KR101389584B1 - 글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및광학 소자의 제조 방법 - Google Patents

글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및광학 소자의 제조 방법 Download PDF

Info

Publication number
KR101389584B1
KR101389584B1 KR1020070097634A KR20070097634A KR101389584B1 KR 101389584 B1 KR101389584 B1 KR 101389584B1 KR 1020070097634 A KR1020070097634 A KR 1020070097634A KR 20070097634 A KR20070097634 A KR 20070097634A KR 101389584 B1 KR101389584 B1 KR 101389584B1
Authority
KR
South Korea
Prior art keywords
glass
preform
group
nozzle
mass
Prior art date
Application number
KR1020070097634A
Other languages
English (en)
Other versions
KR20080029868A (ko
Inventor
아끼라 무라까미
Original Assignee
호야 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호야 가부시키가이샤 filed Critical 호야 가부시키가이샤
Publication of KR20080029868A publication Critical patent/KR20080029868A/ko
Application granted granted Critical
Publication of KR101389584B1 publication Critical patent/KR101389584B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/005Controlling, regulating or measuring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

얻어지는 프리폼 군을 구성하는 프리폼의 평균 질량이 작은 경우에도, 프리폼간의 체적의 변동이 작아, 질량 공차가 작은 정밀 프레스 성형용의 글래스제 프리폼 군을 제공한다.
정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군이며, 글래스제 프리폼의 평균 질량(MAV)에 대한 글래스제 프리폼의 질량 공차의 비율이 ±0.5[%]×MAV 이내인 것을 특징으로 하는 글래스제 프리폼 군이다.
프리폼 군, 평균 질량, 질량 공차, 체적의 변동, 글래스제 프리폼

Description

글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및 광학 소자의 제조 방법 {A GROUP OF GLASS PREFORMS AND PROCESSES FOR THE PRODUCTION OF A GROUP OF GLASS PREFORMS AND OPTICAL ELEMENTS}
본 발명은, 글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및 광학 소자의 제조 방법에 관한 것이다.
비구면 렌즈 등의 글래스제 광학 소자를 고정밀도로 제조하는 기술로서, 정밀 프레스 성형법이 알려져 있다. 이 방법은 몰드 옵틱스 성형법이라고도 불리고, 정밀하게 가공한 성형면을 갖는 프레스 성형형을 이용하여, 가열된 글래스제 프리폼을 프레스 성형하고, 광학 소자 전체의 형상을 성형하는 동시에, 성형면을 정밀하게 글래스에 전사해서 광학 기능면을 형성하는 방법이다(예를 들어, 특허 문헌1 참조).
또한, 상기 광학 소자를 제조하기 위해서 이용되는 글래스제 프리폼은, 예를 들어, 용융한 글래스를 유출하여, 소망 질량의 용융 글래스 덩어리를 분리하고, 이 글래스 덩어리가 냉각되는 과정에서 프리폼으로 성형하는 방법에 의해 생산할 수 있다(예를 들어, 특허 문헌2 참조).
[특허 문헌1] 일본 특개평10-316448호 공보
[특허 문헌2] 일본 특개2002-121032호 공보
최근, 카메라가 부착된 휴대 전화와 같이 촬상 장치를 내장하는 소형 기기의 수요가 높아지고 있다. 이러한 촬상 장치에 내장되는 촬상 광학계는, 초소형의 렌즈에 의해 구성되고, 각 렌즈를 정밀하게 위치 결정 고정하기 위해, 각 렌즈가 위치 결정 기준면을 갖는 것이 바람직하다. 예를 들어, 렌즈끼리의 간격을 정밀하게 정하기 위한 위치 결정 기준면으로서는, 렌즈면의 외주에 설치한 평면부를 이용하고, 렌즈끼리의 광축을 맞추기 위한 위치 결정 기준면으로서는, 렌즈 측면을 이용할 수 있다. 정밀 프레스 성형법으로는, 형의 성형면을 글래스에 전사함으로써, 광학 기능면뿐만 아니라, 형성하는 면끼리의 위치 관계, 각도도 정밀하게 규정할 수 있으므로, 광학 기능면과 위치 결정 기준면을 일괄해서 형성할 수 있다.
이와 같이 정밀 프레스 성형의 특질을 살리면 효율적으로 초소형의 광학 소자를 제조할 수 있지만, 한편으로 프리폼의 체적을 정밀하게 관리하지 않으면, 다음과 같은 문제가 일어난다.
우선, 프리폼의 체적이, 상형, 하형, 몸통형을 갖는 프레스 성형형을 닫은 상태에서 형성되는 공간의 용적보다도 큰 경우, 프레스 성형형을 구성하는 형끼리의 사이, 예를 들어 상형과 몸통형 사이나 하형과 몸통형 사이로 비어져 나와, 성형 버어로 되어 형의 미끄럼 이동성을 손상시켜, 생산 정지의 원인이 되거나, 프레 스 성형형의 파손의 원인이 되거나 한다. 한편, 프리폼의 체적이 프레스 성형형을 닫은 상태에서 형성되는 공간의 용적보다도 작은 경우, 상기 공간으로의 글래스의 충전이 불충분해져, 광학 기능면의 면 정밀도가 저하되거나, 글래스의 위치 결정 기준면이 되어야 하는 부분까지 글래스가 도달하지 않아, 위치 결정 기준면이 형성되지 않게 되거나 한다.
따라서, 광학 기능면과 위치 결정 기준면을 일괄해서 형성하기 위해서는, 체적 정밀도, 즉 질량 정밀도가 높은 프리폼을 사용하는 것이 기대된다.
전술한 바와 같이, 글래스제 프리폼을 생산성 높게 제조하는 방법으로서는, 용융한 글래스를 노즐로부터 유출하고, 소망 질량의 용융 글래스 덩어리를 분리하고, 이 글래스 덩어리가 냉각되는 과정에서 프리폼으로 성형하는 방법이 있으며, 이 방법을 이용하여 프리폼을 생산하면, 글래스의 용융으로부터 시작되어, 광학 소자를 매우 높은 생산성에 기초하여 양산할 수 있다. 그러나, 종래의 글래스제 프리폼의 생산 방법으로는, 프리폼의 체적에 약간의 변동이 있어, 상기 정밀 프레스 성형에 이용하기 위해서는, 반드시 체적 정밀도, 즉 질량 정밀도를 만족할 수 있는 것은 아니었다. 이러한 문제는, 특히, 경량의 프리폼을 생산할 경우에 현저했다.
본 발명은, 이러한 사정에 기초하여, 각 프리폼간의 체적의 변동이 최대한 제어된 정밀 프레스 성형용의 글래스제 프리폼 군, 상기 프리폼 군을 용융 글래스로부터 매우 높은 생산성에 기초하여 제조하는 방법, 상기 프리폼 군 또는 상기 방법에 의해 얻어진 프리폼 군을 구성하는 프리폼으로부터 광학 소자를 제조하는 방법을 제공하는 것을 목적으로 하는 것이다.
프리폼의 질량 정밀도를 향상시키기 위해, 본 발명자가 검토를 거듭한 결과, 이하의 지견을 얻기에 이르렀다.
(a) 노즐의 유출구로부터 용융 글래스를 적하해서 얻어지는, 프리폼 모재로 되는 용융 글래스 적의 질량은, 일반적으로, 노즐 유출구에 수직 하강하는 글래스에 작용하는 하향의 가속도, 노즐 하단 부분의 외부 직경, 용융 글래스의 표면 장력 등에 의해 결정되지만, 목적으로 하는 프리폼 질량에 대한 질량 공차의 비율을 작게 하려고 하면, 상기 여러 조건을 일정하게 유지하는 것만으로는 질량의 변동을 억제할 수 없다.
(b) 상기 질량의 변동은, 용융 글래스 적의 적하 시에, 용융 글래스가 노즐의 유출구로 새어올라와, 새어오름량의 다소에 따라 용융 글래스의 적하량이 약간 변화되기 때문이라고 생각된다.
(c) 노즐을 상세하게 관찰하면, 그 선단이 약간이기는 하지만 진동하고 있어, 이 약간의 진동이 용융 글래스의 적하량의 변동을 발생시키고 있다.
(d) 또한, 글래스에 대한 노즐 외주면의 습윤성은 노즐 유출구 분위기의 온도 변화, 습도 변화에 의해 약간 변화되어, 이 약간의 변화가 용융 글래스의 적하량의 변동을 발생시키고 있다.
이들 지견에 기초하여, 본 발명자는 재차 검토한 결과, 유출하는 용융 글래스를, 방진한 및/또는 분위기의 온도와 습도를 제어한 유출구로부터 일정 유량으로 순차적으로 적하하여, 성형함으로써, 각 프리폼간의 체적의 변동이 최대한 제어된 글래스제 프리폼 군을 얻을 수 있는 것을 발견하고, 본 지견에 기초하여 본 발명을 완성되기에 이른다.
즉, 본 발명은,
(1) 정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군이며,
글래스제 프리폼의 평균 질량(MAV)에 대한 글래스제 프리폼의 질량 공차의 비율이 ±0.5[%]×MAV 이내인 것을 특징으로 하는 글래스제 프리폼 군,
(2) 전체 표면이 용융 상태의 글래스가 고화되어 형성된 구상(球狀)의 글래스제 프리폼으로 이루어지는 상기 (1)에 기재된 글래스제 프리폼 군,
(3) 정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군의 제조 방법이며,
일정 유량으로 유출하는 용융 글래스를, 방진한 및/또는 분위기의 온도와 습도를 제어한 유출구로부터 순차적으로 적하하여, 성형하는 것을 특징으로 하는 글래스제 프리폼 군의 제조 방법,
(4) 상기 용융 글래스 적하 후의 성형을, 얻어진 용융 글래스 적(滴)에 풍압을 가하여, 부상시키면서 행하는 상기 (3)에 기재된 글래스제 프리폼 군의 제조 방법,
(5) 상기 (1) 또는 (2)에 기재된 글래스제 프리폼 군 또는 상기 (3) 또는 (4)에 기재된 방법으로 얻어진 글래스제 프리폼 군을 구성하는 글래스제 프리폼을 가열하여, 정밀 프레스 성형하는 것을 특징으로 하는 광학 소자의 제조 방법, 및
(6) 정밀 프레스 성형이, 상형, 하형, 몸통형을 갖는 프레스 성형형의 각 성형면을 글래스에 전사함으로써 행해지는 것으로써,
상형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리 및/또는 하형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리를 자유 표면으로 하여 정밀 프레스 성형하는 상기 (5)에 기재된 광학 소자의 제조 방법을 제공하는 것이다.
본 발명에 따르면, 각 프리폼간의 체적의 변동이 최대한 제어된 정밀 프레스 성형용의 글래스제 프리폼 군, 상기 프리폼 군을 용융 글래스로부터 매우 높은 생산성에 기초하여 제조하는 방법, 상기 프리폼 군 또는 상기 방법에 의해 얻어진 프리폼 군을 구성하는 프리폼으로부터 광학 소자를 제조하는 방법을 제공할 수 있다.
〔글래스제 프리폼 군〕
우선, 본 발명의 글래스제 프리폼 군에 대해서 설명한다.
본 발명의 글래스제 프리폼 군은, 정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군이며, 글래스제 프리폼의 평균 질량(MAV)에 대한 글래스제 프리폼의 질량 공차의 비율이 ±0.5[%]×MAV 이내인 것을 특징으로 한다.
본 발명에 있어서, 글래스제 프리폼 군이란, 동종의 글래스로 이루어지고, 형상, 질량 모두 갖춘, 정밀 프레스 성형에 제공되는 복수개의 글래스제 프리폼의 집합을 의미한다. 또한, 본 발명에 있어서, 글래스제 프리폼 군은, 반드시 동일 장치에 있어서, 동일에 일괄해서 제조된 프리폼 로트만으로 이루어질 필요는 없고, 복수의 프리폼 로트에 의해 구성되어 있어도 된다. 예를 들어, 1000개의 프리폼으로 이루어지는 프리폼 군에 대해서는, 100개의 프리폼으로 이루어지는 로트가 10개 집합해서 구성된다고 생각할 수도 있고, 10개의 프리폼으로 이루어지는 로트가 100개 집합해서 구성된다고 생각할 수도 있다.
프리폼 군을 구성하는 프리폼의 개수는 1000개 이상이 바람직하고, 2000개 이상이 보다 바람직하고, 5000개 이상이 더욱 바람직하다. 개수의 상한은, 광학 소자의 필요 개수에 의해 결정하면 된다.
MAV는, 프리폼 군을 구성하는 글래스제 프리폼의 상가 평균을 의미하고, 예를 들어 글래스제 프리폼이 휴대 전화의 촬상 장치 등에 이용되는 초소형 렌즈용의 프리폼일 경우, MAV는, 1㎎ 내지 200㎎, 바람직하게는 5 내지 200㎎, 더 바람직하게는 8 내지 160㎎ 정도이다.
본 발명의 글래스제 프리폼 군은, MAV에 대한 글래스제 프리폼의 질량 공차의 비율이 ±0.5[%]×MAV 이내에 있다.
글래스제 프리폼의 평균 질량(MAV)에 대한 글래스제 프리폼의 질량 공차의 비율은, ±0.4[%]×MAV 이내에 있는 것이 바람직하고, ±0.38[%]×MAV 이내에 있는 것이 보다 바람직하다.
프리폼 군을 구성하는 프리폼의 개수가 500개 이상일 경우, 프리폼의 평균 질량(MAV) 및 MAV에 대한 프리폼의 질량 공차의 비율은, 프리폼 군으로부터 임의로 추출한 500개의 프리폼에 의해 검증하면 충분하다.
전술한 바와 같이, 휴대 전화 등의 모바일 기기에 내장되는 소형 광학 소자 등은, 정확한 얼라인먼트 및 조립을 가능하게 하도록, 광학 기능면과 위치 결정 기준면을, 프리폼을 정밀 프레스 성형함으로써 일괄하여 형성하는 것이 기대되고 있고, 상기 정밀 프레스 성형에 제공되는 프리폼 군을 구성하는 프리폼은, 경량임과 동시에 질량 공차가 작은 것이 요구된다. 그런데, 프리폼의 평균 질량(MAV)이 큰 경우에는, MAV에 대한 프리폼의 질량 공차의 비율[질량 공차/평균 질량(MAV)]을 작게 억제하는 것이 비교적 용이하지만, 프리폼의 평균 질량(MAV)이 작은 경우에는, 약간의 질량 변동이어도, MAV에 대한 프리폼의 질량 공차의 비율[질량 공차/평균 질량(MAV)]이 커지기 때문에, 종래, 초경량이며 높은 질량 정밀도를 갖는 프리폼으로 이루어지는 프리폼 군을 제공하는 것은 곤란했다. 이에 대하여 본 발명의 글래스제 프리폼 군은, 글래스제 프리폼의 평균 질량(MAV)에 대한 글래스제 프리폼의 질량 공차의 비율이 ±0.5[%]×MAV 이내에 있기 때문에, 초경량인 경우에도 높은 질량 정밀도를 갖는 프리폼으로 이루어지는 프리폼 군을 제공할 수 있는 것이다.
본 발명의 글래스제 프리폼 군은, 전체 표면이 용융 상태의 글래스가 고화되어 형성된 구상의 글래스제 프리폼으로 이루어지는 것이 바람직하다.
프리폼의 전체 표면을 용융 상태의 글래스를 고화하여 형성한 면으로 함으로써, 전체 표면을 자유 표면으로 할 수 있어, 표면의 잠상을 없앨 수 있다. 그 결과, 얻어지는 각 프리폼은 연마제 프리폼보다도 내후성을 높일 수 있다. 내후성이 충분히 높지 않으면, 프리폼 표면에 노출되어 탄 부분인 변질층이 생기는 경우가 있고, 이 변질층을 제거하면 약간이기는 하지만 프리폼의 질량이 감소하여, 질량 정밀도를 저하시키게 된다. 본 상태에 의하면, 프리폼의 전체 표면을 용융 상태의 글래스를 고화해서 형성하고 있기 때문에, 표면의 잠상을 없앨 수 있어, 상기 문제점을 해소하는 것이 가능하게 된다.
또한, 프리폼의 형상을 구상으로 하면, 사용하고 있는 글래스가 동종이면, 프리폼 질량의 증감에 수반하여 그 직경도 증감하여, 각 프리폼의 질량과 직경이 일대일로 대응하게 된다. 그 때문에 프리폼의 직경의 변동을 관리하면 프리폼의 질량 정밀도를 관리할 수 있다. 또한, 프리폼을 정밀 프레스 성형해서 소형 광학 소자를 얻을 때, 구상의 프리폼을 사용하면 하형 성형면이 오목 형상이면, 성형면의 중심으로 프리폼을 안정적으로 배치하는 것이 가능하게 된다.
본 발명의 글래스제 프리폼 군은, 이하에 설명하는 본 발명의 글래스제 프리폼 군의 제조 방법에 의해, 적합하게 제조할 수 있다.
〔글래스제 프리폼 군의 제조 방법〕
다음에 본 발명의 글래스제 프리폼 군의 제조 방법에 대해서 설명한다.
본 발명의 글래스제 프리폼 군의 제조 방법은, 정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군의 제조 방법이며, 일정 유량으로 유출하는 용융 글래스를, 방진한 및/또는 분위기의 온도와 습도를 제어한 유출구로부터 순차적으로 적하하여, 성형하는 것을 특징으로 한다.
이하, 본 발명의 글래스제 프리폼 군의 제조 방법에 있어서의 바람직한 형태를, 도면에 기초하여 설명한다.
도1에 도시한 바와 같이 프리폼 군을 생산하기 위해, 글래스 원료를 가열, 용융하고, 청징, 균질화해서 얻어진 용융 글래스를, 파이프(1)의 하단에 설치된 노즐(2)로 유도한다. 용융 글래스는 노즐(2)의 하단에 형성된 유출구로부터 유출되지만, 단위 시간당 글래스 유출량이 일정하게 되도록 파이프(1) 및 노즐(2)의 온도를 제어한다.
유출구로부터 유출된 용융 글래스는 표면 장력에 의해 노즐(2)의 하단에 수직 하강한다. 노즐(2)의 하단에 용융 글래스가 멈추려는 힘보다도 수직 하강하는 글래스에 작용하는 하향의 힘이 강해졌을 때에 노즐(2)의 하단으로부터 용융 글래스가 낙하한다. 여기서, 단위 시간당 글래스 유출량은 일정하게 하고 있으므로, 용융 글래스의 낙하는 일정한 주기로 일어난다. 낙하하는 용융 글래스 적의 총질량은, 질량으로 나타낸 단위 시간당 글래스 유출량에 상기 주기를 곱한 것으로 된다.
이와 같이, 용융 글래스 적의 질량은, 노즐(2)의 하단에 용융 글래스가 멈추 려는 힘과 수직 하강하는 글래스에 작용하는 하향의 힘의 밸런스에 의해 정해지지만, 전술한 바와 같이, 노즐을 상세하게 관찰하면, 그 선단의 유출구 부분이 약간이기는 하지만 진동하고 있어, 이 약간의 진동이 용융 글래스의 적하량의 변동을 발생시키고 있다. 이로 인해, 노즐(2)에 방진 조치를 실시해서 적하를 행함으로써, 프리폼간의 질량 공차를 작게 하는 것이 가능하게 된다.
구체적으로는, 도2에 도시한 바와 같이 파이프(1)를 통해서 노즐(2)에 접속하고, 용융 글래스를 축적하는 용기를 포함하는 글래스 용융 장치(10)를 방진대(11) 상에 적재하고, 상기 용기로부터 파이프(1) 및 노즐(2)이 매달린 구조로 한다. 이렇게 하면, 건조물로부터의 진동이, 글래스 용융 장치(10) 및 파이프(1)를 통해서 노즐(2)에 전해지는 것을 방지할 수 있어, 노즐(2)의 진동을 억제할 수 있다. 혹은 글래스 용융 장치를 지지하는 구조체와 건조물 사이에 진동의 전파를 차단하는 방진 기구를 설치하여도 된다.
상기 글래스 용융 장치(10)는, 용기 내의 용융 글래스를 가열하는 수단이나, 용기를 보온하는 수단, 용기 내의 용융 글래스를 균질화하기 위한 교반 수단 등을 가져도 되고, 파이프(1)는, 예를 들어 통전 가열용의 전극이나, 파이프를 보온하기 위한 보온 수단 등을 가져도 된다.
본 발명의 방법에 있어서는, 상기 방진 조치와 함께 혹은 상기 방진 조치 대신에 유출구 분위기의 온도와 습도를 제어하여, 용융 글래스를 순차적으로 적하한다.
전술한 바와 같이, 글래스에 대한 노즐 외주면의 습윤성은 노즐 유출구 분위 기의 온도 변화, 습도 변화에 따라 약간 변화되고, 이 약간의 변화가 용융 글래스의 적하량의 변동을 발생시키고 있기 때문에, 노즐(2)의 유출구 부근에 있어서의 분위기의 온도와 습도를 제어함으로써, 프리폼간의 질량 공차를 작게 하는 것이 가능하게 된다.
구체적으로는, 도2에 도시한 바와 같이 상기 글래스 용융 장치(10)의 하방에 부스(항온실)(12)를 설치하여, 이 부스(12) 내에 글래스 용융 장치(10)에 접속하는 파이프(1)와 노즐(2)을 수용하고, 이 부스(12) 내에는 후술하는 성형형(13)을 설치한다. 복수의 성형형을 이용해서 프리폼을 연속 생산할 경우에는, 부스(12) 내에는 복수의 성형형과, 이것을 적재하는 턴테이블, 턴테이블을 인덱스 회전하는 구동 장치를 설치하고, 용융 글래스의 적하 및 용융 글래스 적으로부터 프리폼으로의 성형이 상기 부스 내에서 행해지도록 한다.
그리고, 이 부스 내의 온도, 습도를 도시하지 않은 온도 조절 장치 및 습도 조정 장치(이하, 온도 습도 조정기라고 함)에 의해 소요의 상태로 일정하게 유지한다. 이러한 조작에 의해 노즐(2)의 유출구 주변의 분위기의 온도와 습도를 제어한다. 상기 온도 습도 조정기는 온도, 습도의 센서를 갖고, 센서로 검지한 결과를 피드백하여 설정 온도 및 설정 습도로 부스(12) 내의 분위기를 유지한다. 예를 들어, 동절기의 건조 시에는 가습해서 과도한 저습도가 되지 않도록 하거나, 장마기 등의 다습기에는 제습해서 과도한 고습도가 되지 않도록 한다. 온도에 대해서도, 외기온의 변동에 대하여, 부스(12) 내의 기온이 설정 온도로부터 벗어나지 않도록 제어한다. 이렇게 해서 노즐(2) 외주로의 글래스의 새어오름량이 일정해지도록 제 어하여, 얻어지는 프리폼간의 질량 공차를 작게 할 수 있다.
본 발명의 방법에 있어서, 용융 글래스의 적하란, 용융 글래스 덩어리가 노즐 유출구로부터 낙하하는 현상과, 용융 글래스 흐름의 선단이 용융 글래스를 받는 성형형의 받이면에 도달한 후에, 노즐 유출구와 용융 글래스 흐름의 선단 사이에 형성되는 실모양 부분이 끊어져 적하, 분리되는 현상의 양자를 포함하는 것으로 한다.
그리고, 용융 글래스 흐름의 선단이 상기 성형형의 받이면에 도달한 후에 용융 글래스 적의 분리를 행하는 상기 방법으로는, 도1에 도시한 바와 같이 노즐(2)의 하단(유출구 부근)으로 수직 하강하는 용융 글래스의 주위를 커버(5)로 덮은 상태에서 상기 적하를 행하는 것이 용융 글래스 적의 질량을 일정하게 유지하는 데 있어서 바람직하다. 커버(5)는 중공 원통 모양인 것이 바람직하고, 도1에 도시한 바와 같이 용융 글래스 적의 낙하 경로를 막지 않도록 설치한다. 그리고, 노즐 선단에서 생기는 대류에 의한 상승 기류를 약하게 하기 위해, 커버(5)의 상부를 막는 것이 바람직하다. 이러한 구성에 의해, 용융 글래스가 끊어지는 위치를 안정화 할 수 있어, 글래스 적의 질량 변동을 보다 작게 할 수 있다.
그런데, 상기 실모양 부분의 장단(長短)을 결정하는 주요인은 글래스 중의 SiO2의 함유량이며, SiO2의 함유량이 많아지면(예를 들어, 20질량% 초과) 실모양 부분이 길어지고, SiO2의 함유량이 적어지면(예를 들어, 20질량% 이하) 실모양 부분이 짧아진다. SiO2의 함유량이 많은, 긴 실모양 부분을 형성하는 글래스에서는, 용융 글래스 흐름의 선단이 성형형의 받이면에 도달할 때의 충격에 의해, 실모양 부분이 끊어지기 쉬워지기 때문에, 용융 글래스의 적하 효율이 향상된다.
따라서, 낙하한 용융 글래스를 받는 성형형의 받이면과 노즐 선단과의 거리를 일정하게 하여, 일정 주기로 용융 글래스의 적하를 행하는 것이 바람직하다. 이러한 구성에 의해, 실모양 부분의 길이, 용융 글래스 흐름의 선단이 성형형의 받이면에 도달할 때의 충격 발생의 타이밍을 적하마다 안정화할 수 있어, 글래스 적의 질량 변동을 작게 할 수 있다.
커버(5)는, 노즐(2)의 하단(유출구) 주변을 덮고 있으면 반드시 용융 글래스 적의 적하 경로 전체를 덮을 필요는 없고, 커버(5)의 길이는, 노즐(2)의 하단(유출구)부터 성형형의 받이면까지의 거리의 1/5 내지 4/5에 상당하는 부분을 덮는 길이로 하는 것이 바람직하고, 노즐(2)의 하단(유출구)부터 성형형의 받이면까지의 거리의 3/10 내지 7/10에 상당하는 부분을 덮는 길이로 하는 것이 보다 바람직하다.
커버(5)가 중공 원통 모양일 경우, 그 구경은, 지나치게 크면 작업성이 저하하여, 커버(5) 내의 분위기를 안정화하기 어렵게 되고, 지나치게 작으면 유출하는 용융 글래스가 커버(5)의 표면에 부착되거나, 혹은 노즐(2)이나 파이프(1) 등과 접촉되는 경우가 있다. 또한, 후술하는 바와 같이, 노즐(2)의 하단에 있어서 수직 하강하는 용융 글래스에 풍압을 가하여 낙하를 재촉할 경우, 구경이 지나치게 작으면, 노즐 주위에서 안정된 기류를 만들어내는 것이 어렵게 된다. 커버(5)의 구경은, 질량 공차가 작아지도록, 상기 점을 배려하면서 적절하게 설정한다.
상기 커버(5)는 노즐(2)의 하단에 수직 하강하는 용융 글래스의 냉각 스피드 를 느리게 하는 작용을 갖는다. 즉, 커버(5)에 의해 수직 하강하는 용융 글래스가 보온되어, 글래스의 점도 상승 속도가 느려져, 실모양 부분의 점도를 분리에 알맞은 범위로 유지하고, 글래스 적의 점도도 글래스의 구상화에 알맞는 범위로 할 수 있다.
또한, 커버(5)를 절연체로 구성하는 동시에, 도1에 도시한 바와 같이 커버의 주위에 고주파 코일(6)을 배치해서 고주파 전류를 흘리고, 노즐을 고주파 유도 가열하는 것이 바람직하다. 이러한 구성에 의해, 커버(5)를 유도 가열하지 않고, 백금 혹은 백금 합금 등으로 이루어지는 노즐을 유도 가열할 수 있어, 글래스의 투명성을 상실시키지 않고, 게다가 원하는 유출량이 유지되도록 노즐(2)의 온도를 제어할 수 있다.
파이프(1)의 하단 및 노즐(2)의 외주에는 도1에 도시한 바와 같이 가스 유로 형성용 커버(3)를 설치하는 것이 바람직하다. 가스 유로 형성용 커버(3)를 설치함으로써, 파이프(1) 및 노즐(2)과, 가스 유로 형성용 커버(3) 사이의 공간에 가스 유로(4)를 형성할 수 있다. 그리고, 가스 유로 형성용 커버(3)의 하단에는 개구부(3-1)를 형성하고, 상기 개구부로부터 노즐(2)의 선단을 돌출시킨다. 가스 유로 형성용 커버(3), 가스 유로 형성용 커버 개구부(3-1)는, 각각 노즐(2)의 중심축의 주위로 동축 모양으로 배치하는 것이 바람직하다. 또한, 가스 유로 형성용 커버 개구부(3-1)로부터 배출되는 가스도 상기 중심축의 주위로 균등하게 흘리는 것이 바람직하다.
용융 글래스의 적하는 용융 글래스가 노즐 하단에 멈추려는 힘보다도 수직 하강하는 용융 글래스에 작용하는 중력이 커졌을 때에 일어나지만, 이 방법으로는, 노즐 하단에 멈추려는 힘으로 결정되는 질량의 글래스 적밖에 얻어지지 않아, 보다 경량의 글래스 적을 적하할 수 없다. 이에 대하여 상기 방법에 의해 가스 유로 형성용 커버 개구부(3-1)로부터 하향으로 일정한 유량으로 연속해서 가스를 분출하면, 수직 하강하는 용융 글래스는 가스에 의한 풍압에 의해 하향의 힘을 받기 때문에, 그 만큼, 보다 경량의 글래스 적을 얻는 것이 가능하게 된다. 그리고, 가스 유량이 일정하게 되도록 매스플로우 컨트롤러 등에 의해 가스의 유량 제어를 행하면, 글래스 적의 질량을 안정화하는 것이 가능하게 된다.
상기 용융 글래스 적하 후의 성형은, 얻어진 용융 글래스 적에 풍압을 가하여, 부상시키면서 행하는 것이 바람직하다.
노즐 하방에는, 도3에 도시하는 바와 같은 오목부 단면을 갖는 성형형(13)을 반입하고, 상기 오목부에서 노즐로부터 일정 주기로 적하하는 글래스 적(14)을 받아, 오목부 내에 굴리거나 혹은 미끄러지게 해서 도입하고, 오목부 저부에 형성된 가스 분출구로부터 상향으로 분출하는 가스에 의해 오목부 내에서 글래스 적(14)을 상하 이동시키면서 구상으로 성형하여 프리폼을 얻는다. 프리폼의 양산은, 복수개의 성형형(13)을 준비해서 성형형을 차례차례로 노즐 하방으로 반입해서는 글래스 적(14)을 받고, 글래스 적(14)을 받은 성형형(13)을 노즐 하방으로부터 반출하고, 빈 성형형(13)을 노즐 하방으로 반입하는 방법에 의해 행하는 것이 바람직하다. 성형형(13)은 이동하면서, 오목부 내에서 글래스 적(14)을 프리폼으로 성형하고, 프리폼이 변형하지 않는 온도 영역에까지 냉각한 후, 성형형(13)으로부터 프리폼을 취출하여, 빈 성형형으로서 다시 노즐 하방으로 반입된다. 이러한 공정을 복수의 성형형마다 차례차례로 행함으로써, 프리폼을 양산하여, 프리폼 군을 얻는 것이 가능하게 된다.
이상과 같이, 본 발명의 방법에 의하면, 프리폼의 질량 변동의 원인인 노즐 유출구의 진동과 글래스 새어오름량의 변동을 억제할 수 있어, 프리폼간의 질량 공차가 작은 프리폼 군을 생산하는 것이 가능하게 된다.
〔광학 소자의 제조 방법〕
다음에 본 발명의 광학 소자의 제조 방법에 대해서 설명한다.
본 발명의 광학 소자의 제조 방법은, 본 발명의 글래스제 프리폼 군 또는 본 발명의 글래스제 프리폼 군의 제조 방법에 의해 얻어진 글래스제 프리폼 군을 구성하는 프리폼을 가열하여, 정밀 프레스 성형하는 것을 특징으로 하는 것이다.
정밀 프레스 성형은, 상형, 하형, 몸통형을 포함하는 프레스 성형형을 이용하여, 프리폼을 가열하고, 프레스 성형하여, 프레스 성형형의 성형면의 형상을 정확하게 글래스에 전사 형성하는 방법이다. 상형, 하형, 몸통형 등의 각 형의 제작 방법 및 그 재질이나, 상형, 하형의 성형면에 형성하는 이형막 및 그 형성 방법, 정밀 프레스 성형을 행하는 분위기의 종류 등은 공지의 기술을 적용하면 된다.
정밀 프레스 성형법의 일례로서는, 도4에 도시한 바와 같이 구상 프리폼(19)을, 몸통형(15) 내에 삽입한 오목면 형상의 하형(16)의 성형면의 중심에 배치하고, 하형(16)의 성형면에 성형면이 대향하도록 상형(17)을 몸통형(15) 내에 삽입한다. 이 상태에서 프리폼(19)과, 프레스 성형형[몸통형(15), 하형(16), 상형(17)]을 함 께 가열하여, 프리폼(19)을 구성하는 글래스의 온도가, 예를 들어 106dPa·s의 점도를 나타내는 온도까지 상승했을 때에, 압봉(18)을 강하시켜 상형(17)과 하형(16)으로 프리폼(19)을 가압한다. 가압된 프리폼(19)은 상형(17), 하형(16), 몸통형(15)에 의해 둘러싸여진 공간(캐비티라고 함) 내에 펴 넓힐 수 있다. 이렇게하여, 글래스제 프리폼(19)을 프레스하여, 프레스 성형형을 닫은 상태에서 형성되는 밀폐 공간 내에 글래스를 충전한다.
형 닫음 상태에서의 상형(17), 하형(16), 몸통형(15)의 각 성형면의 상대 위치, 면 법선이 이루는 각도는, 미리 정밀하게 형성해 둔다. 이러한 프레스 성형형을 사용해서 상기 성형을 행하면, 광학 기능면과 위치 결정 기준면을 서로 고정밀도의 위치 관계, 각도로 형성할 수 있다.
렌즈의 성형을 예로 하면, 상형 성형면의 중앙부를, 렌즈의 광학 기능면인 렌즈면을 전사 성형하는 부분으로 하고 상형 성형면의 주변부를, 플랜지형 평탄부를 전사 성형하는 부분으로 하여, 윤대 형상으로 한다. 하형 성형면에 대해서도 마찬가지로, 성형면 중앙부를 렌즈면을 전사 성형하는 부분으로 하고, 성형면 주변부를 플랜지형 평탄부를 전사 성형하는 부분으로 하여, 윤대 형상으로 한다. 프레스 성형 종료까지 상하형의 방향을 서로 대향하도록, 또한 상하형의 중심축이 일치하도록 정확하게 유지한다.
프레스 성형형을 닫은 상태에서 형성되는 밀폐 공간 내에 글래스를 충전함으로써, 몸통형 관통 구멍의 내면이 글래스에 전사된다. 몸통형 관통 구멍의 중심축 과 상기 관통 구멍 내면의 각도를 정밀하게 형성해 두고, 프레스 성형 종료까지 상기 관통 구멍의 중심축과 상하형 중심축이 정밀하게 일치하도록 유지함으로써, 예를 들어 도5에 도시한 바와 같이 2개의 렌즈면(20, 21), 2개의 플랜지형 평탄부(22, 23) 및 몸통형의 내면이 전사해서 형성되는 엣지[플랜지형 평탄부(22, 23)의 측면](24)를 갖는 렌즈를 정밀하게 형성할 수 있는 동시에, 상기 각 부의 상대 위치나 각 면이 이루는 각도를 정확하게 형성할 수 있다.
본 발명의 방법에 의해 얻어지는 광학 소자는, 광학 기능면 외에 위치 결정 기준면을 갖는다. 예를 들어, 렌즈의 위치 결정 기준면은 렌즈끼리의 간격을 결정하기 위한 기준면과 렌즈의 광축끼리를 정확하게 일치시키기 위한 기준면으로 하고 이들 기준면을 홀더에 접촉시킴으로써, 각 렌즈를 정확하게 얼라인먼트할 수 있다. 상기한 예에서 말하면, 플랜지형 평탄부(22, 23) 중 한 쪽을 제1 위치 결정 기준면으로 하고, 이 기준면을 홀더에 접촉시킴으로써, 렌즈간의 거리를 정확하게 위치 결정할 수 있다. 다른 쪽의 플랜지형 평탄면에는 상기 접촉한 상태를 유지 하기 위한 압력을 가하여, 렌즈의 홀더로의 고정 상태를 유지하는 것이 바람직하다. 또한, 엣지(24)를 제2 위치 결정 기준면으로 하여 렌즈의 광축을 정확하게 일치시키기 위한 기준면으로서 사용한다.
광학 소자에는, 적어도 2면 이상, 구체적으로는 2면 혹은 3면의 위치 결정 기준면을 정밀 프레스 성형에 의해 형성하는 것이 바람직하다. 상기 2면 혹은 3면의 위치 결정 기준면은 서로 비평행하게 형성되는 것이 바람직하다. 이렇게 서로 비평행한 2개의 기준면을 이용해서 광학 소자를 위치 결정하면, 광학계에 있어서의 광학 소자의 위치 결정과, 방향을 정밀도 좋게 정할 수 있다. 렌즈와 같이 회전 대칭성을 갖는 광학 소자는 2개의 위치 결정 기준면이 있으면 된다. 프리즘과 같은 회전 대칭성이 없는 광학 소자의 경우에는, 3개의 위치 결정 기준면을 형성함으로써, 광학계에 있어서의 위치 결정과 그 위치에 있어서의 방향을 정밀도 좋게 정할 수 있다.
상하형 성형면에는 글래스의 이형성을 향상시키는 목적으로 이형막을 설치하지만, 몸통형의 내면(상형, 하형을 삽입하는 관통 구멍의 내면)에 균일한 두께의 이형막을 설치하는 것은 곤란하기 때문에, 엣지에 전사되는 성형면에는 보통 이형막이 설치되지 않는다. 따라서, 프레스 성형 시에 글래스가 몸통형의 내면에 융착하지 않도록 하기 위해서는, 엣지(24)의 면적을 글래스가 파손되지 않는 범위에서 작게 하여, 글래스와 몸통형의 접촉 면적을 필요 최소한으로 하는 것이 바람직하다. 그런데, 엣지 두께[플랜지형 평탄부(22, 23)간의 거리]가 얇은 렌즈를 정밀 프레스 성형할 때, 글래스는 렌즈면이 되는 부분부터 충전되어, 점차로 몸통형 방향으로 펴 넓힐 수 있지만, 이 때, 2개의 플랜지형 평탄부(22, 23)를 전사 성형하는 상형 성형면과 하형 성형면 사이의 공간의 용적이 작기 때문에, 프리폼을 구성하는 글래스의 양이 근소하더라도 과잉이면 글래스는 상기 공간으로부터 비어져 나와 성형 버어가 생기고, 상기 글래스의 양이 근소하더라도 적으면, 프레스해도 글래스가 슬리브형에 도달하지 않아, 위치 결정 기준면이 되는 엣지가 형성되지 않게 된다. 즉, 상기 광학 소자를 성형하기 위한 프리폼은, 전체 질량 중, 매우 약간의 양밖에 과부족이 허용되지 않지만, 본 발명의 방법에 있어서는, 목적으로 하는 렌 즈의 질량에 대하여 얻어지는 프리폼의 질량이 정확하게 정해져 있으므로, 엣지 두께가 얇은 경우에도, 몸통형의 내면이 전사되어 위치 결정 기준면으로서 기능하는 엣지를 성형할 수 있어, 성형 버어가 발생되어 광학 소자의 양산 공정을 정지시키지도 않는다.
본 발명의 방법에 있어서는, 상형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리 및/또는 하형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리를 자유 표면으로 하여 글래스제 프리폼을 정밀 프레스 성형하는 것이 바람직하다.
전술한 바와 같이 엣지와 플랜지형 평탄부가 정밀하게 형성되어 있으면, 위치 결정 기능에 지장을 초래할 염려는 없지만, 예를 들어 도5에 도시하는 렌즈에 있어서, 모서리(25) 또는 모서리(26)가 예리하게 되어 있으면, 홀더에 끼워 넣을 때에 모서리가 깨지거나, 모서리가 홀더를 깎아버려, 발진의 원인이 된다. 먼지가 촬상 소자의 수광면에 부착되면 화질이 대폭 저하되기 때문에, 이러한 트러블을 방지하는 동시에, 자유 표면으로 이루어지는 모서리를 갖는 광학 소자를 성형하는 것이 바람직하다. 또한, 상기 모서리를 자유 표면으로 함으로써, 프리폼간에 다소의 질량 공차가 생긴 경우에도, 모서리 부분이 체적 조정의 역할을 다하여, 성형 버어의 발생이나 글래스의 충전 부족이라는 문제의 발생을 회피하는 것이 가능하게 된다.
이렇게 하여 제작한 광학 소자에는 필요에 따라 반사 방지막 등의 광학 다층막을 형성하여도 된다.
<실시예>
이하, 본 발명을 실시예에 의해 더 상세히 설명하지만, 본 발명은, 이들의 예에 따라 한정되는 것은 아무것도 없다.
실시예1(글래스제 프리폼 군의 제조예)
우선, 원하는 광학 특성, 글래스 전이 온도를 갖는 광학 글래스가 얻어지도록 글래스 원료를 칭량, 조합해서 충분히 교반하여, 용융 용기 내에 도입하여, 가열, 용융하고, 청징, 교반해서 균질한 용융 글래스를 준비했다. 이 글래스는, B2O3, SiO2, BaO, Li2O를 함유하고, 굴절률(nd)이 1.58313, 아베수(υd)가 59.46인 것이다.
도1에 도시하는 장치를 이용해서 상기 용융 글래스로부터 목표 질량이 100㎎인 글래스제 프리폼을 3000개 생산했다.
여기서, 용융 용기를 포함하는 글래스 용융 장치는 방진대 상에 적재되어 있다. 방진대에는 글래스를 유하하기 위한 파이프(1)를 통과시키는 개구부가 형성되어 있고, 이 개구부를 통해 파이프(1)가 상기 용기로부터 매달린 구조로 되어 있고, 파이프(1)의 하단에는 용융 글래스를 유출하는 노즐(2)이 부착되어 있다. 상기 구조에 의해 이들의 설비를 설치한 건조물로부터의 진동이 방진대에 의해 차단되어, 노즐(2)에 전해지지 않도록 하고 있다.
노즐(2)의 하방에는 성형형이 배치되어 있고, 파이프(1)의 하단 부분, 노즐(2) 및 성형형은, 에어컨에 의해 내부 분위기가 온도 25℃, 상대 습도가 10 내지 95%의 범위로 제어된 부스 내에 놓여 있다. 상기 구조에 의해, 노즐(2)의 하단에 형성된 용융 글래스 유출구 부근의 온도와 습도를 제어하여, 노즐 외주면의 용융 글래스의 습윤성을 일정하게 제어하는 것이 가능하게 된다.
용융 용기 저부에 접속한 파이프(1)를 통하여, 파이프(1)의 하단에 부착한 노즐(2)로부터 일정 유량으로 용융 글래스를 유출한다. 노즐(2), 파이프(1) 및 용융 용기는 각각, 글래스가 투명성을 상실하지 않고, 원하는 유출량이 얻어지는 점도로 되도록, 온도 제어되어 있다.
파이프(1)의 하단 및 노즐(2)의 외주에는 도1에 도시한 바와 같이 가스 유로 형성용 커버(3)가 형성되고, 파이프(1) 및 노즐(2)과, 가스 유로 형성용 커버(3) 사이의 공간에 가스 유로(4)를 형성하고 있다. 그리고, 가스 유로 형성용 커버(3)의 하단에는 개구부(3-1)를 형성하고, 상기 개구부로부터 노즐(2)의 선단을 돌출시키고 있다. 노즐(2), 가스 유로 형성용 커버(3), 가스 유로 형성용 커버 개구부(3-1)는, 각각 노즐(2)의 중심축의 주위에 동축 모양으로 대칭으로 배치하는 것이 바람직하다. 또한, 가스 유로 형성용 커버 개구부(3-1)로부터 배출되는 가스도 상기 중심축의 주위에 균등하게 흘리는 것이 바람직하다.
본 실시예에서는, 노즐(2)의 하단에 수직 하강하는 용융 글래스가 일정 주기로 낙하하도록, 파이프(1)의 내경, 노즐(2)의 내외 직경, 파이프(1)와 노즐(2)의 온도를 조정하여, 글래스의 유출량을 제어하고 있다. 노즐(2)의 유출구로부터 유출하는 용융 글래스는 노즐 하단에 수직 하강하지만, 수직 하강한 용융 글래스에는, 가스 유로 형성용 커버 개구부(3-1)로부터 하향으로 일정한 유량으로 연속하여 분출하는 가스가 뿜어져, 하향의 풍압이 가해져, 보다 경량의 글래스 적을 얻는 것이 가능하게 된다. 그리고, 가스 유량이 일정하게 되도록 매스플로우 컨트롤러 등에 의해 가스의 유량 제어를 행하면, 글래스 적의 질량을 안정화하는 것이 가능하게 된다.
도1에 도시한 바와 같이 노즐(2) 및 가스 유로 형성용 커버(3)의 주위에는, 커버(5)가 부착되어 있다. 커버(5)는, 노즐(2)의 하단(유출구)으로부터 후술하는 성형형의 받이면까지의 거리의 1/3 내지 1/2에 상당하는 부분을 덮고 있으며, 또한 커버(5)의 상부도 막혀 있다. 단, 용융 글래스의 적하 경로를 차단하지 않는 하방은 개방되어 있다. 커버(5)에 의해 외부 분위기에 의한 외란, 예를 들어 노즐 주위의 상승 기류를 저감하여, 커버(5) 내에 안정된 상태의 분위기를 만들어낼 수 있어, 가스 유로 형성용 커버 개구부(3-1)로부터 분출하는 가스도 정상적으로 안정되어 하향으로 흐를 수 있다.
커버(5)의 외측에는 고주파 유도 코일(6)을 배치하고, 고주파 전류를 흘려, 노즐(2)을 고주파 유도 가열한다. 커버(5)는 유도 가열되지 않도록 미리 내열성의 절연체로 제작하는 것이 바람직한데, 이러한 절연체로서는 석영 글래스 등이 적합하다. 이렇게 투명한 내열성 절연체로 커버(5)를 만들면, 외측으로부터 커버(5) 내부를 관찰하는 것도 가능하게 된다.
낙하하는 용융 글래스는 노즐 하방에서 대기하는 성형형으로 받는다. 글래스 적의 질량을 안정화하기 위해, 성형형의 용융 글래스 하단을 받는 받이면과 노즐 하단의 거리가 일정하게 되도록 성형형을 대기시켜, 낙하하는 용융 글래스의 하 단을 받고, 용융 글래스가 받이면에 도달했을 때의 충격에 의해 실 모양 부분에 있어서 글래스를 분리한다. 도3에, 상기 성형형의 수직 단면도를 도시한다. 성형형(13)의 받이면(13-1)에서 용융 글래스 적(14)을 받는다. 받이면(13-1)은 성형형(13)의 상면에 형성된 오목부(13-2)의 저부 방향으로 경사져 있으므로, 용융 글래스 적(14)은 받이면(13-1)으로부터 오목부(13-2) 내로 미끄러져 들어간다(굴러 들어간다).
오목부(13-2)의 단면은 도3에 도시한 바와 같이 아래에서부터 위로 갈수록 나팔 형상으로 퍼지는 형상을 갖고, 오목부(13-2)의 저부에는 상향으로 가스를 분출하는 가스 분출구가 1개 형성되어 있다. 오목부(13-2)에 도입한 용융 글래스 적(14)은 오목부 저부를 향하여 오목부 내벽을 굴러가면서 하강하지만, 오목부의 내경이 아래로 감에 따라 감소하게 되어 있으므로, 글래스 적(14)은 하강할수록 상향의 풍압을 강하게 받게 된다. 그 결과, 글래스 적(14)은 오목부(13-2) 내에서 상승하지만, 상승하면 상향의 풍압이 약해지므로, 다시 오목부 내벽을 따라 굴러 가면서 하강하게 된다. 이와 같이, 글래스 적(14)은 오목부 내를 상승해서는 굴러 가면서 하강하는 운동을 단시간에 반복하여 행하게 된다. 용융 글래스 적이 오목부 내벽을 굴러가는 방향은 랜덤하기 때문에, 상기 운동을 반복하는 동안에 글래스 적(14)은 구상화하면서 냉각되어, 구상 프리폼으로 성형된다. 프리폼이 변형되지 않는 온도까지 냉각한 시점에서 오목부(13-2) 내의 프리폼을 취출하여, 글래스가 깨어지지 않는 스피드로 실온까지 냉각한다.
복수개의 성형형을 이용하여 상기 공정을 반복함으로써, 등질량의 구상 프리폼을 양산할 수 있다. 이렇게 하여, 평균 질량(MAV)이 100.16㎎이고, 질량 공차의 비율이 ±0.21[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 프리폼 군을 얻었다. 또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 복수의 프리폼으로부터 500개 취출하여 구한 값이다.
실시예2(글래스제 프리폼 군의 제조예)
B2O3, SiO2, La2O3, ZnO, CaO, Li2O를 함유하고, 굴절률(nd)이 1.69350, 아베수(υd)가 53.20인 광학 글래스를 이용한 것 이외에는, 실시예1과 마찬가지로 하여 프리폼 군을 제작하고, 평균 질량(MAV)이 99·88㎎이고, 질량 공차의 비율이 ±0.27[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 프리폼 군을 얻었다.
또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 복수의 프리폼으로부터 500개 취출하여 구한 값이다.
실시예3(글래스제 프리폼 군의 제조예)
P2O5, Nb2O5, TiO2, BaO, Li2O를 함유하고, 굴절률(nd)이 1.82114, 아베수(υd)가 24.06인 광학 글래스를 이용한 것 이외에는, 실시예1과 마찬가지로 하여 프리폼 군을 제작하고, 평균 질량(MAV)이 99.81㎎이고, 질량 공차의 비율이 ±0.31[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 프리폼 군을 얻었다.
또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 복수의 프리폼으로부터 500개 취출하여 구한 값이다.
실시예4(글래스제 프리폼 군의 제조예)
노즐(2)의 하단(유출구)의 온도와 습도를 제어하지 않는 것 이외에는, 실시예1 내지 3과 마찬가지로 하여 프리폼 군을 제작하고, 모두 평균 질량(MAV)이 100.25㎎이고, 질량 공차의 비율이 ±0.43[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 복수의 프리폼 군을 얻었다.
또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 복수의 프리폼 군으로부터 각각 500개 취출하여 구한 값이다.
실시예5(글래스제 프리폼 군의 제조예)
방진대를 설치하지 않은 것 이외에는, 실시예1 내지 3과 마찬가지로 하여 프리폼 군을 제작하고, 모두 평균 질량(MAV)이 100.38㎎이고, 질량 공차의 비율이 ±0.47[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 복수의 프리폼 군을 얻었다.
또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 복수의 프리폼 군으로부터 각각 500개 취출하여 구한 값이다.
비교예1(글래스제 프리폼 군의 제조예)
노즐(2)의 하단(유출구)의 온도와 습도를 제어하지 않고, 방진대를 설치하지 않은 것 이외에는, 실시예1 내지 3과 마찬가지로 하여 프리폼 군을 제작하고, 모두 평균 질량(MAV)이 100.74㎎이고, 질량 공차의 비율이 ±0.79[%]×MAV 이내인, 구상의 광학 글래스제 프리폼 3000개로 이루어지는 복수의 프리폼 군을 얻었다.
또한, 상기 평균 질량(MAV) 및 질량 공차의 비율은, 얻어진 각 프리폼 군으로부터 각각 500개 취출하여 구한 값이다.
실시예6(광학 소자의 제조예)
실시예1 내지 5에서 얻은 각 프리폼 군을 사용하여, 도5에 도시하는 단면 형상을 갖는 소형 비구면 렌즈를 정밀 프레스 성형에 의해 각각 제작했다. 어느 경우든 렌즈도 파손은 보이지 않고, 렌즈로서 충분한 광학 성능을 갖고 있었다. 각 렌즈의 엣지(24), 플랜지형 평탄부(22)는 프레스 성형형의 성형면이 전사된 것이며, 엣지(24)와 플랜지형 평탄부(22)가 교차하는 모서리(25)는 라운딩을 띤 자유 표면으로 하였다. 각 렌즈에 있어서 성형 버어의 발생은 확인되지 않았다.
이들 비구면 렌즈는 휴대 전화에 내장되는 촬상 장치의 촬상 광학계를 구성하는 렌즈로서 기능한다. 이렇게 하여 얻은 렌즈와, 형상 이외에는 완전히 동일한 방법으로 제작한 위치 결정 기준면으로서 엣지와 플랜지형 평탄부를 갖는 렌즈를, 렌즈 홀더에 내장하고, 위치 결정 기준면을 홀더에 접촉한 상태로 고정함으로써, 각 렌즈를 정확하게 홀더 내에 배열할 수 있었다.
상기 실시예1 내지 5와 비교예1을 대비함으로써, 용융 글래스의 유출구를 방 진하고 및/또는 그 분위기 온도와 습도를 제어함으로써 얻어지는 프리폼 군을 구성하는 프리폼의 평균 질량이 100㎎ 정도로 작은 경우에도, 프리폼간의 질량 공차를 작게 할 수 있는 것을 알 수 있다. 또한, 상기 실시예6으로부터, 상기 각 프리폼 군으로부터, 정밀도가 높은 광학 소자를 양산성좋게 제작할 수 있는 것을 알 수 있다.
본 발명에 따르면, 각 프리폼간의 체적의 변동이 최대한 제어된 정밀 프레스 성형용의 글래스제 프리폼 군, 상기 프리폼 군을 용융 글래스로부터 매우 높은 생산성을 기초로 제조하는 방법, 상기 프리폼 군 또는 상기 방법에 의해 얻어진 프리폼 군을 구성하는 프리폼으로부터 광학 소자를 제조하는 방법을 제공할 수 있다.
도1은 본 발명의 글래스제 프리폼 군의 제조 방법을 설명하기 위한 개략도.
도2는 본 발명의 글래스제 프리폼 군의 제조 방법을 설명하기 위한 개략도.
도3은 본 발명의 글래스제 프리폼 군의 제조에 사용하는 성형형의 일례를 설명하기 위한 개략도.
도4는 본 발명의 광학 소자의 제조 방법을 설명하기 위한 개략도.
도5는 본 발명의 방법으로 얻어지는 광학 소자의 일례를 설명하기 위한 개략도.
<도면의 주요 부분에 대한 부호의 설명>
1 : 파이프
2 : 노즐
3 : 가스 유로 형성용 커버
3-1 : 개구부
4 : 가스 유로
5 : 커버
6 : 고주파 유도 코일
10 : 용융 장치
11 : 방진대
12 : 항온실
13 : 성형형
13-1 : 받이면
13-2 : 오목부
14 : 용융 글래스 적
15 : 본체부
16 : 하형
17 : 상형
18 : 압봉
19 : 글래스제 프리폼
20, 21 : 렌즈면
22, 23 : 플랜지형 평탄부
24 : 엣지
25, 26 : 모서리

Claims (6)

  1. 정밀 프레스 성형에 제공하는 복수의 글래스제 프리폼으로 이루어지는 글래스제 프리폼 군의 제조 방법이며,
    용융 글래스를 축적하는 용기를 포함하는 글래스 용융 장치를 방진대 위에 적재하고, 상기 용기로부터 용융 글래스를 유출하는 파이프 및 노즐을 매달은 구조에 의해, 또는 글래스 용융 장치를 지지하는 구조체에 방진 기구를 설치하는 것에 의해, 용융 글래스의 유출구의 방진을 행하면서,
    노즐로부터 일정 유량으로 유출하는 용융 글래스를, 온도를 제어하고, 또한 25℃에 있어서 상대 습도 10 내지 95%의 범위 내의 습도에 상당하는 일정한 습도로 제어한 유출구 분위기 하에서, 유출구로부터 순차적으로 적하하고 성형함으로써,
    글래스제 프리폼의 평균 질량 MAV에 대한 글래스제 프리폼의 질량공차의 비율을 ±0.5[%]×MAV 이내로 한 글래스제 프리폼 군을 제조하는 것을 특징으로 하는 글래스제 프리폼 군의 제조 방법.
  2. 제1항에 있어서, 상기 용융 글래스 적하 후의 성형을, 얻어진 용융 글래스 적에 풍압을 가하여, 부상시키면서 행하는 글래스제 프리폼 군의 제조 방법.
  3. 제1항 또는 제2항에 기재된 방법으로 얻어진 글래스제 프리폼 군을 구성하는 글래스제 프리폼을 가열하여, 정밀 프레스 성형하는 것을 특징으로 하는 광학 소자의 제조 방법.
  4. 제3항에 있어서, 정밀 프레스 성형이, 상형, 하형, 몸통형을 갖는 프레스 성형형의 각 성형면을 글래스에 전사함으로써 행해지는 것으로써,
    상형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리 및 하형의 성형면을 전사해서 형성하는 면과 몸통형의 성형면을 전사해서 형성하는 면이 이루는 모서리 중 하나 이상을 자유 표면으로 하여 정밀 프레스 성형하는 광학 소자의 제조 방법.
  5. 삭제
  6. 삭제
KR1020070097634A 2006-09-29 2007-09-28 글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및광학 소자의 제조 방법 KR101389584B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00268826 2006-09-29
JP2006268826A JP4646074B2 (ja) 2006-09-29 2006-09-29 ガラス製プリフォーム群の製造方法および光学素子の製造方法

Publications (2)

Publication Number Publication Date
KR20080029868A KR20080029868A (ko) 2008-04-03
KR101389584B1 true KR101389584B1 (ko) 2014-04-25

Family

ID=39305764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070097634A KR101389584B1 (ko) 2006-09-29 2007-09-28 글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및광학 소자의 제조 방법

Country Status (4)

Country Link
JP (1) JP4646074B2 (ko)
KR (1) KR101389584B1 (ko)
CN (1) CN101157512B (ko)
TW (1) TWI415804B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943495B2 (ja) * 2009-12-21 2012-05-30 シャープ株式会社 光学素子成型装置
JP2011161809A (ja) 2010-02-10 2011-08-25 Fujifilm Corp 光学素子成形用プリフォーム及び光学素子成形方法
CN103364852B (zh) * 2012-04-06 2015-11-18 昆山西钛微电子科技有限公司 非球面复制胶水辅助加工工艺及其装置
CN106904818B (zh) * 2017-04-26 2023-01-24 南京广兆测控技术有限公司 玻璃成型滴珠炉及玻璃成型***
CN107043206A (zh) * 2017-05-03 2017-08-15 湖北戈碧迦光电科技股份有限公司 光学玻璃棒成型模具及成型工装

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104744A (ja) * 2001-09-28 2003-04-09 Hitachi Metals Ltd 球体ガラスの製造方法および球体ガラス製造装置
JP2003238170A (ja) * 2001-12-14 2003-08-27 Hoya Corp ガラス成形体の製造方法および光学素子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743749B2 (ja) * 2001-07-12 2006-02-08 Hoya株式会社 ガラス成形体の製造方法、プレス成形用プリフォームの製造方法、プレス成形品の製造方法、及び光学素子の製造方法
US20050172671A1 (en) * 2002-06-26 2005-08-11 Hoya Corporation Methods of manufacturing molded glass articles
JP3986064B2 (ja) * 2003-03-20 2007-10-03 Hoya株式会社 ガラス塊の製造方法、及び光学素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104744A (ja) * 2001-09-28 2003-04-09 Hitachi Metals Ltd 球体ガラスの製造方法および球体ガラス製造装置
JP2003238170A (ja) * 2001-12-14 2003-08-27 Hoya Corp ガラス成形体の製造方法および光学素子の製造方法

Also Published As

Publication number Publication date
JP4646074B2 (ja) 2011-03-09
JP2008088006A (ja) 2008-04-17
TW200829522A (en) 2008-07-16
CN101157512B (zh) 2013-04-03
KR20080029868A (ko) 2008-04-03
TWI415804B (zh) 2013-11-21
CN101157512A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
US20070251271A1 (en) Processes for the production of glass article and optical device
JP4309859B2 (ja) プレス成形用プリフォームの製造方法および光学素子の製造方法
KR101389584B1 (ko) 글래스제 프리폼 군, 글래스제 프리폼 군의 제조 방법 및광학 소자의 제조 방법
JP2009096711A (ja) 成形型、この成形型を用いるガラス成形体の製造方法、及び光学素子の製造方法
JP2005272194A (ja) プレス成形用プリフォームの製造方法、製造装置および光学素子の製造方法
JP4313753B2 (ja) ガラス成形体、光学素子それぞれの製造方法、熔融ガラス流出装置およびガラス成形体の製造装置
JP4938988B2 (ja) プレス成形用プリフォームの製造方法、光学素子の製造方法、および熔融ガラス流出装置
JP4448078B2 (ja) ガラス製プリフォームの製造方法、ガラス成形体の製造方法および光学素子の生産方法
CN1576247B (zh) 玻璃成形体的制备方法和光学元件的制备方法
JP4346624B2 (ja) ガラス成形体の製造方法および光学素子の製造方法
JP5263163B2 (ja) ガラス成形体の製造方法
JP2002121032A (ja) ガラス塊の製造方法、ガラス成形品の製造方法、並びにガラス塊の製造装置
JP3986064B2 (ja) ガラス塊の製造方法、及び光学素子の製造方法
CN104512996A (zh) 玻璃流出装置和方法、及玻璃成型品和光学元件制造方法
WO2009122949A1 (ja) 光学素子の製造方法及び光学素子の製造装置
JP5888328B2 (ja) 光学素子の製造装置及び光学素子の製造方法
JP4834756B2 (ja) プレス成形用プリフォームの製造方法、製造装置および光学素子の製造方法
JP4843063B2 (ja) プレス成形用プリフォームの製造方法および光学素子の製造方法
JP5200809B2 (ja) 溶融ガラス滴の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法
JP2011057515A (ja) ガラスゴブ及びガラス成形体の製造方法
JPH11236224A (ja) 光学素子の成形方法
JP2005015301A (ja) ガラス成形体の製造方法および光学素子の製造方法
JP2007099526A (ja) ガラス製プリフォームロットおよびその生産方法、光学素子の製造方法
JPH0741323A (ja) ガラスゴブ製造方法
JPH10194752A (ja) 溶融ガラス滴の製造方法及び製造装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee