KR101287891B1 - Method for manufacturing catalyst for fuel cell - Google Patents

Method for manufacturing catalyst for fuel cell Download PDF

Info

Publication number
KR101287891B1
KR101287891B1 KR1020110062779A KR20110062779A KR101287891B1 KR 101287891 B1 KR101287891 B1 KR 101287891B1 KR 1020110062779 A KR1020110062779 A KR 1020110062779A KR 20110062779 A KR20110062779 A KR 20110062779A KR 101287891 B1 KR101287891 B1 KR 101287891B1
Authority
KR
South Korea
Prior art keywords
fuel cell
catalyst
carbon
producing
carbon carrier
Prior art date
Application number
KR1020110062779A
Other languages
Korean (ko)
Other versions
KR20130001876A (en
Inventor
정승일
김재덕
박정현
이흥주
Original Assignee
(주) 디에이치홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 디에이치홀딩스 filed Critical (주) 디에이치홀딩스
Priority to KR1020110062779A priority Critical patent/KR101287891B1/en
Publication of KR20130001876A publication Critical patent/KR20130001876A/en
Application granted granted Critical
Publication of KR101287891B1 publication Critical patent/KR101287891B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 연료전지용 촉매의 제조방법으로서, 1) 탄소 담지체를 준비하는 단계; 2) 상기 탄소 담지체에 금속촉매 전구체 용액을 담지하거나 코팅하는 단계; 3) 상기 탄소 담지체 상에 탄소나노튜브를 성장시키는 단계; 및 4) 상기 탄소나노튜브에 금속촉매를 담지하는 단계를 포함하는 연료전지용 촉매의 제조방법에 관한 것이다.The present invention provides a method for producing a catalyst for a fuel cell, comprising the steps of: 1) preparing a carbon carrier; 2) supporting or coating a metal catalyst precursor solution on the carbon support; 3) growing carbon nanotubes on the carbon carrier; And 4) relates to a method for producing a catalyst for a fuel cell comprising the step of supporting a metal catalyst on the carbon nanotubes.

Description

연료전지용 촉매의 제조방법{METHOD FOR MANUFACTURING CATALYST FOR FUEL CELL}Manufacturing method of catalyst for fuel cell {METHOD FOR MANUFACTURING CATALYST FOR FUEL CELL}

본 발명은 연료 전지용 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 활성 표면적이 넓고, 내구성과 전기 전도도가 우수한 연료전지용 촉매의 제조방법에 관한 것이다. The present invention relates to a method for producing a catalyst for a fuel cell, and more particularly, to a method for producing a catalyst for a fuel cell having a wide active surface area and excellent durability and electrical conductivity.

현재 연료전지의 출력밀도와 출력전압을 향상시키기 위하여, 전극, 연료, 전해질 막에 대한 연구가 활발히 진행되고 있는데, 특히 전극에 사용되는 촉매의 활성을 향상시키기 위한 연구가 활발하게 이루어지고 있다. In order to improve the output density and output voltage of fuel cells, researches on electrodes, fuels, and electrolyte membranes have been actively conducted. In particular, studies to improve the activity of catalysts used in electrodes have been actively conducted.

최근에 개발된 고분자 전해질형 연료전지(PEMFC)에 사용되는 촉매는 일반적으로, Pt, Pd, Rh, Ru나 Pt와 다른 금속간의 합금이 많이 사용되고 있는데, 가격 경쟁력을 확보하기 위해서는 Pt 촉매의 사용량을 감소시키는 것이 필요하다.The catalysts used in the recently developed polymer electrolyte fuel cells (PEMFCs) generally use Pt, Pd, Rh, Ru, or alloys between Pt and other metals. It is necessary to reduce.

따라서 연료전지의 성능을 유지하거나 증가시키면서 Pt 촉매의 사용량을 줄이기 위해, 비표면적이 넓은 도전성 탄소 재료를 담체로 사용하고, 이에 Pt 등을 미세한 입자 상태로 분산시켜 촉매금속의 비표면적을 증가시키는 방법이 시도되고 있다.Therefore, in order to reduce the amount of Pt catalyst used while maintaining or increasing the performance of the fuel cell, a method using a conductive carbon material having a large specific surface area as a carrier, and dispersing Pt in fine particles to increase the specific surface area of the catalytic metal This is being tried.

기존의 연료전지 전극의 제작 방법으로는 카본블랙 등의 탄소소재에 담지된 백금 촉매를 전극에 바르는 페이스트법이 일반적이고, 그 밖에 비전착성 증착법, 폴리올 공정, 전기증착법, 스퍼터링 증착법, γ-조사법, 마이크로에멀젼 방법, AAD, Pechini법, 초임계증착법, 수열방법, 콜로이드법, 초음파 화학처리법 등이 있다. Conventional methods for manufacturing fuel cell electrodes include a paste method in which a platinum catalyst supported on a carbon material such as carbon black is applied to the electrode. Microemulsion method, AAD, Pechini method, supercritical deposition method, hydrothermal method, colloid method, ultrasonic chemical treatment method and the like.

페이스트법을 사용하여 전극을 제작하면 카본블랙을 담지체로 사용하므로이온전도도와 전기전도도가 높고 공정이 편리한 장점이 있으나, 백금 촉매의 분산도가 떨어지고 활성점이 감소하게 되며, 내구성이 상대적으로 낮은 단점이 있다.When the electrode is manufactured by using the paste method, carbon black is used as a support, which has advantages of high ion conductivity, high conductivity, and convenient process. However, the platinum catalyst has a low dispersion, a low active point, and a relatively low durability. have.

특히, 연료전지는 추운 지방에서 운전될 경우나 수소공급이 원활하지 않을 경우 역전압이 발생하는데, 역전압이 발생하게 될 경우에 1.4V 이상에서 담지체가 유실되거나 심지어는 탄소분리판이 수소를 대체하여 유실된다. In particular, when the fuel cell is operated in a cold region or when the hydrogen supply is not smooth, a reverse voltage is generated. When the reverse voltage is generated, the carrier is lost at 1.4 V or higher or even a carbon separator replaces hydrogen. Lost

따라서 연료전지의 전극에 사용되는 촉매의 활성을 향상시키기 위해 카본블랙 대신 내부식성이 높은 그라핀이나 탄소나노튜브를 담지체로 사용하는 시도가 있어 왔다. Therefore, in order to improve the activity of the catalyst used in the electrode of the fuel cell, there have been attempts to use graphene or carbon nanotubes having high corrosion resistance as a support instead of carbon black.

특히, 탄소나노튜브는 백금나노촉매를 고분산 상태로 담지할 수 있어 촉매의 지지체로 적합하다. 따라서 촉매를 고분산 상태로 담지한 탄소나노튜브의 제조방법에 대한 다양한 연구가 이루어지고 있다. In particular, carbon nanotubes can support platinum nanocatalysts in a highly dispersed state, and are suitable as a support for catalysts. Therefore, various studies have been made on a method for preparing carbon nanotubes carrying a catalyst in a highly dispersed state.

상기와 같은 종래 기술의 문제점을 해결하기 위해, 본 발명은 활성 표면적이 넓고, 내구성과 전기 전도도가 우수한 연료전지용 촉매의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for producing a catalyst for a fuel cell having a wide active surface area, excellent durability and electrical conductivity.

또한, 본 발명은 활성 표면적이 넓고, 내구성과 전기 전도도가 우수한 연료전지용 촉매를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a fuel cell catalyst having a wide active surface area and excellent durability and electrical conductivity.

또한, 본 발명은 상기 연료전지용 촉매를 이용한 연료전지용 막-전극 어셈블리(MEA)를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a fuel cell membrane-electrode assembly (MEA) using the fuel cell catalyst.

상기 목적을 달성하기 위하여, 본 발명은 촉매의 활성 표면적을 높이기 위해 탄소 담지체에 탄소나노튜브(CNT)를 성장시키는 것을 특징으로 하는 연료전지용 촉매의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a catalyst for a fuel cell, characterized in that the growth of carbon nanotubes (CNT) on the carbon carrier to increase the active surface area of the catalyst.

보다 상세하게, 본 발명은 연료전지용 촉매의 제조방법에 있어서,More specifically, in the method for producing a catalyst for a fuel cell,

1) 탄소 담지체를 준비하는 단계;1) preparing a carbon carrier;

2) 상기 탄소 담지체에 금속촉매 전구체 용액을 담지하거나 코팅하는 단계;2) supporting or coating a metal catalyst precursor solution on the carbon support;

3) 상기 탄소 담지체 상에 탄소나노튜브를 성장시키는 단계; 및3) growing carbon nanotubes on the carbon carrier; And

4) 상기 탄소나노튜브에 금속촉매를 담지하는 단계4) supporting a metal catalyst on the carbon nanotubes

를 포함하는 연료전지용 촉매의 제조방법을 제공한다.It provides a method for producing a catalyst for a fuel cell comprising a.

또한, 본 발명은 상기 연료전지용 촉매의 제조방법에 따라 제조한 연료전지용 촉매를 제공한다.In addition, the present invention provides a fuel cell catalyst prepared according to the fuel cell catalyst production method.

또한, 본 발명은 상기 연료전지용 촉매를 이용한 연료전지용 막-전극 어셈블리(MEA)를 제공한다.The present invention also provides a fuel cell membrane-electrode assembly (MEA) using the fuel cell catalyst.

본 발명에 따라 제조된 연료전지용 촉매는 탄소나토튜브(CNT)에 금속촉매를 담지함으로써 기존의 백금/탄소 촉매보다 촉매 비표면적이 넓고 전기 전도도 및 내부식성이 우수하다. 따라서 본 발명에 따라 제조된 연료전지용 촉매를 연료전지에 적용하여 성능과 내구성이 우수한 연료전지를 제조할 수 있다. The fuel cell catalyst prepared according to the present invention has a catalyst specific surface area and excellent electrical conductivity and corrosion resistance than a conventional platinum / carbon catalyst by supporting a metal catalyst on a carbon nanotube (CNT). Therefore, the fuel cell catalyst prepared according to the present invention may be applied to a fuel cell to manufacture a fuel cell having excellent performance and durability.

도 1은 본 발명에 따라 카본블랙에 탄소나노튜브를 성장시켜 촉매를 담지시키는 과정을 나타낸 모식도이다.
도 2는 본 발명에 따라 그라핀 산화물에 탄소나노튜브를 성장시켜 촉매를 담지시키는 과정을 나타낸 모식도이다.
도 3a는 그라핀 산화물의 TEM사진이고, 도 3b는 Co를 담지한 그라핀 산화물의 TEM사진이고, 도 3c는 성장시킨 CNT의 TEM사진이다.
도 4a는 그라파이트의 SEM사진이고, 도 4b는 그라핀 산화물의 SEM사진이고, 도 4c는 Co를 담지한 그라핀 산화물의 SEM사진이고, 도 4d는 성장시킨 CNT의 SEM사진이다.
도 5는 그라파이트, 그라핀 산화물 및 CNT가 성장된 담지체의 TGA 그래프이다.
도 6은 그라파이트, 그라핀 산화물 및 CNT가 성장된 담지체의 Raman 그래프이다.
1 is a schematic diagram showing a process of supporting a catalyst by growing carbon nanotubes on carbon black according to the present invention.
2 is a schematic diagram showing a process of supporting a catalyst by growing carbon nanotubes on the graphene oxide in accordance with the present invention.
3A is a TEM photograph of graphene oxide, FIG. 3B is a TEM photograph of graphene oxide carrying Co, and FIG. 3C is a TEM photograph of grown CNTs.
4A is an SEM photograph of graphite, FIG. 4B is an SEM photograph of graphene oxide, FIG. 4C is an SEM photograph of graphene oxide loaded with Co, and FIG. 4D is an SEM photograph of grown CNTs.
5 is a TGA graph of a support on which graphite, graphene oxide and CNTs are grown.
6 is a Raman graph of a support on which graphite, graphene oxide and CNTs are grown.

이하 본 발명을 보다 상세하게 설명한다.
Hereinafter, the present invention will be described in more detail.

본 발명은 연료전지용 촉매의 제조방법에 있어서,The present invention provides a method for producing a catalyst for a fuel cell,

1) 탄소 담지체를 준비하는 단계;1) preparing a carbon carrier;

2) 상기 탄소 담지체에 금속촉매 전구체 용액을 담지하거나 코팅하는 단계;2) supporting or coating a metal catalyst precursor solution on the carbon support;

3) 상기 탄소 담지체 상에 탄소나노튜브를 성장시키는 단계; 및3) growing carbon nanotubes on the carbon carrier; And

4) 상기 탄소나노튜브에 금속촉매를 담지하는 단계4) supporting a metal catalyst on the carbon nanotubes

를 포함하는 연료전지용 촉매의 제조방법을 제공한다.
It provides a method for producing a catalyst for a fuel cell comprising a.

상기 1) 탄소 담지체의 준비 단계에서는, 탄소 담지체로 다공성 탄소 담지체인 그라핀, 활성탄, 카본 블랙, 카본 파이버, 메조포러스 카본 등을 사용할 수 있으며, 바람직하게는 그라핀 산화물 (graphene oxide), 박리형 그라핀 산화물 (exfoliated graphene oxide), 메조포러스 카본 등을 사용할 수 있다.
In the preparation step of 1) the carbon carrier, as the carbon carrier, graphene, activated carbon, carbon black, carbon fiber, mesoporous carbon, etc., which are porous carbon carriers, may be used, and preferably, graphene oxide, peeling Exfoliated graphene oxide, mesoporous carbon and the like can be used.

본 발명의 연료전지용 촉매의 제조방법은, 탄소 담지체로서 그라핀을 사용하는 경우, 상기 탄소 담지체 준비 단계 후에 그라핀의 표면을 처리하는 단계를 추가로 포함할 수 있다.When the graphene is used as the carbon carrier, the method for preparing a catalyst for a fuel cell of the present invention may further include treating the surface of the graphene after the carbon carrier preparation step.

상기 그라핀의 표면을 처리하는 단계는, 질산, 황산, 염산, 탄산, 아미노산, 구연산, 아스코르브산(ascorbic acid), 아세트산 등의 산 또는 이들의 혼합용액으로 그라핀 담지체를 처리하여 그라핀 담지체의 표면을 박리시키는 단계이다.The step of treating the surface of the graphene, the graphene carrier by treating the graphene carrier with an acid such as nitric acid, sulfuric acid, hydrochloric acid, carbonic acid, amino acid, citric acid, ascorbic acid, acetic acid or a mixed solution thereof Peeling the surface of the retardation.

상기 그라핀의 표면을 처리하는 단계는 그라핀에 존재하는 불순물을 제거하고 표면 구조를 개선하여 금속촉매 전구체의 코팅을 원활하게 하기 위한 것이다.
The step of treating the surface of the graphene is to remove the impurities present in the graphene and to improve the surface structure to smooth the coating of the metal catalyst precursor.

상기 2) 탄소 담지체에 금속촉매 전구체 용액을 담지하거나 코팅하는 단계에서는, 담지되거나 코팅되는 금속촉매 전구체 용액은 Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi 로 이루어진 군으로부터 선택되는 1종 또는 2종 이상을 포함할 수 있으나, 반드시 이에 한정되지는 않는다.
2) In the step of supporting or coating the metal catalyst precursor solution on the carbon support, the supported metal catalyst precursor solution is Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au , Pb and Bi may include one or two or more selected from the group consisting of, but are not necessarily limited thereto.

탄소 담지체로 다공성 탄소 담지체를 사용하는 경우, Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 금속촉매 전구체를 용해시킨 전해질 용액에 다공성 탄소 담지체를 담금으로써 금속촉매 전구체를 다공성 탄소 담지체의 표면에 고르게 분산시킬 수 있다. When using a porous carbon support as a carbon support, one or more selected from the group consisting of Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb and Bi or By immersing the porous carbon carrier in an electrolyte solution in which two or more metal catalyst precursors are dissolved, the metal catalyst precursor can be evenly dispersed on the surface of the porous carbon carrier.

상기 금속촉매 전구체 용액은 0.01 내지 0.1M의 농도로 제조하여 탄소담지체 1g을 기준으로 10 내지 100ml를 사용하는 것이 바람직하다. 상기 금속촉매 전구체 용액의 사용량이 100ml이상인 경우 금속촉매 전구체들이 뭉치는 현상이 발생할 수 있다.The metal catalyst precursor solution is preferably prepared in a concentration of 0.01 to 0.1M to use 10 to 100ml based on 1g of the carbon carrier. When the amount of the metal catalyst precursor solution is 100 ml or more, the metal catalyst precursors may aggregate.

이 때 금속촉매 전구체의 균일한 분산을 위해 초음파 처리를 병행할 수도 있다.At this time, ultrasonic treatment may be performed in parallel for uniform dispersion of the metal catalyst precursor.

탄소 담지체로 그라핀을 사용하는 경우, Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi로 이루어진 군으로부터 선택되는 1종 또는 2종 이상을 포함하는 금속촉매 전구체의 박막으로 그라핀을 코팅할 수 있다.When graphene is used as the carbon carrier, one or two selected from the group consisting of Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb and Bi Graphene may be coated with a thin film of the metal catalyst precursor including the above.

그라핀을 금속촉매 전구체의 박막으로 코팅하기 위해, 탄소 담지체로 준비한 그라핀을 금속 수용액에 첨가하고 초음파 처리를 가하여 분산시키고 2시간 이상 교반한 후, NaOH 등을 사용하여 pH를 조절하고, NaBH4 수용액을 첨가한다. 이때 pH는 10 내지 13으로 유지함이 바람직한데, pH 10 이상에서는 활성화 에너지가 상대적으로 낮아서 환원 반응이 잘 일어나기 때문이다.In order to coat the graphene with a thin film of a metal catalyst precursor, graphene prepared as a carbon carrier was added to the aqueous metal solution, dispersed by sonication, stirred for 2 hours or more, and then pH was adjusted using NaOH or the like, and NaBH 4 Add an aqueous solution. At this time, the pH is preferably maintained at 10 to 13, since the activation energy is relatively low at pH 10 or higher, so that a reduction reaction occurs well.

상온에서 12시간 이상 교반한 후, 감압 필터링을 통해 케이크를 만든 후 증류수로 재분산시킨 다음, 150~200℃에서 진공건조 또는 250~300℃에서 고온 건조(질소 또는 아르곤 분위기)를 수행하여 그라핀 표면에 금속박막을 형성할 수 있다.
After stirring at room temperature for 12 hours or more, the cake was made by vacuum filtration and redispersed with distilled water, followed by vacuum drying at 150-200 ° C or high-temperature drying (nitrogen or argon atmosphere) at 250-300 ° C. A metal thin film can be formed on the surface.

상기 3) 탄소 담지체 상에 탄소나노튜브를 성장시키는 단계에서, 탄소나노튜브는 화학기상증착법(CVD), 플라즈마 화학기상증착법(PECVD), 열화학 기상증착법, 기상합성법 등에 의해 성장시킬 수 있다. In the step 3) growing the carbon nanotubes on the carbon carrier, the carbon nanotubes may be grown by chemical vapor deposition (CVD), plasma chemical vapor deposition (PECVD), thermochemical vapor deposition, vapor phase synthesis, or the like.

화학기상증착법을 이용한 탄소나노튜브의 성장에서는 탄소 담지체를, CVD 반응로에 넣고 불활성 가스 분위기에서 탄소나노튜브 합성 반응온도까지 상승시킨 후 탄소나노튜브 합성가스를 공급하여 탄소 담지체 상에 탄소나노튜브를 성장시킨다. In the growth of carbon nanotubes using chemical vapor deposition, the carbon carrier is placed in a CVD reactor, the carbon nanotube synthesis temperature is raised in an inert gas atmosphere, and carbon nanotube synthesis gas is supplied to the carbon nanotube on the carbon carrier. Grow the tube.

탄소나노튜브를 증착하기 위한 탄소나노튜브 합성가스로는 C2H2, C2H4, CH4, CO 등의 탄화수소계열의 가스를 사용한다.As a carbon nanotube synthesis gas for depositing carbon nanotubes, hydrocarbon-based gases such as C 2 H 2 , C 2 H 4 , CH 4 , and CO are used.

상기 CVD 반응은 상온 내지 합성온도의 Ar, N2, He 등의 불활성 가스 분위기에서 진행된다.The CVD reaction is carried out in an inert gas atmosphere such as Ar, N 2 , He at room temperature to synthesis temperature.

상기 탄소나노튜브 합성 반응온도는 600 내지 900 ℃이고, 반응시간은 10 분 내지 1 시간인 것이 바람직하다. CVD 반응로 내 압력은 10torr 내지 상압으로 유지하는 것이 바람직하다. The carbon nanotube synthesis reaction temperature is 600 to 900 ℃, the reaction time is preferably 10 minutes to 1 hour. The pressure in the CVD reactor is preferably maintained at 10 torr to atmospheric pressure.

상기 과정에 의해 탄소 담지체 상에 성장된 탄소나노튜브의 비표면적은 50 ~ 2000㎡/g 이고, 바람직하게는 50 ~ 1000㎡/g 이다.The specific surface area of the carbon nanotubes grown on the carbon carrier by the above process is 50 to 2000 m 2 / g, preferably 50 to 1000 m 2 / g.

또한, 상기 탄소 담지체 상에 형성된 탄소나노튜브의 직경은 1nm 내지 100nm의 범위 내이고, 탄소 담지체 상에 형성된 금속촉매 전구체의 입자 크기에 따라 조절될 수 있다.
In addition, the diameter of the carbon nanotubes formed on the carbon carrier is in the range of 1nm to 100nm, it can be adjusted according to the particle size of the metal catalyst precursor formed on the carbon carrier.

상기 탄소나노튜브에 금속촉매를 담지하는 단계에서, 담지되는 금속촉매는 Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi로 이루어진 군으로부터 선택되는 1종 또는 2종 이상이나, 반드시 이에 한정되지는 않는다. In the step of supporting the metal catalyst on the carbon nanotube, the supported metal catalyst is a group consisting of Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb and Bi 1 type, or 2 or more types chosen from, but it is not necessarily limited to this.

탄소나노튜브에 금속촉매를 담지하는 공정은 특별히 제한되지는 않으며, 담지법, 침전법, 졸겔법, 연소법, 폴리올공법 등에 의한다. 바람직하게는, 탄소나노튜브에 담지되는 금속은 공지된 폴리올 공법에 의해 나노결정구조를 갖는 입자형태로 가공되는 것이 바람직하다(대한민국 등록특허 제10-0795978).
The process of supporting the metal catalyst on the carbon nanotubes is not particularly limited, and may be carried out by a supporting method, a precipitation method, a sol gel method, a combustion method, a polyol method, and the like. Preferably, the metal supported on the carbon nanotubes is preferably processed into a particle form having a nanocrystalline structure by a known polyol method (Korea Patent No. 10-0795978).

또한, 본 발명은 활성 표면적이 넓고, 내구성과 전기 전도도가 우수한 연료전지용 촉매를 제공한다.In addition, the present invention provides a fuel cell catalyst having a wide active surface area and excellent durability and electrical conductivity.

본 발명에 따라 제조한 연료전지용 촉매는 캐소드 및 애노드 전극에 모두 사용할 수 있다. The fuel cell catalyst prepared according to the present invention can be used for both the cathode and the anode electrode.

상기 연료전지는 인산형 연료 전지(PAFC), 응용탄산염 연료 전지(MCFC), 고체 산화물형 연료 전지(SOFC), 고분자 전해질형 연료 전지(PEMFC), 알칼리형 연료 전지(AFC), 직접메탄올 연료 전지(DMFC) 등일 수 있으며, 바람직하게는 고분자 전해질형 연료 전지이다.The fuel cell includes a phosphate fuel cell (PAFC), an applied carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEMFC), an alkaline fuel cell (AFC), and a direct methanol fuel cell. (DMFC) and the like, preferably a polymer electrolyte fuel cell.

본 발명에 따라 제조한 연료 전지용 촉매는 캐소드 및 애노드 전극에 모두 사용될 수 있다.The fuel cell catalyst prepared according to the present invention can be used for both cathode and anode electrodes.

또한, 본 발명은 본 발명에 따라 제조한 연료전지용 촉매를 이용한 연료전지용 막-전극 어셈블리(MEA)를 제공한다.
The present invention also provides a fuel cell membrane-electrode assembly (MEA) using a catalyst for fuel cells prepared according to the present invention.

이하 실시예를 통해 본 발명을 더욱 상세히 설명하나, 본 발명이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

실시예Example

제1단계: 탄소 Step 1: Carbon 담지체를Carrier 준비하는 단계- Step to prepare 그라핀Graphene 산화물의 제조 Manufacture of oxides

그라파이트를 1:3 비율의 (H2SO4:H2NO3)에 넣고 1시간 동안 교반한 후, 그라파이트 2g, NaNO3 2g, H2SO4 100ml를 얼음그릇(ice bath)에 넣고 혼합하였다. 그 다음 KMnO4 12g을 천천히 첨가하고 1시간 동안 교반하였다. 여기에 증류수 400ml를 첨가한 후 과산화수소(30%) 15ml를 첨가하였다. 상기 혼합액을 감압필터하고 여과된 케이크를 초음파 그릇(bath)에서 분산하였다. 그 다음 1:10 HCl 용액을 첨가하여 세척 후 감압필터 또는 원심분리에 의해 분리한 후, 80℃ 오븐에서 하룻동안 건조하였다.
Graphite was added to (H 2 SO 4 : H 2 NO 3 ) in a ratio of 1: 3 and stirred for 1 hour, followed by mixing 2 g of graphite, 2 g of NaNO 3 , and 100 ml of H 2 SO 4 in an ice bath and mixing. . Then 12 g of KMnO 4 were slowly added and stirred for 1 hour. 400 ml of distilled water was added thereto, followed by 15 ml of hydrogen peroxide (30%). The mixture was filtered under reduced pressure and the filtered cake was dispersed in an ultrasonic bath. Then, 1:10 HCl solution was added, washed, separated by a vacuum filter or centrifugation, and dried in an oven at 80 ° C. for one day.

제2단계: 탄소 Second Step: Carbon 담지체에On the carrier 금속촉매 전구체 용액을  Metal catalyst precursor solution 담지하거나Support or 코팅하는 단계-코발트 담지 Coating step-cobalt loading

증류수 100ml에 제조한 그라핀 산화물 1g을 넣고 30분 동안 분산한 후, 0.05M 농도의 CoN2O6 .6H2O 수용액을 15ml만큼 첨가하였다. 그 다음 0.05M 농도의 NaBH4 수용액을 100ml 첨가하고 12시간 동안 교반한 후, 감압필터하고 70~90℃ 증류수를 사용하여 세척하였다. 뒤이어 재분산 후에 비활성기체 분위기하에서 300℃, 2시간 동안 건조하였다.
1g of graphene oxide prepared in 100ml of distilled water was dispersed for 30 minutes, and then CoN 2 O 6 . 15 ml of 6H 2 O aqueous solution was added. Then, 100 ml of an aqueous NaBH 4 solution having a concentration of 0.05 M was added thereto, stirred for 12 hours, filtered under reduced pressure, and washed with 70-90 ° C. distilled water. Subsequently, after redispersion, the mixture was dried at 300 ° C. for 2 hours under an inert gas atmosphere.

제3단계: 탄소 Step 3: Carbon 담지체Carrier 상에 탄소나노튜브를 성장시키는 단계 Growing carbon nanotubes on the substrate

상기 코발트가 담지된 시료 0.5g을 측정하여 CVD 장비에 투입한 후, 아르곤 분위기하에서 700℃로 승온하였다. C2H4 기체를 1000cm3/min의 유량으로 30분 동안 흘려주었다.
0.5 g of the sample carrying the cobalt was measured and introduced into a CVD apparatus, and then heated to 700 ° C. under an argon atmosphere. C 2 H 4 The gas was flowed for 30 minutes at a flow rate of 1000 cm 3 / min.

제4단계: 탄소나노튜브에 금속촉매를 Fourth Step: Metal Catalysts on Carbon Nanotubes 담지하는Supported 단계-백금 담지 Step-Platinum Support

상기 제2단계의 코발트 담지 방법과 동일하게 탄소나노튜브에 백금촉매를 담지하였다.The platinum catalyst was supported on the carbon nanotubes in the same manner as the cobalt supporting method of the second step.

촉매 제조를 위해서 사용한 Pt 및 Co의 전구체는 각각 H2PtCl6 .6H2O, CoN2O6 .6H2O(Sigma Aldrich Inc.)를 사용하였다. 우선 그라핀 산화물(GO)과 합금원소 Co의 질량비가 1:1이 되도록 시약을 준비하고 Co의 중량비가 50 중량%가 되도록 촉매를 제조하였으며, 이 촉매를 지지체로 하여 탄소나노튜브(CNTs)를 성장시켰다. CNTs-Co/GO 촉매와 Pt의 질량비가 1:1이 되도록 시약을 준비하고 중량비가 50 중량%가 되도록 촉매를 제조하였다. 그리고 CoN2O6 .6H2O 시약을 100ml 증류수에 용해하였다. 그 다음 300ml의 증류수에 GO를 500mg 넣은 다음 초음파 분산처리 및 교반을 실시하여 증류수 중에 GO가 완전히 분산되도록 하였다. 증류수와 GO가 혼합된 용액을 교반하면서 110℃까지 가열한 다음, CoN2O6 .6H2O 시약을 조금씩 첨가한 후 2시간 동안 온도를 유지하면서 교반하였다. 환원제로 0.1M의 NaBH4를 첨가하면서 pH를 10 이상으로 조절하였다. 마지막으로 필터링 후 에탄올과 증류수로 세척하고 진공 건조로를 사용하여 60℃에서 4시간 동안 건조하였다.
The precursors of Pt and Co used for catalyst preparation were H 2 PtCl 6 . 6H 2 O, CoN 2 O 6 . 6H 2 O (Sigma Aldrich Inc.) was used. First, a reagent was prepared such that the mass ratio of graphene oxide (GO) and alloy element Co was 1: 1, and a catalyst was prepared such that the weight ratio of Co was 50% by weight, and carbon nanotubes (CNTs) were used as a support. Grown. Reagents were prepared so that the mass ratio of CNTs-Co / GO catalyst and Pt was 1: 1, and a catalyst was prepared such that the weight ratio was 50% by weight. And CoN 2 O 6 . 6H 2 O reagent was dissolved in 100 ml distilled water. Then, 500 mg of GO was added to 300 ml of distilled water, followed by ultrasonic dispersion and stirring to completely disperse the GO in distilled water. The solution mixed with distilled water and GO was heated to 110 ° C. while stirring, followed by CoN 2 O 6 . 6H 2 O reagent was added little by little and then stirred while maintaining the temperature for 2 hours. The pH was adjusted to 10 or more with addition of 0.1 M NaBH 4 as reducing agent. Finally, the filter was washed with ethanol and distilled water and dried at 60 ° C. for 4 hours using a vacuum drying furnace.

제5단계: Step 5: PEMFCPEMFC 의 전극촉매의 제조Preparation of Electrocatalysts

300ml의 에틸렌글리콜(EG)에, Co/GO 위에 CNT의 성장이 확인된 담체(CNTs-Co/GO)를 500mg를 넣은 다음 초음파 분산처리를 실시하여 분산시켰다. 혼합용액을 교반하면서 80℃까지 가열하였다. 그 다음 200ml의 EG용액에 H2PtCl 6 .6H2O를 용해하고 110℃로 가열하고 0.1M의 NaOH를 사용하여 pH를 10 이상으로 조절한 후 2시간 동안 교반하였다. 그리고 Pt염 혼합용액을 교반되고 있는 CNTs-Co/GO 용액에 천천히 첨가하였다. 4시간 동안 온도를 유지하며 교반하여 CNTs-Co/GO 표면에 Pt가 담지된 촉매를 제조하였다. 제조된 촉매는 350℃의 Ar 분위기에서 2시간 동안 열처리하여 PEMFC의 전극촉매를 제조하였다.In 300 ml of ethylene glycol (EG), 500 mg of a carrier (CNTs-Co / GO) in which CNT growth was confirmed on Co / GO was added and dispersed by ultrasonic dispersion treatment. The mixed solution was heated to 80 ° C. while stirring. Then in 200 ml of EG solution H 2 PtCl 6 . 6H 2 O was dissolved, heated to 110 ° C., and the pH was adjusted to 10 or more using 0.1 M NaOH, followed by stirring for 2 hours. The Pt salt mixed solution was slowly added to the stirred CNTs-Co / GO solution. Stirring while maintaining the temperature for 4 hours to prepare a catalyst supporting the Pt on the surface of CNTs-Co / GO. The prepared catalyst was heat treated in an Ar atmosphere at 350 ° C. for 2 hours to prepare an electrode catalyst of PEMFC.

Claims (13)

연료전지용 촉매의 제조방법에 있어서,
1) 탄소 담지체를 준비하는 단계;
2) 상기 탄소 담지체에 금속촉매 전구체 용액을 담지하거나 코팅하는 단계;
3) 상기 탄소 담지체에 탄소나노튜브를 성장시키는 단계; 및
4) 상기 탄소나노튜브의 외면에 금속촉매를 담지하는 단계
를 포함하는 연료전지용 촉매의 제조방법으로서,
상기 탄소 담지체는 그라핀이고, 상기 1) 탄소 담지체 준비 단계 후 그라핀의 표면을 처리하는 단계를 추가로 포함하고,
상기 그라핀의 표면을 처리하는 단계는, 질산, 황산, 염산, 탄산, 아미노산, 구연산, 아스코르브산(ascorbic acid) 및 아세트산으로 이루어진 군으로부터 선택된 1종 또는 2종이상으로 그라핀을 처리하여 그라핀의 표면을 박리시키는 것을 특징으로 하는 연료전지용 촉매의 제조방법.
In the method for producing a catalyst for a fuel cell,
1) preparing a carbon carrier;
2) supporting or coating a metal catalyst precursor solution on the carbon support;
3) growing carbon nanotubes on the carbon carrier; And
4) supporting the metal catalyst on the outer surface of the carbon nanotubes
As a method for producing a catalyst for a fuel cell comprising a,
The carbon carrier is graphene, and further comprising the step 1) treating the surface of the graphene after the carbon carrier preparation step,
The step of treating the surface of the graphene, graphene by treating the graphene with one or two or more selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, carbonic acid, amino acid, citric acid, ascorbic acid and acetic acid Method for producing a catalyst for a fuel cell, characterized in that the surface of the peeling.
삭제delete 삭제delete 청구항 1에 있어서, 상기 금속촉매 전구체 용액은 Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상을 포함하는 것임을 특징으로 하는 연료전지용 촉매의 제조방법.The method of claim 1, wherein the metal catalyst precursor solution is one or two selected from the group consisting of Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb and Bi Method for producing a catalyst for a fuel cell, characterized in that it comprises more than one species. 청구항 1에 있어서, 상기 금속촉매는 Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb 및 Bi로 이루어진 군으로부터 선택되는 1종 또는 2종 이상인 것임을 특징으로 하는 연료전지용 촉매의 제조방법.The method according to claim 1, wherein the metal catalyst is one or two or more selected from the group consisting of Pt, Pd, Co, Fe, Ti, Ni, Ru, Rh, Ag, Cd, In, Sb, Au, Pb and Bi. Method for producing a catalyst for a fuel cell, characterized in that. 삭제delete 삭제delete 청구항 1에 있어서, 상기 탄소 담지체에 금속촉매 전구체 용액을 담지하는 단계에서 금속촉매 전구체 용액은 0.01 내지 0.1M의 농도로 제조하여 탄소 담지체 1g을 기준으로 10 내지 100ml를 첨가하는 것을 특징으로 하는 연료전지용 촉매의 제조방법.The method of claim 1, wherein the metal catalyst precursor solution in the step of supporting the metal catalyst precursor solution on the carbon carrier is prepared in a concentration of 0.01 to 0.1M characterized in that 10 to 100ml based on 1g of the carbon carrier is added Method for producing a catalyst for a fuel cell. 청구항 1에 있어서, 상기 탄소 담지체에 탄소나노튜브를 성장시키는 단계는 화학기상증착법에 의하고, 상기 탄소나노튜브 합성 반응온도는 600 내지 900 ℃이고, 반응시간은 10 분 내지 1 시간이며, CVD 반응로 내 압력은 10torr 내지 상압인 것을 특징으로 하는 연료전지용 촉매의 제조방법. The method of claim 1, wherein the growing of carbon nanotubes on the carbon carrier is by chemical vapor deposition, the carbon nanotube synthesis reaction temperature is 600 to 900 ℃, the reaction time is 10 minutes to 1 hour, CVD reaction The pressure in the furnace is a method for producing a catalyst for a fuel cell, characterized in that from 10torr to atmospheric pressure. 청구항 1에 있어서, 상기 탄소 담지체 상에 형성된 탄소나노튜브의 직경은 1nm 내지 100nm의 범위 내이고, 상기 탄소 담지체 상에 형성된 금속촉매 전구체의 입자 크기에 따라 조절되는 것을 특징으로 하는 연료전지용 촉매의 제조방법.The method according to claim 1, The diameter of the carbon nanotubes formed on the carbon carrier is in the range of 1nm to 100nm, and the method for producing a catalyst for a fuel cell, characterized in that adjusted according to the particle size of the metal catalyst precursor formed on the carbon carrier. 청구항 1에 있어서, 상기 탄소 담지체 상에 형성된 탄소나노튜브의 비표면적은 50 내지 2000m2/g 인 것을 특징으로 하는 연료전지용 촉매의 제조방법.The method of claim 1, wherein a specific surface area of the carbon nanotubes formed on the carbon carrier is 50 to 2000 m 2 / g. 청구항 1, 청구항 4, 청구항 5 및 청구항 8 내지 청구항 11 항 중 어느 한 항의 방법에 따라 제조된 연료전지용 촉매.12. A catalyst for a fuel cell prepared according to the method of any one of claims 1, 4, 5 and 8-11. 청구항 12의 연료전지용 촉매를 이용한 연료전지용 막-전극 어셈블리(MEA).A fuel cell membrane-electrode assembly (MEA) using the fuel cell catalyst of claim 12.
KR1020110062779A 2011-06-28 2011-06-28 Method for manufacturing catalyst for fuel cell KR101287891B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110062779A KR101287891B1 (en) 2011-06-28 2011-06-28 Method for manufacturing catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110062779A KR101287891B1 (en) 2011-06-28 2011-06-28 Method for manufacturing catalyst for fuel cell

Publications (2)

Publication Number Publication Date
KR20130001876A KR20130001876A (en) 2013-01-07
KR101287891B1 true KR101287891B1 (en) 2013-07-19

Family

ID=47834732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110062779A KR101287891B1 (en) 2011-06-28 2011-06-28 Method for manufacturing catalyst for fuel cell

Country Status (1)

Country Link
KR (1) KR101287891B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070360A (en) 2014-12-10 2016-06-20 서울대학교산학협력단 Metal-oxided catalyst for composite electrode coating oxide-based materials and method of complex electrode using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2954578B1 (en) 2013-01-08 2023-06-21 Audi AG Fuel cell catalyst treatment
KR101414560B1 (en) * 2013-01-09 2014-07-04 한화케미칼 주식회사 method for producing conductive film
KR101479636B1 (en) * 2013-04-08 2015-01-28 건국대학교 산학협력단 Nanocomposite catalyst for fuel cell and its preparing method
KR101468204B1 (en) * 2013-11-25 2014-12-01 한국화학연구원 The method for preparation of catalysts for the production of oxygenated carbon compound and production method of oxygenated carbon compound using thereof
CN103816894B (en) * 2014-02-17 2016-03-02 武汉科技大学 Doping type graphene-supported PtRu alloy nano eelctro-catalyst and preparation method thereof
KR101648336B1 (en) * 2014-04-30 2016-08-16 주식회사 나노솔루션 Methods for preparing thermally conductive carbon fillers
KR102277903B1 (en) * 2014-09-05 2021-07-15 삼성전자주식회사 Membrane electrode assembly and fuel cell using the same
FR3035800B1 (en) * 2015-05-06 2019-10-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives CATALYST SUPPORTED BY CARBON NANOTUBES AND GRAPHENE, AND PROCESS FOR PREPARING THE SAME
KR101945884B1 (en) * 2016-03-31 2019-02-12 한국에너지기술연구원 Chestnut-like carbon hybrid catalyst support for fuel cell and preparation method thereof
KR102052238B1 (en) * 2016-04-22 2019-12-04 주식회사 엘지화학 Method for manufacturing carbon carrior and carbon carrior manufactured by the method
CN105810973B (en) * 2016-05-18 2018-05-22 青岛墨金烯碳新材料科技有限公司 A kind of fuel cell graphite alkene gas diffusion membrane and preparation method thereof
CN107649099A (en) * 2017-11-15 2018-02-02 马卡信息科技(上海)有限公司 A kind of novel air purification removes the preparation method of formaldehyde activity charcoal with graphene
KR102323487B1 (en) 2017-12-26 2021-11-10 코오롱인더스트리 주식회사 Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
WO2019132281A1 (en) * 2017-12-26 2019-07-04 코오롱인더스트리 주식회사 Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
KR102238560B1 (en) * 2017-12-29 2021-04-08 한화솔루션 주식회사 Carbon based noble metal-transition metal alloy catalyst for high selectivity and preparation method of thereof
CN108855170B (en) * 2018-07-20 2019-07-30 常州大学 A kind of preparation method and nanocomposite of the graphene-based bismuth system nanocomposite of carnation sample
KR20210155796A (en) * 2021-12-06 2021-12-23 한국세라믹기술원 Carbon-based catalyst for fuel cell with excellent durability and method of manufacturing thereof, and polymer electrolyte fuel cell including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
WO2007149109A2 (en) 2005-09-01 2007-12-27 Seldon Technologies, Inc Large scale manufacturing of nanostructured material
EP2037517A1 (en) * 2007-09-11 2009-03-18 Korea Institute of Energy Research Method of manufacturing cellulose electrode for fuel cells using direct growth of carbon nanotubes and chemical vapor deposition for supporting of platinum nano-catalyst, cellulose electrode manufactured thereby, and use of cellulose fibers as fuel cell electrodes
EP2260939A1 (en) * 2009-05-20 2010-12-15 Korea Institute of Energy Research Carbon nanotube catalysts having metal catalyst nano-particles supported on inner channel of carbon nanotube and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
WO2007149109A2 (en) 2005-09-01 2007-12-27 Seldon Technologies, Inc Large scale manufacturing of nanostructured material
EP2037517A1 (en) * 2007-09-11 2009-03-18 Korea Institute of Energy Research Method of manufacturing cellulose electrode for fuel cells using direct growth of carbon nanotubes and chemical vapor deposition for supporting of platinum nano-catalyst, cellulose electrode manufactured thereby, and use of cellulose fibers as fuel cell electrodes
EP2260939A1 (en) * 2009-05-20 2010-12-15 Korea Institute of Energy Research Carbon nanotube catalysts having metal catalyst nano-particles supported on inner channel of carbon nanotube and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070360A (en) 2014-12-10 2016-06-20 서울대학교산학협력단 Metal-oxided catalyst for composite electrode coating oxide-based materials and method of complex electrode using the same

Also Published As

Publication number Publication date
KR20130001876A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
KR101287891B1 (en) Method for manufacturing catalyst for fuel cell
JP4775718B2 (en) Platinum nanocatalyst-supported carbon nanotube electrode and method for producing the same
EP1655266B1 (en) Method of preparing a carbon nanosphere having at least one opening, impregnated catalyst comprising the carbon nanosphere and fuel cell using this catalyst
US9502719B2 (en) Cathode catalysts for fuel cell application derived from polymer precursors
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
EP1553052A2 (en) Carbon nanotube and fuel cell using the same
US20090004552A1 (en) Nanowire supported catalysts for fuel cell electrodes
KR100774590B1 (en) Supported catalyst for fuel cell and method of producing the same
JP2002298861A (en) Fuel cell, fuel cell electrode and manufacutring method therefor
KR20120089858A (en) Catalyst with metal oxide doping for fuel cells
WO2009001964A1 (en) Electrode catalyst substrate, method for producing the same, and solid polymer fuel cell
KR20130039456A (en) Nitrogen doped core/shell nanostructure catalyst and its preparation method
Wang et al. Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation
CN111244484B (en) Preparation method of sub-nano platinum-based ordered alloy
CN103259023B (en) A kind of hydrogen cell electrode material preparation method
Kim et al. Preparation and electrocatalytic activities of platinum nanoclusters deposited on modified multi-walled carbon nanotubes supports
EP3020475B1 (en) Oxygen reducing catalyst, application thereof, and method for producing same
WO2011136186A1 (en) Electrode material
KR20130087248A (en) A process of preparing electrocatalysts for oxygen reduction reaction by using stabilizers
JP7387948B1 (en) fuel cell electrode catalyst
CN114122424B (en) Preparation method of hydrophilic carbon-based Ni nano ORR electrocatalyst
JP7093860B1 (en) Fuel cell electrode catalyst
KR100741139B1 (en) Carbon nanosphere having one or more open portion, method for preparing the same, carbon nanosphere impregnated catalyst using the carbon nanosphere and fuel cell adopting the catalyst
WO2024014136A1 (en) Fuel cell electrode catalyst
Guan et al. Multistage structural self-supported electrode via structural engineering on carbon nanofibers for efficient hydrogen evolution reaction at high current density

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee