KR102199901B1 - Method for detecting pressure sensor in intake system of engine - Google Patents

Method for detecting pressure sensor in intake system of engine Download PDF

Info

Publication number
KR102199901B1
KR102199901B1 KR1020170010234A KR20170010234A KR102199901B1 KR 102199901 B1 KR102199901 B1 KR 102199901B1 KR 1020170010234 A KR1020170010234 A KR 1020170010234A KR 20170010234 A KR20170010234 A KR 20170010234A KR 102199901 B1 KR102199901 B1 KR 102199901B1
Authority
KR
South Korea
Prior art keywords
pressure
intake system
value
engine
time period
Prior art date
Application number
KR1020170010234A
Other languages
Korean (ko)
Other versions
KR20180086608A (en
Inventor
원민규
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020170010234A priority Critical patent/KR102199901B1/en
Publication of KR20180086608A publication Critical patent/KR20180086608A/en
Application granted granted Critical
Publication of KR102199901B1 publication Critical patent/KR102199901B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

본 발명은 엔진의 흡기계의 압력 센서를 이용하여 압력을 감지하는 방법으로서, 제1 시간 주기로 상기 압력 센서를 이용하여 흡기계의 압력을 샘플링하고, 흡기계 압력이 기준값 미만인지 여부를 판단하여, 흡기계 압력이 기준값 미만인 경우, 상기 엔진의 회전 속도에 따라 가변하는 세그먼트 단위로, 샘플링 된 압력의 평균값을 구하고, 흡기계 압력이 기준값 이상인 경우에는 고정된 시간 주기로, 샘플링된 압력의 평균값을 구하여, 계산된 평균값을 이용하여 압력값을 매 세그먼트에 따라 흡기계의 압력값으로 업데이트 하도록 한 것을 특징으로 한다. The present invention is a method of detecting a pressure using a pressure sensor of an intake system of an engine, by sampling the pressure of the intake system using the pressure sensor in a first time period, and determining whether the intake system pressure is less than a reference value, When the intake system pressure is less than the reference value, the average value of the sampled pressure is calculated in segments that vary according to the rotational speed of the engine, and when the intake system pressure is higher than the reference value, the average value of the sampled pressure is calculated at a fixed time period, It is characterized in that the pressure value is updated to the pressure value of the intake system according to each segment by using the calculated average value.

Description

엔진의 흡기계의 압력 센서 감지 방법{METHOD FOR DETECTING PRESSURE SENSOR IN INTAKE SYSTEM OF ENGINE}Detecting pressure sensor of engine intake system {METHOD FOR DETECTING PRESSURE SENSOR IN INTAKE SYSTEM OF ENGINE}

본 발명은 엔진의 흡기계 압력 센서 감지 방법에 관한 발명으로서, 보다 상세하게는 압력 센서를 이용하여 엔진의 흡기계 내부의 압력을 감지한 결과인 신호를 처리하는 주기를 이원화하여 엔진의 흡기계의 압력을 감지하는 방법에 관한 발명이다. The present invention relates to a method for detecting an intake system pressure sensor of an engine, and more particularly, by using a pressure sensor to process a signal, which is a result of detecting the pressure inside the engine intake system, The invention relates to a method of sensing pressure.

차량의 정상적인 엔진 작동을 위해서는 공연비를 정확하게 제어하는 것이 중요하다. 정확한 공연비의 제어가 불가능하여 연료소비가 많아지고 불규칙한 연료분사로 쇼크가 발생하여 운전성이 나빠지고 특히 배기가스 발생을 증가시켜 환경을 오염시키게 된다. 따라서, 엔진의 흡기계를 통해 도입되는 흡입공기량을 정확하게 측정하는 것이 무엇보다 중요하다. It is important to accurately control the air-fuel ratio for the normal engine operation of the vehicle. Accurate control of the air-fuel ratio is not possible, resulting in increased fuel consumption, and shock due to irregular fuel injection, resulting in poor operability, and in particular, increasing exhaust gas generation and polluting the environment. Therefore, it is of paramount importance to accurately measure the amount of intake air introduced through the intake system of the engine.

특허문헌 1에서 개시되어 있는 바와 같이, 흡기계로부터 도입되는 흡입 공기량을 측정하기 위해서, 흡기계에 설치되는 압력 센서를 사용하고 있다.As disclosed in Patent Document 1, in order to measure the amount of intake air introduced from the intake system, a pressure sensor installed in the intake system is used.

통상적으로, 흡기계 압력 센서는 MAP 센서(Manifolf Absolute Pressure Sensor)를 사용하고 있는데, MAP 센서는 반도체식 압력 센서의 한 종류로서, 엔진의 크랭크 축이 회전하면서 피스톤이 상사점에서 하사점으로 내려갈때, 공기가 유입되는 입구가 스로틀 밸브로 막혀있기 때문에 흡기 다기관 내부에는 진공 상태가 되며 그 크기를 전기적인 신호로서 ECU에 전달하는 역할을 한다. Normally, the intake system pressure sensor uses a MAP sensor (Manifolf Absolute Pressure Sensor), and the MAP sensor is a type of semiconductor pressure sensor. When the engine crankshaft rotates and the piston goes down from top dead center to bottom dead center. In addition, since the inlet through which air is introduced is blocked with a throttle valve, the intake manifold is in a vacuum state, and its size is transmitted to the ECU as an electrical signal.

이러한 MAP 센서의 시그널을 통해, 실린더에 공급되고 있는 공기량을 계산할 수 있어, 공기량에 맞는 이론 공연비에 따른 연료량을 분사한 후 산소 센서 시그널을 이용하여 현재의 공연비를 추정하고여 추가로 연료를 가감하는 제어를 실시하게 된다. Through this MAP sensor signal, it is possible to calculate the amount of air supplied to the cylinder, and after injecting the amount of fuel according to the theoretical air-fuel ratio suitable for the amount of air, the current air-fuel ratio is estimated using the oxygen sensor signal, and additional fuel is added or subtracted. Control.

특허문헌 1: 대한민국 등록특허공보 제10-0219207호 (1999.9.1)Patent Document 1: Republic of Korea Patent Publication No. 10-0219207 (1999.9.1)

엔진의 실린더 기통별 동작 특성에 의해, 도 2에서도 도시된 바와 같이, 흡기계 압력이 변동하는 오실레이션 현상이 발생하게 된다. 따라서, 이러한 압력 오실레이션 현상을 필터링하여 반영하기 위하여 세그먼트 동기화 기준으로 측정된 압력값에 대한 계산을 수행하도록 설계된다. Due to the operating characteristics of the engine for each cylinder cylinder, an oscillation phenomenon occurs in which the intake system pressure fluctuates, as shown in FIG. 2 as well. Therefore, in order to filter and reflect this pressure oscillation phenomenon, it is designed to perform calculation on the measured pressure value based on the segment synchronization.

즉, ECU(Electronic Control Unit)이 압력 센서로부터 압력 데이터를 샘플링하는 주기는 일정 시간을 기준으로 하는 시간 동기화 기준으로 설정되지만, 실제 압력은 도 1에서 도시된 바와 같이, 샘플링된 데이터를 매 세그먼트마다 평균 연산하여 세그먼트 단위로 업데이트를 하게 된다. That is, the period in which the ECU (Electronic Control Unit) samples pressure data from the pressure sensor is set as a time synchronization standard based on a certain time, but the actual pressure is as shown in FIG. The average is calculated and updated in units of segments.

이와 관련된 종래의 기술이 도 3에서 도시되어 있다. 도 3에서 도시된 바와 같이, 압력 센서는 기본적으로 ECU에 의해 제어되어 흡기계의 압력을 측정한다. 그리고, 측정 결과인 센서가 제공하는 데이터는 제1 시간 동기화 단위 주기(예컨대, 1ms)로 샘플링된다(S10). 단계 S20에서와 같이 이 값은 그대로 공연비 제어에 사용될 수 있으나, 센서 노이즈를 필터링 하기 위해 압력 데이터를 평균 계산하여 사용하게 된다. 한편, 흡기 매니폴드의 경우의 경우 실린더별 작동의 영향을 받기 때문에 이때의 제2 동기화 단위를 세그먼트 단위로 사용하게 된다(S30). 즉, 제1 동기화 단위로 샘플링된 압력값들의 평균을 매 세그먼트 동기화 시점마다 계산하여 업데이트하도록 설계된다(S40). A related art is shown in FIG. 3. As shown in FIG. 3, the pressure sensor is basically controlled by the ECU to measure the pressure of the intake system. In addition, the data provided by the sensor, which is a measurement result, is sampled at a first time synchronization unit period (eg, 1 ms) (S10). As in step S20, this value may be used as it is for air-fuel ratio control, but pressure data is averaged and used to filter out sensor noise. Meanwhile, in the case of the intake manifold, since the operation of each cylinder is affected, the second synchronization unit at this time is used in units of segments (S30). That is, it is designed to calculate and update the average of the pressure values sampled in the first synchronization unit at each segment synchronization time point (S40).

이와 같이, 세그먼트 동기화 기준으로 계산을 수행하게 될 경우, 압력 오실레이션의 영향을 받지 않을 수 있다는 장점은 있으나, 세그먼트는 엔진의 회전 속도(RPM)에 의해 가변되기 때문에, 엔진 속도가 매우 낮을 경우, 세그먼트 분해능이 낮아지게 되고, 나아가 도 2에서 도시된 바와 같이, 엔진이 정지되어 있는 경우에는 압력값을 업데이트 할 수 없게 된다. In this way, when the calculation is performed on the basis of segment synchronization, there is an advantage that it may not be affected by pressure oscillation, but since the segment is variable by the engine rotational speed (RPM), when the engine speed is very low, The segment resolution is lowered, and further, as shown in FIG. 2, when the engine is stopped, the pressure value cannot be updated.

그런데, 엔진이 정지되어 있는 동안 압력 센서의 값을 사용할 수 없다면, 압력 센서값을 사용하여 연산되는 타 부분의 제어 로직의 활용도가 크게 감소되게 된다. 한편, 엔진의 시동 초기에는 도 2에서 도시된 바와 같이, 흡기 매니폴드의 압력값의 변동 폭이 매우 크고 엔진의 속도가 낮기 때문에 압력 오실레이션의 주기도 커지므로 그 값을 평균하여 사용하기에는 무리가 있을 수 있다. However, if the value of the pressure sensor cannot be used while the engine is stopped, the utilization of the control logic of other parts calculated using the pressure sensor value is greatly reduced. On the other hand, as shown in FIG. 2 at the initial start of the engine, the fluctuation of the pressure value of the intake manifold is very large and the cycle of the pressure oscillation increases because the engine speed is low, so it may be unreasonable to use the average value. I can.

본 발명은 상기한 과제를 해결하기 위해 안출된 것으로서, 엔진 정지시 그리고 시동 초기 시의 압력 센서 데이터의 계산 주기를 최적화하여 압력을 검출할 수 있는, 엔진의 흡기계의 압력 센서 감지 방법을 제공하는 것을 목적으로 한다. The present invention has been devised to solve the above problems, and provides a method for detecting a pressure of an intake system of an engine, which can detect pressure by optimizing the calculation cycle of pressure sensor data at the time of engine stop and at the beginning of start. It is aimed at.

상기한 과제를 해결하기 위한 본 발명은 엔진의 흡기계의 압력 센서를 이용하여 압력을 감지하는 방법에 있어서, 제1 시간 주기로 상기 압력 센서를 이용하여 흡기계의 압력을 샘플링하는 단계; 흡기계 압력이 기준값 미만인지 여부를 판단하는 단계; 흡기계 압력이 기준값 미만인 경우, 상기 엔진의 회전 속도에 따라 가변하는 세그먼트 단위로, 샘플링 된 압력의 평균값을 구하는 단계; 계산된 평균값을 이용하여 압력값을 매 세그먼트에 따라 흡기계의 압력값으로 업데이트 하는 단계;를 구비하는 것을 특징으로 한다. The present invention for solving the above problem is a method of detecting a pressure using a pressure sensor of an intake system of an engine, the method comprising: sampling the pressure of the intake system using the pressure sensor in a first time period; Determining whether the intake system pressure is less than a reference value; If the intake system pressure is less than the reference value, obtaining an average value of the sampled pressure in segments that vary according to the rotational speed of the engine; And updating the pressure value to the pressure value of the intake system according to each segment by using the calculated average value.

바람직하게는, 상기 흡기계 압력값이 기준값 이상인 경우, 고정된 시간 주기인, 상기 제1 시간 주기보다 큰 제2 시간 주기로 상기 샘플링된 압력의 평균값을 구하는 단계; 및 상기 계산된 평균값을 이용하여 압력값을 매 제2 시간 주기에 따라, 흡기계의 압력으로 업데이트 하는 단계;를 구비한다. Preferably, when the intake system pressure value is greater than or equal to a reference value, obtaining an average value of the sampled pressure in a second time period greater than the first time period, which is a fixed time period; And updating the pressure value to the pressure of the intake system according to every second time period by using the calculated average value.

바람직하게는, 상기 흡기계 압력값이 기준값 이상인 경우, 제1 시간 주기로 샘플링된 압력값을, 매 제2 시간 주기에 따라 흡기계의 압력으로 업데이트 한다. Preferably, when the intake system pressure value is greater than or equal to the reference value, the pressure value sampled at the first time period is updated with the pressure of the intake system according to every second time period.

바람직하게는, 상기 업데이트된 압력값을 이용하여 공연비 제어를 실시하는 단계를 더 포함한다. Preferably, it further comprises the step of performing air-fuel ratio control using the updated pressure value.

바람직하게는, 상기 세그먼트의 주기는 상기 엔진의 회전 속도가 증가할수록 감소되도록 설정된다.Preferably, the period of the segment is set to decrease as the rotational speed of the engine increases.

바람직하게는, 상기 기준값은 엔진이 정지된 상태에서의 흡기계 내부의 압력값 또는 엔진의 소정 속도 미만인 경우의 흡기계 내부의 압력값을 나타낸다. Preferably, the reference value represents a pressure value inside the intake system when the engine is stopped or a pressure value inside the intake system when the engine is less than a predetermined speed.

본 발명에 의하면, 엔진이 정지해 있는 동안에도 흡기계에 구비된 압력 센서로부터 측정된 압력 데이터 값의 연산 처리가 가능하게 된다. According to the present invention, even while the engine is stopped, it is possible to calculate and process the pressure data value measured from the pressure sensor provided in the intake system.

종래의 세그먼트 동기화 기준의 연산으로는 엔진의 시동 초기에 엔진 회전수가 낮기 때문에 세그먼트 주기가 길어지게 되는데 반해, 본 발명에 의하면, 엔진 시동 초기에도 짧은 주기로 압력 데이타 연산 결과를 업데이트 할 수 있어, 해당 위치의 압력 상태를 보다 정확하게 연산할 수 있다. According to the conventional calculation of the segment synchronization criterion, since the engine rotation speed is low at the initial start of the engine, the segment cycle is lengthened. However, according to the present invention, the pressure data calculation result can be updated at a short cycle even at the initial start of the engine, The pressure state of can be calculated more accurately.

도 1은 시간 동기화와 세그먼트 기준 동기화 시의 동기화 주기를 도시한 도면이다.
도 2는 소정의 샘플링 주기로 측정된 흡기계 압력값 및 이 샘플링된 흡기계 압력값을 종래 기술에 의해 연산 처리한 결과를 도시한 그래프
도 3은 종래기술에 따른 흡기계 압력 센서의 샘플링 및 압력 데이터 처리 방법을 도시한 순서도.
도 4는 본 발명에 따른 흡기계 압력 센서의 샘플링 및 압력 데이터 처리 방법을 도시한 순서도.
도 5는 소정의 샘플링 주기로 측정된 흡기계 압력값 및 이 샘플링된 흡기계 압력값을 본 발명에 의해 연산 처리한 결과를 도시한 그래프
1 is a diagram illustrating a synchronization period in time synchronization and segment-based synchronization.
2 is a graph showing an intake system pressure value measured at a predetermined sampling period and a result of calculating and processing the sampled intake system pressure value by a conventional technique.
3 is a flowchart illustrating a method of sampling and processing pressure data of an intake system pressure sensor according to the prior art.
Figure 4 is a flow chart showing a sampling and pressure data processing method of the intake system pressure sensor according to the present invention.
5 is a graph showing an intake system pressure value measured at a predetermined sampling period and a result of calculating and processing the sampled intake system pressure value by the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해서 구체적으로 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 흡기계 압력 센서의 샘플링 및 압력 데이터 처리 방법을 도시한 순서도이다. 4 is a flowchart illustrating a method of sampling and processing pressure data of an intake system pressure sensor according to the present invention.

도 4에서 도시된 바와 같이, ECU(Electronic Control Unit)은 엔진의 흡기계에 설치된 압력 센서로부터 흡기계의 압력을 측정한 결과인 신호를 일정한 시간 주기(제1 시간 주기, 예컨대 1ms)로 샘플링한다(S100). 압력 센서는 흡기 매니폴드의 압력 변화를 전기적 신호(예컨대 0~5V의 전압 신호)변화시켜 ECU에 전달한다. ECU는 전달받은 전기적 신호를 기초로 흡입 공기량을 결정하기 위해, 해당 신호를 일정한 주기로 샘플링한다.As shown in Fig. 4, the ECU (Electronic Control Unit) samples a signal resulting from measuring the pressure of the intake system from a pressure sensor installed in the intake system of the engine at a certain time period (a first time period, for example, 1 ms). (S100). The pressure sensor converts the pressure change of the intake manifold into an electrical signal (eg, a voltage signal of 0-5V) and transmits it to the ECU. The ECU samples the signal at regular intervals to determine the amount of intake air based on the received electrical signal.

한편, ECU는 흡기계 압력 센서로부터 측정된 흡기계(흡기 매니폴드)의 압력이 기준값 미만인지 여부를 판단한다. 흡기 매니폴드 내부의 압력은 엔진의 회전수가 낮을수록 낮아지고 엔진의 회전수가 높아지면 높아지기 때문에, 엔진의 정지 중에는 현재 해당 자동차가 위치한 지역의 대기압을 나타내며, 엔진 시동 직후의 아이들 상태에서는 낮은 부압을 나타내게 된다. 따라서, 도 2 및 도 5에서 도시된 바와 같이, 엔진 정지 시 흡기 매니폴드 내부의 압력은 소정값 이상을 유지하고 있으며, 엔진의 시동 후 시간이 경과함에 따라 흡기 매니폴드 내부의 압력은 감소하다가 다시 일정한 값을 유지하게 된다. 도 2 및 도 5에서 도시된 바와 같이, 흡기 매니폴드의 내부의 소정의 압력값 이상의 영역에서는 흡기 매니폴드의 압력값의 변동이 매우 크고, 또한 이 영역에서의 엔진의 회전 속도는 낮다. Meanwhile, the ECU determines whether the pressure of the intake system (intake manifold) measured from the intake system pressure sensor is less than a reference value. Since the pressure inside the intake manifold decreases as the engine speed decreases and the engine speed increases, the atmospheric pressure in the area where the vehicle is currently located is displayed during engine stop and low negative pressure in the idle state immediately after engine start. do. Accordingly, as shown in FIGS. 2 and 5, when the engine is stopped, the pressure inside the intake manifold is maintained above a predetermined value, and as time elapses after starting the engine, the pressure inside the intake manifold decreases. It keeps a constant value. As shown in Figs. 2 and 5, fluctuations in the pressure value of the intake manifold are very large in a region above a predetermined pressure value inside the intake manifold, and the rotation speed of the engine in this region is low.

따라서, ECU는 ECU는 흡기계 압력 센서로부터 측정된 흡기계(흡기 매니폴드)의 압력이 기준값 미만인 경우에는, 흡기 매니폴드의 압력값의 변동이 크기 않기 때문에, 압력 오실레이션 현상을 필터링 하기 위하여, 세그먼트 동기화 기준으로 흡기계 압력값의 평균을 계산하고 업데이트 한다(S130). 즉, 세그먼트 동기화 주기마다, 샘플링 된 각 압력 데이터들의 평균값을 계산하여, 그 값을 흡기계 압력값으로서 업데이트한다. Therefore, the ECU uses the ECU to filter out the pressure oscillation phenomenon, because when the pressure of the intake system (intake manifold) measured from the intake system pressure sensor is less than the reference value, the fluctuation of the pressure value of the intake manifold is not large. The average of the intake system pressure values is calculated and updated based on the segment synchronization (S130). That is, for each segment synchronization period, the average value of each sampled pressure data is calculated, and the value is updated as the intake system pressure value.

흡기계 압력 센서로부터 측정된 흡기계(흡기 매니폴드)의 압력이 기준값 미만인 경우에는, 엔진의 회전 속도가 일정 정도 증가된 이후이기 때문에, 세그먼트 기준으로 압력값을 업데이트 하는 경우에도, 세그먼트 분해능이 낮아지는 문제점이 없다. 또한, 세그먼트 기준으로 압력값을 업데이트 함으로써, 압력 오실레이션이나, 외부 교란 인자의 영향을 받지 않고 압력을 검출할 수 있는 장점이 있다. If the pressure of the intake system (intake manifold) measured from the intake system pressure sensor is less than the reference value, since the engine rotation speed has increased by a certain degree, the segment resolution is low even when the pressure value is updated on a segment basis. There is no problem of losing. In addition, by updating the pressure value on a per segment basis, there is an advantage in that pressure can be detected without being affected by pressure oscillation or external disturbance factors.

여기서 세그먼트의 주기는 엔진의 회전 속도에 따라 가변하는 값이다. 바람직하게는 아래 식 1에서 나타나 있는 것과 같이, 세그먼트 주기는 엔진의 회전 속도와 반비례 관계에 있게 된다. 즉, 엔진의 회전수가 커질수록 세그먼트의 주기는 짧아지고, 엔진의 회전수가 작아질수록 세그먼트 주기는 길어진다(도 1 참조). Here, the period of the segment is a value that varies according to the rotational speed of the engine. Preferably, as shown in Equation 1 below, the segment period is in inverse proportion to the rotational speed of the engine. That is, as the engine speed increases, the segment period becomes shorter, and as the engine speed decreases, the segment period becomes longer (see FIG. 1).

[식 1][Equation 1]

Figure 112017007593590-pat00001
...(1)
Figure 112017007593590-pat00001
...(One)

T: 세그먼트 주기(s), α: 기준 상수 V: 엔진 회전속도(RPM) n: 엔진 기통수T: segment period (s), α: reference constant V: engine rotation speed (RPM) n: engine cylinder number

ECU는 흡기계 압력 센서로부터 측정된 흡기계의 압력이 기준값 이상인 경우에는, 세그먼트가 동기화에 의하지 않고 시간 동기화에 의해 흡기계 압력값을 업데이트 한다. 즉, 엔진의 회전 속도에 따라 가변하는 세그먼트 주기 마다 흡기계 압력값을 업데이트 하지 않고, 고정된 시간 주기(제2 시간 주기, 예컨대 10ms)마다 압력 데이터의 평균을 계산하여 업데이트 한다(S120). When the pressure of the intake system measured from the intake system pressure sensor is greater than or equal to the reference value, the ECU updates the intake system pressure value by time synchronization, not by synchronization. That is, the intake system pressure value is not updated for every segment period that varies according to the rotation speed of the engine, but the average of the pressure data is calculated and updated every fixed time period (second time period, for example, 10 ms) (S120).

앞서 설명한 바와 같이, 흡기계 압력 센서로부터 측정된 흡기계의 압력이 기준값 이상인 경우인 구간은, 엔진이 정지하였거나 또는 엔진 시동 초기에서의 흡기계의 압력값이다. 따라서, 해당 구간에서 엔진의 회전 속도에 따라 가변하는 세그먼트 기준으로 압력값을 업데이트 하는 경우에는 엔진의 회전 속도가 너무 낮아 세그먼트의 분해능이 크게 저하되는 문제가 있으며, 특히 엔진이 정지한 구간에서는 압력값을 업데이트할 수 없어, 해당 압력값을 참조하는 다른 제어 시스템을 활용할 수 없는 문제가 있다(도 2 참조). 따라서, 해당 구간에서는 세그먼트가 아닌 시간을 기준으로 동기화하도록 한 것이다. As described above, the section in which the pressure of the intake system measured from the intake system pressure sensor is equal to or greater than the reference value is the pressure value of the intake system at the beginning of engine start or when the engine is stopped. Therefore, if the pressure value is updated on a segment basis that varies according to the engine rotation speed in the relevant section, there is a problem that the engine rotation speed is too low and the resolution of the segment is greatly reduced.In particular, the pressure value in the section where the engine is stopped. Because it cannot be updated, there is a problem that other control systems that refer to the corresponding pressure value cannot be utilized (see FIG. 2). Therefore, in the section, synchronization is performed based on time, not segments.

이 경우, ECU는 미리 설정된 제2 시간 주기마다, 해당 주기동안 샘플링 된 각 압력 데이터들의 평균값을 계산하여, 그 값을 제2 시간 주기마다 흡기계 압력값으로서 업데이트한다. In this case, the ECU calculates an average value of each pressure data sampled during the predetermined second time period, and updates the value as an intake system pressure value every second time period.

바람직하게는, 제2 시간 주기는 제1 시간 주기보다 큰 값이다. 다만, 흡기계 압력 센서로부터 측정된 흡기계의 압력이 기준값 이상인 경우, 반드시 제1 시간 주기보다 큰 제2 시간 주기 마다 압력값을 업데이트할 필요는 없으며, 제1 시간 주기마다 샘플링된 압력 데이터를 그대로 해당 주기마다의 압력값을 업데이트 하여도 된다. Preferably, the second time period is a value greater than the first time period. However, if the pressure of the intake system measured from the intake system pressure sensor is more than the reference value, it is not necessary to update the pressure value every second time period greater than the first time period, and the pressure data sampled every first time period is kept as it is. You may update the pressure value for each cycle.

그리고, ECU는 단계 S120 또는 단계 S130에서 계산된 매 주기마다의 압력값을 이용하여 흡기계를 통해 공급되는 공기량을 계산한다(S140). 또한 계산된 공기값을 공연비(Fuel-Air ratio) 제어에 이용하여 엔진의 연소를 제어한다(S150).그리고, 바람직하게는 ECU는 위 측정된 흡기계의 압력값을 이용하여 엔진이 정지한 경우에도 흡기계에 설치된 다른 압력 센서(예컨대 부스트압 센서) 등의 이상 여부를 검진할 수 있으며, 흡기계의 압력 오실레이션이 영향을 미칠수 있는 제어 요소, 예컨대 압력 센서가 설치된 위치의 주변 부품등의 이상 여부를 점검할 수 있다. Then, the ECU calculates the amount of air supplied through the intake system by using the pressure value for each cycle calculated in step S120 or step S130 (S140). In addition, the calculated air value is used to control the fuel-air ratio to control the combustion of the engine (S150). And, preferably, the ECU uses the measured intake pressure value when the engine is stopped. Edo can check for abnormalities in other pressure sensors (such as boost pressure sensors) installed in the intake system, and control elements that may affect the pressure oscillation of the intake system, such as abnormal parts around the location where the pressure sensor is installed. You can check whether it is.

도 5는 소정의 샘플링 주기로 측정된 흡기계 압력값 및 이 샘플링된 흡기계 압력값을 본 발명에 의해 연산 처리한 결과를 도시한 그래프이다. 종래 기술에 의한 도 2의 그래프와 대비하여, 엔진이 정지되어 있는 상태에서도 압력 데이터의 평균에 관한 연산이 정상적으로 수행되고 있는 것을 알 수 있다. 또한, 도 2에서는 흡기계 내부의 압력이 기준값 이상인 구간에서, 엔진의 회전 속도가 낮아 세그먼트의 분해능이 떨어져 압력의 변동을 제대로 체크할 수 없는 것과 달리, 도 5의 도시 내용에 의하면, 엔진의 시동 초기의 흡기 매니폴드의 압력 변동을 검출해 낼 수 있어, 관련된 제어 요소에 대해 정확한 검진을 수행할 수 있다. 5 is a graph showing an intake system pressure value measured at a predetermined sampling period and a result of calculating and processing the sampled intake system pressure value by the present invention. In contrast to the graph of FIG. 2 according to the prior art, it can be seen that the calculation on the average of the pressure data is normally performed even when the engine is stopped. In addition, in FIG. 2, in the section where the pressure inside the intake system is more than the reference value, the engine rotation speed is low, so that the resolution of the segment is low, so that the pressure fluctuation cannot be properly checked. Pressure fluctuations in the initial intake manifold can be detected, allowing accurate examination of the associated control elements.

Claims (6)

엔진의 흡기계의 압력 센서를 이용하여 압력을 감지하는 방법에 있어서,
제1 시간 주기로 상기 압력 센서를 이용하여 흡기계의 압력을 샘플링하는 단계;
흡기계 압력이 기준값 미만인지 여부를 판단하는 단계;
흡기계 압력이 기준값 미만인 경우, 상기 엔진의 회전 속도에 따라 가변하는 세그먼트 단위로, 샘플링 된 압력의 평균값을 구하고, 흡기계의 압력이 상기 기준값 이상인 경우, 소정의 시간 단위로, 샘플링 된 압력의 평균값을 구하는 단계;
상기 계산된 평균값을 이용하여 압력값을 매 세그먼트에 따라 흡기계의 압력값으로 업데이트 하는 단계;를 구비하는 것을 특징으로 하는 엔진의 흡기계의 압력 센서 감지 방법.
In a method of detecting pressure using a pressure sensor of an intake system of an engine,
Sampling the pressure of the intake system using the pressure sensor in a first time period;
Determining whether the intake system pressure is less than a reference value;
When the intake system pressure is less than the reference value, the average value of the sampled pressure is obtained in units of segments that vary according to the rotational speed of the engine, and when the intake system pressure is more than the reference value, the average value of the sampled pressure in a predetermined time unit Obtaining;
And updating the pressure value to the pressure value of the intake system according to each segment by using the calculated average value.
청구항 1에 있어서,
상기 흡기계 압력값이 기준값 이상인 경우,
고정된 시간 주기인, 상기 제1 시간 주기보다 큰 제2 시간 주기로 상기 샘플링된 압력의 평균값을 구하는 단계; 및
상기 계산된 평균값을 이용하여 압력값을 매 제2 시간 주기에 따라, 흡기계의 압력으로 업데이트 하는 단계;를 구비하는 것을 특징으로 하는 엔진의 흡기계의 압력 센서 감지 방법.
The method according to claim 1,
When the intake system pressure value is more than the reference value,
Obtaining an average value of the sampled pressure in a second time period greater than the first time period, which is a fixed time period; And
And updating the pressure value to the pressure of the intake system according to every second period of time using the calculated average value.
청구항 1에 있어서,
상기 흡기계 압력값이 기준값 이상인 경우,
상기 제1 시간 주기로 샘플링된 압력값을, 매 제2 시간 주기에 따라 흡기계의 압력으로 업데이트 하는 단계;를 구비하는 것을 특징으로 하는 엔진의 흡기계의 압력 센서 감지 방법.
The method according to claim 1,
When the intake system pressure value is more than the reference value,
And updating the pressure value sampled at the first time period to the pressure of the intake system according to every second time period.
청구항 1에 있어서,
상기 업데이트된 압력값을 이용하여 공연비 제어를 실시하는 단계를 더 포함하는 것을 특징으로 하는 엔진의 흡기계의 압력 센서 감지 방법.
The method according to claim 1,
And performing an air-fuel ratio control using the updated pressure value.
청구항 1에 있어서,
상기 세그먼트의 주기는 상기 엔진의 회전 속도가 증가할수록 감소되도록 설정되는 것을 특징으로 하는 엔진의 흡기계의 압력 센서 감지 방법.
The method according to claim 1,
The period of the segment is set to decrease as the rotational speed of the engine increases.
청구항 1에 있어서,
상기 기준값은 엔진이 정지된 상태에서의 흡기계 내부의 압력값 또는 엔진의 소정 속도 미만인 경우의 흡기계 내부의 압력값을 나타내는 것인, 엔진의 흡기계의 압력 센서 감지 방법.
The method according to claim 1,
The reference value is a pressure value inside the intake system when the engine is stopped or a pressure value inside the intake system when the engine is less than a predetermined speed of the engine.
KR1020170010234A 2017-01-23 2017-01-23 Method for detecting pressure sensor in intake system of engine KR102199901B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170010234A KR102199901B1 (en) 2017-01-23 2017-01-23 Method for detecting pressure sensor in intake system of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170010234A KR102199901B1 (en) 2017-01-23 2017-01-23 Method for detecting pressure sensor in intake system of engine

Publications (2)

Publication Number Publication Date
KR20180086608A KR20180086608A (en) 2018-08-01
KR102199901B1 true KR102199901B1 (en) 2021-01-08

Family

ID=63227690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170010234A KR102199901B1 (en) 2017-01-23 2017-01-23 Method for detecting pressure sensor in intake system of engine

Country Status (1)

Country Link
KR (1) KR102199901B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207904A (en) 2000-01-26 2001-08-03 Denso Corp Intake pipe pressure detection device
KR100327078B1 (en) * 1993-07-05 2002-06-29 클라우스 포스, 게오르그 뮐러 Device for crankshaft-synchronous detection of periodically changing variable
JP2002317686A (en) 2001-04-25 2002-10-31 Aisan Ind Co Ltd Suction pressure detecting method for internal combustion engine
JP2003083151A (en) * 2001-09-13 2003-03-19 Aisan Ind Co Ltd Intake pressure detecting method for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200143A (en) * 1995-01-31 1996-08-06 Nippondenso Co Ltd Trouble detecting device for pressure sensor
KR100219207B1 (en) 1996-12-23 1999-09-01 정몽규 Failure diagnosis method of pressure sensor at intake system
JP4368053B2 (en) * 2000-11-22 2009-11-18 株式会社ミクニ Measuring method of intake air amount in internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327078B1 (en) * 1993-07-05 2002-06-29 클라우스 포스, 게오르그 뮐러 Device for crankshaft-synchronous detection of periodically changing variable
JP2001207904A (en) 2000-01-26 2001-08-03 Denso Corp Intake pipe pressure detection device
JP2002317686A (en) 2001-04-25 2002-10-31 Aisan Ind Co Ltd Suction pressure detecting method for internal combustion engine
JP2003083151A (en) * 2001-09-13 2003-03-19 Aisan Ind Co Ltd Intake pressure detecting method for internal combustion engine

Also Published As

Publication number Publication date
KR20180086608A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US8261721B2 (en) Abnormality diagnosing system for internal combustion engine
JP6052325B2 (en) Internal combustion engine system
KR20130006505A (en) Diagnosis devise and method using an in- cylinder pressure sensor in an internal combustion engine
JP4716283B2 (en) Air-fuel ratio control device for internal combustion engine
US9518523B2 (en) Air-fuel ratio imbalance detection device for internal combustion engine
KR101566733B1 (en) Method and apparatus for misfire detection by rev count of vehicle engine
US20210054801A1 (en) Engine controller, engine control method, and memory medium
JP3656501B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP4646819B2 (en) Abnormality determination device for internal combustion engine
KR102199901B1 (en) Method for detecting pressure sensor in intake system of engine
JP2006284533A (en) Abnormality detector for cylinder pressure sensor
US10450988B2 (en) Engine control device and engine control method
JP4241581B2 (en) Combustion state detection device for internal combustion engine
JP4471168B2 (en) Combustion state detection device for internal combustion engine
JP4606198B2 (en) Combustion state detection device for internal combustion engine
JP2007291977A (en) Combustion control device of internal combustion engine
JP4798647B2 (en) In-cylinder pressure sensor abnormality detection device
KR101393566B1 (en) Tdc compensation method of engine
JP4241579B2 (en) Combustion state detection device for internal combustion engine
JP5770000B2 (en) Oxygen sensor control device
JP2009174361A (en) Misfire detection device for internal combustion engine
JP2009019525A (en) Control device of internal combustion engine
KR101001345B1 (en) Apparatus and method for controlling an atmospheric pressure in a single cylinder engine
JP6007755B2 (en) Control device for internal combustion engine
JP6397745B2 (en) Electronic control unit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant