게다가, 하나의 구체 예에서, 연질 스퍼터링된 중간층 (soft sputtered interlayer)은 사용된다. 이 구체 예에서, 마이크로미터 연성 침착 (708)은 불투명 물질 (706)의 표면상에 침착된다. 연질 스퍼터링된 중간층 (708)은 접합된 물질의 계면 운동을 흡수한다. 이것은, 다른 열팽창계수를 갖는 벌크 물질의 온도 변화로부터 결과할 수 있는 것과 같은 외부 하중 (external loads) 또는 국소 하중에 기인한 파단 (fracturing) 또는 균열 전에 접합 조인트가 다룰 수 있는, 계면 변형 (interfacial strain)을 증가시킨다. 접합을 위한 박막의 다른 사용 예로는, 여기에 참조로서 혼입된 명칭이 "Techniques for Bonding Substrates Using an Intermediate Layer"로, 2010년 12월 23일자로 출원된 미국 특허출원 제12/977,890호에서 확인된다. 전술된 바와 같은 접합의 구체 예는 공동 (cavities)을 밀봉하는데 사용될 수 있다. 전술한 바와 같은 접합 공정으로 공동을 형성하는 장점은, 공동 내에 내부 분위기의 조성물이 형성 공정 동안에 제어될 수 있다는 점이다.
특정 구체 예가 여기에서 예시되고 기재되었지만, 동일한 목적을 달성하도록 계산된 임의의 배열 (arrangement)이 나타낸 특정 구체 예를 대체할 수 있음은 당업자에게 자명할 것이다. 본 출원은 본 발명의 임의의 개조 또는 변화를 포함하도록 의도된다. 따라서, 본 발명은 청구 범위 및 이의 균등물에 의해서만 제한되는 것으로 명백하게 의도된다.

Claims (18)

  1. 선택 파장의 전자기 빔이 최소 에너지를 초과하여 흡수하지 않고(without more than minimal energy absorption) 통과하는 특성을 갖는, 사파이어를 포함하는 투명 물질, 여기서 최소 에너지 흡수는 전자기 빔의 전자기 방사선의 전체 에너지의 50% 미만임;
    상기 전자기 빔으로부터 에너지를 흡수하는 특성을 갖는, 티타늄을 포함하는 흡수성 불투명 물질; 및
    상기 전자기 빔에 의해 상기 투명 물질을 상기 흡수성 불투명 물질에 접합시켜 형성되며, 1000 nm 미만의 두께를 갖는, 확산 접합을 포함하는, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  2. 청구항 1에 있어서,
    상기 벌크 물질은:
    1000 nm 미만의 계면 접합 조인트 영역을 포함하는 확산 접합; 및
    상기 계면 접합 조인트 외부에 변화되지 않는 흡수 물질 및 변화되지 않는 투명 비금속 절연 물질을 더욱 포함하며, 상기 변화되지 않는 투명 비금속 절연 물질 및 상기 변화되지 않는 흡수성 물질은 접합의 형성에 의해 영향을 받지 않는, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  3. 청구항 1에 있어서,
    상기 접합은 내-부식성이거나, 기밀 밀봉되거나, 균열이 없거나, 균일하거나 및 생물학적으로 안정한 것 중 적어도 하나인, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  4. 청구항 1에 있어서,
    상기 접합 강도는, 투명 물질 및 흡수성 불투명 물질 중 적어도 하나만큼 강한, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  5. 청구항 1에 있어서,
    상기 흡수성 불투명 물질은 호환적인 (compliant), 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  6. 청구항 1에 있어서,
    상기 벌크 물질은:
    접합을 형성하는데 사용되는 적어도 하나의 중간층을 더욱 포함하는, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  7. 청구항 6에 있어서,
    상기 적어도 하나의 중간층은, 반사방지 코팅 중간층 및 연질 스퍼터링된 중간층 중 적어도 하나인, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서,
    상기 투명 물질을 상기 흡수성 불투명 물질에 전자기 빔에 의해 접합시켜 형성된 확산 접합은:
    복수의 이격된 접합 구역을 더욱 포함하는, 동력학적으로 제한된 나노-스케일 확산 접합을 갖는 벌크 물질.
  9. 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성하는 방법으로서, 상기 방법은:
    전자기 빔으로부터 에너지를 흡수하는 특성을 갖는, 티타늄을 포함하는 흡수성 불투명 물질의 접합될 제2표면에 대해, 선택 파장의 전자기 빔이 최소 에너지를 초과하여 흡수하지 않고 통과하는 특성을 갖는, 사파이어를 포함하는 투명 물질의 접합될 제1표면을 위치시키는 단계, 여기서 최소 에너지 흡수는 전자기 빔의 전자기 방사선의 전체 에너지의 50% 미만임;
    상기 투명 물질 및 흡수성 불투명 물질에 압력을 가하는 단계;
    상기 전자기 빔을 상기 투명 물질을 통해 상기 흡수성 불투명 물질의 접합될 제2표면에 선택적으로 통과시키는 단계; 및
    상기 전자기 빔으로 동력학적으로 제한된 나노-스케일 확산 접합을 생성하는 단계를 포함하는, 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성하는 방법.
  10. 청구항 9에 있어서,
    상기 전자기 빔으로 상기 동력학적으로 제한된 나노-스케일 확산 접합을 생성하는 단계는:
    1000 nm 미만인 계면 접합 조인트를 생성하기 위해 국부적인 원자 이동성을 활성화시키는 단계를 더욱 포함하는, 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성하는 방법.
  11. 청구항 9 또는 10에 있어서,
    상기 전자기 빔으로 상기 동력학적으로 제한된 나노-스케일 확산 접합을 생성하는 단계는:
    상기 벌크 물질 내에 이격된 접합 구역의 패턴을 생성하는 단계를 더욱 포함하는, 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성하는 방법.
  12. 청구항 9에 있어서,
    압력을 가하기 전에 상기 투명 물질의 제1표면과 흡수성 불투명 물질의 제2표면 사이에 적어도 하나의 중간층을 배치하는 단계를 더욱 포함하는, 벌크 물질에서 동력학적으로 제한된 나노-스케일 확산 접합을 형성하는 방법.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
KR1020177020574A 2014-12-24 2015-12-22 동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법 KR102474915B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462096706P 2014-12-24 2014-12-24
US62/096,706 2014-12-24
US14/976,475 2015-12-21
US14/976,475 US10124559B2 (en) 2014-12-24 2015-12-21 Kinetically limited nano-scale diffusion bond structures and methods
PCT/US2015/067390 WO2016106323A1 (en) 2014-12-24 2015-12-22 Kinetically limited nano-scale diffusion bond structures and methods

Publications (2)

Publication Number Publication Date
KR20170100598A KR20170100598A (ko) 2017-09-04
KR102474915B1 true KR102474915B1 (ko) 2022-12-06

Family

ID=55262895

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177020574A KR102474915B1 (ko) 2014-12-24 2015-12-22 동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법

Country Status (6)

Country Link
US (3) US10124559B2 (ko)
EP (1) EP3237141B1 (ko)
JP (1) JP6761419B2 (ko)
KR (1) KR102474915B1 (ko)
CN (1) CN107107251B (ko)
WO (1) WO2016106323A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9968794B2 (en) 2014-12-24 2018-05-15 Medtronic, Inc. Implantable medical device system including feedthrough assembly and method of forming same
US9865533B2 (en) 2014-12-24 2018-01-09 Medtronic, Inc. Feedthrough assemblies
US10124559B2 (en) 2014-12-24 2018-11-13 Medtronic, Inc. Kinetically limited nano-scale diffusion bond structures and methods
US10136535B2 (en) 2014-12-24 2018-11-20 Medtronic, Inc. Hermetically-sealed packages including feedthrough assemblies
US20170100597A1 (en) * 2015-10-12 2017-04-13 Medtronic, Inc. Sealed implantable medical device and method of forming same
US10772228B2 (en) 2015-11-03 2020-09-08 Medtronic, Inc. Sealed package including electronic device and power source
US10098589B2 (en) 2015-12-21 2018-10-16 Medtronic, Inc. Sealed package and method of forming same
US10252371B2 (en) * 2016-02-12 2019-04-09 The Boeing Company Diffusion-bonded metallic materials
CN109563726A (zh) 2016-06-03 2019-04-02 康宁股份有限公司 用于真空隔热窗格玻璃的方法和设备
US10580544B2 (en) 2016-12-07 2020-03-03 Medtronic, Inc. Power source and method of forming same
US10542921B2 (en) 2017-04-03 2020-01-28 Medtronic, Inc. Hermetically-sealed package and method of forming same
US10463285B2 (en) 2017-04-03 2019-11-05 Medtronic, Inc. Hermetically-sealed package and method of forming same
US10918874B2 (en) 2018-06-28 2021-02-16 Medtronic, Inc. Sealed package and method of forming same
DE102018120011B4 (de) * 2018-08-16 2022-06-15 Trumpf Laser Und Systemtechnik Gmbh Schweißverfahren zum Verbinden eines transparenten, aluminiumoxidhaltigen ersten Substrats mit einem opaken zweiten Substrat
US10888009B2 (en) 2018-10-26 2021-01-05 Medtronic, Inc. Method of forming a sealed package
US11865639B2 (en) 2019-12-13 2024-01-09 Medtronic, Inc. Hermetic assembly and device including same
US11633611B2 (en) 2019-12-19 2023-04-25 Medtronic, Inc. Feedthrough assembly and device including same
CN116056756A (zh) * 2020-09-09 2023-05-02 美敦力公司 电子封装和包括该电子封装的植入式医疗装置
US11725995B2 (en) 2021-02-01 2023-08-15 Medtronic, Inc. Pressure sensor assembly for use in implantable medical device including a substrate having via that extends through substrate along via axis between first major surface and second major surface of substrate
WO2022165297A1 (en) 2021-02-01 2022-08-04 Medtronic, Inc. Feedthrough header assembly and device including same
WO2023152610A1 (en) 2022-02-08 2023-08-17 Medtronic, Inc. Feedthrough assembly and implantable medical device including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032377A1 (de) 2001-10-05 2003-04-17 Robert Bosch Gmbh Verfahren zur verbindung einer siliziumplatte mit einer weiteren platte
US20130112650A1 (en) 2011-11-08 2013-05-09 Invenios Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101296A (ja) 1982-12-02 1984-06-11 Mitsubishi Heavy Ind Ltd レ−ザ溶接装置
NL8303109A (nl) 1983-09-08 1985-04-01 Philips Nv Werkwijze voor het aan elkaar bevestigen van twee delen.
NL8600216A (nl) 1986-01-30 1987-08-17 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderinrichting.
NL8902271A (nl) 1989-09-12 1991-04-02 Philips Nv Werkwijze voor het verbinden van twee lichamen.
US5647932A (en) 1993-05-18 1997-07-15 Matsushita Electric Industrial Co., Ltd. Method of processing a piezoelectric device
NO942790D0 (no) 1994-03-28 1994-07-27 Norsk Hydro As Fremgangsmåte ved friksjonssveising og anordning for samme
JP2754461B2 (ja) 1994-07-08 1998-05-20 双葉電子工業株式会社 容器の封着方法および封着装置
US5489321A (en) 1994-07-14 1996-02-06 Midwest Research Institute Welding/sealing glass-enclosed space in a vacuum
GB9821375D0 (en) 1998-10-01 1998-11-25 Welding Inst Welding method
JP2000271769A (ja) * 1999-03-29 2000-10-03 Sanyo Electric Co Ltd 溶着方法、それを用いた電極構造の製造方法、電極構造および熱電素子の製造方法並びに熱電素子
JP2000343264A (ja) 1999-06-04 2000-12-12 Aisan Ind Co Ltd レーザ溶接装置
US6477901B1 (en) 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
US6555025B1 (en) 2000-01-31 2003-04-29 Candescent Technologies Corporation Tuned sealing material for sealing of a flat panel display
AU2002245291A1 (en) 2001-01-22 2002-07-30 Integrated Sensing Systems, Inc. Sensing catheter system and method of fabrication
US6503847B2 (en) 2001-04-26 2003-01-07 Institute Of Microelectronics Room temperature wafer-to-wafer bonding by polydimethylsiloxane
JP3827071B2 (ja) 2001-11-02 2006-09-27 本田技研工業株式会社 樹脂部材のレーザ接合方法
JP2003225946A (ja) * 2002-02-01 2003-08-12 Denso Corp レーザ接着方法およびレーザ接着装置
US6762072B2 (en) 2002-03-06 2004-07-13 Robert Bosch Gmbh SI wafer-cap wafer bonding method using local laser energy, device produced by the method, and system used in the method
US6952046B2 (en) 2002-06-19 2005-10-04 Foster-Miller, Inc. Electronic and optoelectronic component packaging technique
US6822326B2 (en) 2002-09-25 2004-11-23 Ziptronix Wafer bonding hermetic encapsulation
US7344901B2 (en) 2003-04-16 2008-03-18 Corning Incorporated Hermetically sealed package and method of fabricating of a hermetically sealed package
US6998776B2 (en) 2003-04-16 2006-02-14 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
DE102004004985B4 (de) 2004-01-30 2006-03-23 Lpkf Laser & Electronics Ag Verfahren und Vorrichtung zum Durchstrahlschweißen zweier thermoplastischer Bauteile
US20050284815A1 (en) 2004-06-28 2005-12-29 Integrated Sensing Systems, Inc. Medical treatment system and method
EP1796693A2 (en) 2004-08-26 2007-06-20 Chandrashekhar P. Pathak Implantable tissue compositions and method
US7078726B2 (en) 2004-09-09 2006-07-18 Osram Opto Semiconductors Gmbh Sealing of electronic device using absorbing layer for glue line
US8323333B2 (en) 2005-03-03 2012-12-04 Icon Medical Corp. Fragile structure protective coating
WO2006106848A1 (ja) 2005-03-31 2006-10-12 Rohm Co., Ltd 基板の貼り合わせ方法、チップ形成方法及びチップ
US7417307B2 (en) 2005-07-29 2008-08-26 Hewlett-Packard Development Company, L.P. System and method for direct-bonding of substrates
KR100654410B1 (ko) * 2005-12-22 2006-12-05 한국항공우주연구원 확산접합 및 초소성성형용 치구
KR100673765B1 (ko) 2006-01-20 2007-01-24 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그 제조방법
KR100688790B1 (ko) 2006-01-27 2007-03-02 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
US7635635B2 (en) 2006-04-06 2009-12-22 Fairchild Semiconductor Corporation Method for bonding a semiconductor substrate to a metal substrate
EP1903000B1 (fr) 2006-09-25 2019-09-18 Sorin CRM SAS Composant biocompatible implantable incorporant un élément actif intégré tel qu'un capteur de mesure d'un paramètre physiologique, microsystème électromécanique ou circuit électronique
EP2070685A4 (en) 2006-10-05 2011-06-15 Okayama Prefectural Government INTERMEDIATE MEMBER FOR LASER WELDING AND WELDING METHOD USING THE SAME
DE102007008540A1 (de) 2007-02-21 2008-08-28 Friedrich-Schiller-Universität Jena Verfahren zum Laser-gestützten Bonden, derart gebondete Substrate und deren Verwendung
US8243766B2 (en) 2007-09-21 2012-08-14 Michael Huff Means for improved implementation of laser diodes and laser diode arrays
JP4806003B2 (ja) 2007-12-25 2011-11-02 財団法人岡山県産業振興財団 レーザー接合用シート及びそれを用いた接合方法
US8304324B2 (en) 2008-05-16 2012-11-06 Corporation For National Research Initiatives Low-temperature wafer bonding of semiconductors to metals
US8448468B2 (en) 2008-06-11 2013-05-28 Corning Incorporated Mask and method for sealing a glass envelope
AU2009344196A1 (en) 2009-04-08 2011-12-01 Saluda Medical Pty Limited Electronics package for an active implantable medical device
WO2010121068A2 (en) 2009-04-16 2010-10-21 Suss Microtec, Inc. Improved apparatus for temporary wafer bonding and debonding
JP4430131B1 (ja) 2009-08-10 2010-03-10 静岡県 レーザ溶融接合用ベルト素材及びレーザ接合方法
JP2011056519A (ja) * 2009-09-07 2011-03-24 Osaka Univ 接合方法および接合体の製造方法
US8666505B2 (en) 2010-10-26 2014-03-04 Medtronic, Inc. Wafer-scale package including power source
US9171721B2 (en) 2010-10-26 2015-10-27 Medtronic, Inc. Laser assisted direct bonding
US8796109B2 (en) 2010-12-23 2014-08-05 Medtronic, Inc. Techniques for bonding substrates using an intermediate layer
CN104125870A (zh) * 2012-02-14 2014-10-29 东曹Smd有限公司 低偏转溅射靶组件及其制造方法
US10124559B2 (en) 2014-12-24 2018-11-13 Medtronic, Inc. Kinetically limited nano-scale diffusion bond structures and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032377A1 (de) 2001-10-05 2003-04-17 Robert Bosch Gmbh Verfahren zur verbindung einer siliziumplatte mit einer weiteren platte
US20130112650A1 (en) 2011-11-08 2013-05-09 Invenios Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding

Also Published As

Publication number Publication date
EP3237141B1 (en) 2023-02-08
US20160185081A1 (en) 2016-06-30
CN107107251B (zh) 2020-10-16
US10124559B2 (en) 2018-11-13
US20190039347A1 (en) 2019-02-07
JP2018502040A (ja) 2018-01-25
US10981355B2 (en) 2021-04-20
JP6761419B2 (ja) 2020-09-23
US20210197521A1 (en) 2021-07-01
KR20170100598A (ko) 2017-09-04
WO2016106323A1 (en) 2016-06-30
CN107107251A (zh) 2017-08-29
EP3237141A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
KR102474915B1 (ko) 동력학적으로 제한된 나노-스케일 확산 접합 구조 및 방법
US9156238B2 (en) Method and apparatus for three dimensional large area welding and sealing of optically transparent materials
CA2823806C (en) Laser reinforced direct bonding of optical components
KR0148432B1 (ko) 세라믹 접합체 및 세라믹 접합체의 제조방법
JP4348454B2 (ja) デバイスおよびデバイス製造方法
US20120100318A1 (en) Laser assisted direct bonding
US9315417B2 (en) Attachment of a cap to a substrate-based device with in situ monitoring of bond quality
US20220281774A1 (en) Ultrafast laser welding of ceramics
Huang et al. Direct welding of fused silica with femtosecond fiber laser
Witte et al. Laser joining of glass with silicon
CN107531581A (zh) 制造euv模块的方法、euv模块和euv光刻***
KR20180132672A (ko) 국부 전자파 어닐링을 이용하여 접착된 기판들내의 비접착 영역들을 제거하기 위한 장치 및 방법
JP7341017B2 (ja) 熱反射部材及び熱反射層付きガラス部材の製造方法
Lacroix et al. Optical bonding reinforced by femtosecond laser welding
US20210260688A1 (en) Method for production of a component by atomic diffusion bonding
Wild et al. Advances in silicon-to-glass bonding with laser
Richter et al. Breaking stress of glass welded with femtosecond laser pulses at high repetition rates
Tamaki et al. Laser micro-welding of silicon and borosilicate glass using nonlinear absorption effect induced by 1558-nm femtosecond fiber laser pulses
Sun et al. Investigation of localized laser bonding process for ceramic MEMS packaging
KR20190117507A (ko) 기질들을 결합하기 위한 방법 및 장치
Tamaki et al. Ultrafast Laser Microwelding
JPH04108675A (ja) セラミックス―金属接合体

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant