KR101446846B1 - 실리콘 단결정 기판 및 이의 제조 방법 - Google Patents

실리콘 단결정 기판 및 이의 제조 방법 Download PDF

Info

Publication number
KR101446846B1
KR101446846B1 KR1020120147140A KR20120147140A KR101446846B1 KR 101446846 B1 KR101446846 B1 KR 101446846B1 KR 1020120147140 A KR1020120147140 A KR 1020120147140A KR 20120147140 A KR20120147140 A KR 20120147140A KR 101446846 B1 KR101446846 B1 KR 101446846B1
Authority
KR
South Korea
Prior art keywords
single crystal
silicon single
resistivity
silicon
atoms
Prior art date
Application number
KR1020120147140A
Other languages
English (en)
Other versions
KR20130072144A (ko
Inventor
가츠히코 나카이
마사미치 오쿠보
히카루 사카모토
Original Assignee
실트로닉 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 실트로닉 아게 filed Critical 실트로닉 아게
Publication of KR20130072144A publication Critical patent/KR20130072144A/ko
Application granted granted Critical
Publication of KR101446846B1 publication Critical patent/KR101446846B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

기판의 저항이 균일하고 기판의 표면층에서 BMD가 적고 기판의 두께 중심에서는 중간 정도의 BMD를 갖는 단결정 실리콘 기판을 제공한다.
실리콘 단결정 기판은 쵸크랄스키법에 의해 성장된 실리콘 단결정을 슬라이싱함으로써 형성되며, 다음과 같은 특징을 갖는다. 실리콘 단결정 기판의 제1 주면의 중심에서의 비저항은 50 Ωㆍ㎝ 이상이며, 제1 주면에서의 비저항의 변화율은 3% 이하이다. 제1 주면과 50 ㎛ 깊이의 평면 사이에 놓인 영역에서 산소 석출 벌크 마이크로 결함의 평균 밀도는 1×108/㎤ 미만이다. 제1 주면으로부터 300 ㎛ 깊이의 평면과 400 ㎛ 깊이의 평면 사이에 놓인 영역에서의 산소 석출 벌크 마이크로 결함의 평균 밀도는 1×108/㎤ 이상 1×109/㎤ 이하이다.

Description

실리콘 단결정 기판 및 이의 제조 방법{SILICON SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME}
본 발명은 실리콘 단결정 기판 및 이의 제조 방법에 관한 것으로, 구체적으로는 쵸크랄스키(Czochralski)법에 의해 성장된 실리콘 단결정을 슬라이싱함으로써 형성된 실리콘 단결정 기판 및 이의 제조 방법에 관한 것이다.
자동차, 가전 기기 등에 장착된 파워 디바이스는 높은 항복 전압(breakdown voltage)을 가져야 하며, 이 특성에 기판의 저항이 영향을 미친다. 따라서, 그 기판으로서 이용되는 실리콘 웨이퍼는 비저항이 높고 그 편차가 작을 것을 요구한다.
파워 디바이스용 기판에 이용되는 실리콘 단결정은 주로 쵸크랄스키법(CZ법)에 의해 제조된다. 이러한 CZ법에 있어서, 실리콘 단결정에 대한 붕소 및 인과 같은 도펀트의 편석 계수(segregation coefficient)가 1보다 작기 때문에, 실리콘 융액 중의 도펀트 농도가 실리콘 단결정이 성장함에 따라 높아진다. 따라서, 성장된 실리콘 단결정에서의 도펀트 농도는 성장 축 방향으로 달라져 실리콘 단결정의 비저항이 성장 축 방향으로 변하게 된다. 따라서, 비저항을 제어한다는 것은 어렵다.
일본 특허 출원 공개 공보 2003-137687호에서는 초기 실리콘 융액에 붕소 농도의 25 내지 30%에 상응하는 인을 첨가하고 쵸크랄스키법에 의해 결정을 성장시킴으로써 결정 성장 방향으로 비저항의 편차를 억제하는 방법을 개시하고 있다.
일본 특허 출원 공개 공보 2007-191350호에서는 웨이퍼의 반경 방향으로 비저항의 편차가 5% 이하인 IGBT(Insulated Gate Bipolar Transistor)용 실리콘 단결정 웨이퍼를 제조하는 방법을 개시하고 있다.
최근, BCD[Bipolar Transistor, CMOS (Complementary Metal Oxide Semiconductor), 및 DMOS (Diffused Metal Oxide Semiconductor)] 프로세스로 형성된 파워 반도체가 항복 전압이 중간 정도, 즉 200 V에 이르는 정도인 용례에 폭넓게 이용되어 왔다. BCD 프로세스는 아날로그 제어에 이용되는 바이폴라 트랜지스터, 고속으로 작동하고 디지털 제어 회로에 적합한 CMOS, 및 파워 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)를 제어하는 데에 적합한 DMOS의 프로세스 제어를 일체화한 프로세스 기법을 지칭한다.
BCD 프로세스에서 제조되는 파워 디바이스를 위한 실리콘 기판은 기판의 저항이 균일하고, 기판의 표면층에 산소 석출 벌크 마이크로 결함(BMD: bulk micro defect)이 적고, 기판의 두께 중심에서는 중간 정도의 BMD을 가질 것을 요구하고 있다.
일본 특허 출원 공개 공보 2003-137687호에 개시된 방법에 따르면, 90%에 이르는 고화율(固化率)에서 성장 축 방향으로 비저항의 변화율이 높고 BCD 디바이스에 요구되는 품질을 만족할 수 없다. 게다가, 일본 특허 출원 공개 공보 2007-191350호에서는 웨이퍼의 반경 방향으로의 편차가 커서 BCD 디바이스에 요구되는 품질을 만족할 수 없다. 게다가, 일본 특허 출원 공개 공보 2007-191350호에 개시된 디바이스는 전류가 기판의 표면에 직교하는 방향으로 흐르도록 된 타입의 IGBT이다. 따라서, BMD는 기판의 두께 방향에 걸쳐 적어야 한다. 그러나, BMD의 감소는 중금속을 게더링(gettering)하는 기능을 저하시킨다.
본 발명은 전술한 문제점들을 고려하여 이루어진 것으로, 그 목적은 기판의 저항이 균일하고, 기판의 표면층에서 BMD가 적으며, 기판의 두께 중심에서는 중간 정도의 BMD를 갖는 실리콘 단결정 기판 및 이의 제조 방법을 제공하는 데에 있다.
본 발명에 따른 실리콘 단결정 기판은 쵸크랄스키법에 의해 성장된 실리콘 단결정을 슬라이싱함으로써 형성된 실리콘 단결정 기판으로, 다음과 같은 특징을 갖는다. 실리콘 단결정 기판은 제1 주면 및 이 제1 주면과는 반대측의 제2 주면을 구비한다. 실리콘 단결정 기판의 제1 주면의 중심에서의 비저항은 50 Ωㆍ㎝ 이상이며, 제1 주면에서의 비저항의 변화율은 3% 이하이다. 제1 주면과 이 제1 주면으로부터 제2 주면을 향해 50 ㎛ 깊이의 평면 사이에 놓인 영역인 디바이스 형성 영역에서 산소 석출 벌크 마이크로 결함의 평균 밀도는 1×108/㎤ 미만이다. 제1 주면으로부터 제2 주면을 향해 300 ㎛ 깊이의 평면과 400 ㎛ 깊이의 평면 사이에 놓인 영역에서의 산소 석출 벌크 마이크로 결함의 평균 밀도는 1×108/㎤ 이상 1×109/㎤ 이하이다.
바람직하게는, 상기한 실리콘 단결정 기판은 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도를 갖고 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖는다.
본 발명에 따른 BCD 디바이스는 상기한 실리콘 단결정 기판과, 디바이스 형성 영역에 형성된 CMOS, DMOS, 및 바이폴라 트랜지스터를 포함한다.
본 발명에 따라 실리콘 단결정 기판을 제조하는 방법은 다음의 단계들을 포함한다. 4×1014 원자/㎤ 이하의 붕소 농도를 갖고 이 붕소 농도에 대한 인 농도의 비가 0.42 이상 0.50 이하인 초기 실리콘 융액을 마련한다. 이 초기 실리콘 융액으로부터 쵸크랄스키법에 의해 실리콘 단결정을 성장시킨다. 이 실리콘 단결정을 슬라이싱하여 실리콘 단결정 기판을 형성한다. 실리콘 단결정을 성장시키는 단계에서, 실리콘 단결정은, 실리콘의 용융점으로부터 1350 ℃까지 실리콘 단결정의 중심 부분의 냉각 속도에 대한 에지 부분의 냉각 속도의 비가 1.4 이상 2.0 이하이고, 1200 ℃에서 1100 ℃까지 중심 부분의 냉각속도는 6 ℃/min 이상이 되도록 하는 조건 하에서 성장된다. 실리콘 단결정은 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도를 갖고 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖는다.
바람직하게는, 상기의 방법은 실리콘 단결정으로부터 슬라이싱된 실리콘 단결정 기판을 어닐링하는 단계를 포함한다. 이 어닐링 단계에서는, 1200 ℃ 이상 1250 ℃ 이하의 온도에서의 열처리를 불순물 농도가 체적비로 0.5% 이하인 희가스 분위기 또는 비산화 분위기에서 1시간 이상 8시간 이하의 기간 동안 수행된다.
본 발명에 따르면, 기판의 저항이 균일하고 기판의 표면층에서 BMD가 적고 기판의 두께 중심에서는 중간 정도의 BMD를 갖는 단결정 실리콘 기판이 얻어질 수 있다.
도 1은 제1 실시예에 따른 실리콘 단결정 기판을 도시하는 개략도이다.
도 2는 제1 실시예에 따른 실리콘 단결정 기판을 제조하는 제조 장치를 도시하는 개략도이다.
도 3은 제1 실시예에 따른 실리콘 단결정 기판을 제조하는 방법을 개략적으로 나타내는 흐름도이다.
도 4는 실리콘 단결정의 고화율과 실리콘 단결정 내의 불순물 농도 간의 관계를 보여주는 시뮬레이션 결과를 나타내는 도면이다.
도 5는 실리콘 단결정의 고화율과 비저항 간의 관계를 보여주는 측정 결과 및 시뮬레이션 결과를 나타내는 도면이다.
도 6은 실리콘 단결정의 고화율과 비저항 간의 관계의 초기 실리콘 융액의 P/B 비에 대한 의존성의 시뮬레이션 결과를 나타내는 도면이다.
도 7은 쵸크랄스키법에 의해 실리콘 단결정을 성장시킬 때에 실리콘의 고액 계면의 상태를 보여주는 도면이다.
도 8은 실리콘 단결정의 비저항과 성장 축의 위치 간의 관계를 보여주는 도면이다.
도 9는 제2 실시예에 따른 BCD 디바이스를 나타내는 개략도이다.
본 발명의 실시예를 이하에서 도면을 참조하여 설명한다. 이하의 도면에서 동일 또는 상응하는 요소들은 동일한 도면 부호를 할당하여 그 설명을 생략할 것임을 유념해야 할 것이다.
<제1 실시예>
먼저, 본 실시예에 따른 실리콘 단결정 기판의 구성에 대해 도 1을 참조하여 설명한다.
본 실시예에 따른 실리콘 단결정 기판(10)은 쵸크랄스키법에 의해 성장된 실리콘 단결정(1)(도 2 참조)을 슬라이싱함으로써 형성된다. 도 1을 참조하면, 실리콘 단결정 기판(10)은 제1 주면(101) 및 이 제1 주면(101)과는 반대측의 제2 주면(102)을 구비한다. 실리콘 단결정 기판(10)의 표면층 부분[제1 주면(101)과, 이 제1 주면(101)으로부터 제2 주면(102)을 향해 50 ㎛의 깊이(H1)에서의 평면 사이에 놓인 영역]이 디바이스 형성 영역(100)으로서 기능한다. 이 디바이스 형성 영역(100)에, 바이폴라 트랜지스터, CMOS, DMOS 등과 같은 디바이스가 형성된다. 디바이스 형성 영역(100)은 pn 접합에서 전류 누설을 저하시킨다는 관점에서 실리콘 단결정 기판(10)의 다른 영역보다 BMD 밀도가 낮은 것이 바람직하다. 디바이스 형성 영역(100)에서 BMD의 평균 밀도는 1×108/㎤ 미만이다. 한편, 실리콘 단결정 기판(10)의 두께 방향으로 중심 영역(200)[제1 주면(101)으로부터 제2 주면(102)을 향해 300 ㎛의 깊이(H2)의 평면과 400 ㎛의 깊이(H3)의 평면 사이에 놓인 영역]에는 중간 정도의 양의 BMD가 존재하는 것이 바람직하다. BMD의 중간 정도의 양은 1×108/㎤ 이상 1×109/㎤ 이하가 바람직하다.
실리콘 단결정 기판(10)의 제1 주면(101)의 중심에서의 비저항은 50 Ωㆍ㎝ 이상이고, 제1 주면에서의 비저항의 변화율은 3% 이하이다. 바람직하게는, 실리콘 단결정 기판(10)은 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도와 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖는다.
두께 방향으로 중심 영역(200)에서의 BMD의 평균 밀도가 1×108/㎤ 미만이라면, 중금속의 게더링 능력이 어떠한 BMD도 야기하지 않는 FZ(Floating Zone : 플로팅 존)에서만큼 높아, 게더링 능력이 없는 것으로 간주된다. 한편, 두께 방향으로 중심 영역(200)에서의 BMD의 평균 밀도가 1×109/㎤를 초과하는 경우, 디바이스 형성 영역(100)에서의 BMD의 평균 밀도가 1×108/㎤를 초과할 것이다. 바람직하게는, 두께 방향으로 중심 영역(200)에서의 BMD의 평균 밀도는 5×108/㎤ 이상 1×109/㎤ 이하이다.
디바이스 형성 영역(100)에서 BMD의 평균 밀도가 1×108/㎤를 초과하는 경우에, pn 접합에서의 전류 누설이 어떠한 BMD도 야기하지 않는 FZ에서보다 높아, 파워 반도체의 특성이 나빠진다. 바람직하게는, 디바이스 형성 영역(100)에서의 BMD의 평균 밀도는 5×107/㎤ 이하이다. 더 바람직하게는, 디바이스 형성 영역(100)에서의 BMD의 평균 밀도는 1×107/㎤ 이하이다. 5×106/㎤ 이상 1×108/㎤ 이하의 범위의 디바이스 형성 영역(100)에서의 BMD의 평균 밀도는 pn 접합에서 누설 전류의 실질적인 문제점을 야기하지 않는다는 점을 유념해야 할 것이다. 디바이스 형성 영역(100)에서의 BMD의 평균 밀도의 하한은 5×106/㎤일 수 있다.
이하에서는 도 2를 참조하여 본 실시예에 따른 실리콘 단결정을 제조하는 제조 장치에 대해 설명한다.
도 2를 참조하면, 실리콘 단결정 제조 장치(300)는 대체로 챔버(2), 히터(6), 도가니(8), 도가니 지지 샤프트(13), 인상 와이어(pull-up wire)(14), 냉각 구조체(21) 및 냉각 요소(22)를 구비한다. 히터 절연재(3)가 챔버(2)의 내벽에 마련되어 있다. 아르곤(Ar)과 같은 불활성 가스를 도입하는 가스 공급 포트(4)가 챔버(2)의 상부에 마련되어 있고, 챔버(2) 내의 가스를 배기시키는 배기 포트(5)가 챔버(2)의 저부에 마련되어 있다. 도가니(8)는 원료로서 기능하는 실리콘 융액(7)이 채워져 있다. 히터(6)는 도가니(8)를 둘러싸도록 마련되며, 실리콘 융액(7)은 실리콘 원료를 용융시킴으로써 마련할 수 있다. 도가니 지지 샤프트(13)는 도가니(8)의 하단부로부터 챔버의 저부까지 연장하여, 도가니 지지 샤프트 구동 장치(12)에 의해 회전 가능하게 지지된다. 인상 와이어(14)는 실리콘 단결정(1)을 인상하는 기능을 하는 것으로, 인상 와이어 구동 장치(15)에 의해 수직으로 이동할 수 있다. 장치(12, 15)를 제어하도록 제어 장치(9)가 마련된다.
냉각 구조체(21) 및 냉각 요소(22)는 성장된 실리콘 단결정(1)을 둘러싸도록 배치되어, 실리콘 단결정(1)을 냉각시키는 기능을 한다. 냉각 구조체(21)는 액상 냉각제가 그 내에서 흐를 수 있도록 된 구조체이다. 냉각 구조체(21)는 예를 들면 냉각제로서 물을 이용하고 스테인리스강으로 이루어진 수냉 챔버이다. 냉각 요소(22)는 높은 열전도율을 갖는 재료로 이루어지고 실리콘 단결정(1)을 냉각시키도록 배치된다. 냉각 요소(22)를 형성하는 재료로서는 열전도율 및 열복사율이 높은 물질이 이용될 수 있고, 예를 들면 은 또는 은 합금이 이용된다.
도 3을 참조하여 본 실시예에서 실리콘 단결정 기판(10)을 제조하는 방법에 대해 설명한다.
도 3에 도시한 바와 같이, 본 실시예에 따른 실리콘 단결정 기판을 제조하는 방법은 쵸크랄스키법에 의해 실리콘 단결정을 제조하는 것으로, 대체로 실리콘 융액 마련 단계(S1), 실리콘 단결정 성장 단계(S2), 실리콘 단결정 절단 단계(S3) 및 실리콘 단결정 어닐링 단계(S4)를 구비한다.
먼저, 실리콘 융액 준비 단계(S1)가 수행된다. 실리콘 융액 준비 단계(S1)에서, 도가니(8)가 실리콘 원료로 채워지고 히터에 의해 가열되어, 실리콘 원료를 용융시킴으로써 실리콘 융액(7)을 마련한다. 실리콘 융액(7)에 붕소 및 인을 첨가한다. 붕소의 농도는 4×1014 원자/㎤ 이하이고, 붕소 농도에 대한 인 농도의 비는 0.42 이상 0.50 이하이다.
p형 실리콘 단결정(1)을 제조하기 위해, 단결정이 처음으로 성장되는 실리콘 융액(이하에서는 "초기 실리콘 융액"으로서 지칭함)에 p형 불순물(어셉터)로서 붕소(B)가 첨가된다. 게다가, 실리콘 단결정(1)에 대한 편석 계수가 붕소보다 낮은 n형 불순물(도너)인 인(P)이 또한 첨가된다. 전도 형태에서 붕소에 대해 반대이고 실리콘 단결정(1)에 대한 편석 계수에서 붕소보다 낮은 불순물인 인을 초기 실리콘 융액에 첨가하는 이유는 아래에서 설명할 것이다.
질화막을 갖는 웨이퍼를 실리콘 융액 내에 도입함으로써 질소가 첨가된다. 성장된 결정을 슬라이싱함으로써 얻어지는 실리콘 웨이퍼 내의 질소의 농도는 이차 이온 질량 분석(SIMS : Secondary Ion Mass Spectroscope)에 의해 측정된다. 5×1014 원자/㎤ 이하의 질소 농도를 갖는 웨이퍼는 SIMS에 의해 측정될 수 없어, 이하의 식에 따라 계산된 질소 농도가 이용되었음을 유념해야 한다. 그 식에 대해서는 아래에서 상세하게 설명한다.
본 발명에 따른 제조 방법에서 질소를 첨가하는 방법은 특별히 한정되지 않으며, 공지의 방법이 이용될 수 있다. 예를 들면, 실리콘 원료를 용해시키는 동안에 질소 가스를 도입하는 방법, CVD 등에 의해 질화물이 증착된 실리콘 기판을 원료가 용해되고 있는 동안에 도입하는 방법 등을 예로 들 수 있다. 게다가, 질소의 경우에, 실리콘 융액의 응고 후의 결정 내에 혼입된 불순물의 실리콘 융액 내에서의 농도에 대한 비를 나타내는 편석 계수 k는 7×10-4이다(W. Zulehner 및 D. Huber, Crystal Growth, Properties and Applications, p 28, Springer-Verlag, New York, 1982).
본 발명에 따른 제조 방법에 이용된 실리콘 융액으로부터 결정 내에 혼입된 질소의 농도는 이하의 식(수학식 1)에 따라 계산될 수 있다.
[수학식 1]
웨이퍼에서의 질소의 농도 = k(1-고화율)(k-1) × 용액 내에서의 질소 농도
융액 내에서의 질소의 농도는 초기 융액 질소 농도로서 지칭될 수도 있음을 유념해야 한다. 여기서, 실리콘 결정의 고화율(g)은 이하의 식(수학식 2)에 따라 구해진다.
[수학식 2]
실리콘 결정의 고화율 (g) = (결정화된 실리콘의 질량)/(초기 융액 질량)
이어서, 실리콘 단결정 성장 단계(S2)가 수행된다. 실리콘 단결정 성장 단계(S2)에서, 실리콘 단결정(1)은 초기 실리콘 융액(7)으로부터 쵸크랄스키법에 의해 성장된다. 시드 척(16)에 부착된 시드 결정(17)이 실리콘 융액(7)의 표면 아래로 하강되어 그 내에 침지된다. 이어서, 인상 와이어(14)를 인상 와이어 구동 장치(15)에 의해 권취함으로써 실리콘 단결정(1)을 인상한다. 실리콘 단결정(1)이 원추부(확장부)의 성장을 지나 목표 직경으로 성장된 후에, 실리콘 단결정(1)의 직선부(11)를 미리 정해진 길이로 성장시킨다. 실리콘 단결정(1)을 성장시키는 단계에서, 실리콘 단결정(1)은 실리콘의 용융점에서부터 1350 ℃까지 실리콘 단결정(1)의 중심 부분의 냉각 속도에 대한 에지 부분의 냉각 속도의 비가 1.4 이상 2.0 이하로 되도록 성장된다. 또한, 실리콘 단결정(1)은 1200 ℃에서 1100 ℃까지 중심 부분의 냉각 속도가 6 ℃/min 이상으로 되도록 하는 조건 하에서 성장된다. 실리콘 단결정(1)은 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도와 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖는다.
실리콘 성장 단계(S2)에서 실리콘 단결정(1)의 성장 속도는 0.9 ㎜/min 이상일 수 있고, 단결정의 에지 부분의 냉각 속도는 단결정의 중심 부분의 냉각 속도의 적어도 1.4배 높을 수 있다. 여기서, 냉각 속도는 결정 상장 중에 용융점에서부터 1350 ℃까지의 범위에서의 평균을 지칭하는 것으로, 용융점에서부터 1350 ℃까지의 결정 성장 축 방향으로의 평균 온도 구배(℃/㎜)에 성장 속도(㎜/min)를 곱한 값이다. 0.9 ㎜/min보다 작은 성장 속도는 생산성이 나쁘다는 점에서 바람직하지 못하다. 단결정 중심 부분의 냉각 속도의 1.4배보다 작은 단결정 에지 부분의 냉각 속도는 실리콘 단결정(1)의 냉각 효율을 나쁘게 하여, 성장 속도가 0.9 ㎜/min 미만으로 되게 하고 생산성을 저하시킨다. 성장 속도의 상한은 실리콘 단결정(1)을 성장시키는 실현 가능한 장치의 능력을 고려하여 1.9 ㎜/min이며, 단결정 에지 부분의 냉각 속도의 상한은 단결정 중심 부분의 냉각 속도의 2배이다.
실리콘 단결정(1)은 성장되고 있는 실리콘 단결정(1)을 둘러싸도록 배치된 냉각 구조체(21)(도 2 참조) 및 냉각 요소(22)(도 2 참조)에 의해 냉각된다. 실리콘 단결정(1)으로부터의 복사광은 열전도율이 높은 재료로 이루어진 냉각 요소(22)에 입사된다. 냉각 요소(22)는 저온으로 유지되도록 냉각 구조체(21)에 연결되어 있다. 따라서, 실리콘 단결정(1)과의 복사 열교환 효율이 양호하여 실리콘 단결정(1)의 냉각 속도를 향상시킬 수 있다.
1200 ℃부터 1100 ℃까지의 중심 부분의 냉각 속도가 6 ℃/min보다 작다면, 디바이스 형성 영역(100) 내에서의 BMD의 평균 밀도가 1×108/㎤를 초과할 것이다. 직경이 커짐에 따라, 실리콘 단결정(1)은 냉각되기 쉽지 않다. 따라서, 결정의 직경이 200 ㎜ 이하인 경우에, 8 ℃/min이 실현 가능한 상한으로서 고려된다.
실리콘 단결정(1)에서의 산소 농도가 5.0×1017 원자/㎤보다 작다면, 두께 중심 영역(200)에서의 BMD의 평균 밀도가 1×108/㎤보다 낮아질 것이다. 한편, 실리콘 단결정(1)에서의 산소 농도가 7.0×1017 원자/㎤를 초과하는 경우, 디바이스 형성 영역(100)에서의 BMD의 평균 밀도가 1×108/㎤를 초과할 것이다. 바람직하게는, 실리콘 단결정(1)에서의 산소 농도는 5.0×1017 원자/㎤ 이상 6.0×1017 원자/㎤ 이하이다. 산소 농도는 일본 전자 정보 산업 협회(JEITA)에 의해 규정된 환산 인자(3.03×1017/㎠)를 이용하여 계산된 값이 이용됨을 유념해야 한다. 구체적으로, 적외선 흡수를 통한 실리콘 결정에서의 격자간 산소 원자 함량의 표준 측정법(ex-JEIDA-61)을 이용하였다.
산소는 실리콘 단결정(1)이 성장하고 석영으로 이루어진 도가니가 용융될 때에 융액 내로 도입된다. 결정 내의 산소 농도는 석영 도가니의 회전 속도 및 결정 인상 노에서의 가스의 흐름과 같은 성장 조건을 제어함으로써 조절될 수 있다.
실리콘 단결정 내의 질소 농도가 2.0×1013 원자/㎤보다 작거나 4.0×1014 원자/㎤를 초과하는 경우, 디바이스 형성 영역(100)에서의 BMD의 평균 밀도가 1×108/㎤를 초과할 것이다. 바람직하게는 실리콘 단결정(1) 내에서의 질소 농도는 1.0×1014 원자/㎤ 이하 4.0×1014 원자/㎤ 이상이다.
이어서, 실리콘 단결정 절단 단계(S3)가 수행된다. 실리콘 단결정 절단 단계(S3)에서는 먼저 직선부(11)가 미리 정해진 길이로 성장된 후에, 인상 와이어(14)의 권취를 중단한다. 이어서, 도가니(8)를 하강시킴으로써 실리콘 단결정(1)을 실리콘 융액(7)으로부터 잘라낸다. 그 후에, 실리콘 단결정(1)을 실리콘 단결정(1)의 성장 축 방향에 직교하는 평면을 따라 슬라이싱한다. 이와 같이, 실리콘 단결정 기판(10)이 얻어진다.
이어서, 실리콘 단결정 어닐링 단계(S4)가 수행된다. 실리콘 단결정 어닐링 단계에서, 실리콘 단결정(1)을 슬라이싱함으로써 얻어진 실리콘 단결정 기판(10)이 어닐링된다. 이 어닐링 단계에서는, 1200 ℃ 이상 1250 ℃ 이하의 온도에서의 열처리를 불순물 농도가 체적비로 0.5% 이하인 희가스 분위기 또는 비산화 분위기에서 1시간 이상 8시간 이하의 기간 동안 수행된다. 비산화 분위기에서 1시간 이상 8시간 이하의 기간 동안 1200 ℃ 이상 1250 ℃ 이하의 온도에서의 열처리 동안에 형성된 산화막은 2 ㎚ 이하로 억제된다.
본 발명의 제조 방법에 따르면, 성장 중심축(L1)을 따른 비저항이 50 Ωㆍ㎝ 이상인 한편, 성장 중심축(L1)을 따른 비저항의 변화율이 10% 이하이고 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율이 3% 이하인 p형 실리콘 단결정(1)이 제조될 수 있다. 그 이유에 대해서는 아래에서 설명할 것이다. 비저항의 변화율은 이하의 식으로 정해지는 값을 지칭한다는 점을 유념해야 할 것이다.
[수학식 3]
비저항의 변화율 = (비저항의 최대값 × 비저항의 최소값)/(비저항의 최대값)
도 4는 실리콘 단결정(1)의 고화율과 실리콘 단결정(1) 내의 불순물 농도 간의 관계의 시뮬레이션 결과를 나타내는 도면이다. 도 4에서 가로 좌표는 실리콘 단결정(1)의 고화율을 나타낸다. 도 4에서 세로 좌표는 실리콘 단결정(1)의 불순물 농도를 나타낸다. 도 5는 실리콘 단결정(1)의 고화율과 비저항 간의 관계의 측정 결과 및 시뮬레이션 결과를 나타내는 도면이다. 도 5에서 가로 좌표는 실리콘 단결정(1)의 고화율을 나타낸다. 도 5에서 세로 좌표는 실리콘 단결정(1)의 불순물 농도를 나타낸다. 도 5에서의 점선 그래프는 실제 측정 결과를, 실선은 시뮬레이션 결과를 나타낸다. 도 5에서 검은색 사각형으로 도시한 데이터는 실리콘 융액에 붕소만이 첨가된 경우를 나타낸다. 도 5에서 검은색 원으로 도시한 데이터는 실리콘 융액에 붕소와 인이 첨가된 경우를 나타낸다.
도 4에 도시한 바와 같이, 초기 실리콘 융액에 붕소만이 첨가된 경우에는 실리콘 단결정(1)이 성장함에 따라(즉, 고화율이 높아짐에 따라), 실리콘 단결정(1) 내의 불순물의 농도가 기하급수적으로 증가한다. 그 결과, 도 5에 도시한 바와 같이, 실리콘 단결정(1)이 성장함에 따라 실리콘 단결정(1)의 비저항이 낮아진다. 이는, 실리콘 단결정(1)에 대한 붕소의 편석 계수 k가 1보다 작은 약 0.78이고, 이에 따라 실리콘 단결정(1)이 성장함에 따라 실리콘 융액 내에 붕소의 농축화가 진행되어, 실리콘 단결정(1) 내에 혼합되는 붕소의 비율이 증가하게 되기 때문이다.
초기 실리콘 융액에 인만이 첨가된 경우에도 마찬가지로, 실리콘 단결정(1)이 성장함에 따라, 실리콘 단결정(1) 내의 불순물의 농도가 기하급수적으로 증가한다. 한편, 실리콘 단결정(1)에 대한 인의 편석 계수 k는 붕소의 편석 계수보다 낮은 약 0.38이다. 따라서, 실리콘 단결정(1)의 성장에 의한 실리콘 융액 내에서의 인의 농축화의 비율(속도)은 붕소의 경우보다 높다. 따라서, 실리콘 단결정(1)의 성장에 의한 비저항의 저하 속도는 붕소가 첨가된 경우보다 높다.
붕소가 p형 불순물이기 때문에, 실리콘 단결정(1)에 대한 붕소의 첨가는 실리콘 단결정(1)에 p형 캐리어로서 정공을 생성한다. 인은 n형 불순물이기 때문에, 실리콘 단결정(1)에 대한 인의 첨가는 실리콘 단결정(1)에서 n형 캐리어로서 전자를 생성한다.
붕소 및 인이 첨가된 실리콘 단결정(1)에서는 전도 형태에서 서로 반대인 생성된 캐리어들은 서로 상쇄된다. 따라서, p형 반도체를 제조를 제조할 때에 실리콘 단결정(1)에 붕소와 함께 인을 첨가함으로써, 실리콘 단결정(1)에서의 p형 캐리어를 낮춰 비저항을 증가시킬 수 있다.
게다가, 실리콘 단결정(1)의 성장에 따른 불순물 농도의 증가 속도는 붕소 첨가의 경우보다 인의 첨가의 경우에 더 커진다. 따라서, 실리콘 단결정(1)의 성장에 따른 붕소 농도의 증가에 의한 p형 캐리어 밀도의 증가를 인의 농도 증가에 의해 n형 캐리어 밀도를 증가시켜 상쇄시킴으로써, 실리콘 단결정(1)의 성장에 따른 비저항의 저하를 방지할 수 있다. 즉, 초기 실리콘 융액에서 붕소 농도에 대한 인 농도의 비(이하에서는 "P/B 비"로서 칭함)를 설정함으로써, 실리콘 단결정(1)의 성장에 따른 비저항의 저하를 방지할 수 있다. 초기 실리콘 융액에 첨가된 붕소 및 인의 농도가 충분히 낮기 때문에, 붕소와 인은 실리콘 단결정(1)에 대해 개별적으로 편석을 형성하게 되는 것으로 여겨진다.
구체적으로, 도 4에 도시한 바와 같이, 실리콘 단결정(1)의 성장 과정 중에 실리콘 단결정(1) 내에서의 붕소 농도와 인의 농도 간의 차이가 일정하도록 초기 실리콘 융액의 P/B 비를 선택함으로써, 실리콘 단결정(1)의 성장에 따른 비저항 값이 도 5에 도시한 바와 같이 일정하게 유지된다. 도 5의 데이터를 얻기 위한 조건으로서, 초기 실리콘 융액에 첨가될 붕소의 농도가 1.6×1014 원자/㎤으로 설정되었고 P/B 비는 0.45로 설정되었다.
도 6은 실리콘 단결정(1)의 고화율과 비저항 간의 관계의 초기 실리콘 융액의 P/B 비에 대한 의존성의 시뮬레이션 결과를 나타내는 도면이다. 도 6에서 가로 좌표는 실리콘 단결정(1)의 고화율을 나타낸다. 도 6에서 세로 좌표는 실리콘 단결정(1)의 비저항의 비를 나타낸다. 도 6에 도시한 9개의 데이터는 고화율이 0일 때에 비저항의 비가 높은 순으로 P/B 비를 0.3, 0.38, 0.4, 0.42, 0.45, 0.47, 0.5, 0.55, 및 0.6으로 하였을 때에 얻어진 데이터이다. 비저항 비는 이하의 식으로 정의된다.
[수학식 4]
비저항 비 = (특정 고화율에서의 비저항 × 해당 결정의 비저항의 최소값)/(해당 결정의 비저항의 최대값)
도 6에 도시한 시뮬레이션 결과에 따르면, 고화율을 0 내지 0.80으로 제한한 상태에서 초기 실리콘 융액의 P/B 비를 0.42 내지 0.55로 설정함으로써, 성장 중심축을 따른 비저항의 변화율을 10% 이하로 감소시킬 수 있음을 알 수 있다. 아래에서 설명하는 바와 같이, 성장 중심축에 대해 직교하는 단면에서 비저항의 변화율을 감소시키기 위해, P/B 비는 0.42 내지 0.50으로 설정되어야 한다. 고화율을 0 내지 0.80으로 제한하는 이유도 역시 아래에서 설명할 것이라는 점을 유념해야 한다.
여기서, 초기 실리콘 융액이 0.42 내지 0.50의 P/B 비를 갖는 경우, 실리콘 단결정(1)이 성장함에 따라 0.7의 고화율 근처에서 실리콘 단결정(1)의 비저항이 증가하기 시작하는 현상이 발생한다(이하에서, 비저항이 증가하기 시작하는 점을 "변곡점"으로서 지칭한다). 이 현상은 실리콘 단결정(1)에서의 p형 캐리어(정공)가 감소하기 시작하였음을 나타내는 것으로, 실리콘 단결정(1) 내에서 인의 증가 속도가 붕소의 증가 속도를 초과하였다는 점에 기인한다.
본 실시예에서, 성장 중심축을 따른 비저항의 변화율은 변곡점이 생성될 때까지 감소한다. 변곡점이 생성된 후에, 실리콘 단결정(1)은 실리콘 단결정(1)에서의 인의 농도가 붕소 농도를 초과하지 않는 한 p형 전도 형태를 유지하여, 파워 디바이스용 웨이퍼에 실리콘 단결정을 이용하는 데에 있어 어떠한 문제점도 발생하지 않는다.
따라서, 성장 중심축을 따른 비저항의 변화율을 더 감소시킴으로써, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 더욱 감소될 수 있다. 그 이유에 대해서는 아래에서 설명할 것이다.
도 7은 CZ법에 의해 실리콘 단결정(1)을 성장시킬 때에 실리콘 고액 계면(실리콘 융액과 실리콘 단결정(1) 간의 경계면)을 나타내는 설명도이다. 도 7에 도시한 바와 같이, 실리콘 단결정(1)의 성장 시에 실리콘 고액 계면은 실리콘 단결정(1)의 성장 중심축(L1)의 방향으로 돌출하는 형상을 한다. 점(A)은 현재의 고액 계면과 성장 중심축(L1) 간의 교차점을 나타낸다. 점(B2)은 점(A)을 포함하는 실리콘 단결정(1)의 수평 단면(A1)(성장 중심축에 직교하는 단면)과 실리콘 단결정(1)의 측면 간의 교차점을 나타낸다. 점(B1)은 과거의 고액 계면과 성장 중심축(L1) 간의 교차점을 나타낸다. 점(A)과 점(B1) 간의 거리는 ΔZ로 나타내고 점(A)과 점(B1) 간의 비저항 차는 ΔR로 타나낸다(도 8 참조).
도 8은 실리콘 단결정(1)의 비저항과 성장 중심축의 위치 간의 관계를 보여주는 도면이다. 도 8에서 가로 좌표는 실리콘 단결정(1)의 성장 중심축의 위치를 나타낸다. 도 8에서 세로 좌표는 실리콘 단결정(1)의 비저항을 나타낸다. 여기서, 고액 계면에서의 비저항이 일정하기 때문에, 도 7에서의 점(B1)과 점(B2)에서 비저항은 동일하다. 한편, 점(A)과 점(B1) 간의 비저항의 변화는 성장 중심축(L1)을 따른 비저항의 변화율에 상응하는 한편, 점(A)과 점(B2) 간의 비저항의 변화는 성장 중심축(L1)에 직교하는 단면(A1)에서의 비저항의 변화율에 상응한다. 따라서, 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율을 감소시키기 위해, 성장 중심축(L1)의 방향에서의 비저항 기울기(ΔR/ΔZ)를 감소시켜야 한다. 도 6의 시뮬레이션에 기초할 때에, 비저항의 기울기를 감소시키기 위해서는 고화율의 상한을 정하고 P/B 비를 특정 범위 내로 정하는 것이 효과적이다. 고화율이 0.80을 초과하는 영역 내에서의 임의의 P/B 비에서 비저항의 기울기가 크기 때문에, 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율은 3%를 초과한다. 고화율이 0 내지 0.80 범위로 제한되는 경우에, 초기 실리콘 융액의 P/B 비를 0.42 이상 0.50 이하의 범위로 설정함으로써, 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율은 아래에서 설명하는 예에서 증명되는 바와 같이 3% 이하이다. 보다 바람직하게는, 고화율이 0 내지 0.80 범위로 제한되는 경우에, P/B 비를 0.42 이상 0.47 이하의 범위로 설정함으로써, 성장 중심축에 직교하는 단면에서의 비저항의 변화율은 아래에서 설명하는 예에서 증명되는 바와 같이 2% 이하이다. 고화율이 0 내지 0.80 범위로 제한되는 경우 P/B 비가 0.50보다는 크고 0.55 이하이면, 결정의 저부측에서의 비저항의 기울기가 커지며, 이에 따라 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율은 3%를 초과한다. 고화율을 0.80 미만으로 제한함으로써, P/B 비가 0.50보다 크고 0.55 이하인 경우라도 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율이 3% 이하일 수 있다. 그러나, 0.80 미만으로의 고화율의 제한은 생산성이 나빠진다는 점에서 바람직하지 못하다.
성장 중심축에 직교하는 단면에서의 비저항의 변화율을 감소시키기 위해서는 고액 계면의 형상을 편평하게, 즉 도 7에서 ΔZ를 감소시키도록 결정 성장 중에 실리콘 단결정의 냉각 조건을 제어하는 것이 역시 효과적이다. 그러나, 이 경우에 단결정의 에지 부분의 냉각 속도가 단결정의 중심 부분의 냉각 속도의 1.4배 미만, 바람직하게는 1배만큼 더 높아야 한다. 전술한 바와 같이, 에지 부분의 냉각 속도가 저하함에 따라, 실리콘 단결정(1)의 냉각 효율이 나빠지고 성장 속도가 0.9 ㎜/min 미만으로 되어 생산성을 저하시킨다. 본 발명은 실리콘 단결정(1)을 성장시키는 데에 있어서 생산성을 저하시키지 않고 비저항의 편차를 감소시킬 수 있다.
단결정의 에지 부분의 냉각 속도와 단결정의 중심 부분의 냉각 속도를 제어하여, 5 내지 15 ㎜ 범위의 값의 ΔZ가 얻어지도록 함으로써, 성장 중심축(L1)에 직교하는 단면에서의 비저항의 변화율을 생산성을 유지하면서 3% 이하로 할 수 있다. 단결정의 중심 부분의 냉각 속도에 대한 단결정의 에지 부분의 냉각 속도의 비를 1.4 이상 2.0 이하로 함으로써, ΔZ의 값이 5 내지 15 ㎜로 제어될 수 있다.
본 실시예에 따르면, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 자기장을 인가하면서 결정을 성장시키는 MCZ(Magnetic field applied Czochralski: 자기장 인가 쵸크랄스키)와 같은 특별한 설비를 이용하지 않고도 낮춰질 수 있다. 따라서, 제조 비용을 억제할 수 있다.
실리콘 단결정(1)의 성장 중심축(L1)에 직교하는 단면(A1)에서 비저항의 변화율의 실제 측정이 아래에서 설명하는 예에서 시도되었다.
본 실시예에서 얻어진 실리콘 단결정(1)으로부터 절단된 웨이퍼를 그대로 파워 디바이스용 웨이퍼로서 이용하거나, 아래에서 설명하는 고온 열처리를 거친 웨이퍼가 이용될 수 있다는 점을 유념해야 할 것이다.
고온 열처리는 산화성 분위기에서의 어닐링 동안에는 보이드 또는 기타 결정내 결함(grown-in defect)이 충분히 제거되지 않기 때문에 비산화 분위기에서 수행되는 것이 바람직하다. 비산화 분위기는 산소와 같은 산화성 가스를 함유하지 않는 분위기를 지칭하는 것으로, 불활성 분위기 또는 환원 분위기를 포함한다. 불활성 분위기는 예를 들면 아르곤, 헬륨, 네온, 질소 등과 같은 불활성 가스로 채워진 분위기를 지칭한다. 환원 분위기는 수소, 일산화탄소, 암모니아 등과 같은 환원 가스가 존재하는 분위기를 지칭한다.
웨이퍼의 열처리 온도는 1150 ℃ 내지 1250 ℃ 범위, 바람직하게는 1175 ℃ 내지 1215 ℃ 범위, 더 바람직하게는 1185 ℃ 내지 1200 ℃ 범위이다.
웨이퍼의 열처리 온도가 1150 ℃보다 낮은 경우에, 보이드 또는 기타 결정내 결함이 어닐링 중에 충분히 제거되지 않는다. 반대로, 그 온도가 1250 ℃를 초과하는 경우, 노의 부재들이 상당히 손상된다.
웨이퍼의 열처리 시간은 10분 이상 2시간 이하, 바람직하게는 30분 이상 1.5 시간 이하, 더 바람직하게는 50분 이상 1시간 이하이다.
웨이퍼의 열처리 시간이 10분보다 짧은 경우에, 보이드 또는 기타 결정내 결함이 어닐링 중에 충분히 제거되지 않는다. 반면, 그 시간이 2시간을 초과하는 경우에는 생산성이 저하하여 바람직하지 못하다.
본 실시예에 따른 제조 방법에서 열처리(어닐링)를 수행하는 데에 시판 중인 열처리 노(또는 반응 챔버)가 이용될 수 있으며, 그 노는 특별히 제한되지 않는다. 표면에 산화막이 부착되면 어닐링 동안에 결함들의 축소 및 제거가 방해받기 때문에 열처리 중에 2 ㎚ 이상으로 산화막이 성장하지 않도록 할 필요가 있다는 점을 유념해야 한다. 구체적으로, 열처리 중에 분위기 가스 내에 도입되는 불순물의 양을 가능한 한 많이 감소시키거나 노 내에 실리콘 웨이퍼를 삽입할 때에 주변으로부터 공기의 유입을 가능한 한 많이 감소시키는 조치가 필요하다. 예를 들면, 불순물이 5 ppma 이하로 억제된 아르곤과 같은 희가스가 사용될 분위기 가스로서 바람직하다.
본 실시예의 실리콘 단결정 기판을 제조하는 방법의 작용 및 효과에 대해 이하에서 설명한다.
본 실시예의 실리콘 단결정 기판을 제조하는 방법에 따르면, 웨이퍼의 표면층 부분에 해당하는 디바이스 형성 영역(100)에서의 BMD의 평균 밀도가 1×108/㎤ 미만이며, 두께 방향으로 중심 영역(200)에서의 BMD의 평균 밀도가 1×108/㎤ 이상 1×109/㎤ 이하이며, 제1 주면(101)의 중심에서의 비저항이 50 Ωㆍ㎝ 이상이고, 제1 주면에서의 비저항의 변화율은 3% 이하인 실리콘 단결정(1) 기판이 얻어진다.
게다가, 상기한 실리콘 단결정(1) 기판이 어닐링 처리를 거칠 경우에 디바이스 형성 영역(100)에서의 BMD 밀도가 낮아질 수 있다.
<제2 실시예>
본 실시예에 따른 BCD 디바이스를 도 9를 참조하여 설명한다.
본 실시예에 따른 BCD 디바이스의 제조시에, 제1 실시예에서 설명한 특성을 갖는 실리콘 단결정 기판(10)이 이용된다. 도 9에 도시한 바와 같이, BCD 디바이스는 주로 디바이스 형성 영역(100)에 영역 I, 영역 II, 및 영역 III을 구비한다. 영역 I에 바이폴라 트랜지스터(30)가 형성된다. 바이폴라 트랜지스터(30)는 예를 들면, 콜렉터 영역(32), 베이스 영역(33), 에미터 영역(34), 콜렉터 전극(35), 베이스 전극(36), 에미터 전극(37) 및 소자 절연막(31)을 구비한다. 영역 II에는 CMOS(40)가 형성된다. CMOS(40)는 예를 들면, N 웰 영역(42), P 웰 영역(43), N 웰 영역(44), N 영역(45), P 영역(46), 게이트 전극(47), 게이트 절연막(48), 및 소자 절연막(41)을 구비한다. 영역 III에는 DMOS(50)가 형성된다. DMOS(50)는 예를 들면, N 웰 영역(52), P 영역(53), N 영역(54), 게이트 전극(55), 게이트 절연막(56), 및 소자 절연막(51)을 구비한다.
전술한 바와 같이, BCD 프로세스에서 제조된 파워 반도체는 항복 전압이 중간 정도, 즉 200 V 이하인 용례에 이용된다. 실리콘 단결정 기판(10)은 약 100 Ωㆍ㎝의 비저항을 가지며, 이 경우에 공핍층의 확장은 최대 50 ㎛까지이다. BMD가 공핍층에 존재하는 경우, 역바이어스 전압의 인가시에 pn 접합에서의 전류 누설이 증가한다. 따라서, 기판의 표면과 이 기판 표면으로부터 50 ㎛ 깊이에 위치한 평면 사이에 놓인 영역[디바이스 형성 영역(100)]에서의 BMD는 감소되어야 한다.
제1 실시예의 실리콘 단결정 기판(10)의 디바이스 형성 영역(100)에서 BMD의 평균 밀도는 1×108/㎤ 미만이다. 게다가, 실리콘 단결정 기판(10)의 두께 방향에서의 중심 영역(200)[제1 주면(101)으로부터 제2 주면(102)을 향해 300 ㎛ 깊이의 평면과 400 ㎛ 깊이의 평면 사이에 놓인 영역]에서의 BMD의 평균 밀도는 대략 1×108/㎤ 이상 1×109/㎤ 이하이다. 따라서, 그러한 기판이 이용된 제2 실시예의 BCD 디바이스는 디바이스 형성 영역(100) 내의 pn 접합에서의 전류 감소를 달성할 수 있다. 게다가, 두께 방향 중심 영역(200)에 중간 정도의 BMD가 존재하기 때문에, 중금속이 또한 게더링될 수 있다.
본 발명의 실시예에 따른 실리콘 단결정 제조 방법에 대한 본 발명의 예와 비교예에 대해 설명한다.
CZ법에 따라 실리콘 단결정을 제조하는 장치(300)를 이용하여 직경 200 ㎜의 실리콘 단결정(잉곳)을 성장시켰다. 이 경우, 초기 실리콘 융액은 아래에서 제시하는 바와 같은 붕소 농도 및 인 농도를 가졌고, 실리콘 단결정을 성장시키도록 초기 실리콘 융액 내에 시드 결정이 침지되었다. 결정의 성장 속도는 0.9 ㎜/min으로 설정되었고, 에지 부분의 냉각 속도는 단결정의 중심 부분의 냉각 속도의 1.9배로 설정되었다. 본 발명의 예 1 내지 5 및 비교예 1 내지 3에 따라 실리콘 단결정을 제조하기 위해, 초기 실리콘 융액에 첨가될 붕소와 인의 농도를 아래와 같이 설정하였다.
(본 발명의 예 1)
1.6×1014 원자/㎤의 붕소 농도와 7.2×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.45).
(본 발명의 예 2)
4.0×1014 원자/㎤의 붕소 농도와 1.8×1014 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.45).
(본 발명의 예 3)
1.1×1014 원자/㎤의 붕소 농도와 4.6×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.42).
(본 발명의 예 4)
1.6×1014 원자/㎤의 붕소 농도와 7.5×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.47).
(본 발명의 예 5)
1.6×1014 원자/㎤의 붕소 농도와 8.0×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.50).
(비교예 1)
1.0×1014 원자/㎤의 붕소 농도가 얻어지도록 초기 실리콘 융액에 붕소를 첨가하였다.
(비교예 2)
1.4×1014 원자/㎤의 붕소 농도와 4.2×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.30).
(비교예 3)
1.8×1014 원자/㎤의 붕소 농도와 9.9×1013 원자/㎤의 인 농도가 얻어지도록 붕소와 인을 초기 실리콘 융액에 첨가하였다(붕소 농도에 대한 인 농도의 비가 0.55).
성장된 실리콘 단결정을 성장 중심축에 직교하게 박편상으로 절단하여, 슬라이싱된 웨이퍼를 형성하였다. 그 후에, 성장 중심축 방향을 따라 복수의 위치에서 슬라이싱된 웨이퍼를 채취하여 경면 다듬질하였다. 이와 같이 웨이퍼를 제조하였다. 얻어진 웨이퍼는 아르곤 가스 분위기에서 1시간 동안 1200 ℃에서 고온 처리를 하였다.
각각의 얻어진 웨이퍼의 중심, 반경 50 ㎜의 지점, 및 반경 90 ㎜ 지점 각각에서의 비저항을 4탐침법(four point probe method)으로 측정하였다. 각 웨이퍼의 중심점에서의 비자항의 측정 결과를 수학식 3에 대입하여, 실리콘 단결정의 성장 중심축에 따른 비저항의 변화율을 계산하였다. 게다가, 각각의 실리콘 웨이퍼의 중심, 반경 50 ㎜의 지점, 및 반경 90 ㎜ 지점 각각에서의 비저항의 측정 결과를 수학식 3에 대입하여, 마찬가지로 실리콘 웨이퍼에서의 비저항의 반경 방향 변화율을 계산하였다.
본 발명의 예 1의 결과를 표 1을 참조하여 설명한다.
표 1에는 본 발명의 예 1에 따라 제조된 실리콘 단결정에서 웨이퍼가 채취된 위치에서의 고화율에 대한 웨이퍼 중심에서의 비저항 및 웨이퍼에서의 비저항의 반경 방향 변화율을 나타내고 있다.
Figure 112012104566223-pat00001
표 1에 따르면, 고화율이 0.80 이하인 부위에서, 실리콘 단결정의 성장 중심축에 따른 비저항의 최소값(웨이퍼 중심에서의 비저항에 해당)은 130 Ωㆍ㎝이었고, 성장 중심축에 따른 비저항의 변화율은 7.1 %이었고, 성장 중심축에 직교하는 단면에서의 비저항의 변화율의 최대값은 1.4 %였다.
즉, 실리콘 단결정의 성장 중심축을 따른 비저항이 50 Ωㆍ㎝ 이상이고, 성장 중심축을 따른 비저항의 변화율이 10% 이하이며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 3 % 이하인 실리콘 단결정의 제조가 실현될 수 있다.
본 발명의 예에서 얻어진 실리콘 단결정에서 고화율이 0.80을 초과하는 부위에서 비저항의 반경 방향 변화율은 3 %을 초과하였음을 유념해야 한다.
비교예 1의 결과를 표 2를 참조하여 설명한다.
표 2는 비교예 1에 따라 제조된 실리콘 단결정에서 웨이퍼가 채취된 위치에서의 고화율에 대한 실리콘 웨이퍼 중심에서의 비저항 및 실리콘 웨이퍼에서의 비저항의 반경 방향 변화율을 나타내고 있다.
Figure 112012104566223-pat00002
표 2에 따르면, 고화율이 0.80 이하인 부위에서, 실리콘 단결정의 성장 중심축에 따른 비저항의 최소값(웨이퍼 중심에서의 비저항에 해당)이 114 Ωㆍ㎝ 이상이었고, 성장 중심축에 따른 비저항의 변화율은 29.6 %이었고, 성장 중심축에 직교하는 단면에서의 비저항의 변화율의 최대값은 4.0 %였다.
즉, 실리콘 단결정의 성장 중심축을 따른 비저항이 50 Ωㆍ㎝ 이상이고, 성장 중심축을 따른 비저항의 변화율이 10% 이하이며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 3 % 이하인 실리콘 단결정의 제조는 실현될 수 없다.
본 발명의 예 1 내지 5 및 비교예 1 내지 3을 표 3을 참조하여 설명한다.
표 3은 본 발명의 예 및 비교예 각각에 따라 제조된 실리콘 단결정의 웨이퍼 중심에서의 비저항, 성장 중심축에 따른 비저항의 변화율, 및 성장 중심축에 직교하는 단면에서의 비저항의 변화율의 결과를 초기 실리콘 융액 내의 각각의 불순물의 농도와 함께 나타내고 있다.
Figure 112012104566223-pat00003
표 3에 따르면, 본 발명의 예 1 내지 5에 있어서, 고화율이 0.80 이하인 부위에서, 실리콘 단결정의 성장 중심축에 따른 비저항의 최소값은 50 내지 175 Ωㆍ㎝ 범위였고, 성장 중심축에 따른 비저항의 변화율은 4.7 내지 8.9 %이었고, 성장 중심축에 직교하는 단면에서의 비저항의 변화율의 최대값은 1.4 내지 2.5%였다.
즉, 본 발명의 예 각각에서 얻어진 실리콘 단결정은, 성장 중심축을 따른 비저항이 50 Ωㆍ㎝ 이상이고, 성장 중심축을 따른 비저항의 변화율이 10% 이하이며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 3 % 이하여야 한다는, 파워 디바이스용 실리콘 단결정 웨이퍼의 사양을 만족하기 위해 필요한 실리콘 단결정의 사양을 충족할 수 있다.
게다가, 본 발명의 예 1 내지 4에서 고화율이 0.80 이하인 부위에서는 성장 축에 직교하는 단면에서의 비저항의 변화율의 최대값은 2% 이하였다.
한편, 비교예 1 내지 3에 에서, 고화율이 0.80 이하인 부위에서는 실리콘 단결정의 성장 중심축에 따른 비저항의 최소값은 114 내지 124 Ωㆍ㎝ 범위였고, 성장 중심축에 따른 비저항의 변화율은 7.3 내지 29.8 %이었으며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율의 최대값은 3.3 내지 4.0 %였다.
즉, 비교예들에서 얻어진 실리콘 단결정은, 성장 중심축을 따른 비저항의 변화율과, 성장 중심축에 직교하는 단면에서의 비저항의 변화율과 관련하여, 파워 디바이스 용례를 위한 실리콘 단결정 웨이퍼의 사양을 만족하기 위해 필요한 실리콘 단결정의 사양을 충족할 수 없었다.
본 발명의 1 내지 4와 비교예 1 내지 3에서 제조된 실리콘 단결정에 있어서 성장 중심축에 따른 비저항의 변화율과 비저항의 반경 방향 변화율 간의 관계에 대해 주목하면, 성장 중심축에 따른 비저항의 변화율이 증가함에 따라 비저항의 반경 방향 변화율이 커지게 되는 경향이 있다는 점을 확인할 수 있다.
전술한 본 발명의 예에서의 측정 결과에 따르면, 본 실시예에 따른 실리콘 단결정 제조 방법에 의해, 즉 초기 실리콘 융액에서의 붕소 농도를 4×1014 원자/㎤ 이하로 설정하고 붕소 농도에 대한 인 농도의 비를 0.42 이상 0.50 이하로 설정함으로써, 고화율이 0.80 이하인 부위에서 성장 중심축에 따른 비저항이 50 Ωㆍ㎝ 이상이고, 성장 중심축에 따른 비저항의 변화율이 10% 이하이며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 3% 이하인 p형 실리콘 단결정을 제조할 수 있다는 점이 입증되었다.
게다가, 초기 실리콘 융액에서의 붕소 농도를 4×1014 원자/㎤ 이하로 설정하고 붕소 농도에 대한 인 농도의 비를 0.42 이상 0.47 이하로 설정함으로써, 고화율이 0.80 이하인 부위에서 성장 중심축에 따른 비저항이 50 Ωㆍ㎝ 이상이고, 성장 중심축에 따른 비저항의 변화율이 10% 이하이며, 성장 중심축에 직교하는 단면에서의 비저항의 변화율이 2 % 이하인 p형 실리콘 단결정을 제조할 수 있다는 점이 입증되었다.
<추가 예>
본 발명의 실시예에 따른 실리콘 단결정 제조 방법에 대한 본 발명의 예와 비교예에 대해 설명한다.
본 발명의 예 6 내지 11 및 비교예 4 내지 8에 따른 실리콘 단결정은 다음과 같이 제조되었다. 먼저, 본 발명의 예 1에서 설명한 조건으로 붕소와 인을 첨가한 초기 실리콘 융액을 마련하였다. 이 초기 실리콘 융액에 질소를 첨가하였다. 질소를 첨가하는 방법은 제1 실시예에서 설명한 바와 같다. 실리콘 단결정은, 1200 ℃에서부터 1100 ℃까지 실리콘 단결정의 중심 부분의 냉각 속도가 6 ℃/min 이상으로 되고 실리콘 단결정이 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도를 갖고 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖도록 하는 조건하에서 성장되었다. 실리콘 단결정의 결정 성장 축에 따른 방향에서의 비저항의 변화율은 10% 이하였고, 중심축에 직교하는 단면에서의 비저항의 변화율은 3% 이하였다. 이 실리콘 단결정을 성장 축에 직교하는 평면을 따라 슬라이싱함으로써 실리콘 단결정 기판을 제조하였다.
이 실리콘 단결정 기판은 BCD 디바이스 시뮬레이션 열처리로서 아래와 같이 열처리를 거쳤다. 제1 단계에서, 산소 분위기에서 1000 ℃로 2분 동안 열처리를 수행하였다. 제2 단계에서, 아르곤 분위기에서 1200 ℃로 240분 동안 열처리를 수행하였다. 제2 단계는 3회 반복하였다. 제3 단계에서, 질소 분위기에서 670 ℃로 80분 동안 열처리를 수행하였다. 제4 단계에서, 수증기 분위기에서 1100 ℃로 120분 동안 열처리를 수행하였다. 제5 단계에서, 질소 분위기에서 630 ℃로 100분 동안 열처리를 수행하였다. 제6 단계에서, 질소 분위기에서 1000 ℃로 180분 동안 열처리를 수행하였다.
본 발명의 예 6 내지 11 및 비교예 4 내지 8에 따른 실리콘 단결정 기판을 제조하기 위해, 실리콘 단결정에서의 산소 농도 및 질소 농도와 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도를 아래와 같이 설정하였다.
(본 발명의 예 6)
실리콘 단결정 내의 산소 농도는 7.0×1017 원자/㎤로, 그 내의 질소 농도는 2.2×1013 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 8.0 ℃/min으로 설정하였다.
(본 발명의 예 7)
실리콘 단결정 내의 산소 농도는 7.0×1017 원자/㎤로, 그 내의 질소 농도는 1.5×1014 원자/㎤로, 1200 ℃부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 7.0 ℃/min으로 설정하였다.
(본 발명의 예 8)
실리콘 단결정 내의 산소 농도는 6.0×1017 원자/㎤로, 그 내의 질소 농도는 1.5×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 7.0 ℃/min으로 설정하였다.
(본 발명의 예 9)
실리콘 단결정 내의 산소 농도는 5.0×1017 원자/㎤로, 그 내의 질소 농도는 4.0×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 6.0 ℃/min으로 설정하였다.
(본 발명의 예 10)
실리콘 단결정 내의 산소 농도는 6.0×1017 원자/㎤로, 그 내의 질소 농도는 2.1×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 7.0 ℃/min으로 설정하였다.
(본 발명의 예 11)
실리콘 단결정 내의 산소 농도는 6.0×1017 원자/㎤로, 그 내의 질소 농도는 1.0×1014 원자/㎤로, 1200 ℃부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 7.0 ℃/min으로 설정하였다.
(비교예 4)
실리콘 단결정 내의 산소 농도는 6.0×1017 원자/㎤로, 그 내의 질소 농도는 7.0×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 8.0 ℃/min으로 설정하였다.
(비교예 5)
실리콘 단결정 내의 산소 농도는 8.0×1017 원자/㎤로, 그 내의 질소 농도는 1.0×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 8.0 ℃/min으로 설정하였다.
(비교예 6)
실리콘 단결정 내의 산소 농도는 7.0×1017 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 8.0 ℃/min으로 설정하였다. 질소는 첨가하지 않았다.
(비교예 7)
실리콘 단결정 내의 산소 농도는 4.5×1017 원자/㎤로, 그 내의 질소 농도는 1.0×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 8.0 ℃/min으로 설정하였다.
(비교예 8)
실리콘 단결정 내의 산소 농도는 6.0×1017 원자/㎤로, 그 내의 질소 농도는 1.0×1014 원자/㎤로, 1200 ℃에서부터 1100 ℃까지의 실리콘 단결정의 중심 부분의 냉각 속도는 5.0 ℃/min으로 설정하였다.
본 발명의 예 6 내지 11은, 1200 ℃에서부터 1100 ℃까지 실리콘 단결정의 중심 부분의 냉각 속도가 6 ℃/min 이상으로 되고 실리콘 단결정이 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도를 갖고 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖도록 하는 조건을 충족시켰다. 비교예 4 내지 8은 상기한 조건을 충족하지 않았다. 게다가, 본 발명의 예 10 및 11과 비교예 4 내지 8에서는 아르곤 분위기에서 어닐링을 수행하였다. 어닐링 단계에서, 실리콘 단결정 기판은 1시간 이상 8시간 이하의 시간 동안 1200 ℃ 이상의 온도에서 열처리되었다.
BMD 평균 밀도를 측정하는 방법에 대해 아래에서 설명한다.
실리콘 웨이퍼 내의 BMD는 실리콘 웨이퍼를 쪼개어 Raytex Corporation사에서 제조한 BMD Analyzer MO-4를 이용하여 측정하였다. 웨이퍼 표면에 평행한 레이저가 벽개면에 입사되게 함으로써, 웨이퍼 표면으로부터 나오는 산란광을 검출하였다. 평면 내에서 웨이퍼의 측정 지점의 위치는 웨이퍼 중심에 설정된다. 레이저는 웨이퍼 표면으로부터 10 ㎛, 20 ㎛, 30 ㎛, 40 ㎛, 및 50 ㎛ 깊이의 위치로 입사되었고, 이들 깊이 각각에서의 BMD 밀도를 확인하였다. 이들 BMD 밀도의 평균값을 웨이퍼 표면으로부터 50 ㎛ 깊이에 이르는 영역에서의 BMD 평균 밀도로서 채택하였다.
게다가, 웨이퍼 표면으로부터 300 ㎛ 내지 400 ㎛의 깊이의 부분에서 매 10 ㎛ 간격에 해당하는 위치마다 레이저를 입사하여 이들 깊이 각각에서의 BMD 밀도를 확인하였다. 이들 BMD 밀도의 평균값을 웨이퍼 표면으로부터 300 ㎛ 내지 400 ㎛ 깊이의 영역에서의 의 BMD 평균 밀도로서 채택하였다. 본 측정법에 의한 BMD 밀도의 하한값은 5×106 원자/㎤라는 점을 유념해야 한다. 그 하한값보다 낮은 BMD의 평균 밀도는 "-"로 나타내었다.
본 예의 결과를 표 4를 참조하여 설명한다.
Figure 112012104566223-pat00004
표 4에 나타낸 바와 같이, 본 발명의 예 6 내지 11에 따른 실리콘 단결정 기판의 웨이퍼 표면으로부터 300 ㎛ 깊이의 평면과 웨이퍼 표면으로부터 400 ㎛ 깊이 사이에 놓인 영역에서의 BMD의 평균 밀도는 3.1×108/㎤ 이상 9.1×108/㎤ 이하였다. 게다가, 본 발명의 예 6 내지 11에 따른 실리콘 단결정 기판의 웨이퍼 표면으로부터 50 ㎛ 깊이의 평면과 웨이퍼 표면 사이에 놓인 영역에서의 BMD의 평균 밀도는 5.5×106/㎤ 이상 7.3×107/㎤ 이하였다. 한편, 비교예 4 내지 8에 따른 실리콘 단결정 기판의 웨이퍼 표면으로부터 50 ㎛ 깊이에 이르는 영역에서의 BMD의 평균 밀도는 1.5×108/㎤ 이상이었다.
또한, 아르곤 분위기에서 1200 ℃ 이상의 온도로 1시간 또는 8시간 동안 어닐링 처리를 한 본 발명의 예 10 및 11에 따른 실리콘 단결정 기판의 웨이퍼 표면으로부터 50 ㎛ 깊이의 평면에 이르는 영역에서의 BMD의 평균 밀도는 5.5×106/㎤ 이상 7.3×106/㎤ 이하로, 어닐링 처리를 하지 않은 본 발명의 예 6 내지 9에서의 BMD 밀도보다 낮았다.
이상의 결과에 기초할 때에, 1200 ℃에서부터 1100 ℃까지 실리콘 단결정의 중심 부분의 냉각 속도가 6 ℃/min 이상이었고 실리콘 단결정이 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도를 갖고 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖도록 제조된 실리콘 단결정을 슬라이싱함으로써 제조된 실리콘 단결정 기판에서, 웨이퍼 표면과 이 웨이퍼 표면으로부터 50 ㎛ 깊이의 평면 사이에 놓인 영역에서의 BMD의 평균 밀도가 1×108/㎤ 미만이었고, 웨이퍼 표면으로부터 300 ㎛ 깊이의 평면과 웨이퍼 표면으로부터 400 ㎛ 깊이의 평면 사이에 놓인 영역에서의 BMD의 평균 밀도가 1×108/㎤ 이상 1×109/㎤ 이하라는 것이 입증되었다.
게다가, 웨이퍼 표면과 이 웨이퍼 표면으로부터 50 ㎛ 깊이의 평면 사이에 놓인 영역에서의 BMD의 평균 밀도는 실리콘 단결정 기판을 아르곤 분위기에서 1200 ℃ 이상의 온도로 1시간이상 8시간 이하의 시간 동안 어닐링 처리함으로써 더욱 낮출 수 있다는 점이 입증되었다.
본 명세서에서 개시하는 실시예 및 예들은 모든 점에서 예시적이고 비한정적이라는 점을 이해해야 할 것이다. 본 발명의 범위는 전술한 실시예 및 예들에 의해서보다는 청구 범위에 의해 정해지며, 청구 범위와 균등한 의미 및 범위 내에 임의의 변경을 포함한다.
1 : 실리콘 단결정 2 : 챔버
3 : 절연재 4 : 가스 공급 포트
5 : 배기 포트 6 : 히터
7 : 실리콘 융액 8 : 도가니
10 : 실리콘 단결정 기판 11 : 직선부
12 : 도가니 지지 샤프트 구동 장치 13 : 도가니 지지 샤프트
14 : 인상 와이어 15 : 인상 와이어 구동 장치
16 : 시드 척 17 : 시드 결정
19 : 제어 장치 21 : 냉각 구조체
22 : 냉각 요소 30 : 바이폴라 트랜지스터
31 : 소자 절연막 32 : 콜렉터 영역
33 : 베이스 영역 34 : 에미터 영역
35 : 콜렉터 전극 36 : 베이스 전극
37 : 에미터 전극 40 : CMOS
41 : 소자 절연막 42 : N 웰 영역
43 : P 웰 영역 44 : N 웰 영역
45 : N 영역 46 : P 영역
47 : 게이트 전극 48 : 게이트 절연막
50 : DMOS 51 : 소자 절연막
52 : N 웰 영역 53 : P 영역
54 : N 영역 55 : 게이트 전극
56 : 게이트 절연막 100 : 디바이스 형성 영역
200 : 두께 방향 중심 영역 300 : 실리콘 단결정 제조 장치

Claims (5)

  1. 실리콘 단결정 기판을 제조하는 방법으로서:
    4×1014 원자/㎤ 이하의 붕소 농도를 갖고 이 붕소 농도에 대한 인 농도의 비가 0.42 이상 0.50 이하인 초기 실리콘 융액을 마련하는 단계;
    상기 초기 실리콘 융액으로부터 쵸크랄스키법에 의해 실리콘 단결정을 성장시키는 단계;
    상기 실리콘 단결정을 슬라이싱하여 실리콘 단결정 기판을 형성하는 단계를 포함하며,
    상기 실리콘 단결정을 성장시키는 단계에서, 상기 실리콘 단결정은, 실리콘의 용융점으로부터 1350 ℃까지 실리콘 단결정의 중심 부분의 냉각 속도에 대한 실리콘 단결정의 에지 부분의 냉각 속도의 비가 1.4 이상 2.0 이하이고, 1200 ℃에서 1100 ℃까지 상기 중심 부분의 냉각 속도가 6 ℃/min 이상이 되도록 하는 조건 하에서 성장되며,
    상기 실리콘 단결정은 5.0×1017 원자/㎤ 이상 7.0×1017 원자/㎤ 이하의 산소 농도와 2.0×1013 원자/㎤ 이상 4.0×1014 원자/㎤ 이하의 질소 농도를 갖는 것인 실리콘 단결정 기판의 제조 방법.
  2. 제1항에 있어서, 상기 실리콘 단결정 기판을 어닐링하는 단계를 더 포함하며,
    상기 어닐링 단계에서, 1200 ℃ 이상 1250 ℃ 이하의 온도에서의 열처리를 불순물 농도가 체적비로 0.5% 이하인 희가스 분위기 또는 비산화 분위기에서 1시간 이상 8시간 이하의 시간 동안 수행하는 것인 실리콘 단결정 기판의 제조 방법.
  3. 삭제
  4. 삭제
  5. 삭제
KR1020120147140A 2011-12-21 2012-12-17 실리콘 단결정 기판 및 이의 제조 방법 KR101446846B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2011-279956 2011-12-21
JP2011279956A JP2013129564A (ja) 2011-12-21 2011-12-21 シリコン単結晶基板およびその製造方法

Publications (2)

Publication Number Publication Date
KR20130072144A KR20130072144A (ko) 2013-07-01
KR101446846B1 true KR101446846B1 (ko) 2014-11-03

Family

ID=47519847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120147140A KR101446846B1 (ko) 2011-12-21 2012-12-17 실리콘 단결정 기판 및 이의 제조 방법

Country Status (8)

Country Link
US (1) US9303332B2 (ko)
EP (1) EP2607526B1 (ko)
JP (1) JP2013129564A (ko)
KR (1) KR101446846B1 (ko)
CN (1) CN103173857B (ko)
MY (1) MY179465A (ko)
SG (1) SG191518A1 (ko)
TW (1) TWI468564B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194146B2 (ja) * 2010-12-28 2013-05-08 ジルトロニック アクチエンゲゼルシャフト シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
DE102015224983B4 (de) * 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
TWI642820B (zh) * 2017-09-25 2018-12-01 中美矽晶製品股份有限公司 N型多晶矽晶體及其製造方法與n型多晶矽晶片
DE102017219255A1 (de) * 2017-10-26 2019-05-02 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium
WO2019107190A1 (ja) * 2017-11-29 2019-06-06 株式会社Sumco シリコン単結晶及びその製造方法並びにシリコンウェーハ
US10943813B2 (en) 2018-07-13 2021-03-09 Globalwafers Co., Ltd. Radio frequency silicon on insulator wafer platform with superior performance, stability, and manufacturability
JP7099175B2 (ja) * 2018-08-27 2022-07-12 株式会社Sumco シリコン単結晶の製造方法及びシリコンウェーハ
EP4350055A1 (de) 2022-10-06 2024-04-10 Siltronic AG Verfahren zur herstellung eines einkristalls aus silizium und halbleiterscheibe aus einkristallinem silizium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111732A (ja) 2002-09-19 2004-04-08 Komatsu Electronic Metals Co Ltd シリコンウェーハの製造方法
KR20090095493A (ko) * 2008-03-05 2009-09-09 가부시키가이샤 사무코 실리콘 기판의 제조방법
WO2009151077A1 (ja) 2008-06-10 2009-12-17 株式会社Sumco シリコン単結晶ウェーハの製造方法およびシリコン単結晶ウェーハ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027437A (ja) * 1988-06-24 1990-01-11 Nec Corp シリコン基板の製造方法
JPH1179889A (ja) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
JP3783495B2 (ja) * 1999-11-30 2006-06-07 株式会社Sumco 高品質シリコン単結晶の製造方法
US8529695B2 (en) 2000-11-22 2013-09-10 Sumco Corporation Method for manufacturing a silicon wafer
JP4126879B2 (ja) * 2001-02-19 2008-07-30 株式会社Sumco エピタキシャルウェーハの製造方法
JP2003109961A (ja) * 2001-10-01 2003-04-11 Sumitomo Mitsubishi Silicon Corp エピタキシャルシリコンウェーハおよびその製造方法
JP3931956B2 (ja) 2001-11-05 2007-06-20 株式会社Sumco シリコン単結晶の育成方法
KR100588425B1 (ko) 2003-03-27 2006-06-12 실트로닉 아게 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및 실리콘 반도체 웨이퍼의 제조방법
GB0308674D0 (en) * 2003-04-15 2003-05-21 Koninkl Philips Electronics Nv Driver for inductive load
JP4529416B2 (ja) 2003-11-07 2010-08-25 信越半導体株式会社 シリコン単結晶ウェーハの製造方法及びシリコン単結晶ウェーハ
JP5121139B2 (ja) 2005-12-27 2013-01-16 ジルトロニック アクチエンゲゼルシャフト アニールウエハの製造方法
JP4631717B2 (ja) 2006-01-19 2011-02-16 株式会社Sumco Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法
JP5076326B2 (ja) * 2006-01-31 2012-11-21 株式会社Sumco シリコンウェーハおよびその製造方法
JP4760729B2 (ja) 2006-02-21 2011-08-31 株式会社Sumco Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP2007242920A (ja) * 2006-03-09 2007-09-20 Shin Etsu Handotai Co Ltd 窒素ドープアニールウェーハの製造方法及び窒素ドープアニールウェーハ
JP2007305968A (ja) 2006-04-14 2007-11-22 Covalent Materials Corp シリコンウェハ、その製造方法および半導体装置用シリコンウェハ
CN101074489A (zh) * 2006-04-14 2007-11-21 东芝陶瓷株式会社 硅晶片
JP5070737B2 (ja) 2006-05-26 2012-11-14 信越半導体株式会社 Cz法により製造したシリコン結晶棒を原料としたfz単結晶シリコンの製造方法
JP5239155B2 (ja) * 2006-06-20 2013-07-17 信越半導体株式会社 シリコンウエーハの製造方法
DE102007005346B4 (de) * 2007-02-02 2015-09-17 Siltronic Ag Halbleiterscheiben aus Silicium und Verfahren zu deren Herstellung
US7651566B2 (en) * 2007-06-27 2010-01-26 Fritz Kirscht Method and system for controlling resistivity in ingots made of compensated feedstock silicon
WO2009028658A1 (ja) * 2007-08-29 2009-03-05 Sumco Corporation Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法、igbt用シリコン単結晶ウェーハの抵抗率保証方法
EP2345752B1 (en) * 2009-12-29 2012-02-15 Siltronic AG Silicon wafer and method for producing the same
JP5194146B2 (ja) 2010-12-28 2013-05-08 ジルトロニック アクチエンゲゼルシャフト シリコン単結晶の製造方法、シリコン単結晶、およびウエハ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111732A (ja) 2002-09-19 2004-04-08 Komatsu Electronic Metals Co Ltd シリコンウェーハの製造方法
KR20090095493A (ko) * 2008-03-05 2009-09-09 가부시키가이샤 사무코 실리콘 기판의 제조방법
WO2009151077A1 (ja) 2008-06-10 2009-12-17 株式会社Sumco シリコン単結晶ウェーハの製造方法およびシリコン単結晶ウェーハ

Also Published As

Publication number Publication date
EP2607526A1 (en) 2013-06-26
SG191518A1 (en) 2013-07-31
KR20130072144A (ko) 2013-07-01
CN103173857A (zh) 2013-06-26
US9303332B2 (en) 2016-04-05
MY179465A (en) 2020-11-06
JP2013129564A (ja) 2013-07-04
US20130161793A1 (en) 2013-06-27
CN103173857B (zh) 2015-09-30
TWI468564B (zh) 2015-01-11
EP2607526B1 (en) 2014-04-23
TW201329297A (zh) 2013-07-16

Similar Documents

Publication Publication Date Title
KR101446846B1 (ko) 실리콘 단결정 기판 및 이의 제조 방법
JP4760729B2 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
KR100847112B1 (ko) Igbt용 실리콘 단결정 웨이퍼 및 igbt용 실리콘단결정 웨이퍼의 제조방법
JP6210125B2 (ja) シリコン単結晶ウェーハ
JP5194146B2 (ja) シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
JP5121139B2 (ja) アニールウエハの製造方法
JP5321460B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JPWO2004083496A1 (ja) シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
EP1551058B1 (en) Annealed wafer manufacturing method
JP2007207876A (ja) 高周波ダイオードおよびその製造方法
JP5387408B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP4529416B2 (ja) シリコン単結晶ウェーハの製造方法及びシリコン単結晶ウェーハ
JP5278324B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP5805843B2 (ja) シリコン単結晶基板およびその製造方法
JP2013147407A (ja) シリコン単結晶ウエーハ、その酸素析出量の面内均一性評価方法、シリコン単結晶の製造方法
JPWO2009025339A1 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP2010155748A (ja) アニ―ルウェハの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 6