KR102052238B1 - Method for manufacturing carbon carrior and carbon carrior manufactured by the method - Google Patents

Method for manufacturing carbon carrior and carbon carrior manufactured by the method Download PDF

Info

Publication number
KR102052238B1
KR102052238B1 KR1020160049434A KR20160049434A KR102052238B1 KR 102052238 B1 KR102052238 B1 KR 102052238B1 KR 1020160049434 A KR1020160049434 A KR 1020160049434A KR 20160049434 A KR20160049434 A KR 20160049434A KR 102052238 B1 KR102052238 B1 KR 102052238B1
Authority
KR
South Korea
Prior art keywords
carbon
metal catalyst
carbon composite
producing
hydrazine
Prior art date
Application number
KR1020160049434A
Other languages
Korean (ko)
Other versions
KR20170120908A (en
Inventor
김광현
조준연
김상훈
황교현
최란
이원균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160049434A priority Critical patent/KR102052238B1/en
Publication of KR20170120908A publication Critical patent/KR20170120908A/en
Application granted granted Critical
Publication of KR102052238B1 publication Critical patent/KR102052238B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 명세서는 탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계, 상기 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계 및 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법 및 이에 의하여 제조된 탄소 담지체에 관한 것이다.The present specification provides a method of preparing a carbon composite including carbon and a polymer, forming a metal catalyst using hydrazine on the surface of the carbon composite, and growing carbon nanotubes on the carbon composite. It relates to a production method and a carbon support produced thereby.

Description

탄소 담지체 제조방법 및 이에 의하여 제조된 탄소 담지체 {METHOD FOR MANUFACTURING CARBON CARRIOR AND CARBON CARRIOR MANUFACTURED BY THE METHOD}Method for manufacturing carbon support and carbon support produced by the same {METHOD FOR MANUFACTURING CARBON CARRIOR AND CARBON CARRIOR MANUFACTURED BY THE METHOD}

본 출원은 탄소 담지체 제조 방법 및 이에 의하여 제조된 탄소 담지체에 관한 것이다.The present application relates to a method for producing a carbon carrier and a carbon carrier produced thereby.

촉매의 담지체로 카본 블랙(Carbon black)이 일반적으로 사용되고 있다. 하지만 카본 블랙을 담지체로 사용한 경우에는 탄소의 부식으로 인한 내구성의 문제가 있다.Carbon black is generally used as a support for the catalyst. However, when carbon black is used as a support, there is a problem of durability due to corrosion of carbon.

이러한 문제점을 개선하기 위하여, 부식 저항성이 강항 결정성 탄소인 카본나노튜브(Carbon nanotube, CNT), 카본나노파이버(Carbon nanofiber, CNF), 카본나노케이지(Carbon nanocage, CNC) 등에 대한 활발한 연구가 진행되고 있다. 그러나, 이러한 결정성 탄소는 표면 발수성이 강하여 극성 용매에서 분산이 잘 되지 않는 문제점이 있다. 이러한 이유로 금속을 탄소 담지체에 코팅하는 과정에서 금속이 고르게 분산되지 않고, 뭉치게 되는 문제점이 있다.In order to improve this problem, active researches on carbon nanotube (CNT), carbon nanofiber (CNF), carbon nanocage (CNC), etc., which are corrosion resistant strong crystalline carbons, are conducted. It is becoming. However, such crystalline carbon has a problem in that it is difficult to disperse in a polar solvent because of strong surface water repellency. For this reason, there is a problem in that the metal is not evenly dispersed and agglomerated in the process of coating the metal on the carbon carrier.

한국 특허 공개 제10-2011-0057976호Korean Patent Publication No. 10-2011-0057976

본 출원은 탄소 담지체의 제조방법 및 이에 의하여 제조된 탄소 담지체를 제공한다.The present application provides a method for producing a carbon carrier and a carbon carrier produced thereby.

본 출원의 일 실시상태는 탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계, 상기 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계, 및 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법을 제공한다.An exemplary embodiment of the present application includes preparing a carbon composite including carbon and a polymer, forming a metal catalyst using hydrazine on the surface of the carbon composite, and growing carbon nanotubes on the carbon composite. It provides a method for producing a carbon carrier.

본 출원의 또 하나의 실시상태는 상기 탄소 담지체의 제조방법을 이용하여 제조된 탄소 담지체를 제공한다.Another embodiment of the present application provides a carbon carrier prepared by using the method for producing the carbon carrier.

본 출원에 기재된 실시상태에 따르면, 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성함으로써 탄소 복합체의 표면에 균일한 크기의 금속 촉매를 형성하는 효과가 있다. According to the exemplary embodiment described in the present application, by forming a metal catalyst using hydrazine on the surface of the carbon composite, there is an effect of forming a metal catalyst of uniform size on the surface of the carbon composite.

본 출원에 기재된 실시상태에 따르면 탄소나노튜브가 탄소 복합체에 고르게 성장된 탄소 담지체가 형성되는 효과가 있다.According to the exemplary embodiment described in the present application, there is an effect of forming a carbon support in which carbon nanotubes are evenly grown on a carbon composite material.

도 1 (a)는 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성한 탄소 복합체의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 1 (b)는 도 1의 1 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 나타낸 것이다.
도 1 (c)는 도 1의 2 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 나타낸 것이다.
도 2는 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 코팅한 탄소 복합체의 주사투과전자현미경(STEM) 이미지를 나타낸 것이다.
도 3은 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 코팅한 탄소 복합체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 4는 본 출원의 비교예 1에 따른 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 5는 본 출원의 실시예 1에 따른 탄소 담지체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 6은 본 출원의 실시예 1에 따른 탄소 담지체의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 7은 본 출원의 비교예 2에 따른 투과전자현미경(TEM) 이미지를 나타낸 것이다.
FIG. 1 (a) shows a scanning electron microscope (SEM) image of a carbon composite in which a metal catalyst is formed using hydrazine on the surface of the carbon composite according to the present application.
Figure 1 (b) shows the results of the energy dispersive X-ray spectroscopy (EDS) measurement in part 1 of FIG.
FIG. 1 (c) shows the results of energy dispersive X-ray spectroscopy (EDS) measurement in two parts of FIG. 1.
2 shows a scanning electron microscope (STEM) image of a carbon composite coated with a metal catalyst using hydrazine on the surface of the carbon composite according to the present application.
FIG. 3 shows a transmission electron microscope (TEM) image of a carbon composite coated with a metal catalyst using hydrazine on the surface of the carbon composite according to the present application.
4 shows a transmission electron microscope (TEM) image according to Comparative Example 1 of the present application.
Figure 5 shows a transmission electron microscope (TEM) image of the carbon carrier according to Example 1 of the present application.
Figure 6 shows a scanning electron microscope (SEM) image of the carbon carrier according to Example 1 of the present application.
7 shows a transmission electron microscope (TEM) image according to Comparative Example 2 of the present application.

본 명세서에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "contains" a certain component, this means that the component may further include other components, except for the case where there is no description to the contrary.

이하에서 본 출원에 대하여 상세히 설명한다.Hereinafter, the present application will be described in detail.

본 명세서의 일 실시상태는 탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계, 상기 탄소 복합체의 표면에 히드라진(hydrazine)을 이용하여 금속 촉매를 형성하는 단계, 및 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법을 특징으로 한다.An exemplary embodiment of the present specification comprises the steps of preparing a carbon composite including carbon and a polymer, forming a metal catalyst using hydrazine on the surface of the carbon composite, and growing carbon nanotubes on the carbon composite. Characterized in that the method for producing a carbon carrier comprising the step of.

본 명세서에 있어서 상기 탄소 복합체의 30% 내지 90% 는 탄소로 이루어질 수 있다. In the present specification, 30% to 90% of the carbon composite may be made of carbon.

본 명세서의 일 실시상태에 따르면 상기 탄소는 카본 블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 1종일 수 있다. 구체적으로, 상기 탄소는 카본 블랙일 수 있다.According to an exemplary embodiment of the present specification, the carbon is carbon black, carbon nanotubes (CNT), graphite, graphene, activated carbon, porous carbon, carbon fiber, and carbon nano. At least one of carbon nano wires may be used. Specifically, the carbon may be carbon black.

본 명세서의 일 실시상태에 따르면 상기 고분자는 폴리에틸렌이민일 수 있다. 상기 폴리에틸렌이민의 중량평균분자량은 700g/mol 내지 26,000g/mol일 수 있다. According to an exemplary embodiment of the present specification, the polymer may be polyethyleneimine. The weight average molecular weight of the polyethyleneimine may be 700g / mol to 26,000g / mol.

본 명세서의 일 실시상태에 따르면 상기 탄소 복합체는 폴리에틸렌이민이 코팅된 카본 블랙일 수 있다.According to an exemplary embodiment of the present specification, the carbon composite may be carbon black coated with polyethyleneimine.

본 명세서에 있어서, 상기 탄소 복합체의 표면에 히드라진을 이용하여 형성된 금속 촉매는 금속 촉매가 입자형태로 존재한다.In the present specification, the metal catalyst formed by using hydrazine on the surface of the carbon composite material has a metal catalyst in the form of particles.

본 명세서의 일 실시상태에 따르면 상기 금속 촉매는 니켈(Ni), 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu) 중 적어도 1종일 수 있다. 구체적으로, 상기 금속 촉매는 니켈(Ni)일 수 있다.According to an exemplary embodiment of the present specification, the metal catalyst is nickel (Ni), platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re) ), Palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), bismuth (Bi), tin (Sn), chromium (Cr), titanium (Ti) ), Gold (Au), cerium (Ce), silver (Ag), and copper (Cu). Specifically, the metal catalyst may be nickel (Ni).

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 탄소 복합체를 제조하는 단계 후에 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계를 포함한다. In the present specification, the forming of the metal catalyst using hydrazine on the surface of the carbon composite may include supporting the carbon composite in the metal catalyst precursor solution after preparing the carbon composite.

상기 금속촉매 전구체 용액의 금속촉매 함량은 5wt% 내지 25wt%일 수 있다. 금속촉매의 함량이 상기 범위를 만족할 경우, 금속촉매가 탄소 복합체 표면에 고르게 분포되며, 이후 탄소나노튜브 성장단계에서 탄소나노튜브의 성장이 균일하게 되는 효과가 있다. The metal catalyst content of the metal catalyst precursor solution may be 5wt% to 25wt%. When the content of the metal catalyst satisfies the above range, the metal catalyst is evenly distributed on the surface of the carbon composite, and thereafter, the growth of the carbon nanotubes is uniform in the carbon nanotube growth step.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계 후에 히드라진을 첨가하는 단계를 포함한다. In the present specification, forming a metal catalyst using hydrazine on the surface of the carbon composite material includes adding hydrazine after the carbon composite material is supported on the metal catalyst precursor solution.

상기 히드라진은 상기 용액 25ml를 기준으로, 0.5ml 내지 1.5ml 첨가되는 것이 바람직하다. The hydrazine is preferably added 0.5ml to 1.5ml based on 25ml of the solution.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 경우, 금속 촉매의 뭉침 현상을 완화하여, 탄소 복합체의 표면에 균일한 크기의 금속 촉매를 형성하는 효과가 있다.In the present specification, when the metal catalyst is formed on the surface of the carbon composite material by using hydrazine, the aggregation of the metal catalysts is alleviated, thereby forming a metal catalyst having a uniform size on the surface of the carbon composite material.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 히드라진이 첨가된 용액의 교반, 원심분리 및 건조를 통하여 얻어진 파우더를 수소 및 아르곤 분위기 하에서 열처리를 함으로써 수소 환원 반응을 통해 탄소 복합체 표면에 금속 촉매를 형성하는 단계를 포함한다. 상기 열처리는 60℃ 내지 80℃에서 이루어질 수 있다.In the present specification, the step of forming a metal catalyst using a hydrazine on the surface of the carbon composite is a hydrogen reduction reaction by heat-treating the powder obtained by stirring, centrifugation and drying of the solution to which the hydrazine is added under hydrogen and argon atmosphere Forming a metal catalyst on the surface of the carbon composite material. The heat treatment may be made at 60 ℃ to 80 ℃.

본 명세서에 있어서 상기 탄소 복합체의 표면에 형성된 금속 촉매의 평균 크기는 3nm 내지 5nm일 수 있다. 본 명세서에 있어서 상기 금속 촉매의 크기는 금속 촉매 입자의 평균 입경을 의미한다. In the present specification, the average size of the metal catalyst formed on the surface of the carbon composite may be 3 nm to 5 nm. In the present specification, the size of the metal catalyst means an average particle diameter of the metal catalyst particles.

본 명세서에 있어서, 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계는 화학기상증착법(CVD), 플라즈마 화학기상증착법(PECVD), 열 화학기상증착법(TCVD) 등이 사용될 수 있다. 구체적으로 화학기상증착법이 사용될 수 있다.In the present specification, the carbon nanotubes may be grown on the carbon composite by chemical vapor deposition (CVD), plasma chemical vapor deposition (PECVD), thermal chemical vapor deposition (TCVD), or the like. Specifically, chemical vapor deposition may be used.

본 명세서의 일 실시상태에 따르면 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계는 600℃ 내지 900℃에서 이루어진다. According to one embodiment of the present specification, growing the carbon nanotubes on the carbon composite is performed at 600 ° C. to 900 ° C.

본 명세서에 있어서 상기 탄소 복합체 상에 성장된 탄소나노튜브의 직경은 10nm 내지 50nm이다.In the present specification, the diameter of the carbon nanotubes grown on the carbon composite material is 10 nm to 50 nm.

본 명세서의 일 실시상태는 상기의 방법에 따라 제조된 탄소 담지체를 제공한다.An exemplary embodiment of the present specification provides a carbon carrier prepared according to the above method.

본 명세서의 일 실시상태에 따르면 상기의 방법에 따라 제조된 탄소 담지체는 전극으로 사용될 때 포어(pore) 형성이 용이하고, 내구성 및 전기전도도가 우수한 특징이 있다. According to the exemplary embodiment of the present specification, the carbon carrier prepared according to the above method is characterized in that pores are easily formed when used as an electrode, and have excellent durability and electrical conductivity.

본 명세서의 일 실시상태에 따르면, 상기 탄소 담지체는 슈퍼커패시터(super capacitor), 연료전지(fuel cell), 이차전지 등 다양한 분야에서 사용될 수 있다. According to one embodiment of the present specification, the carbon carrier may be used in various fields such as a super capacitor, a fuel cell, a secondary battery, and the like.

이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present disclosure may be modified in various other forms, and the scope of the present disclosure is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more fully describe the present specification to those skilled in the art.

실시예 1Example 1

제1 단계: 탄소 복합체의 제조First Step: Preparation of Carbon Composite

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. After dissolving 1 g of polyethyleneimine (Polyethyleneimine, Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added thereto, followed by stirring for 24 hours. Thereafter, the mixture was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine.

제2 단계: 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매 형성Second step: forming a metal catalyst using hydrazine on the surface of the carbon composite

5wt% 농도의 니켈(Ⅱ) 아세테이트(Ni(Ⅱ) acetate) 수용액에 0.1g의 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 하이드라진(hydrazine) 1ml를 넣고 교반 후, 감압필터하고, 수소 및 아르곤 분위기하에서 300℃로 열처리 하여 니켈(Ni)이 탄소 표면에 고르게 담지된 시료를 제조하였다. 0.1 g of polyethyleneimine-coated carbon black was added to an aqueous solution of nickel (II) acetate (Ni (II) acetate) at a concentration of 5wt% and stirred. Then, 1 ml of hydrazine (hydrazine) was added thereto, stirred, and filtered under reduced pressure, followed by heat treatment at 300 ° C. under an atmosphere of hydrogen and argon to prepare a sample in which nickel (Ni) was evenly supported on a carbon surface.

제2 단계 이후, 즉 본 발명에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성한 탄소 복합체의 주사전자현미경(SEM) 이미지를 도 1(a)에, 주사투과전자현미경(STEM) 이미지를 도 2에, 투과전자현미경(TEM) 이미지를 도 3에 나타내었다. The scanning electron microscope (SEM) image of the carbon composite after the second step, that is, the metal composite using the hydrazine on the surface of the carbon composite according to the present invention is shown in Fig. 1 (a), and the scanning electron microscope (STEM) image 2 and a transmission electron microscope (TEM) image are shown in FIG. 3.

도 1의 1 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 도 1(b)에 나타내었다. Energy dispersive X-ray spectroscopy (EDS) measurement results in part 1 of FIG. 1 are shown in FIG.

도 1의 2 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 도 1(c)에 나타내었다. 이를 통하여, 탄소 복합체의 표면에 니켈이 입자 형태로 형성됨을 확인할 수 있었다.Energy dispersive X-ray spectroscopy (EDS) measurement results in two parts of FIG. 1 are shown in FIG. Through this, it was confirmed that nickel is formed in the form of particles on the surface of the carbon composite.

제3 단계: 탄소 복합체에 탄소나노튜브 성장Step 3: grow carbon nanotubes on the carbon composite

상기 니켈이 탄소 표면에 고르게 담지된 시료 0.1g을 에틸렌 및 수소 분위기 하에서 700℃로 열처리 하였다. 상기 에틸렌 가스 및 수소 가스는 1:4의 비율로 흘려주었다. 0.1 g of the sample evenly supported on the carbon surface of the nickel was heat-treated at 700 ° C. under an ethylene and hydrogen atmosphere. The ethylene gas and hydrogen gas were flowed at a ratio of 1: 4.

비교예 1Comparative Example 1

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. 5wt% 농도의 니켈(II) 아세테이트(Ni(II) acetate) 수용액에 0.1g의 상기 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 수소 및 아르곤 분위기하에서 300℃로 열처리 하였다.After dissolving 1 g of polyethyleneimine (Polyethyleneimine, Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added thereto, followed by stirring for 24 hours. Thereafter, the mixture was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine. 0.1 g of the polyethylenimine-coated carbon black was added to an aqueous solution of nickel (II) acetate (Ni (II) acetate) at a concentration of 5 wt%, followed by stirring. Thereafter, heat treatment was performed at 300 ° C. under hydrogen and argon atmosphere.

비교예 2Comparative Example 2

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. 5wt% 농도의 니켈(II) 아세테이트(Ni(II) acetate) 수용액에 0.1g의 상기 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 히드라진(hydrazine) 1ml를 넣고 교반 후, 감압필터하고, 수소 및 아르곤 분위기하에서 300℃로 열처리 하여 니켈(Ni)이 탄소 표면에 고르게 담지된 시료를 제조하였다. 상기 니켈이 탄소 표면에 고르게 담지된 시료 0.1g을 에틸렌 및 수소 분위기 하에서 500℃로 열처리 하였다 상기 에틸렌 가스 및 수소 가스는 1:4의 비율로 흘려주었다.After dissolving 1 g of polyethyleneimine (Polyethyleneimine, Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added thereto, followed by stirring for 24 hours. Thereafter, the mixture was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine. 0.1 g of the polyethylenimine-coated carbon black was added to an aqueous solution of nickel (II) acetate (Ni (II) acetate) at a concentration of 5 wt%, followed by stirring. Thereafter, 1 ml of hydrazine was added thereto, stirred, and filtered under reduced pressure, followed by heat treatment at 300 ° C. under an atmosphere of hydrogen and argon to prepare a sample in which nickel (Ni) was evenly supported on a carbon surface. 0.1 g of the sample evenly supported on the carbon surface was heat-treated at 500 ° C. under an ethylene and hydrogen atmosphere. The ethylene gas and the hydrogen gas were flowed at a ratio of 1: 4.

본 출원의 비교예 1에 따른 투과전자현미경(TEM) 이미지를 도 4에 나타내었다. A transmission electron microscope (TEM) image according to Comparative Example 1 of the present application is shown in FIG. 4.

도 3과 도 4를 비교했을 때, 탄소 복합체 표면에 금속 촉매를 형성하는 과정에서 히드라진을 사용한 경우, 히드라진을 사용하지 않은 경우에 비하여 탄소 복합체의 표면에 니켈이 고르게 분포되어 형성된 것을 확인할 수 있다.3 and 4, when hydrazine is used in the process of forming a metal catalyst on the surface of the carbon composite, it can be seen that the nickel is evenly distributed on the surface of the carbon composite, as compared with the case where the hydrazine is not used.

본 출원의 실시예 1에 따른 탄소 담지체의 투과전자현미경(TEM) 이미지를 도 5에, 주사전자현미경(SEM) 이미지를 도 6에 나타내었다.A transmission electron microscope (TEM) image of the carbon carrier according to Example 1 of the present application is shown in FIG. 5, and a scanning electron microscope (SEM) image is shown in FIG. 6.

본 출원의 비교예 2에 따른 투과전자현미경(TEM) 이미지를 도 7에 나타내었다.A transmission electron microscope (TEM) image according to Comparative Example 2 of the present application is shown in FIG. 7.

도 5와 도 7을 비교했을 때, 본 출원의 실시예 1이 비교예 2에 비하여 탄소나노튜브의 성장이 잘 이루어졌음을 확인할 수 있다.When comparing FIG. 5 and FIG. 7, it can be seen that Example 1 of the present application is well grown in carbon nanotubes compared to Comparative Example 2.

Claims (7)

탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계;
상기 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계; 및
상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하고,
상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 탄소 복합체를 제조하는 단계 후에 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계, 상기 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계 후에 히드라진을 첨가하는 단계 및 상기 히드라진이 첨가된 용액의 교반, 원심분리 및 건조를 통하여 얻어진 파우더를 수소 및 아르곤 분위기 하에서 열처리를 함으로써 수소 환원 반응을 통해 탄소 복합체 표면에 금속 촉매를 형성하는 단계를 포함하는 것인 탄소 담지체의 제조방법.
Preparing a carbon composite including carbon and a polymer;
Forming a metal catalyst using hydrazine on the surface of the carbon composite material; And
Growing carbon nanotubes on the carbon composite;
Forming a metal catalyst using hydrazine on the surface of the carbon composite may include supporting the carbon composite in a metal catalyst precursor solution after preparing the carbon composite, and after supporting the carbon composite in the metal catalyst precursor solution Adding a hydrazine and forming a metal catalyst on the surface of the carbon composite material through a hydrogen reduction reaction by heat-treating the powder obtained through stirring, centrifugation and drying of the hydrazine-added solution under hydrogen and argon atmosphere. Method for producing a carbon carrier.
청구항 1에 있어서,
상기 탄소는 카본 블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 1종을 포함하는 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The carbon is at least one of carbon black, carbon nanotubes (CNT), graphite, graphene, graphene, activated carbon, mesoporous carbon, carbon fiber, and carbon nano wire. A method for producing a carbon carrier, comprising one type.
청구항 1에 있어서,
상기 고분자는 폴리에틸렌이민인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The polymer is a method for producing a carbon carrier, characterized in that the polyethyleneimine.
청구항 1에 있어서,
상기 탄소 복합체는 폴리에틸렌이민이 코팅된 카본 블랙인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The carbon composite is a method for producing a carbon carrier, characterized in that the polyethyleneimine-coated carbon black.
청구항 1에 있어서,
상기 금속 촉매는 니켈(Ni), 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu) 중 적어도 1종을 포함하는 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The metal catalyst is nickel (Ni), platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), bismuth (Bi), tin (Sn), chromium (Cr), titanium (Ti), gold (Au), cerium At least one of (Ce), silver (Ag) and copper (Cu) is a method for producing a carbon carrier.
청구항 1에 있어서,
상기 탄소 복합체에 탄소 나노튜브를 성장시키는 단계는 600℃ 내지 900℃인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The growing carbon nanotubes in the carbon composite is a method for producing a carbon carrier, characterized in that 600 ℃ to 900 ℃.
청구항 1 내지 6 중 어느 한 항의 탄소 담지체 제조 방법에 따라 제조된 탄소 담지체. Carbon support prepared according to the method for producing a carbon support according to any one of claims 1 to 6.
KR1020160049434A 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method KR102052238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Publications (2)

Publication Number Publication Date
KR20170120908A KR20170120908A (en) 2017-11-01
KR102052238B1 true KR102052238B1 (en) 2019-12-04

Family

ID=60382838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Country Status (1)

Country Link
KR (1) KR102052238B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501792B1 (en) * 2021-11-17 2023-02-22 신광화학공업(주) Manufacturing method of activated carbon for air purifier filter with surface modification treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232409A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Carrier for electrode catalyst and method for producing the same, and fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728611B1 (en) * 2005-11-25 2007-06-14 주식회사 진우엔지니어링 Catalyst for fuel cell electrode and method of preparing the same
KR101144107B1 (en) 2009-11-25 2012-05-24 서울대학교산학협력단 Synthesis methods of Nano-sized Nickel or Palladium on a Carbon support
KR101287891B1 (en) * 2011-06-28 2013-07-19 (주) 디에이치홀딩스 Method for manufacturing catalyst for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232409A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Carrier for electrode catalyst and method for producing the same, and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501792B1 (en) * 2021-11-17 2023-02-22 신광화학공업(주) Manufacturing method of activated carbon for air purifier filter with surface modification treatment

Also Published As

Publication number Publication date
KR20170120908A (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Wang et al. Tuning nanowires and nanotubes for efficient fuel‐cell electrocatalysis
Shao et al. Platinum group nanowires for efficient electrocatalysis
Prati et al. Gold on carbon: one billion catalysts under a single label
Bedolla-Valdez et al. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation
KR101287891B1 (en) Method for manufacturing catalyst for fuel cell
Ulas et al. Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media
US20170007986A9 (en) Compositions of nanoparticles on solid surfaces
JP2013514164A (en) Nitrogen-doped carbon nanotubes with metal nanoparticles
US20170174518A1 (en) Carbon nanostructures and networks produced by chemical vapor deposition
Li et al. Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells
KR20180068007A (en) Production method of Pt alloy catalyst using protective coating of carbon layer and ozone
US20110082034A1 (en) Nanotube-nanohorn complex and method of manufacturing the same
KR20160022156A (en) Carrier-nano particles complex and method for fabricating the same
Li et al. Controlled synthesis of high metal-loading, Pt-based electrocatalysts with enhanced activity and durability toward oxygen reduction reaction
Ma et al. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method
Wang et al. Pt Nanoparticles Loaded on W18O49 Nanocables–rGO Nanocomposite as a Highly Active and Durable Catalyst for Methanol Electro-Oxidation
KR102052238B1 (en) Method for manufacturing carbon carrior and carbon carrior manufactured by the method
Gil et al. Synthesis and characterization of nitrogen-doped carbon nanospheres decorated with Au nanoparticles for the liquid-phase oxidation of glycerol
JP4919699B2 (en) Method for producing metal fine particle-carbon composite
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite
KR102459845B1 (en) Method for preparing core-shell catalyst comprising platinum layer using surface hydrogen oxidation reaction
Khiriya et al. Development of Fe/Ru Bimetallic Nanoparticles for Promising Application in the Selective Synthesis of SWNTs
KR102337247B1 (en) Metal nanoparticle-carbon composites and preparation method thereof
KR101629083B1 (en) Catalysts including carbon-nitrogen-oxygen structure and Method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant