KR101829676B1 - 웨이퍼 열 처리 방법 - Google Patents

웨이퍼 열 처리 방법 Download PDF

Info

Publication number
KR101829676B1
KR101829676B1 KR1020110145765A KR20110145765A KR101829676B1 KR 101829676 B1 KR101829676 B1 KR 101829676B1 KR 1020110145765 A KR1020110145765 A KR 1020110145765A KR 20110145765 A KR20110145765 A KR 20110145765A KR 101829676 B1 KR101829676 B1 KR 101829676B1
Authority
KR
South Korea
Prior art keywords
wafer
chamber
process chamber
defects
regions
Prior art date
Application number
KR1020110145765A
Other languages
English (en)
Other versions
KR20130077186A (ko
Inventor
강종훈
김태곤
최한메
조은영
강곤수
강성호
허성호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020110145765A priority Critical patent/KR101829676B1/ko
Priority to US13/715,099 priority patent/US8854614B2/en
Publication of KR20130077186A publication Critical patent/KR20130077186A/ko
Application granted granted Critical
Publication of KR101829676B1 publication Critical patent/KR101829676B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 웨이퍼 열 처리 방법을 개시한다. 웨이퍼 열 처리 방법은 웨이퍼의 결함을 검출하는 것, 결함이 공정 챔버 내의 불균일한 온도 구배 영역들을 제외한 나머지 영역들에 위치하도록 웨이퍼를 정렬하는 것, 및 공정 챔버 내에서 웨이퍼를 급속 열처리하는 것을 포함한다.

Description

웨이퍼 열 처리 방법{METHOD OF THERMALLY TREATING WAFER}
본 발명은 웨이퍼 열 처리 방법에 관한 것으로서, 더욱 상세하게는 밀리-세컨드 어닐링(Milli-Second Annealing)에 관한 것이다.
반도체 소자의 제조 공정 중 이온 주입 공정 후에는 어닐링이 진행된다. 어닐링은, 고온에서 진행되는 열처리 공정으로, 이온 주입된 불순물을 활성화시키고, 불순물의 확산을 방지한다.
일반적으로, 어닐링에서는, 밀리-세컨드 어닐링과 같은 급속 열처리 공정(RTP)이 사용된다. 밀리-세컨드 어닐링은, 밀리-세컨드(Milli-second) 단위의 짧은 시간 동안에, 램프로부터 발산되는 복사 열 에너지를 웨이퍼로 전달하여 웨이퍼를 가열한다.
본 발명의 목적은 급속 열처리 공정의 진행 중 웨이퍼의 깨짐을 방지할 수 있는 웨이퍼 열 처리 방법을 제공하는 것이다.
상기한 과제를 달성하기 위하여 본 발명의 실시 예에 따른 웨이퍼 열 처리 방법은, 웨이퍼의 결함(Defect)을 검출하는 것; 상기 결함이 공정 챔버 내의 불균일한 온도 구배 영역들을 제외한 나머지 영역들에 위치하도록 상기 웨이퍼를 정렬하는 것; 및 상기 공정 챔버 내에서 상기 웨이퍼를 급속 열처리하는 것을 포함한다.
본 발명의 실시 예에 따르면, 상기 공정 챔버는 4 각형 단면의 육면체 형상을 가지고, 상기 불균일한 온도 구배 영역들은 상기 4 각형 단면의 모서리 영역들일 수 있다.
본 발명의 실시 예에 따르면, 상기 웨이퍼를 급속 열처리하는 것은, 플래쉬 램프 어닐(Flash Lamp Anneal)을 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 상기 웨이퍼의 상기 결함을 검출하는 것은, 상기 웨이퍼를 회전시키는 것; 및 고정된 카메라를 이용하여, 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함할 수 있다.
본 발명의 다른 실시 예에 따르면, 상기 웨이퍼의 상기 결함을 검출하는 것은, 상기 웨이퍼를 고정하는 것; 상기 웨이퍼의 둘레를 따라 카메라를 이동시키는 것; 및 상기 카메라를 이용하여 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함할 수 있다.
본 발명의 다른 실시 예에 따르면, 상기 웨이퍼의 상기 결함을 검출하는 것은, 상기 웨이퍼를 고정하는 것; 상기 웨이퍼에 대해 카메라의 광축을 회전시키는 것; 및 상기 카메라를 이용하여 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함할 수 있다.
본 발명의 실시 예에 따르면, 상기 웨이퍼의 <110> 결정 방위를 검출하는 것; 및 상기 <110> 결정 방위가 상기 공정 챔버 내의 상기 나머지 영역들을 향하도록 상기 웨이퍼를 정렬하는 것을 더 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 상기 웨이퍼의 상기 <110> 결정 방위를 검출하는 것은, 상기 웨이퍼를 회전시키는 것; 및 고정된 카메라를 이용하여, 상기 웨이퍼의 노치(Notch)를 촬영하는 것을 포함할 수 있다.
본 발명의 다른 실시 예에 따르면, 상기 웨이퍼의 상기 <110> 결정 방위를 검출하는 것은, 상기 웨이퍼를 고정하는 것; 상기 웨이퍼의 둘레를 따라 카메라를 이동시키는 것; 및 상기 카메라를 이용하여, 상기 웨이퍼의 노치(Notch)를 촬영하는 것을 포함할 수 있다.
본 발명의 실시 예에 따르면, 상기 공정 챔버는, 4 각형 단면의 육면체 형상을 가지는 챔버 하우징; 상기 챔버 하우징 내에 배치되고, 상기 웨이퍼가 놓이는 지지 부재; 상기 지지 부재의 아래에 배치되고, 제 1 온도에서 상기 웨이퍼를 벌크-히팅(Bulk-heating)하는 제 1 아크 램프; 및 상기 지지 부재의 위에 배치되고, 상기 제 1 온도보다 높은 제 2 온도에서 밀리-세컨드(Milli-second) 단위의 짧은 시간 동안 상기 웨이퍼를 히팅하는 제 2 아크 램프를 포함하고, 상기 웨이퍼는 상기 결함이 상기 챔버 하우징 내의 모서리 영역들에 위치하지 않도록 정렬된 후, 상기 지지 부재에 로딩될 수 있다.
상기한 과제를 달성하기 위하여 본 발명의 다른 실시 예에 따른 웨이퍼 열 처리 방법은, 웨이퍼의 <110> 결정 방위를 검출하는 것; 상기 <110> 결정 방위가 공정 챔버 내의 불균일한 온도 구배 영역들을 제외한 나머지 영역들을 향하도록 상기 웨이퍼를 정렬하는 것; 및 상기 공정 챔버 내에서 상기 웨이퍼를 급속 열처리하는 것을 포함한다.
본 발명의 실시 예에 따르면, 상기 공정 챔버는 4 각형 단면의 육면체 형상을 가지고, 상기 불균일한 온도 구배 영역들은 상기 4 각형 단면의 모서리 영역들일 수 있다.
본 발명의 일 실시 예에 따르면, 상기 웨이퍼의 상기 <110> 결정 방위를 검출하는 것은, 상기 웨이퍼를 회전시키는 것; 및 고정된 카메라를 이용하여, 상기 웨이퍼의 노치(Notch)를 촬영하는 것을 포함할 수 있다.
본 발명의 다른 실시 예에 따르면, 상기 웨이퍼의 상기 <110> 결정 방위를 검출하는 것은, 상기 웨이퍼를 고정하는 것; 상기 웨이퍼의 둘레를 따라 카메라를 이동시키는 것; 및 상기 카메라를 이용하여, 상기 웨이퍼의 노치(Notch)를 촬영하는 것을 포함할 수 있다.
본 발명의 실시 예에 따르면, 상기 웨이퍼를 급속 열처리하는 것은, 플래쉬 램프 어닐(Flash Lamp Anneal)을 포함할 수 있다.
본 발명에 의하면, 급속 열 처리 공정의 진행 중 웨이퍼의 깨짐을 방지할 수 있다.
이하에 설명된 도면들은 단지 예시의 목적을 위한 것이고, 본 발명의 범위를 제한하기 위한 것이 아니다.
도 1은 웨이퍼 열처리 장치의 평면도이다.
도 2는 도 1의 공정 챔버의 사시도이다.
도 3은 도 2의 지지 부재의 평면도이다.
도 4A 내지 도 4C는 웨이퍼 깨짐이 발생하는 종래의 웨이퍼 정렬 상태들을 보여주는 도면들이다.
도 5는 웨이퍼 정렬 유닛의 제 1 실시 예를 보여주는 도면이다.
도 6은 웨이퍼 정렬 유닛의 제 2 실시 예를 보여주는 도면이다.
도 7은 웨이퍼 정렬 유닛의 제 3 실시 예를 보여주는 도면이다.
도 8은 웨이퍼 정렬 유닛의 제 4 실시 예를 보여주는 도면이다.
도 9는 웨이퍼 정렬 유닛의 제 5 실시 예를 보여주는 도면이다.
도 10A 내지 도 10C는 웨이퍼 깨짐을 방지할 수 있는 웨이퍼 정렬 상태들을 보여주는 도면들이다.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예에 따른 웨이퍼 열 처리 방법을 상세히 설명하기로 한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
(실시 예)
도 1은 웨이퍼 열처리 장치의 평면도이다. 도 1을 참조하면, 웨이퍼 열처리 장치(10)는, 설비 전방 단부 모듈(100), 로드락 챔버(200), 트랜스퍼 챔버(300) 및 공정 챔버들(400)을 포함한다.
설비 전방 단부 모듈(EFEM, 100)은 복수의 로드 포트들(120)과 프레임(140)을 포함한다. 로드 포트들(120)은 일 방향으로 나란하게 배치되고, 프레임(140)은 로드 포트들(120)과 로드락 챔버(200) 사이에 위치한다. 웨이퍼들을 수용하는 용기들(C)은 전면 개방 일체식 포드(Front Open Unified Pod, FOUP)와 같은 밀폐 용기가 사용될 수 있고, 용기들(C)은 로드 포트들(120)에 놓인다.
프레임(140) 내에는 도어 오프너(미도시), 제 1 이송 로봇(150), 그리고 웨이퍼 정렬 유닛(170)이 설치된다. 도어 오프너(미도시)는 로드 포트들(120)에 놓인 용기들(C)의 도어를 자동으로 개폐한다. 제 1 이송 로봇(150)은 이송 레일(152)을 따라 이동하며 로드 포트들(120)에 놓인 용기들(C)과 로드락 챔버(200) 간에 웨이퍼를 이송한다. 구체적으로, 웨이퍼의 로딩 과정에서, 제 1 이송 로봇(150)은 용기들(C)로부터 웨이퍼 정렬 유닛(170)으로, 그리고 웨이퍼 정렬 유닛(170)으로부터 로드락 챔버(200)로 웨이퍼를 이송한다. 웨이퍼의 언로딩 과정에서, 제 1 이송 로봇(150)은 로드락 챔버(200)로부터 용기들(C)로 웨이퍼를 이송한다. 웨이퍼 정렬 유닛(170)은 웨이퍼의 결함 및/또는 웨이퍼의 <110> 결정 방위를 검출하고, 결함 및 <110> 결정 방위가 기설정된 방향을 향하도록 웨이퍼를 정렬한다. 웨이퍼 정렬 유닛(170)에 대한 상세한 설명은 후술하기로 한다.
로드락 챔버(200)는 설비 전방 단부 모듈(100)의 후방에 배치된다. 로드락 챔버(200)는 공정 진행을 위해 공정 챔버들(400)에 반입되는 웨이퍼들이 일시적으로 머무르는 로딩 챔버(220)와, 공정이 완료되어 공정 챔버들(400)로부터 반출되는 웨이퍼들이 일시적으로 머무르는 언로딩 챔버(240)를 포함한다. 정렬된 웨이퍼가 로딩 챔버(220) 내로 반입되면, 콘트롤러(미도시)는 로딩 챔버(220) 내측을 감압하여 초기 저진공 상태로 만든다. 이를 통해 외부 오염 물질이 트랜스퍼 챔버(300)와 공정 챔버들(400)로 유입되는 것이 방지될 수 있다.
로드락 챔버(200)의 일 측에는 트랜스퍼 챔버(300)가 인접하게 배치되고, 트랜스퍼 챔버(300)의 둘레에는 공정 챔버들(400)이 배치된다. 트랜스퍼 챔버(300)의 내부에는 웨이퍼를 이송하기 위한 제 2 이송 로봇(320)이 제공된다. 제 2 이송 로봇(320)은 로드락 챔버(200)와 공정 챔버들(400) 간에 웨이퍼를 이송한다.
각각의 공정 챔버들(400)은 웨이퍼의 급속 열처리 공정이 진행되는 공간을 제공한다. 급속 열처리 공정은 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)일 수 있다. 플래쉬 램프 어닐링은 밀리-세컨드(Milli-second) 단위의 짧은 시간 동안에 램프의 복사 열 에너지를 이용하여 웨이퍼를 가열하는 공정이다. 플래쉬 램프 어닐링에 의한 웨이퍼 가열에 의해, 웨이퍼에 이온 주입된 불순물이 활성화될 수 있다.
로드락 챔버(200)와 트랜스퍼 챔버(300)의 사이, 그리고 트랜스퍼 챔버(300)와 공정 챔버들(400)의 사이에는 웨이퍼가 반출입되는 개구부(미도시)가 형성되고, 개구부(미도시)는 게이트 밸브(미도시)에 의해 개폐된다. 게이트 밸브는 개구부를 통한 기체 및 불순물 등의 유입을 단속하여, 챔버 간 압력 전달을 차단한다.
도 2는 도 1의 공정 챔버의 사시도이다. 도 2를 참조하면, 공정 챔버(400)는 챔버 하우징(420), 지지 부재(440), 제 1 아크 램프(460) 및 제 2 아크 램프(480)를 포함한다.
챔버 하우징(420)은 4 각형 단면의 육면체 형상을 가진다. 지지 부재(440)는 챔버 하우징(420)의 중심부에 위치하고, 웨이퍼를 지지한다. 제 1 아크 램프(460)는 지지 부재(440)의 아래에 배치되고, 제 1 온도에서 웨이퍼를 벌크-히팅(Bulk-heating)할 수 있다. 제 1 아크 램프(460)의 아래에는 제 1 반사판(462)이 제공된다. 제 1 반사판(462)은 제 1 아크 램프(460)의 전자기 복사 에너지를 웨이퍼를 향해 위쪽으로 반사할 수 있다. 제 2 아크 램프(480)는 지지 부재(440)의 위에 배치되고, 제 1 온도보다 높은 제 2 온도에서 밀리-세컨드(Milli-second) 단위의 짧은 시간 동안 웨이퍼를 히팅할 수 있다. 제 2 아크 램프(480)의 위에는 제 2 반사판(482)이 제공된다. 제 2 반사판(482)은 제 2 아크 램프(480)의 전자기 복사 에너지를 웨이퍼를 향해 아래쪽으로 반사할 수 있다.
도 3은 도 2의 지지 부재의 평면도이다. 도 3을 참조하면, 지지 부재(440)는 지지 플레이트(442), 리프트 핀들(444a, 444b, 444c, 444d) 및 에지 반사판들(446a, 446b, 446c, 446d)을 포함한다.
지지 플레이트(442)는 사각형 형상을 가진다. 지지 플레이트(442)의 중심 영역에는 웨이퍼가 놓이는 안착 면(443)이 제공되고, 지지 플레이트(442)의 4 모서리 영역들에는 리프트 핀들(444a, 444b, 444c, 444d)이 배치된다. 지지 플레이트(442) 상으로 로딩되는 웨이퍼는 승강된 리프트 핀들(446a, 446b, 446c, 446d)에 의해 지지되고, 리프트 핀들(446a, 446b, 446c, 446d)의 하강에 의해 안착 면(433)에 놓인다. 에지 반사판들(446a, 446b, 446c, 446d)은 리프트 핀들(444a, 444b, 444c, 444d) 사이에 각각 제공되고, 안착 면(443)의 둘레에 인접하게 배치된다. 즉, 지지 플레이트(442)의 4 모서리 영역들에 대응되는 안착 면(443) 둘레의 일부 영역들에는 반사판들이 제공되지 않는다. 에지 반사판들(446a, 446b, 446c, 446d)은 제 1 및 제 2 아크 램프(460, 480)의 전자기 복사 에너지를 웨이퍼를 향해 반사한다.
앞서 설명한 바와 같이, 챔버 하우징(420)이 4 각형 단면을 가지기 때문에, 웨이퍼의 급속 열처리 공정에서 챔버 하우징(420) 내부의 모서리 영역들에는 불균일한 온도 구배가 발생될 수 있다. 또한, 지지 플레이트(442)의 4 모서리 영역들에 대응되는 안착 면(443) 둘레의 일부 영역들에는 에지 반사판이 제공되지 않기 때문에, 웨이퍼 내에 불균일한 온도 구배가 발생될 수 있다.
도 4A 내지 도 4C는 웨이퍼 깨짐이 발생하는 종래의 웨이퍼 정렬 상태들을 보여주는 도면들이다. 도 4A는 웨이퍼의 결함(D)이 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 4 모서리 영역들에 위치한 예를 보여준다. 도 4B는 웨이퍼의 <110> 결정 방위가 챔버 하우징(420)의 불균일한 온도 구배 영역을 향하는 예를 보여준다. 도 4C는 웨이퍼의 결함(D) 및 <110> 결정 방위가 챔버 하우징(420)의 불균일한 온도 구배 영역을 향하는 예를 보여준다. 도 4A 내지 도 4C에 도시된 바와 같이, 웨이퍼(W)가 정렬되면, 급속 열처리 공정의 진행 중 웨이퍼의 깨짐이 발생할 수 있다. 구체적으로, 고온의 급속 열처리 공정에서 챔버 내에 불균일한 온도 구배가 발생하면, 불균일한 온도 구배에 의해 웨이퍼 내에 열 응력이 발생한다. 그리고 열 응력에 의해 웨이퍼(W)의 결함 위치나 <110> 결정 방위 방향으로 슬립 전위(Slip Dislocation)가 발생 및 전파하고, 슬립 전위(Slip Dislocation)에 의해 웨이퍼의 깨짐이 발생될 수 있다.
본 발명은, 상기의 문제점을 해결하기 위해, 웨이퍼의 결함(Defect) 및/또는 <110> 결정 방위가 챔버 내의 불균일한 온도 구배 영역에 위치하지 않도록 웨이퍼를 정렬한 후, 웨이퍼의 급속 열처리 공정을 진행할 수 있는 웨이퍼 열 처리 방법을 제공한다.
도 5는 웨이퍼 정렬 유닛의 제 1 실시 예를 보여주는 도면이다. 도 1 및 도 5를 참조하면, 웨이퍼 정렬 유닛(170)은 설비 전방 단부 모듈(100)의 프레임(140) 내에 배치될 수 있다. 웨이퍼 정렬 유닛(170)은 웨이퍼(W)가 놓이고 회전 가능한 정렬기(172)와, 웨이퍼(W)의 결함을 검출하는 제 1 및 제 2 결함 검출기들(174a, 174b)을 포함할 수 있다. 예를 들어, 제 1 및 제 2 결함 검출기들(174a, 174b)은 웨이퍼의 표면 이미지를 촬영하는 카메라일 수 있다. 제 1 결함 검출기(174a)는 정렬기(172)에 놓인 웨이퍼(W)의 상부에 위치하고, 제 2 결함 검출기(174b)는 정렬기(172)에 놓인 웨이퍼(W)의 하부에 위치한다. 제 1 및 제 2 결함 검출기(174a, 174b)는 기설정된 위치에 고정될 수 있다.
상기와 같은 구성을 가지는 웨이퍼 정렬 유닛(170)을 이용하여 웨이퍼의 결함을 검출하고, 웨이퍼를 정렬하는 방법을 설명하면 다음과 같다. 먼저, 제 1 이송 로봇(150)이 용기(C)로부터 웨이퍼(W)를 인출하여 정렬기(172)로 이송한다. 웨이퍼(W)가 정렬기(172)에 안착된 상태에서, 정렬기(172)는 회전된다. 이때, 제 1 결함 검출기(174a)는 회전하는 웨이퍼(W) 상면의 가장자리 영역의 이미지를 촬영하고, 제 2 결함 검출기(174b)는 회전하는 웨이퍼(W) 하면의 가장자리 영역의 이미지를 촬영한다.
제 1 및 제 2 결함 검출기(174a, 174b)가 촬영한 이미지는 제어부(미도시)로 전송된다. 제어부(미도시)는 웨이퍼(W) 내의 결함 위치를 판독한다. 이후, 제어부(미도시)는 정렬기(172)를 회전시켜, 검출된 웨이퍼 결함(D)이 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 모서리 영역에 놓이지 않도록 웨이퍼(W)를 회전시킨다.(도 10A, 10C)
이후, 제 1 이송 로봇(150)이 정렬된 웨이퍼(W)를 로드락 챔버(200)의 로딩 챔버(220)로 로딩하고, 트랜스퍼 챔버(300)의 제 2 이송 로봇(320)이 로딩 챔버(220)로부터 웨이퍼(W)를 인출하여 공정 챔버(400)로 반입한다. 공정 챔버(400)에 반입된 웨이퍼(W)는 정렬기(172)에서 정렬된 상태를 유지한다. 즉, 검출된 웨이퍼(W)의 결함들(D)이 챔버 하우징(420)의 모서리 영역들에 위치하지 않는다.(도 10A, 10C)
이 상태에서, 공정 챔버(400)는 웨이퍼(W)에 대해 급속 열처리 공정, 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)을 진행한다.
도 6은 웨이퍼 정렬 유닛의 제 2 실시 예를 보여주는 도면이다. 도 1 및 도 6을 참조하면, 웨이퍼 정렬 유닛(170-1)은 설비 전방 단부 모듈(100)의 프레임(140) 내에 배치될 수 있다. 웨이퍼 정렬 유닛(170-1)은 웨이퍼(W)가 놓이고 회전 가능한 정렬기(172-1)와, 웨이퍼(W)의 결함을 검출하는 제 1 및 제 2 결함 검출기들(174a-1, 174b-1)을 포함할 수 있다. 예를 들어, 제 1 및 제 2 결함 검출기들(174a-1, 174b-1)은 웨이퍼의 표면 이미지를 촬영하는 카메라일 수 있다. 제 1 결함 검출기(174a-1)는 정렬기(172-1)에 놓인 웨이퍼(W)의 상부에 위치하고, 제 2 결함 검출기(174b-1)는 정렬기(172-1)에 놓인 웨이퍼(W)의 하부에 위치한다. 제 1 및 제 2 결함 검출기(174a-1, 174b-1)는 도시되지 않은 구동 부재에 의해 정렬기(172-1)의 중심 축을 중심으로 회전될 수 있다. 즉, 제 1 및 제 2 결함 검출기(174a-1, 174b-1)는 정렬기(172-1)에 놓인 웨이퍼(W)의 둘레를 따라 이동될 수 있다.
상기와 같은 구성을 가지는 웨이퍼 정렬 유닛(170-1)을 이용하여 웨이퍼의 결함을 검출하고, 웨이퍼를 정렬하는 방법을 설명하면 다음과 같다. 먼저, 웨이퍼(W)가 정렬기(172-1)에 안착되고, 정렬기(172-1)는 고정된다. 즉, 웨이퍼(W)가 고정된다. 이때, 제 1 결함 검출기(174a-1)는 고정된 웨이퍼(W)의 둘레를 따라 이동하면서 웨이퍼(W) 상면의 가장자리 영역의 이미지를 촬영하고, 제 2 결함 검출기(174b-1)는 고정된 웨이퍼(W)의 둘레를 따라 이동하면서 웨이퍼(W) 하면의 가장자리 영역의 이미지를 촬영한다.
제 1 및 제 2 결함 검출기(174a-1, 174b-1)가 촬영한 이미지는 제어부(미도시)로 전송된다. 제어부(미도시)는 웨이퍼(W) 내의 결함 위치를 판독한다. 이후, 제어부(미도시)는 정렬기(172-1)를 회전시켜, 검출된 웨이퍼 결함(D)이 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 모서리 영역에 놓이지 않도록 웨이퍼(W)를 회전시킨다.(도 10A, 10C)
이후, 제 1 이송 로봇(150)이 정렬된 웨이퍼(W)를 로드락 챔버(200)의 로딩 챔버(220)로 로딩하고, 트랜스퍼 챔버(300)의 제 2 이송 로봇(320)이 로딩 챔버(220)로부터 웨이퍼(W)를 인출하여 공정 챔버(400)로 반입한다. 공정 챔버(400)에 반입된 웨이퍼(W)는 정렬기(172-1)에서 정렬된 상태를 유지한다. 즉, 검출된 웨이퍼(W)의 결함들(D)이 챔버 하우징(420)의 모서리 영역들에 위치하지 않는다.(도 10A, 10C)
이 상태에서, 공정 챔버(400)는 웨이퍼(W)에 대해 급속 열처리 공정, 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)을 진행한다.
도 7은 웨이퍼 정렬 유닛의 제 3 실시 예를 보여주는 도면이다. 도 1 및 도 7을 참조하면, 웨이퍼 정렬 유닛(170-2)은 설비 전방 단부 모듈(100)의 프레임(140) 내에 배치될 수 있다. 웨이퍼 정렬 유닛(170-2)은 웨이퍼(W)가 놓이고 회전 가능한 정렬기(172-2)와, 웨이퍼(W)의 결함을 검출하는 제 1 및 제 2 결함 검출기들(174a-2, 174b-2)을 포함할 수 있다. 예를 들어, 제 1 및 제 2 결함 검출기들(174a-2, 174b-2)은 웨이퍼의 표면 이미지를 촬영하는 카메라일 수 있다. 제 1 결함 검출기(174a-2)는 정렬기(172-2)에 놓인 웨이퍼(W)의 상부에 위치하고, 제 2 결함 검출기(174b-2)는 정렬기(172-2)에 놓인 웨이퍼(W)의 하부에 위치한다.
제 1 결함 검출기(174a-2)는 웨이퍼(W)의 상면 전체를 스캐닝할 수 있도록 구동 부재(미도시)에 의해 회전된다. 즉, 제 1 결함 검출기(174a-2)의 자기 중심축, 즉 광축이 웨이퍼(W) 상면과 이루는 각이 연속적으로 변하도록 제 1 결함 검출기(174a-2)가 회전된다. 제 2 결함 검출기(174b-2)는 웨이퍼(W)의 하면 전체를 스캐닝할 수 있도록 구동 부재(미도시)에 의해 회전된다. 즉, 제 2 결함 검출기(174b-2)의 자기 중심축, 즉 광축이 웨이퍼(W) 하면과 이루는 각이 연속적으로 변하도록 제 2 결함 검출기(174b-2)가 회전된다.
상기와 같은 구성을 가지는 웨이퍼 정렬 유닛(170-2)을 이용하여 웨이퍼의 결함을 검출하고, 웨이퍼를 정렬하는 방법을 설명하면 다음과 같다. 먼저, 웨이퍼(W)가 정렬기(172-2)에 안착되고, 정렬기(172-2)는 고정된다. 즉, 웨이퍼(W)가 고정된다. 이때, 제 1 결함 검출기(174a-2)는 그 광축이 회전되는 동안 웨이퍼(W) 상면의 이미지를 촬영하고, 제 2 결함 검출기(174b-2)는 그 광축이 회전되는 동안 웨이퍼(W) 하면의 이미지를 촬영한다.
제 1 및 제 2 결함 검출기(174a-2, 174b-2)가 촬영한 이미지는 제어부(미도시)로 전송된다. 제어부(미도시)는 웨이퍼(W) 내의 결함 위치를 판독한다. 이후, 제어부(미도시)는 정렬기(172-2)를 회전시켜, 검출된 웨이퍼 결함(D)이 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 모서리 영역에 놓이지 않도록 웨이퍼(W)를 회전시킨다.(도 10A, 10C)
이후, 제 1 이송 로봇(150)이 정렬된 웨이퍼(W)를 로드락 챔버(200)의 로딩 챔버(220)로 로딩하고, 트랜스퍼 챔버(300)의 제 2 이송 로봇(320)이 로딩 챔버(220)로부터 웨이퍼(W)를 인출하여 공정 챔버(400)로 반입한다. 공정 챔버(400)에 반입된 웨이퍼(W)는 정렬기(172-2)에서 정렬된 상태를 유지한다. 즉, 검출된 웨이퍼(W)의 결함들(D)이 챔버 하우징(420)의 모서리 영역들에 위치하지 않는다.(도 10A, 10C)
이 상태에서, 공정 챔버(400)는 웨이퍼(W)에 대해 급속 열처리 공정, 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)을 진행한다.
도 8은 웨이퍼 정렬 유닛의 제 4 실시 예를 보여주는 도면이다. 도 1 및 도 8을 참조하면, 웨이퍼 정렬 유닛(170-3)은 설비 전방 단부 모듈(100)의 프레임(140) 내에 배치될 수 있다. 웨이퍼 정렬 유닛(170-3)은 웨이퍼(W)가 놓이고 회전 가능한 정렬기(172-3)와, 웨이퍼(W)의 노치(Notch)를 검출하는 노치 검출기(174a-3)를 포함할 수 있다. 예를 들어, 노치 검출기(174a-3)는 웨이퍼(W)의 가장자리 측면의 이미지를 촬영하는 카메라일 수 있다. 노치 검출기(174a-3)는 정렬기(172-3)에 놓인 웨이퍼(W)의 상부 또는 하부에 위치할 수 있다. 노치 검출기(174a-3)는 기설정된 위치에 고정된다.
상기와 같은 구성을 가지는 웨이퍼 정렬 유닛(170-3)을 이용하여 웨이퍼의 노치를 검출하고, 웨이퍼를 정렬하는 방법을 설명하면 다음과 같다.
여기서, 패턴이 형성되는 주표면이 (100) 면 방위를 가지는 웨이퍼를 예로 들어 설명한다. 이 경우, 노치는, 도 10A 내지 도 10C에 도시된 바와 같이, 웨이퍼의 <110> 결정 방위에 형성될 수 있다. 이와 달리, 노치는 웨이퍼의 <100> 결정 방위에 형성될 수도 있다. 이하에서는 노치가 <110> 결정 방위에 형성된 경우를 예로 들어 설명한다.
먼저, 제 1 이송 로봇(150)이 용기(C)로부터 웨이퍼를 인출하여 정렬기(172-3)로 이송한다. 웨이퍼(W)가 정렬기(172-3)에 안착된 상태에서, 정렬기(172-3)는 회전된다. 이때, 노치 검출기(174a-3)는 회전하는 웨이퍼(W)의 가장자리 측면의 이미지를 촬영한다.
노치 검출기(174a-3)가 촬영한 이미지는 제어부(미도시)로 전송된다. 제어부(미도시)는 정렬기(172-3)를 회전시켜, 검출된 노치가 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 모서리 영역에 놓이지 않도록 웨이퍼(W)를 회전시킨다. 노치가 <110> 결정 방위에 형성되어 있기 때문에, 웨이퍼(W)의 <110> 결정 방위 또한 챔버 하우징(420)의 모서리 영역에 놓이지 않는다.(도 10A 내지 도 10C)
이후, 제 1 이송 로봇(150)이 정렬된 웨이퍼(W)를 로드락 챔버(200)의 로딩 챔버(220)로 로딩하고, 트랜스퍼 챔버(300)의 제 2 이송 로봇(320)이 로딩 챔버(220)로부터 웨이퍼(W)를 인출하여 공정 챔버(400)로 반입한다. 공정 챔버(400)에 반입된 웨이퍼(W)는 정렬기(172-3)에서 정렬된 상태를 유지한다. 즉, 검출된 웨이퍼(W)의 노치 및 <110> 결정 방위가 챔버 하우징(420)의 모서리 영역들에 위치하지 않는다.(도 10A 내지 도 10C)
이 상태에서, 공정 챔버(400)는 웨이퍼(W)에 대해 급속 열처리 공정, 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)을 진행한다.
도 9는 웨이퍼 정렬 유닛의 제 5 실시 예를 보여주는 도면이다. 도 1 및 도 9를 참조하면, 웨이퍼 정렬 유닛(170-4)은 설비 전방 단부 모듈(100)의 프레임(140) 내에 배치될 수 있다. 웨이퍼 정렬 유닛(170-4)은 웨이퍼(W)가 놓이고 회전 가능한 정렬기(172-4)와, 웨이퍼(W)의 노치(Notch)를 검출하는 노치 검출기(174a-4)를 포함할 수 있다. 예를 들어, 노치 검출기(174a-4)는 웨이퍼(W)의 가장자리 측면의 이미지를 촬영하는 카메라일 수 있다. 노치 검출기(174a-4)는 정렬기(172-4)에 놓인 웨이퍼(W)의 상부 또는 하부에 위치할 수 있다. 노치 검출기(174a-4)는 도시되지 않은 구동 부재에 의해 정렬기(172-4)의 중심 축을 중심으로 회전될 수 있다. 즉, 노치 검출기(174a-4)는 정렬기(172-4)에 놓인 웨이퍼(W)의 둘레를 따라 이동될 수 있다.
상기와 같은 구성을 가지는 웨이퍼 정렬 유닛(170-4)을 이용하여 웨이퍼의 노치를 검출하고, 웨이퍼를 정렬하는 방법을 설명하면 다음과 같다.
여기서, 패턴이 형성되는 주표면이 (100) 면 방위를 가지는 웨이퍼를 예로 들어 설명한다. 이 경우, 노치는, 도 10A 및 도 10C에 도시된 바와 같이, 웨이퍼의 <110> 결정 방위에 형성될 수 있다. 이와 달리, 노치는 웨이퍼의 <100> 결정 방위에 형성될 수도 있다. 이하에서는 노치가 <110> 결정 방위에 형성된 경우를 예로 들어 설명한다.
먼저, 제 1 이송 로봇(150)이 용기(C)로부터 웨이퍼를 인출하여 정렬기(172-4)로 이송한다. 웨이퍼(W)가 정렬기(172-4)에 안착되고, 정렬기(172-4)는 고정된다. 즉, 웨이퍼(W)가 고정된다. 이때, 노치 검출기(174a-4)는 고정된 웨이퍼(W)의 둘레를 따라 이동하면서 웨이퍼(W)의 가장자리 측면의 이미지를 촬영한다.
노치 검출기(174a-4)가 촬영한 이미지는 제어부(미도시)로 전송된다. 제어부(미도시)는 정렬기(172-4)를 회전시켜, 검출된 노치가 챔버 하우징(420)의 불균일한 온도 구배 영역, 즉 모서리 영역에 놓이지 않도록 웨이퍼(W)를 회전시킨다. 노치가 <110> 결정 방위에 형성되어 있기 때문에, 웨이퍼(W)의 <110> 결정 방위 또한 챔버 하우징(420)의 모서리 영역에 놓이지 않는다.(도 10A 내지 도 10C)
이후, 제 1 이송 로봇(150)이 정렬된 웨이퍼(W)를 로드락 챔버(200)의 로딩 챔버(220)로 로딩하고, 트랜스퍼 챔버(300)의 제 2 이송 로봇(320)이 로딩 챔버(220)로부터 웨이퍼(W)를 인출하여 공정 챔버(400)로 반입한다. 공정 챔버(400)에 반입된 웨이퍼(W)는 정렬기(172-4)에서 정렬된 상태를 유지한다. 즉, 검출된 웨이퍼(W)의 노치 및 <110> 결정 방위가 챔버 하우징(420)의 모서리 영역들에 위치하지 않는다.(도 10A 내지 도 10C)
이 상태에서, 공정 챔버(400)는 웨이퍼(W)에 대해 급속 열처리 공정, 예를 들어 플래쉬 램프 어닐링(Flash Lamp Annealing)을 진행한다.
이상에서 설명한 바와 같이, 본 발명은, 급속 열처리 공정 이전에 웨이퍼의 결함 및/또는 <110> 결정 방위를 검출하고, 검출된 결함 및/또는 <110> 결정 방위가 4 각형 단면을 가지는 챔버 하우징의 모서리 영역에 놓이지 않도록 웨이퍼를 정렬할 수 있다. 이를 통해, 본 발명은, 밀리-세컨드 어닐링과 같은 급속 열처리 공정(RTP)의 진행 중, 챔버 하우징 내의 모서리 영역들에서의 불균일한 온도 구배에 의해 웨이퍼가 깨지는 것을 방지할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 설비 전방 단부 모듈 170: 웨이퍼 정렬 유닛
172: 정렬기 174a, 174b: 결함 검출기
200: 로드락 챔버 300: 트랜스퍼 챔버
400: 공정 챔버 420: 챔버 하우징
440: 지지 부재 460, 480: 아크 램프

Claims (10)

  1. 웨이퍼의 결함(Defect)을 검출하는 것;
    상기 결함이 공정 챔버 내의 불균일한 온도 구배 영역들을 제외한 나머지 영역들에 위치하도록 상기 웨이퍼를 정렬하는 것; 및
    상기 공정 챔버 내에서 상기 웨이퍼를 급속 열처리하는 것을 포함하는 웨이퍼 열 처리 방법.
  2. 제 1 항에 있어서,
    상기 공정 챔버는 4 각형 단면의 육면체 형상을 가지고,
    상기 불균일한 온도 구배 영역들은 상기 4 각형 단면의 모서리 영역들인 웨이퍼 열 처리 방법.
  3. 제 1 항에 있어서,
    상기 웨이퍼를 급속 열처리하는 것은, 플래쉬 램프 어닐(Flash Lamp Anneal)을 포함하는 웨이퍼 열 처리 방법.
  4. 제 1 항에 있어서,
    상기 웨이퍼의 상기 결함을 검출하는 것은,
    상기 웨이퍼를 회전시키는 것; 및
    고정된 카메라를 이용하여, 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함하는 웨이퍼 열 처리 방법.
  5. 제 1 항에 있어서,
    상기 웨이퍼의 상기 결함을 검출하는 것은,
    상기 웨이퍼를 고정하는 것;
    상기 웨이퍼의 둘레를 따라 카메라를 이동시키는 것; 및
    상기 카메라를 이용하여 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함하는 웨이퍼 열 처리 방법.
  6. 제 1 항에 있어서,
    상기 웨이퍼의 상기 결함을 검출하는 것은,
    상기 웨이퍼를 고정하는 것;
    상기 웨이퍼에 대해 카메라의 광축을 회전시키는 것; 및
    상기 카메라를 이용하여 상기 웨이퍼의 표면 이미지를 촬영하는 것을 포함하는 웨이퍼 열 처리 방법.
  7. 제 1 항에 있어서,
    상기 웨이퍼의 <110> 결정 방위를 검출하는 것; 및
    상기 <110> 결정 방위가 상기 공정 챔버 내의 상기 나머지 영역들을 향하도록 상기 웨이퍼를 정렬하는 것을 더 포함하는 웨이퍼 열 처리 방법.
  8. 제 1 항에 있어서,
    상기 공정 챔버는,
    4 각형 단면의 육면체 형상을 가지는 챔버 하우징;
    상기 챔버 하우징 내에 배치되고, 상기 웨이퍼가 놓이는 지지 부재;
    상기 지지 부재의 아래에 배치되고, 제 1 온도에서 상기 웨이퍼를 벌크-히팅(Bulk-heating)하는 제 1 아크 램프; 및
    상기 지지 부재의 위에 배치되고, 상기 제 1 온도보다 높은 제 2 온도에서 밀리-세컨드(Milli-second) 단위의 짧은 시간 동안 상기 웨이퍼를 히팅하는 제 2 아크 램프를 포함하고,
    상기 웨이퍼는 상기 결함이 상기 챔버 하우징 내의 모서리 영역들에 위치하지 않도록 정렬된 후, 상기 지지 부재에 로딩되는 웨이퍼 열 처리 방법.
  9. 웨이퍼의 결함을 검출하는 것;
    적어도 하나의 균일한 온도 구배 영역들과 적어도 하나의 불균일한 온도 구배 영역들을 갖는 공정 챔버 내에 상기 웨이퍼를 로딩하는 것;
    상기 결함이 상기 공정 챔버 내의 상기 균일한 온도 구배 영역들에 위치하도록 상기 웨이퍼를 정렬하는 것; 및
    상기 공정 챔버 내에서 상기 웨이퍼를 급속 열처리하는 것을 포함하는 웨이퍼 열 처리 방법.
  10. 제 9 항에 있어서,
    상기 공정 챔버는 4 각형 단면의 육면체 형상을 가지고,
    상기 불균일한 온도 구배 영역들은 상기 4 각형 단면의 모서리 영역들인 웨이퍼 열 처리 방법.
KR1020110145765A 2011-12-29 2011-12-29 웨이퍼 열 처리 방법 KR101829676B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110145765A KR101829676B1 (ko) 2011-12-29 2011-12-29 웨이퍼 열 처리 방법
US13/715,099 US8854614B2 (en) 2011-12-29 2012-12-14 Methods of thermally treating a semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110145765A KR101829676B1 (ko) 2011-12-29 2011-12-29 웨이퍼 열 처리 방법

Publications (2)

Publication Number Publication Date
KR20130077186A KR20130077186A (ko) 2013-07-09
KR101829676B1 true KR101829676B1 (ko) 2018-02-20

Family

ID=48695112

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145765A KR101829676B1 (ko) 2011-12-29 2011-12-29 웨이퍼 열 처리 방법

Country Status (2)

Country Link
US (1) US8854614B2 (ko)
KR (1) KR101829676B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384032B1 (ko) * 2021-12-22 2022-04-11 주식회사 오토솔루션 다양한 종류의 반도체 웨이퍼를 정확하게 분류할 수 있는 반도체 웨이퍼 정렬 시스템

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161136A1 (en) * 2014-04-17 2015-10-22 Femtometrix, Inc. Wafer metrology technologies
CN104332431B (zh) * 2014-09-10 2016-10-19 中国电子科技集团公司第四十八研究所 一种led芯片退火装置
JP6611652B2 (ja) * 2016-03-30 2019-11-27 東京エレクトロン株式会社 基板処理装置の管理方法、及び基板処理システム
TWM549447U (zh) * 2016-11-23 2017-09-21 Scientech Corp 基板對準及檢測裝置與基板處理機台
JP6838992B2 (ja) * 2017-02-21 2021-03-03 株式会社Screenホールディングス 熱処理装置および熱処理方法
US10354373B2 (en) * 2017-04-26 2019-07-16 Kla-Tencor Corporation System and method for photomask alignment and orientation characterization based on notch detection
JP7029914B2 (ja) * 2017-09-25 2022-03-04 東京エレクトロン株式会社 基板処理装置
US10955459B2 (en) * 2018-06-27 2021-03-23 Taiwan Semiconductor Manufacturing Company Ltd. Method of analyzing semiconductor structure
CN109597284A (zh) * 2019-02-02 2019-04-09 东旭(昆山)显示材料有限公司 一种曝光机预对位装置及曝光机
JP2020136307A (ja) * 2019-02-13 2020-08-31 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446825A (en) * 1991-04-24 1995-08-29 Texas Instruments Incorporated High performance multi-zone illuminator module for semiconductor wafer processing
US5154730A (en) * 1991-05-17 1992-10-13 Materials Research Corporation Semiconductor wafer processing module having an inclined rotating wafer handling turret and a method of using the module
US5506672A (en) * 1993-09-08 1996-04-09 Texas Instruments Incorporated System for measuring slip dislocations and film stress in semiconductor processing utilizing an adjustable height rotating beam splitter
US5439850A (en) * 1993-09-08 1995-08-08 North Carolina State University Method for forming a layer of uniform thickness on a semiconductor wafer during rapid thermal processing
JP3563224B2 (ja) * 1996-03-25 2004-09-08 住友電気工業株式会社 半導体ウエハの評価方法、熱処理方法、および熱処理装置
US5831249A (en) * 1997-01-29 1998-11-03 Advanced Micro Devices, Inc. Secondary measurement of rapid thermal annealer temperature
JP2000252335A (ja) 1999-03-01 2000-09-14 Sony Corp 半導体製造装置
US6420792B1 (en) * 1999-09-24 2002-07-16 Texas Instruments Incorporated Semiconductor wafer edge marking
US6391804B1 (en) * 2000-06-09 2002-05-21 Primaxx, Inc. Method and apparatus for uniform direct radiant heating in a rapid thermal processing reactor
US20020190207A1 (en) * 2000-09-20 2002-12-19 Ady Levy Methods and systems for determining a characteristic of micro defects on a specimen
JP2003130808A (ja) * 2001-10-29 2003-05-08 Hitachi Ltd 欠陥検査方法及びその装置
DE10297622B4 (de) * 2001-12-26 2018-06-14 Mattson Technology Inc. Temperaturmessung sowie Verfahren und Systeme zur Wärmebehandlung
US6849831B2 (en) * 2002-03-29 2005-02-01 Mattson Technology, Inc. Pulsed processing semiconductor heating methods using combinations of heating sources
US6800833B2 (en) * 2002-03-29 2004-10-05 Mariusch Gregor Electromagnetically levitated substrate support
KR100492158B1 (ko) 2002-11-19 2005-06-02 삼성전자주식회사 웨이퍼 검사 장치
JP4015068B2 (ja) * 2003-06-17 2007-11-28 株式会社東芝 半導体装置の製造方法
JP2005072045A (ja) * 2003-08-26 2005-03-17 Toshiba Corp 半導体装置およびその製造方法
US7107125B2 (en) * 2003-10-29 2006-09-12 Applied Materials, Inc. Method and apparatus for monitoring the position of a semiconductor processing robot
KR20060053294A (ko) 2004-11-13 2006-05-22 삼성전자주식회사 웨이퍼 예비 정렬 장치
US20060127067A1 (en) * 2004-12-13 2006-06-15 General Electric Company Fast heating and cooling wafer handling assembly and method of manufacturing thereof
CN1977361B (zh) * 2005-04-19 2011-04-27 株式会社荏原制作所 基底处理设备
JP4866020B2 (ja) * 2005-05-02 2012-02-01 大日本スクリーン製造株式会社 熱処理装置
KR20070019387A (ko) 2005-08-12 2007-02-15 삼성전자주식회사 웨이퍼 감지 장치 그 방법
JP4557871B2 (ja) 2005-11-28 2010-10-06 東京エレクトロン株式会社 欠損基板の検出方法及びその検出装置
US8600150B2 (en) * 2006-02-13 2013-12-03 Samsung Electronics Co., Ltd. Wafer aligning apparatus and related method
KR100772843B1 (ko) * 2006-02-13 2007-11-02 삼성전자주식회사 웨이퍼 얼라인 장치 및 방법
JP2007287860A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 半導体装置の製造方法
US7508504B2 (en) * 2006-05-02 2009-03-24 Accretech Usa, Inc. Automatic wafer edge inspection and review system
KR20080017205A (ko) 2006-08-21 2008-02-26 동부일렉트로닉스 주식회사 웨이퍼 에지 디펙트 검출장치 및 그 방법
TW200818327A (en) * 2006-09-29 2008-04-16 Sumco Techxiv Corp Silicon wafer heat treatment method
EP1928016B1 (en) * 2006-12-01 2010-01-06 Siltronic AG Silicon wafer and method for manufacturing the same
US7378618B1 (en) * 2006-12-14 2008-05-27 Applied Materials, Inc. Rapid conductive cooling using a secondary process plane
US8222574B2 (en) * 2007-01-15 2012-07-17 Applied Materials, Inc. Temperature measurement and control of wafer support in thermal processing chamber
JP4869130B2 (ja) * 2007-04-02 2012-02-08 株式会社東芝 半導体装置の製造方法
US20080268660A1 (en) * 2007-04-25 2008-10-30 Takaharu Itani Method of manufacturing semiconductor device
JP2008277696A (ja) * 2007-05-07 2008-11-13 Toshiba Corp 半導体装置の製造方法
US8057602B2 (en) * 2007-05-09 2011-11-15 Applied Materials, Inc. Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber
JP5022793B2 (ja) * 2007-07-02 2012-09-12 日東電工株式会社 半導体ウエハの欠陥位置検出方法
US20090016853A1 (en) * 2007-07-09 2009-01-15 Woo Sik Yoo In-line wafer robotic processing system
US8107800B2 (en) * 2008-01-08 2012-01-31 International Business Machines Corporation Method and structure to control thermal gradients in semiconductor wafers during rapid thermal processing
CN102017101B (zh) * 2008-05-02 2014-06-04 应用材料公司 用于旋转基板的非径向温度控制***
JP5718809B2 (ja) * 2008-05-16 2015-05-13 マトソン テクノロジー、インコーポレイテッド 加工品の破壊を防止する方法および装置
US8111978B2 (en) * 2008-07-11 2012-02-07 Applied Materials, Inc. Rapid thermal processing chamber with shower head
US8314371B2 (en) * 2008-11-06 2012-11-20 Applied Materials, Inc. Rapid thermal processing chamber with micro-positioning system
JP5324232B2 (ja) 2009-01-08 2013-10-23 日東電工株式会社 半導体ウエハのアライメント装置
KR101389058B1 (ko) * 2009-03-25 2014-04-28 가부시키가이샤 사무코 실리콘 웨이퍼 및 그 제조방법
CN102396055B (zh) * 2009-04-13 2014-09-03 信越半导体股份有限公司 退火晶片、退火晶片的制造方法以及器件的制造方法
JP2011040544A (ja) * 2009-08-10 2011-02-24 Toshiba Corp 熱処理装置及び半導体装置の製造方法
KR101381299B1 (ko) * 2010-02-08 2014-04-04 가부시키가이샤 사무코 실리콘 웨이퍼 및 그 제조 방법
JP5132695B2 (ja) * 2010-02-10 2013-01-30 株式会社東芝 半導体装置の製造方法
US8781070B2 (en) * 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384032B1 (ko) * 2021-12-22 2022-04-11 주식회사 오토솔루션 다양한 종류의 반도체 웨이퍼를 정확하게 분류할 수 있는 반도체 웨이퍼 정렬 시스템

Also Published As

Publication number Publication date
US8854614B2 (en) 2014-10-07
KR20130077186A (ko) 2013-07-09
US20130171744A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
KR101829676B1 (ko) 웨이퍼 열 처리 방법
CN100536063C (zh) 对构图的晶片背面进行快速热退火处理的方法及设备
US7033126B2 (en) Method and apparatus for loading a batch of wafers into a wafer boat
TWI754039B (zh) 基板加熱裝置
TWI449112B (zh) 平板、具有平板之基板之溫度調整裝置以及用以處理具有平板之基板之裝置
US20070215049A1 (en) Transfer of wafers with edge grip
KR101736854B1 (ko) 기판 처리 장치
KR100480668B1 (ko) 기판처리장치 및 기판처리방법
TW200830445A (en) Detecting device and detecting method
KR20200125462A (ko) 기판 처리 장치 및 기판 처리 방법
KR20200104231A (ko) 로드록 모듈, 기판 처리 장치 및 기판의 반송 방법
KR20200040670A (ko) 기판 냉각 장치 및 기판 냉각 방법
KR20170031122A (ko) 기판 처리 장치, 기판 처리 방법 및 그 기판 처리 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
CN111048444B (zh) 加热板冷却方法和基板处理装置及方法
JP2013247128A (ja) 熱処理装置、およびその処理基板の形状不良の有無の判定方法
JP4071047B2 (ja) 加熱冷却装置、真空処理装置
JP3628141B2 (ja) 基板搬入搬出装置及びその基板搬入搬出装置を備えた基板処理装置
KR101870663B1 (ko) 포토 마스크 이온 제거 장치
JPH11329925A (ja) 基板熱処理装置および基板熱処理方法
JP2009188161A (ja) 基板処理装置
US6231289B1 (en) Dual plate gas assisted heater module
KR101036604B1 (ko) 기판 처리 장치
JP2003347181A (ja) 基板処理装置、基板処理方法および塗布・現像装置
CN111048445B (zh) 加热板冷却方法及基板处理装置
KR20060116396A (ko) 열처리 설비의 웨이퍼 냉각 스테이션

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant