KR101284664B1 - Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom - Google Patents

Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom Download PDF

Info

Publication number
KR101284664B1
KR101284664B1 KR1020100140183A KR20100140183A KR101284664B1 KR 101284664 B1 KR101284664 B1 KR 101284664B1 KR 1020100140183 A KR1020100140183 A KR 1020100140183A KR 20100140183 A KR20100140183 A KR 20100140183A KR 101284664 B1 KR101284664 B1 KR 101284664B1
Authority
KR
South Korea
Prior art keywords
thin film
deposition
metal
substrate
nme
Prior art date
Application number
KR1020100140183A
Other languages
Korean (ko)
Other versions
KR20120078025A (en
Inventor
박정우
김준영
조보연
유경희
채수두
김윤수
조윤정
최한메
황기현
Original Assignee
삼성전자주식회사
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 주식회사 한솔케미칼 filed Critical 삼성전자주식회사
Priority to KR1020100140183A priority Critical patent/KR101284664B1/en
Publication of KR20120078025A publication Critical patent/KR20120078025A/en
Application granted granted Critical
Publication of KR101284664B1 publication Critical patent/KR101284664B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Abstract

본 발명은 유기금속 화학 기상 증착법(MOCVD) 및 원자층 증착법(ALD)에 의하여 우수한 박막 특성, 두께, 단차피복성을 확보할 수 있으며, 휘발성이 높고 실온에서 액체 상태로 존재하며 열적으로 안정한 실리콘이 함유된 신규한 단일 유기금속 전구체 화합물을 제공한다.
또한 본 발명은 상기 유기 금속 전구체 화합물을 이용하여 유기금속 화학 증착법(MOCVD, Metal Organic Chemical Vapor Deposition) 또는 원자층 증착법(ALD, Atomic Layer Deposition)을 통하여 금속 산화물 또는 금속-규소 산화물 박막을 형성하는 박막 증착 방법을 제공한다.
The present invention can secure excellent thin film properties, thickness, and step coverage by organometallic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD), and has high volatility, a liquid state at room temperature, and thermally stable silicon. It provides a novel single organometallic precursor compound contained.
In addition, the present invention is a thin film for forming a metal oxide or metal-silicon oxide thin film by using the organic metal precursor compound (MOCVD, Metal Organic Chemical Vapor Deposition) or Atomic Layer Deposition (ALD) Provided is a deposition method.

Description

실릴아민 리간드가 포함된 유기금속화합물, 및 이를 전구체로 이용한 금속 산화물 또는 금속-규소 산화물의 박막 증착 방법{Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom}Organic metal compounds with silylamine ligands, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom}

본 발명은 반도체 소자에 적용되는 4족 화합물들을 이용한 금속 산화막과 금속-규소 산화막 증착용 유기금속 전구체 및 이를 이용한 박막 증착 방법에 관한 것으로 보다 상세하게는 유기금속 화학 증착법(MOCVD, Metal Organic Chemical Vapor Deposition) 및 원자층 증착법(ALD, Atomic Layer Deposition)을 통하여 금속 산화막과 금속-규소 산화막 박막 증착에 사용되는 유기금속 전구체 화합물과 이를 이용하여 박막을 증착시키는 방법에 관한 것이다.
The present invention relates to an organic metal precursor for depositing a metal oxide film and a metal-silicon oxide film using group 4 compounds applied to a semiconductor device, and a thin film deposition method using the same. More specifically, the organic metal chemical vapor deposition method (MOCVD) And an organometallic precursor compound used for depositing a metal oxide film and a metal-silicon oxide film through Atomic Layer Deposition (ALD) and a method of depositing a thin film using the same.

최근 들어 반도체 회로가 미세화, 고집적화됨에 따라 모스(MOS) 트랜지스터의 게이트 유전막, 케패시터의 유전막, 비휘발성 메모리 장치의 게이트 유전막 등에 고유전율을 갖는 물질을 사용하여 소자의 성능을 향상시키고자 하는 요구가 증대되고 있다. 특히, 게이트 유전막으로는 HfO2, DRAM 의 캐패시터 유전막으로는 ZrO2및 ZrO2/Al2O3 등 고유전율의 유전막을 적용한 제품이 출시되고 있고, 이 밖에도 Nb2O5,Ta2O5,TiO2 등의 고유전물질을 적용하고자 하는 연구가 진행되고 있다. 특히 최근 들어 ZrO2 및 HfO2 박막 내에 실리콘이 도핑된 금속-실리케이트(HfSiOx,ZrSiOx) 박막에 관심이 증대하고 있는데(Thin Solid Films 516 (2008) 1563), 이는 금속-실리케이트 박막이 상대적으로 높은 유전 상수를 유지하면서도, 누설 전류 특성이 우수하고 낮은 이동성 저하 등의 특성이 보고되어 있어(Applied Surface Science 254 (2008) 6127) 비활성 메모리 소자의 유전막으로서의 적용성에 대한 관심이 기대되고 있기 때문이다. Recently, as semiconductor circuits have been miniaturized and highly integrated, there is a demand for improving the performance of devices using materials having high dielectric constants such as gate dielectric films of MOS transistors, capacitor dielectric films, and gate dielectric films of nonvolatile memory devices. It is increasing. In particular, products employing high dielectric constant dielectric films such as HfO 2 as a gate dielectric film and ZrO 2 and ZrO 2 / Al 2 O 3 as a capacitor dielectric film of DRAM have been released. In addition, Nb 2 O 5 , Ta 2 O 5 , Research into applying high dielectric materials such as TiO 2 is underway. Especially recently ZrO 2 and HfO 2 There is a growing interest in metal-silicate (HfSiO x , ZrSiO x ) thin films doped with silicon in thin films (Thin Solid Films 516 (2008) 1563), which shows that while metal-silicate thin films maintain relatively high dielectric constants, This is because excellent current characteristics and low mobility deterioration have been reported (Applied Surface Science 254 (2008) 6127), and interest in applicability as a dielectric film of an inactive memory device is expected.

금속-실리케이트 박막을 형성하기 위해서 기존의 연구 그룹들은 주로 각기 다른 두 가지 전구체 화합물(Hf(NEt2)4/SiH(NEt2)3,Hf(NEt2)4/Si(OnBu)4,Hf(OtBu)4/SiH4,Hf(NEt2)4/tBuMe2SiOH,Hf(NO3)4/(OtBu)3SiOH,Hf(NMeEt)4/HSi(NMe2)3,Hf(NMeEt)4/H2Si(NMe2)2,Hf(NEt2)4/Si(NMe2)4)을 사용하는 방법을 연구하여 왔다. (Polyhedron 24 (2005) 3066; J. Vac. Sci. Technol. A, Vol. 22, No. 4, 1175; Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 1824; Journal of Non-Crystalline Solids 353 (2007) 1172). 그러나 두 가지 전구체를 사용하여 박막을 얻는 방법은 두 전구체간 휘발성과 분해되는 온도가 서로 달라 공정온도의 설정이 용이하지 않아 균일 조성비의 막을 형성하기 어렵고, 특히 종/횡비가 높은 구조의 경우 균일한 조성을 유지하는데 어려운 단점을 가지고 있다. 한편, 규소가 포함된 단일 전구체 화합물((Hf(thd)2(N(SiMe3)2)2,Hf(thd)2(OSiMe3)2,Hf(thd)2(OSitBuMe2)2,Zr(acac)2(OSiMe3)2),Hf(N(SiMe2H)2)4)을 사용하여 금속-규소 산화물에 대한 박막 증착에 대한 연구도 보고되고 있다.(Chem. Vap. Deposition 2002, 8, No.4, 171; Inorganica Chimica Acta 362 (2009) 385). 그러나 현재까지 알려진 규소가 포함된 단일 전구체 화합물들은 실온에서 고체이거나 낮은 휘발성과 열 안정성이 떨어지는 단점을 가지고 있어 양산 공정에 적용하는 데는 한계를 가지고 있었다. In order to form metal-silicate thin films, existing research groups mainly use two different precursor compounds (Hf (NEt 2 ) 4 / SiH (NEt 2 ) 3 , Hf (NEt 2 ) 4 / Si (O n Bu) 4 ,). Hf (O t Bu) 4 / SiH 4 , Hf (NEt 2 ) 4 / t BuMe 2 SiOH, Hf (NO 3 ) 4 / (O t Bu) 3 SiOH, Hf (NMeEt) 4 / HSi (NMe 2 ) 3 , Hf (NMeEt) 4 / H 2 Si (NMe 2 ) 2 , Hf (NEt 2 ) 4 / Si (NMe 2 ) 4 ) has been studied. (Polyhedron 24 (2005) 3066; J. Vac. Sci. Technol. A, Vol. 22, No. 4, 1175; Nucl. Instr. And Meth. In Phys. Res. B 266 (2008) 1824; Journal of Non Crystalline Solids 353 (2007) 1172). However, the method of obtaining a thin film using two precursors is difficult to set a process temperature because the volatility and decomposition temperature between the two precursors are different, and it is difficult to form a film having a uniform composition ratio, especially in a structure having a high aspect ratio. It has the disadvantage of being difficult to maintain the composition. Meanwhile, a single precursor compound containing silicon ((Hf (thd) 2 (N (SiMe 3 ) 2 ) 2 , Hf (thd) 2 (OSiMe 3 ) 2 , Hf (thd) 2 (OSi t BuMe 2 ) 2, A study of thin film deposition on metal-silicon oxides using Zr (acac) 2 (OSiMe 3 ) 2 ), Hf (N (SiMe 2 H) 2 ) 4 ) has also been reported (Chem. Vap. Deposition 2002). , 8, No. 4, 171; Inorganica Chimica Acta 362 (2009) 385). However, the single precursor compounds containing silicon known to date have a disadvantage of being solid at room temperature or having low volatility and poor thermal stability, and thus have limitations in the production process.

따라서 새로운 형태의 전구체 화합물들은 앞서 언급한 규소가 포함된 단일 전구체 화합물들과 달리 넓은 공정 온도 (200 ~ 450 ℃) 조건에서 양질의 금속 산화물 및 규소가 포함된 금속 산화물과 같은 세라믹 박막 증착이 가능한 전구체 화합물일 필요가 있다.
Therefore, the new types of precursor compounds are capable of depositing ceramic thin films such as high-quality metal oxides and metal oxides containing silicon at a wide process temperature (200 to 450 ° C.), unlike the single precursor compounds containing silicon mentioned above. It needs to be a compound.

따라서, 본 발명은 상기한 같은 필요성에 부응하기 위하여 안출된 것으로, 유기금속 화학 기상 증착법(MOCVD) 및 원자층 증착법(ALD)에 의하여 우수한 박막 특성, 두께, 단차피복성을 확보할 수 있으며, 휘발성이 높고 실온에서 액체 상태로 존재하며 열적으로 안정한 실리콘이 함유된 단일 유기금속 전구체 화합물을 제공하는데 본 발명의 목적이 있다. Accordingly, the present invention has been made to meet the above-mentioned needs, and by the organometallic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD) it is possible to ensure excellent thin film properties, thickness, step coverage, volatile It is an object of the present invention to provide a single organometallic precursor compound which contains this high, silicon at room temperature liquid phase and which is thermally stable.

또한 상기 유기 금속 전구체 화합물을 이용하여 유기금속 화학 증착법(MOCVD, Metal Organic Chemical Vapor Deposition) 또는 원자층 증착법(ALD, Atomic Layer Deposition)을 통하여 금속 산화물 또는 금속-규소 산화물 박막을 형성하는 박막 증착 방법을 제공하는데 본 발명의 또 다른 목적이 있다. In addition, a thin film deposition method for forming a metal oxide or metal-silicon oxide thin film using the organic metal precursor compound (MOCVD, Metal Organic Chemical Vapor Deposition) or Atomic Layer Deposition (ALD) It is another object of the present invention to provide.

상기한 목적을 달성하기 위하여 본 발명은 반도체 소자에 적용되는 금속 산화물 또는 금속-규소 산화물 박막을 증착하는데 사용되는 유기금속 전구체 화합물로서 하기 화학식 1로 정의되는 유기 금속 전구체 화합물을 제공한다.
In order to achieve the above object, the present invention provides an organometallic precursor compound defined by Formula 1 as an organometallic precursor compound used to deposit a metal oxide or metal-silicon oxide thin film applied to a semiconductor device.

<화학식 1>&Lt; Formula 1 >

Figure 112010088013780-pat00001
Figure 112010088013780-pat00001

상기 화학식 1에서 M은 Si, Ge, Ti, Zr, Hf에서 선택된 하나이고, L은 할라이드기, 탄소수 1 내지 6의 알킬기, 또는 싸이클로펜타디에닐기(cyclopentadienyl)이며, R1 내지 R6는 각각 같거나 다른 것으로서 수소, 탄소수 1내지 6의 알킬기 또는 SiR12R13R14 중에서 선택되며, 이때 R12~R14는 각각 같거나 다른 것으로서 수소 또는 탄소수 1내지 6의 알킬기이고, x는 0~3의 정수이다. In Formula 1, M is one selected from Si, Ge, Ti, Zr, and Hf, L is a halide group, an alkyl group having 1 to 6 carbon atoms, or a cyclopentadienyl group (cyclopentadienyl), and each of R 1 to R 6 is the same. Or alternatively hydrogen, an alkyl group of 1 to 6 carbon atoms or SiR 12 R 13 R 14 , wherein R 12 to R 14 are the same or different and each of hydrogen or an alkyl group of 1 to 6 carbon atoms, x is 0 to 3 Is an integer.

화학식 1에서 제공하는 화합물은 분자 자체에 Si를 함유하는 리간드가 존재할 뿐만 아니라 오존 및 물들의 산화성 화합물에 쉽게 산화되어 SiO2막을 형성시킬 수 있는 실릴아민(silylamine) 리간드를 포함하고 있기 때문에 규소를 포함하는 금속-규소 산화물을 CVD 및 ALD등의 방법에 의해 형성시킬 수 있다. The compound represented by Formula 1 contains silicon because not only does the ligand contain Si in the molecule itself but also contains a silylamine ligand which can be easily oxidized in the oxidizing compound of ozone and water to form a SiO 2 film. The metal-silicon oxide can be formed by methods such as CVD and ALD.

상기 화학식 1로 표현되는 유기금속 전구체 화합물 중에서 L이 할라이드, 특히 Cl로 표현되는 하기 화학식 2로 표현되는 유기금속 전구체 화합물은 Cl기가 좋은 이탈기로 작용하여 물과의 반응성을 높일 수 있고, 박막 증착시 전기 음성도가 큰 Cl기가 있어 표면 흡착율을 높여 박막의 성장속도 증가를 기대할 수 있으므로 유기금속 전구체 화합물로 바람직하다.
Among the organometallic precursor compounds represented by Formula 1, L is a halide, in particular, the organometallic precursor compound represented by Formula 2 represented by Cl may increase the reactivity with water by acting as a leaving group having a good Cl group, and during thin film deposition Since Cl has a large electronegativity, the surface adsorption rate can be increased, and thus the growth rate of the thin film can be expected, which is preferable as the organometallic precursor compound.

<화학식 2><Formula 2>

Figure 112010088013780-pat00002
Figure 112010088013780-pat00002

상기 화학식 2에서 M, R1내지 R6과 x는 상기에서 정의한 것과 같다.In Formula 2, M, R 1 to R 6 and x are the same as defined above.

상기 화학식 1로 표현되는 유기금속 전구체 화합물 중에서 L이 알킬기, 특히 메틸기로 표현되는 하기 화학식 3으로 표현되는 유기금속 전구체 화합물은 비극성 그룹인 메틸그룹이 도입되어 분자간 인력을 줄여 주어 휘발성을 향상시키고, 끓는점은 낮추어 보다 원활한 전구체 공급을 가능하게 하여 유기금속 전구체 화합물로 바람직하다. 또한 메틸기는 성장하는 박막표면의 -O- 나 OH 그룹과 쉽게 반응하여 박막 표면에서의 흡착율을 높여 박막의 성장율을 높일 수 있는 장점을 가지고 있다.
Among the organometallic precursor compounds represented by Chemical Formula 1, L is an alkyl group, in particular, an organometallic precursor compound represented by Chemical Formula 3 represented by a methyl group, a non-polar methyl group is introduced to reduce intermolecular attraction, thereby improving volatility, and a boiling point. It is preferred as the organometallic precursor compound by lowering it to enable more smooth precursor supply. In addition, the methyl group has an advantage of increasing the growth rate of the thin film by increasing the adsorption rate on the surface of the thin film by easily reacting with -O- or OH group on the surface of the growing thin film.

<화학식 3><Formula 3>

Figure 112010088013780-pat00003
Figure 112010088013780-pat00003

상기 화학식 3에서 M, R1내지 R6과 x는 상기에서 정의한 것과 같다. In Formula 3, M, R 1 to R 6 and x are the same as defined above.

상기 화학식 1로 표현되는 유기금속 전구체 화합물 중에서 열적 안정성을 향상시켜 공정온도를 넓게 할 수 있게 하기 위해서는 L을 싸이클로펜타디에닐기, 특히 알킬싸이클로펜타디에닐로 치환한 하기 화학식 4로 표현되는 유기금속 전구체 화합물이 바람직하다. 싸이클로펜타디에닐기는 금속과의 강한 결합력을 통하여 전구체의 열적안정성을 향상시켜 화학기상증착이나 원자층 증착공정에서 박막 증착 온도를 높일 수 있는 장점을 가지고 있다.In order to improve the thermal stability among the organometallic precursor compounds represented by Chemical Formula 1 and to increase the process temperature, the organometallic precursor represented by Chemical Formula 4 in which L is substituted with a cyclopentadienyl group, particularly an alkyl cyclopentadienyl Compounds are preferred. Cyclopentadienyl group has the advantage of improving the thermal stability of the precursor through a strong bonding force with the metal to increase the thin film deposition temperature in chemical vapor deposition or atomic layer deposition process.

<화학식 4>&Lt; Formula 4 >

Figure 112010088013780-pat00004
Figure 112010088013780-pat00004

상기 화학식 4에서 M, R1내지 R6과 x는 화학식 1에서 정의된 것과 같으며, R7내지 R11은 각각 같거나 다른 것으로서 수소, 탄소수 1내지 6의 알킬기, 또는 SiR12R13R14 중에서 선택되며, 이때 R12~R14는 각각 같거나 다른 것으로서 수소 또는 탄소수 1내지 6의 알킬기이다. In Formula 4, M, R 1 to R 6 and x are the same as defined in Formula 1, and R 7 to R 11 are the same as or different from each other, hydrogen, an alkyl group having 1 to 6 carbon atoms, or SiR 12 R 13 R 14 Wherein R 12 to R 14 are the same or different and each is hydrogen or an alkyl group having 1 to 6 carbon atoms.

본 발명에 따른 바람직한 전구체 화합물의 구체적인 예를 제시하면 다음과 같다. Specific examples of preferred precursor compounds according to the present invention are as follows.

1. ClHf(NMeSiMe3)3 ClHf (NMeSiMe 3 ) 3

2. ClHf(NEtSiMe3)3 ClHf (NEtSiMe 3 ) 3

3. MeHf(NMeSiMe3)3 3.MeHf (NMeSiMe 3 ) 3

4. MeZr(NEtSiMe3)3 4.MeZr (NEtSiMe 3 ) 3

5. MeHf(NEtSiMe3)3 5.MeHf (NEtSiMe 3 ) 3

6. Cp(NMe2)2Hf(NMeSiMe3)6.Cp (NMe 2 ) 2 Hf (NMeSiMe 3 )

7. Cp(NMe2)2Zr(NEtSiMe3)7.Cp (NMe 2 ) 2 Zr (NEtSiMe 3 )

8. Cp(NMe2)2Hf(NEtSiMe3)8.Cp (NMe 2 ) 2 Hf (NEtSiMe 3 )

9. (Me3Si)CpHf(NMe2)3 9. (Me 3 Si) CpHf (NMe 2 ) 3

10. (Me2HSi)CpHf(NMe2)3 10. (Me 2 HSi) CpHf (NMe 2 ) 3

상기 식에서 Zr은 지르코늄, Hf는 하프늄, Et은 에틸기, Me은 메틸기, Cp는 사이클로펜타디에닐기를 각각 나타낸다.
In the formula, Zr represents zirconium, Hf represents hafnium, Et represents ethyl group, Me represents methyl group, and Cp represents cyclopentadienyl group.

전술한 본 발명에 따른 화학식 1로 표현되는 금속 산화물과 금속-규소 산화물 박막 증착용 유기금속 전구체 화합물은 다양한 방법에 의해 제조될 수 있다. 그 중에서 일 예를 들면 하기 반응식 1로 나타낼 수 있다.
The above-described organometallic precursor compound for metal oxide and metal-silicon oxide thin film deposition represented by Chemical Formula 1 according to the present invention may be prepared by various methods. Among them, for example, it can be represented by Scheme 1 below.

<반응식 1><Reaction Scheme 1>

Figure 112010088013780-pat00005
Figure 112010088013780-pat00005

상기 반응식 1에서 M은 Si, Ge, Ti, Zr, Hf에서 선택되어진 것이고, L은 할라이드기, 탄소수 1 내지 6의 알킬기 또는 싸이클로펜타디에닐기 중에서 선택되며, R3 내지 R6는 각각 같거나 다른 것으로서 수소, 또는 탄소수 1내지 6의 알킬기 중에서 선택된다. 또한, 상기 AM은 리튬(Li) 또는 소듐(Na) 금속 양이온을 의미한다. In Scheme 1, M is selected from Si, Ge, Ti, Zr, and Hf, L is selected from a halide group, an alkyl group having 1 to 6 carbon atoms, or a cyclopentadienyl group, and R 3 to R 6 are each the same or different. And hydrogen or an alkyl group having 1 to 6 carbon atoms. In addition, AM means lithium (Li) or sodium (Na) metal cation.

반응식 1에 의해 유기금속 전구체 화합물을 제조함에 있어서, 용매로는 약한 극성을 가진 다이에틸에테르(diehtylether), 테트라하이드로퓨란(tetrahydrofuran) 혹은 톨루엔(toluene) 그리고 비극성 용매인 헥산(hexane) 등을 사용할 수 있다. In preparing the organometallic precursor compound according to Scheme 1, diethyl ether, tetrahydrofuran or toluene having a weak polarity, and hexane, a nonpolar solvent, may be used as a solvent. have.

화학식 4의 화합물을 제조하는 과정의 일예를 나타내면 하기 반응식 2와 같다.
An example of a process of preparing the compound of Formula 4 is shown in Scheme 2 below.

<반응식 2><Reaction Scheme 2>

Figure 112010088013780-pat00006
Figure 112010088013780-pat00006

상기 반응식 2에서 M은 Si, Ge, Ti, Zr, Hf에서 선택된 하나이고, R1 내지 R11는 각각 같거나 다른 것으로서 수소, 또는 탄소수 1내지 6의 알킬기 중에서 선택된다. In Scheme 2, M is one selected from Si, Ge, Ti, Zr, and Hf, and R 1 to R 11 are each the same or different, and are selected from hydrogen or an alkyl group having 1 to 6 carbon atoms.

상기 화학식 4의 유기금속 전구체 화합물을 제조함에 있어서, 용매로는 비극성 용매인 헥산(hexane) 또는 약한 극성을 가지는 톨루엔(toluene) 용매를 사용할 수 있다.In preparing the organometallic precursor compound represented by Chemical Formula 4, hexane, which is a nonpolar solvent, or a toluene solvent having a weak polarity, may be used as the solvent.

본 발명의 박막 증착 방법은 상기에서 얻어진 유기금속 전구체 화합물을 이용하여 기판상에 금속 박막, 금속 산화물 박막 또는 금속-규소 산화물 박막을 형성하는 것이다. 이때, 박막 증착 방법으로는 특별히 한정하지는 않으나, 가장 일반적으로 사용되는 방법인 원자층 증착법(Atomic Layer Deposition, ALD) 또는 유기 금속 화학 증착법(Metal Organic Chemical Vapor Deposition, MOCVD)을 사용할 수 있다. The thin film deposition method of the present invention is to form a metal thin film, a metal oxide thin film or a metal-silicon oxide thin film on a substrate using the organometallic precursor compound obtained above. In this case, the thin film deposition method is not particularly limited, but the most commonly used method may be atomic layer deposition (ALD) or metal organic chemical vapor deposition (MOCVD).

이 때, 본 발명에 따른 상기 금속 전구체 화합물을 사용하여 기판상에 증착할 때, 증착 온도는 100~700 ℃인 것이 바람직하다. 증착 온도에 따라 금속 규소 산화막 내 규소 함유량을 조절하는 것이 가능하다. 상기 유기금속 전구체 화합물을 기판상에 이동시키는 전달 방식은 특별히 한정하지 않으나, 휘발된 기체를 이송시키는 방식, 직접 액체 주입 (DLI : Direct Liquid Injection) 방식 또는 전구체 화합물을 유기 용매에 녹여 이송하는 액체 이송방식 등을 선택하여 사용할 수 있다.At this time, when depositing on a board | substrate using the said metal precursor compound which concerns on this invention, it is preferable that deposition temperature is 100-700 degreeC. It is possible to adjust the silicon content in the metal silicon oxide film according to the deposition temperature. The delivery method for moving the organometallic precursor compound on the substrate is not particularly limited, but a method of transporting a volatilized gas, a direct liquid injection (DLI) method, or a liquid transport in which the precursor compound is dissolved in an organic solvent and transported The method can be selected and used.

본 발명에 있어서, 상기 유기금속 전구체 화합물을 기판상에 이동시키기 위한 운송가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He) 또는 수소(H2) 중에서 선택된 하나 이상을 사용할 수 있다. In the present invention, one or more selected from argon (Ar), nitrogen (N 2 ), helium (He) or hydrogen (H 2 ) may be used as a transport gas or diluent gas for moving the organometallic precursor compound on a substrate. Can be.

또한, 본 발명에 있어서, 상기 유기금속 전구체 화합물을 사용하여 기판상에 증착시 열에너지 또는 플라즈마를 이용하거나, 또는 기판상에 바이어스를 인가하는 방법을 사용할 수도 있다. In addition, in the present invention, the organometallic precursor compound may be used to use thermal energy or plasma during deposition on a substrate, or a method of applying a bias on the substrate.

또한, 본 발명에 있어서 기판상에 금속 산화물 박막 (예, HfO2, ZrO2, TiO2, SiO2) 이나 금속-규소 산화막 박막 (예, HfSiOx, ZrSiOx, TiSiOx)을 증착하기 위한 반응가스로는 수증기(H2O), 산소(O2), 오존(O3) 등을 사용할 수 있다. In addition, in the present invention, a reaction for depositing a metal oxide thin film (eg, HfO 2 , ZrO 2 , TiO 2 , SiO 2 ) or a metal-silicon oxide thin film (eg, HfSiO x , ZrSiO x , TiSiO x ) on a substrate As the gas, water vapor (H 2 O), oxygen (O 2 ), ozone (O 3 ), or the like can be used.

또한 본 발명에 있어서, 상기 원자층 증착 공정(Atomic layer deopsition;ALD) 을 이용할 경우 하기 단계의 구체적 방법을 사용하여 박막을 형성할 수 있다.In the present invention, when using the atomic layer deposition process (ALD) it can be formed a thin film using the specific method of the following steps.

(A) 본 발명의 유기금속 전구체 화합물을 증착 챔버 내로 이송 시키기 위하여 유기 금속 전구체 화합물을 20 ℃내지 200 ℃ 의 공급원 온도로 가열하거나 혹은 액체 이송장치를 이용하여 이송시키는 단계;(A) heating the organometallic precursor compound to a source temperature of 20 ° C. to 200 ° C. or using a liquid transfer device to transfer the organometallic precursor compound of the present invention into the deposition chamber;

(B) 상기 이송된 유기 금속 전구체 화합물을 기판상에 흡착시켜 0.1초~1분 동안 전구체 층을 기판 위에 형성시키는 단계;(B) adsorbing the transferred organometallic precursor compound on a substrate to form a precursor layer on the substrate for 0.1 seconds to 1 minute;

(C) 기판위에 흡착되지 않는 과량의 전구체를 불활성 기체를 이용하여 제거하는 단계;(C) removing excess precursor that is not adsorbed onto the substrate using an inert gas;

(D) 금속 산화물 박막 또는 금속-규소산화물 박막을 기판위에 형성시키기 위해 상기한 반응가스 또는 이러한 반응가스를 불활성가스로 희석시킨 혼합가스를 0.1초~1분 이내의 시간 동안 상기 기판 위에 형성된 전구체 층과 반응시켜 금속산화물 박막 또는 금속-규소산화물 박막 및 부산물을 형성시키는 단계; 및 (D) a precursor layer formed on the substrate for a time within 0.1 seconds to 1 minute of the reaction gas or a mixture gas diluted with the inert gas to form a metal oxide thin film or a metal-silicon oxide thin film on the substrate. Reacting with each other to form a metal oxide thin film or a metal-silicon oxide thin film and a byproduct; And

(E) 챔버 내로 불활성 기체를 주입하여 과량의 반응가스 및 생성된 부산물을 제거하는 단계;(E) injecting an inert gas into the chamber to remove excess reaction gas and generated byproducts;

를 한 주기(cycle)로 하여 주기를 반복함으로써 박막을 형성하는 것을 특징으로 하는 박막 증착 방법.Thin film deposition method characterized in that to form a thin film by repeating the cycle in a cycle (cycle).

이 때 상기 주기(cycle)은 통상 10~1000회 실시할 수 있으며, 바람직하게는 100~600회 실시할 수 있다.
In this case, the cycle may be generally performed 10 to 1000 times, preferably 100 to 600 times.

본 발명에 따른 금속 산화물과 금속-규소 산화물 박막 증착용 유기금속 전구체 화합물은 열적 안정성이 우수하고 실온에서 액체로 존재하며 휘발성이 높은 유기 금속 화합물로서 유기 금속 화학 증착법이나 원자층 증착 방법의 전구체로 사용하여 단일 금속 산화물(TiO2,ZrO2,HfO2),복합 금속 산화물(ZrSiOx,HfSiOx)박막을 증착시키는데 유용하게 사용될 수 있다.
The organometallic precursor compound for depositing a metal oxide and metal-silicon oxide thin film according to the present invention is an organic metal compound having excellent thermal stability, present as a liquid at room temperature, and having high volatility, and is used as a precursor of an organic metal chemical vapor deposition method or an atomic layer deposition method. It can be usefully used to deposit a single metal oxide (TiO 2 , ZrO 2 , HfO 2 ), a composite metal oxide (ZrSiO x , HfSiO x ) thin film.

도 1은 실시예 1, 실시예 2, 실시예 3, 실시예 5, 실시예 6, 실시예 8, 실시예 9 및 실시예 10에서 제조한 하프늄 유기금속 전구체 화합물들의 TGA 그래프를 나타낸다.
도 2는 실시예 4와 실시예 7에서 제조한 지르코늄 유기금속 전구체 화합물들의 TGA 그래프를 나타낸다.
도 3은 전구체 온도에 따른 실시예 6, 실시예 8과 실시예 9의 유기금속 전구체 화합물과 오존과의 반응 시 전구체 주입온도에 따른 박막 증착율을 나타낸 그래프이다.
도 4는 실시예 6, 실시예 8과 실시예 9의 유기금속전구체 화합물과 오존과의 반응 시 유기 금속 전구체 화합물 및 오존 주입 시간에 따른 박막 증착률을 나타낸 그래프이다.
도 5는 실시예 6, 실시예 8과 실시예 9의 유기금속전구체 화합물과 오존과의 반응 시 기판온도에 따른 박막 증착률을 나타낸 그래프이다.
도 6은 실시예 8과 실시예 9의 유기금속전구체 화합물과 물과의 반응 시 유기금속전구체 주입 시간에 따른 박막 증착률을 나타낸 그래프이다.
도 7는 실시예 8과 실시예 9의 유기금속전구체 화합물과 물과의 반응 시 기판온도에 따른 박막 증착률을 나타낸 그래프이다.
1 shows TGA graphs of hafnium organometallic precursor compounds prepared in Examples 1, 2, 3, 5, 6, 8, 9 and 10.
FIG. 2 shows TGA graphs of zirconium organometallic precursor compounds prepared in Examples 4 and 7. FIG.
3 is a graph showing the deposition rate of the thin film according to the precursor injection temperature during the reaction between the organometallic precursor compounds of Example 6, Example 8 and Example 9 and ozone according to the precursor temperature.
FIG. 4 is a graph showing the deposition rates of the organometallic precursor compounds and the ozone injection time when the organometallic precursor compounds of Example 6, Example 8, and Example 9 react with ozone.
FIG. 5 is a graph showing deposition rates of thin films according to substrate temperature when the organometallic precursor compounds of Example 6, Example 8, and Example 9 react with ozone.
6 is a graph showing the deposition rate of the thin film according to the organometallic precursor injection time during the reaction between the organometallic precursor compounds and water of Example 8 and Example 9.
FIG. 7 is a graph showing thin film deposition rate according to substrate temperature when the organometallic precursor compounds of Example 8 and Example 9 react with water.

이하, 본 발명에 따른 금속 산화물과 금속-규소 산화물 박막 증착용 유기금속 전구체 화합물 및 박막 증착 방법에 대하여 하기 실시예 및 실험예를 통하여 보다 상세하게 설명하기로 하되, 이는 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐, 본 발명이 하기 실시예 및 실험예로 한정되는 것은 아니다.Hereinafter, the organometallic precursor compound for depositing the metal oxide and the metal-silicon oxide thin film and the thin film deposition method according to the present invention will be described in more detail with reference to the following examples and experimental examples. It is only presented, the present invention is not limited to the following examples and experimental examples.

<< 실시예1Example 1 > > ClHfClHf (( NMeSiMeNMeSiMe 33 )) 33 의 제조Manufacturing

250mL 플라스크에 n-BuLi 2.5M sol in Hexane 27.7 g (0.1 mol)을 정량한 후 헥산 80mL 를 넣어 희석시킨 후 이 용액에 메틸아미노트리메틸실란(Methylamino-trimethylsilane) 11 g (0.1 mol)을 저온 (-10 oC)에서 교반하면서 천천히 첨가하고 실온까지 온도를 올려 10~11시간 교반한다. 여기에 하프늄클로라이드 (Hafnium(IV) chloride, HfCl4)8g(0.025mol)을 실온에서 첨가하고 환류콘덴서를 이용하여 12~13시간 동안 환류반응 시킨다. 반응 종류 후 여과하여 얻어진 용액을 감압하여 용매를 모두 제거하고 남겨진 점성이 높은 무색의 액체를 감압 증류하여 무색의 고체 ClHf(NMeSiMe3)38.6g(수율: 58.1%)을 얻었다.27.7 g (0.1 mol) of n-BuLi 2.5M sol in Hexane was weighed in a 250 mL flask, and diluted with 80 mL of hexane. 11 g (0.1 mol) of methylaminotrimethylsilane was added to the solution at low temperature (- Add slowly with stirring at 10 o C) and raise the temperature to room temperature and stir for 10 to 11 hours. Add 8 g (0.025 mol) of hafnium chloride (Hafnium (IV) chloride, HfCl 4 ) at room temperature and reflux for 12 to 13 hours using a reflux condenser. After the reaction, the resulting solution was filtered under reduced pressure to remove all solvents, and the remaining viscous colorless liquid was distilled under reduced pressure to give 8.6 g (yield: 58.1%) of colorless solid ClHf (NMeSiMe 3 ) 3 .

끓는점 (b.p) : 138 ℃ at 0.325 torr.Boiling Point (b.p): 138 ° C at 0.325 torr.

1H-NMR(C6D6):δ 0.246 ([(CH 3 )3SiCH3N]4-Hf,s,36H), 1 H-NMR (C 6 D 6 ): δ 0.246 ([( CH 3 ) 3 SiCH 3 N] 4 -Hf, s, 36H),

δ 3.029 ([(CH3)3SiCH 3 N]4-Hf,s,12H),δ 3.029 ([(CH 3 ) 3 Si CH 3 N] 4 -Hf, s, 12H),

13C-NMR(C6D6):δ 0.251 ([(CH3)3SiCH3N]4-Hf), 13 C-NMR (C 6 D 6 ): δ 0.251 ([( C H 3 ) 3 SiCH 3 N] 4 -Hf),

δ 32.264 ([(CH3)3SiCH3N]4-Hf),δ 32.264 ([(CH 3 ) 3 Si C H 3 N] 4 -Hf),

<< 실시예Example 2>  2> ClHfClHf (( NEtSiMeNEtSiMe 33 )) 33 의 제조Manufacturing

실시예 1과 같은 방법으로 N-에틸-1,1,1-트리메틸실란아민 (N-ethyl-1,1,1-trimethylsilanamine)을 사용하여 아이보리색 고체 화합물 ClHf(NEtSiMe3)3 23.82g (crude yield: 95.28%)을 얻었다.Example 1, in the same way N - ethyl-l, l-trimethyl-silane amine (N -ethyl-1,1,1-trimethylsilanamine) using ivory-colored solid compound ClHf (NEtSiMe 3) 3 23.82g ( crude yield: 95.28%).

Sublimation point: 122 ℃ at 0.2 torr.Sublimation point: 122 ℃ at 0.2 torr.

1H-NMR(C6D6):δ 0.307 ([N(CH2CH3)(Si(C H 3 )3)]-Hf,s,36H), 1 H-NMR (C 6 D 6 ): δ 0.307 ([N (CH 2 CH 3 ) (Si (C H 3 ) 3 )]-Hf, s, 36H),

δ 1.237 ([N(CH2C H 3 )(Si(CH3)3)]-Hf,t,12H),δ 1.237 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Hf, t, 12H),

δ 1.237 ([N(C H 2 CH3)(Si(CH3)3)]-Hf,q,8H).δ 1.237 ([N (C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Hf, q, 8H).

13C-NMR(C6D6):δ 2.844 ([N(CH2CH3)(Si( C H3)3)]-Hf), 13 C-NMR (C 6 D 6 ): δ 2.844 ([N (CH 2 CH 3 ) (Si ( C H 3 ) 3 )]-Hf),

δ 21.043 ([N(CH2 C H3)(Si(CH3)3)]-Hf),δ 21.043 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Hf),

δ 40.005 ([N( C H2CH3)(Si(CH3)3)]-Hf).δ 40.005 ([N ( C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Hf).

<< 실시예Example 3>  3> MeHfMeHf (( NMeSiMeNMeSiMe 33 )) 33 의 제조Manufacturing

n-BuLi 48.0 ml(0.120 mol)를 노말헥산 (n-hexane, C6H14)100ml에 희석시킨 후 이 용액에 N-메틸-1,1,1-트리메틸실란아민 (N-methyl-1,1,1-trimethylsilanamine)12.8g(97%,0.120mol)을 Acetone/CO2(s)bath하에서 천천히 첨가하고, 혼합 용액을 서서히 실온으로 올린 뒤 6시간 동안 교반한다. (용액 A) 또 다른 flask에 HfCl412.8g(0.0340mol)을 넣고, Acetone/CO2(s)bath 하에서 디에틸에테르 (diethylether, C4H10O) 50ml와 테트라하이드로퓨란 (terahydrofuran, C4H8O) 50ml를 천천히 첨가한 뒤 1시간 동안 저온을 유지하며 교반한다. 이 혼합용액에 용액 A를 저온을 유지하며 첨가한 후 하루 동안 교반한다. (용액 B)48.0 ml (0.120 mol) of n-BuLi are diluted in 100 ml of normal hexane (n-hexane, C 6 H 14 ), and then N -methyl-1,1,1-trimethylsilaneamine ( N -methyl-1, 12.8 g (97%, 0.120 mol) of 1,1-trimethylsilanamine) is slowly added under an Acetone / CO 2 (s) bath, and the mixed solution is slowly raised to room temperature and stirred for 6 hours. (Solution A) Add 12.8 g (0.0340 mol) of HfCl 4 to another flask, and add 50 ml of diethylether (C 4 H 10 O) and tetrahydrofuran (terahydrofuran, C 4 ) under Acetone / CO 2 (s) bath. H 8 O) 50ml was added slowly and stirred at low temperature for 1 hour. Solution A is added to this mixed solution at low temperature, followed by stirring for one day. (Solution B)

하루 후 acetone/CO2(s)bath 하에서 용액 B에 MeLi (methyllithium, CH3Li) 32.5ml(0.0520mol)를 첨가한 뒤 용액을 실온으로 올려 3시간 동안 교반한다. After one day, 32.5 ml (0.0520 mol) of MeLi (methyllithium, CH 3 Li) was added to Solution B in an acetone / CO 2 (s) bath, and the solution was then stirred at room temperature for 3 hours.

반응 종료 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 노말헥산(n-hexane, C6H14)으로 추출 한 후 글래스필터를 이용해 여과하여 얻은 용액층을 감압 하에서 용매 및 휘발성 부반응 물을 제거 하면 연한 노란색 액체를 얻는다. 이 고체를 증류하여 무색의 액체 화합물인 MeHf(NMeSiMe3)3 6.38g(수율: 31.9%)을 얻었다.After completion of the reaction, the solvent and volatile side reactions were removed under reduced pressure, extracted with normal hexane (n-hexane, C 6 H 14 ), and the solution layer obtained by filtration using a glass filter was removed. To get a yellow liquid. This solid was distilled off and 6.38 g (yield: 31.9%) of MeHf (NMeSiMe 3 ) 3 as a colorless liquid compound was obtained.

끓는점 (b.p) : 86 ℃ at 0.23 torr. Boiling Point (b.p): 86 ° C at 0.23 torr.

1H-NMR(C6D6):δ 0.199 ([NCH3(Si(C H 3 )3)]-Hf,s,27H), 1 H-NMR (C 6 D 6 ): δ 0.199 ([NCH 3 (Si (C H 3 ) 3 )]-Hf, s, 27H),

δ 0.308 (C H 3 -Hf,s,3H),δ 0.308 (C H 3 -Hf, s, 3H),

δ 2.922 ([NC H 3 (Si(CH3)3)]-Hf,t,9H),δ 2.922 ([NC H 3 (Si (CH 3 ) 3 )]-Hf, t, 9H),

13C-NMR(C6D6):δ 0.023 ([NCH3(Si( C H3)3)]-Hf), 13 C-NMR (C 6 D 6 ): δ 0.023 ([NCH 3 (Si ( C H 3 ) 3 )]-Hf),

δ 28.485 ([N C H3(Si(CH3)3)]-Hf),δ 28.485 ([N C H 3 (Si (CH 3 ) 3 )]-Hf),

δ 41.661 (CH3-Hf).δ 41.661 (CH 3 -Hf).

<< 실시예Example 4>  4> MeZrMeZr (( NEtSiMeNEtSiMe 33 )) 33 의 제조Manufacturing

실시예 3과 같은 방법으로 ZrCl45g(0.0215mol)과 N-에틸-1,1,1-트리메틸실란아민 (N-ethyl-1,1,1-trimethylsilanamine) 7.55g(0.0644mol)을 사용하여 흰색 고체 화합물 MeZr(NEtSiMe3)3 2.1g(수율:21.4 %)을 얻었다.Example 3 In the same manner as with ZrCl 4 5g (0.0215mol) and N - ethyl-l, l by using trimethylsilane amine (N -ethyl-1,1,1-trimethylsilanamine) 7.55g (0.0644mol) 2.1 g (yield: 21.4%) of white solid compounds MeZr (NEtSiMe 3 ) 3 were obtained.

승화점 (sublimation point) : 37 ~ 40 ℃ at 0.25 torr.Sublimation point: 37 ~ 40 ℃ at 0.25 torr.

1H-NMR(C6D6):δ 0.192 ([N(CH2CH3)(Si(C H 3 )3)]-Zr,s,27H), 1 H-NMR (C 6 D 6 ): δ 0.192 ([N (CH 2 CH 3 ) (Si (C H 3 ) 3 )]-Zr, s, 27H),

δ 0.319 (C H 3 -Zr,s,3H),δ 0.319 (C H 3 -Zr, s, 3H),

δ 1.151 ([N(CH2C H 3 )(Si(CH3)3)]-Hf,t,9H),δ 1.151 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Hf, t, 9H),

δ 3.472 ([N(C H 2 CH3)(Si(CH3)3)]-Hf,q,4H).δ 3.472 ([N (C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Hf, q, 4H).

<< 실시예Example 5>  5> MeHfMeHf (( NEtSiMeNEtSiMe 33 )) 33 의 제조Manufacturing

N-에틸-1,1,1-트리메틸실란아민 (N-ethyl-1,1,1-trimethylsilanamine) 5.49g(0.0468mol)을 사용하여 실시예 3과 같은 방법으로 합성하여 흰색 고체 화합물 MeHf(NEtSiMe3)3 3.1g(수율 : 36.6 %)을 얻었다. N - ethyl-l, l-trimethyl-silane amine (N -ethyl-1,1,1-trimethylsilanamine) synthesized in the same manner as in Example 3 using 5.49g (0.0468mol) of white solid compound MeHf (NEtSiMe 3 ) 3 3.1 g (yield: 36.6%) was obtained.

승화점 (sublimation point) : 44 ~ 46 ℃ at 0.43 torr.Sublimation point: 44 ~ 46 ℃ at 0.43 torr.

1H-NMR(C6D6):δ 0.230 ([N(CH2CH3)(Si(C H 3 )3)]-Hf,s,27H), 1 H-NMR (C 6 D 6 ): δ 0.230 ([N (CH 2 CH 3 ) (Si (C H 3 ) 3 )]-Hf, s, 27H),

δ 0.297 (C H 3 -Hf,s,3H),δ 0.297 (C H 3 -Hf, s, 3H),

δ 1.183 ([N(CH2C H 3 )(Si(CH3)3)]-Hf,t,9H),δ 1.183 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Hf, t, 9H),

δ 3.388 ([N(C H 2 CH3)(Si(CH3)3)]-Hf,q,4H).δ 3.388 ([N (C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Hf, q, 4H).

13C-NMR(C6D6):δ 2.076 ([N(CH2CH3)(Si( C H3)3)]-Hf), 13 C-NMR (C 6 D 6 ): δ 2.076 ([N (CH 2 CH 3 ) (Si ( C H 3 ) 3 )]-Hf),

δ 21.107 ([N(CH2 C H3)(Si(CH3)3)]-Hf),δ 21.107 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Hf),

δ 36.730 ([N( C H2CH3)(Si(CH3)3)]-Hf),δ 36.730 ([N ( C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Hf),

δ 39.338 (CH3-Hf).delta 39.338 (CH 3 -Hf).

<< 실시예Example 6>  6> CpCp (( NMeNMe 22 )) 22 HfHf (( NMeSiMeNMeSiMe 33 )의 제조Manufacturing

250mL 플라스크에 CpHf(NMe2)3 75.16g(0.2mol)를 정량 후 톨루엔 (Toluene) 100mL를 넣어 희석 하고 저온 (-10 oC)에서 교반하면서 메틸아미노트리메틸실란(Methylamino-trimethylsilane) 31 g (0.3 mol)을 저온 ( -10 ℃)에서 교반하면서 천천히 첨가하고 실온까지 온도를 올려 3일 동안 환류 콘덴서를 이용하여 환류반응 시킨다. 반응 종류 후 감압하여 용매 및 휘발성 부반응 물질을 제거하고 감압 증류하여 Cp(NMe2)2Hf(NMeSiMe3) 58.7g(수율: 67.7%)을 얻었다.After quantifying 75.16 g (0.2 mol) of CpHf (NMe 2 ) 3 in a 250 mL flask, add 100 mL of toluene and dilute it, while stirring at low temperature (-10 o C), 31 g of methylamino-trimethylsilane (0.3 g) mol) was added slowly with stirring at low temperature (-10 ℃) and the temperature was raised to room temperature to reflux using a reflux condenser for 3 days. After the reaction was carried out under reduced pressure to remove the solvent and the volatile side reaction material and distilled under reduced pressure to obtain 58.7g (yield: 67.7%) of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ).

끓는점 (b.p) : 99 ℃ at 0.310 torr.Boiling Point (b.p): 99 ℃ at 0.310 torr.

밀도 (density) : 1.425g/ml at 25 ℃Density: 1.425g / ml at 25 ℃

1H-NMR(C6D6):δ 0.151 ([(CH 3 )3SiCH3N]-Hf,s,9H), 1 H-NMR (C 6 D 6 ): δ 0.151 ([( CH 3 ) 3 SiCH 3 N] -Hf, s, 9H),

δ 2.711 ([(CH3)3SiCH 3 N]4-Hf,s,3H),δ 2.711 ([(CH 3 ) 3 Si CH 3 N] 4 -Hf, s, 3H),

δ 2.951 ([(CH 3 )2N]2-Hf,s,12H),δ 2.951 ([( CH 3 ) 2 N] 2 -Hf, s, 12H),

δ 6.035 ((C 5 H 5 )-Hf,s,5H).δ 6.035 (( C 5 H 5 ) -Hf, s, 5H).

13C-NMR(C6D6):δ 0.803 ([(CH3)3SiCH3N]-Hf), 13 C-NMR (C 6 D 6 ): δ 0.803 ([( C H 3 ) 3 SiCH 3 N] -Hf),

δ 31.521 ([(CH3)3SiCH3N]-Hf),δ 31.521 ([(CH 3 ) 3 Si C H 3 N] -Hf),

δ 45.594 ([(CH3)2N]2-Hf),δ 45.594 ([( C H 3 ) 2 N] 2 -Hf),

δ 110.551 ((C 5H5)-Hf).δ 110.551 (( C 5 H 5 ) -Hf).

<< 실시예Example 7>  7> CpCp (( NMeNMe 22 )) 22 ZrZr (( NEtSiMeNEtSiMe 33 )의 제조Manufacturing

CpZr(NMe2)311.87g(0.0411mol)과 N-에틸-1,1,1-트리메틸실란아민 (N-ethyl-1,1,1-trimethylsilanamine) 9.65 g (0.0823 mol)을 사용하여 실시예 6과 같은 방법으로 합성하여 노란색의 액체 화합물 Cp(NMe2)2Zr(NEtSiMe3) 5.42 g(수율 : 36.5 %)을 얻었다. CpZr (NMe 2) 3 11.87g ( 0.0411mol) and N - performed using l, l-ethyl trimethylsilane amine (N -ethyl-1,1,1-trimethylsilanamine) 9.65 g (0.0823 mol) Example 5.42 g (yield: 36.5%) of a yellow liquid compound Cp (NMe 2 ) 2 Zr (NEtSiMe 3 ) was obtained by synthesis in the same manner as in 6.

끓는점 (b.p): 110 ~ 120 ℃ at 0.34 torr. Boiling Point (b.p): 110-120 ° C at 0.34 torr.

밀도 (density) : 1.227g/ml at 25 ℃Density: 1.227g / ml at 25 ℃

1H-NMR(C6D6):δ 0.148 ([N(CH2CH3)(Si(C H 3 )3)]-Zr,s,9H), 1 H-NMR (C 6 D 6 ): δ 0.148 ([N (CH 2 CH 3 ) (Si (C H 3 ) 3 )]-Zr, s, 9H),

δ 1.121 ([N(CH2C H 3 )(Si(CH3)3)]-Zr,t,3H),δ 1.121 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Zr, t, 3H),

δ 2.874 ([N(C H 3 )2]-Zr,s,12H),δ 2.874 ([N (C H 3 ) 2 ] -Zr, s, 12H),

δ 3.002 ([N(C H 2 CH3)(Si(CH3)3)]-Zr,q,2H),δ 3.002 ([N (C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Zr, q, 2H),

δ 6.057 ((C5 H 5)-Zr,s,5H),δ 6.057 ((C 5 H 5 ) -Zr, s, 5H),

13C-NMR(C6D6):δ 2.033 ([N(CH2CH3)(Si( C H3)3)]-Zr), 13 C-NMR (C 6 D 6 ): δ 2.033 ([N (CH 2 CH 3 ) (Si ( C H 3 ) 3 )]-Zr),

δ 21.215 ([N(CH2 C H3)(Si(CH3)3)]-Zr),δ 21.215 ([N (CH 2 C H 3 ) (Si (CH 3 ) 3 )]-Zr),

δ 40.858 ([N( C H2CH3)(Si(CH3)3)]-Zr),δ 40.858 ([N ( C H 2 CH 3 ) (Si (CH 3 ) 3 )]-Zr),

δ 45.436 ([N( C H3)2]-Zr),δ 45.436 ([N ( C H 3 ) 2 ] -Zr),

δ 110.737 ((C 5H5)-Zr).δ 110.737 (( C 5 H 5 ) -Zr).

<< 실시예Example 8>  8> CpCp (( NMeNMe 22 )) 22 HfHf (( NEtSiMeNEtSiMe 33 )의 제조Manufacturing

실시예 6과 같은 방법으로 CpHf(NMe2)333.82g(0.09mol)과 N-에틸-1,1,1-트리메틸실란아민(N-ethyl-1,1,1-trimethylsilanamine) 21.106g(0.18mol)을 반응시켜 점성이 있는 노란색의 액체 화합물인 Cp(NMe2)2Hf(NEtSiMe3) 24.4g(수율 : 61%)을 얻었다.Example 6 Method to CpHf (NMe 2) 3 33.82g ( 0.09mol) and N, such -ethyl -1, 1, 1-trimethylsilyl amine (N -ethyl-1,1,1-trimethylsilanamine) 21.106g (0.18 mol) was reacted to give 24.4 g (yield: 61%) of a viscous yellow liquid compound, Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ).

끓는점 (b.p) : 91 ℃ at 0.25torr.Boiling Point (b.p): 91 ° C at 0.25torr.

밀도 (density) : 1.504g/ml at 25 ℃Density: 1.504g / ml at 25 ℃

1H-NMR(C6D6):δ 0.162 ([(CH 3 )SiN(C2H5)]-Hf,s,9H), 1 H-NMR (C 6 D 6 ): δ 0.162 ([(C H 3 ) SiN (C 2 H 5 )]-Hf, s, 9H),

δ 1.110 ([(CH3)SiN(CH2CH 3 )]-Hf,t,3H),δ 1.110 ([(CH 3 ) SiN (CH 2 C H 3 )]-Hf, t, 3H),

δ 2.919 ([(CH 3 )2N]2-Hf,s,12H),δ 2.919 ([(C H 3 ) 2 N] 2 -Hf, s, 12H),

δ 3.067 ([(CH3)SiN(CH 2 CH3)]-Hf,q,2H),δ 3.067 ([(CH 3 ) SiN (C H 2 CH 3 )]-Hf, q, 2H),

δ 6.045 ([(C5 H 5 )]-Hf,s,5H).δ 6.045 ([(C 5 H 5 )]-Hf, s, 5H).

13C-NMR(C6D6):δ 2.157 ([(CH3)3SiN(C2H5)]-Hf), 13 C-NMR (C 6 D 6 ): δ 2.157 ([(CH 3 ) 3 SiN (C 2 H 5 )]-Hf),

δ 21.361 ([(CH3)3SiN(CH2 CH3)]-Hf),δ 21.361 ([(CH 3 ) 3 SiN (CH 2 C H 3 )]-Hf),

δ 40.775 ([(CH3)3SiN(CH2CH3)]-Hf),δ 40.775 ([(CH 3 ) 3 SiN ( C H 2 CH 3 )]-Hf),

δ 45.580 ([(CH3)2N]2-Hf),δ 45.580 ([( C H 3 ) 2 N] 2 -Hf),

δ 110.616 ((C 5H5)-Hf).δ 110.616 (( C 5 H 5 ) -Hf).

<< 실시예Example 9> ( 9> ( MeMe 33 SiSi )) CpHfCpHf (( NMeNMe 22 )) 33 의 제조Manufacturing

테트라키스다이메틸아미노하프늄(tetrais-dimethylamino hafnium) 21.2g (59.7mmol)을 250mL 플라스크에 정량하고 헥산(hexane) 100mL 를 넣어 희석하고, 저온(-10 ℃)에서 교반하면서 트리메틸실릴싸이클로펜타다이엔(tri-mtehylsilyl-cyclopentadiene) 8.7g (60 mmol)을 천처히 첨가한 후 실온까지 천천히 올려 약 15시간 교반하여 반응을 완료하고, 진공으로 용매 및 휘발성 부 반응물을 제거하고 남겨진 연한 노란색 액체를 감압 증류하여 노란색의 점성이 없는 액체 화합물인 (Me3Si)CpHf(NMe2)3 21.1g(수율 78.9%)을 얻었다.21.2 g (59.7 mmol) of tetrais-dimethylamino hafnium was quantified in a 250 mL flask, diluted with 100 mL of hexane, and diluted with trimethylsilylcyclopentadiene while stirring at low temperature (-10 ° C). 8.7g (60 mmol) of tri-mtehylsilyl-cyclopentadiene) was added slowly and slowly raised to room temperature and stirred for about 15 hours to complete the reaction.The solvent and volatile side reactions were removed by vacuum, and the remaining pale yellow liquid was distilled under reduced pressure. 21.1 g (yield 78.9%) of (Me 3 Si) CpHf (NMe 2 ) 3 as a yellow viscous liquid compound was obtained.

끓는점 (b.p) : 88 ℃ at 0.309 torr.Boiling Point (b.p): 88 ° C at 0.309 torr.

밀도 (density) : 1.3995g/ml at 25 ℃Density: 1.3995g / ml at 25 ℃

1H-NMR(C6D6):δ 0.266 ([(CH 3 )3SiC5H4]-Hf,s,9H), 1 H-NMR (C 6 D 6 ): δ 0.266 ([(C H 3 ) 3 SiC 5 H 4 ] -Hf, s, 9H),

δ 2.975 ([(CH 3 )2N]3-Hf,s,18H),δ 2.975 ([(C H 3 ) 2 N] 3 -Hf, s, 18H),

δ 6.261, 6.253 ([(CH3)3SiC5 H 4 ]-Hf,d,4H),δ 6.261, 6.253 ([(CH 3 ) 3 SiC 5 H 4 ] -Hf, d, 4H),

13C-NMR(C6D6):δ 0.233 ([(CH3)3SiC5H4]-Hf), 13 C-NMR (C 6 D 6 ): δ 0.233 ([( C H 3 ) 3 SiC 5 H 4 ] -Hf),

δ 45.267 ([(CH3)2N]3-Hf),δ 45.267 ([( C H 3 ) 2 N] 3 -Hf),

δ 114.068, 117.460, 121.387 ([(CH3)3SiC 5 H4]-Hf).δ 114.068, 117.460, 121.387 ([(CH 3 ) 3 Si C 5 H 4 ] -Hf).

<< 실시예Example 10> ( 10> ( MeMe 22 HSiHSi )) CpHfCpHf (( NMeNMe 22 )) 33 의 제조Manufacturing

테트라키스다이메틸아미노하프늄(tetrais-dimethylamino hafnium) 15.0 g (42 mmol)과 다이메틸실릴싸이클로펜타다이엔(di-mtehylsilyl-cyclopentadiene) 5.2g (42 mmol)을 실시예 9와 같은 방법으로 하여 노란색 액체 화합물 (Me2HSi)CpHf(NMe2)314.7g(수율: 80.8 %)을 얻었다.15.0 g (42 mmol) of tetrais-dimethylamino hafnium and 5.2 g (42 mmol) of dimethylsilylcyclopentadiene were prepared in the same manner as in Example 9. 14.7 g (yield: 80.8%) of compound (Me 2 HSi) CpHf (NMe 2 ) 3 was obtained.

끓는점 (b.p) : 82~85 ℃ at 0.244 torr.Boiling Point (b.p): 82 ~ 85 ℃ at 0.244 torr.

1H-NMR(C6D6):δ 0.280 ([(CH 3 )2HSiC5H4]-Hf,s,6H), 1 H-NMR (C 6 D 6 ): δ 0.280 ([(C H 3 ) 2 HSiC 5 H 4 ] -Hf, s, 6H),

δ 2.984 ([(CH 3 )2N]3-Hf,s,18H),δ 2.984 ([(C H 3 ) 2 N] 3 -Hf, s, 18H),

δ 4.678([(CH3)2 HSiC5H4]-Hf,m,1H),δ 4.678 ([(CH 3 ) 2 H SiC 5 H 4 ] -Hf, m, 1H),

δ 6.279, 6.240 ([(CH3)2HSiC5 H 4 ]-Hf,d,4H),δ 6.279, 6.240 ([(CH 3 ) 2 HSiC 5 H 4 ] -Hf, d, 4H),

13C-NMR(C6D6):δ -2.764 ([(CH3)2HSiC5H4]-Hf), 13 C-NMR (C 6 D 6 ): δ -2.764 ([( C H 3 ) 2 HSiC 5 H 4 ] -Hf),

δ 45.119 ([(CH3)2N]3-Hf),δ 45.119 ([( C H 3 ) 2 N] 3 -Hf),

δ 114.353, 117.550 ([(CH3)2HSiC 5 H4]-Hf).δ 114.353, 117.550 ([(CH 3 ) 2 HSi C 5 H 4 ] -Hf).

<< 실험예Experimental Example 1> 1>

상기한 실시예들 중에서 실시예 1, 실시예 2, 실시예 3, 실시예 5, 실시예 6, 실시예 8, 실시예 9 및 실시예 10에서 제조한 하프늄 유기금속 전구체 화합물들의 TGA 그래프를 도 1에 나타내었으며, 실시예 4, 실시예 7에서 제조한 지르코늄 유기금속 전구체 화합물들의 TGA 그래프를 도 2에 나타내었다.TGA graph of the hafnium organometallic precursor compounds prepared in Examples 1, 2, 3, 5, 6, 8, 9 and 10 among the above-described embodiments is shown. A TGA graph of the zirconium organometallic precursor compounds prepared in Example 4 and Example 7 is shown in FIG. 2.

TGA 그래프에서 확인 할 수 있듯 본 발명의 신규 유기금속 전구체 화합물들은 화학기상 증착(CVD) 또는 원자층 증착(ALD)에 필요한 충분한 휘발성과 열적 안정성을 보여준다. 또한, 기존의 싸이클로펜타다이엔-트리스-다이메틸아미도금속 화합물보다 높은 열적 안정성을 가지고 있음을 확인 할 수 있다.
As can be seen from the TGA graph, the novel organometallic precursor compounds of the present invention show sufficient volatility and thermal stability for chemical vapor deposition (CVD) or atomic layer deposition (ALD). In addition, it can be seen that it has a higher thermal stability than the existing cyclopentadiene-tris-dimethylamido metal compound.

<< 실험예Experimental Example 2 > 2>

본 발명을 따르는 신규 하프늄 전구체들 중에서 실시예 6, 실시예 8 및 실시예 9의 전구체 화합물들을 이용하여 원자층 증착 (Atomic layer deposition(ALD)) 공정에 의한 성막 평가를 수행하였다. 산화제로는 오존을 사용하였고 불활성 기체인 아르곤은 퍼지 목적으로 사용하였다. 전구체, 아르곤, 오존 그리고 아르곤을 주입하는 것을 한 싸이클로 하였으며 증착은 불산 처리한 Si 웨이퍼 상에서 수행하였다. Film formation evaluation by an atomic layer deposition (ALD) process was performed using the precursor compounds of Examples 6, 8 and 9 among the novel hafnium precursors according to the present invention. Ozone was used as the oxidizing agent and argon, an inert gas, was used for purging purposes. Injecting the precursor, argon, ozone and argon was one cycle and the deposition was carried out on a hydrofluoricated Si wafer.

증착한 막은 엘립소미터(Ellipsometer)를 통하여 두께를 측정하였고, FESEM을 이용하여 두께를 확인하였다. 막내 규소함유량 및 탄소와 질소 등의 불순물 함유량은 XPS(X-ray photoelectron spectroscopy) 뎁쓰 프로파일(depth profile) 분석을 통해 측정하였다.The deposited film was measured by an ellipsometer (Ellipsometer) and the thickness was confirmed by using the FESEM. The silicon content in the film and the impurity contents such as carbon and nitrogen were measured by X-ray photoelectron spectroscopy (XPS) depth profile analysis.

구체적인 성막 평가 시 증착 조건은 표 1과 같다. ALD 성장 특성을 확인하기 위하여 전구체 온도별 (실험예 A), 전구체 및 오존 주입 시간별 (실험예 B), 기판 온도별 (실험예 C)로 조건을 나누어 실험하였다. The deposition conditions in the specific film formation evaluation are shown in Table 1. In order to confirm the ALD growth characteristics, the conditions were divided by precursor temperature (Experimental Example A), precursor and ozone injection time (Experimental Example B), and substrate temperature (Experimental Example C).

실험예 A에서 Cp(NMe2)2Hf(NMeSiMe3)의 경우 전구체 온도를 100~120℃로 변화시켰고 이때의 전구체 및 오존의 주입 시간은 각각 5초/ 3초, 기판 온도는 325℃로 고정하였다. (Me3Si)CpHf(NMe2)3은 전구체 온도를 80~100℃로 변화시켰고 이때의 전구체 및 오존의 주입 시간은 각각 5초/ 3초, 기판 온도는 275℃로 고정하였다. In Experimental Example A, in the case of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ), the precursor temperature was changed to 100-120 ° C. At this time, the injection time of the precursor and ozone was fixed at 5 seconds / 3 seconds and the substrate temperature was fixed at 325 ° C. It was. The (Me 3 Si) CpHf (NMe 2 ) 3 changed the precursor temperature to 80 to 100 ° C., and the injection time of the precursor and ozone at this time was fixed at 5 seconds / 3 seconds and the substrate temperature at 275 ° C.

실험예 B는 Cp(NMe2)2Hf(NMeSiMe3), Cp(NMe2)2Hf(NEtSiMe3)의 전구체 온도를 100℃, 기판 온도를 325℃으로 고정하고 전구체 및 오존의 주입 시간을 Cp(NMe2)2Hf(NMeSiMe3)의 경우 1~20초/ 1~8초, Cp(NMe2)2Hf(NEtSiMe3)의 경우 1~15초/ 1~10초로 변화시켜 실험하였다. (Me3Si)CpHf(NMe2)3은 전구체 온도를 100℃, 기판 온도 275℃, 오존 주입시간을 3초로 고정하고, 전구체 주입 시간을 1~15초로 변화시켰다. Experimental Example B fixed the precursor temperature of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ), Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) at 100 ° C., the substrate temperature at 325 ° C., and the injection time of the precursor and ozone was Cp. In the case of (NMe 2 ) 2 Hf (NMeSiMe 3 ) 1 to 20 seconds / 1 to 8 seconds, Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) was changed to 1 to 15 seconds / 1 to 10 seconds. (Me 3 Si) CpHf (NMe 2 ) 3 fixed the precursor temperature at 100 ° C., the substrate temperature at 275 ° C., and the ozone injection time at 3 seconds, and changed the precursor injection time to 1 to 15 seconds.

실험예 C는 기판 온도별 성장 특성을 확인하기 위한 실험으로 Cp(NMe2)2Hf(NMeSiMe3), Cp(NMe2)2Hf(NEtSiMe3), (Me3Si)CpHf(NMe2)3의 전구체 온도 및 전구체와 오존 주입 시간은 각각 100℃, 5초, 3초로 고정하였다. Cp(NMe2)2Hf(NMeSiMe3), Cp(NMe2)2Hf(NEtSiMe3)의 경우 기판 온도를 225~390℃로 변화시켰으며, (Me3Si)CpHf(NMe2)3의 증착 온도는 200~370℃의 기판 온도 범위에서 증착 특성을 평가하였다. 실험예 A, B, C의 증착률 결과는 도 3 ~ 도 5로 나타내었다. 또한 증착 온도별 막내 규소함량 결과는 표 2에 나타내었다.
Experimental Example C is an experiment for confirming the growth characteristics according to the substrate temperature Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ), Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ), (Me 3 Si) CpHf (NMe 2 ) 3 The precursor temperature and the precursor and ozone injection time were fixed at 100 ° C., 5 seconds, and 3 seconds, respectively. In the case of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ) and Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ), the substrate temperature was changed to 225 ~ 390 ° C., and the deposition of (Me 3 Si) CpHf (NMe 2 ) 3 was performed. The temperature evaluated the deposition characteristics in the substrate temperature range of 200 ~ 370 ℃. Deposition rate results of Experimental Examples A, B, and C are shown in FIGS. 3 to 5. In addition, the silicon content in the film according to deposition temperature is shown in Table 2.

증착 조건 Deposition conditions 실험 예 A 전구체 온도별Experimental Example A Precursor Temperature 실험 예 B 주입시간별Experimental Example B Injection Time 실험 예 C 기판온도별Experimental Example C By Substrate Temperature 전구체 온도
(℃)
Precursor temperature
(℃)
전구체/오존 주입시간(sec)Precursor / Ozone Injection Time (sec) 기판온도
(℃)
Substrate temperature
(℃)
전구체 온도
(℃)
Precursor temperature
(℃)
전구체/오존 주입시간(sec)Precursor / Ozone Injection Time (sec) 기판온도
(℃)
Substrate temperature
(℃)
전구체 온도
(℃)
Precursor temperature
(℃)
전구체/오존 주입시간(sec)Precursor / Ozone Injection Time (sec) 기판온도
(℃)
Substrate temperature
(℃)
Cp(NMe2)2(Hf(NMeSiMe3)Cp (NMe 2 ) 2 (Hf (NMeSiMe 3 ) 100~120100-120 5/ 35/3 325325 100100 1~20/1~81-20 / 1-8 325325 100100 5/ 35/3 225~390225-390 Cp(NMe2)2Hf(NEtSiMe3)Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) 100100 5/ 35/3 325325 100100 1~15/1~101-15/1-10 325325 100100 5/ 35/3 225~390225-390 (Me3Si)CpHf(NMe2)3 (Me 3 Si) CpHf (NMe 2 ) 3 80~10080-100 5/ 35/3 275275 100100 1~15/ 31 ~ 15/3 275275 100100 5/ 35/3 200~370200-370

증착 결과 - 규소 함량Deposition Result-Silicon Content 증착온도 (℃)
소스
Deposition Temperature (℃)
sauce
250250 275275 300300 325325 350350 390390
Cp(NMe2)2Hf(NMeSiMe3)Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ) Si (at%)Si (at%) 10.510.5 -- 10.910.9 -- 11.111.1 10.410.4 Si/(Hf+Si)Si / (Hf + Si) 0.320.32 -- 0.310.31 -- 0.310.31 0.270.27 Cp(NMe2)2Hf(NEtSiMe3)Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) Si (at%)Si (at%) 11.111.1 -- 11.111.1 -- 12.912.9 11.211.2 Si/(Hf+Si)Si / (Hf + Si) 0.350.35 -- 0.350.35 -- 0.360.36 0.310.31 (Me3Si)CpHf(NMe2)3 (Me 3 Si) CpHf (NMe 2 ) 3 Si (at%)Si (at%) 9.69.6 9.99.9 -- 11.311.3 10.610.6 -- Si/(Hf+Si)Si / (Hf + Si) 0.320.32 0.310.31 -- 0.340.34 0.330.33 --

표 1의 증착 조건으로 Cp(NMe2)2Hf(NEtSiMe3) 및 (Me3Si)CpHf(NMe2)3 전구체 화합물과 오존을 사용하여 성막 평가를 수행하였으며, 조건별 증착률 결과는 도면 3~5 로 나타내었다.Film deposition was performed using Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) and (Me 3 Si) CpHf (NMe 2 ) 3 precursor compounds and ozone as deposition conditions of Table 1, and the deposition rate results for each condition are shown in FIG. 3. It is represented by -5.

도 3은 실험예 A의 증착률 결과를 나타낸 것으로 Cp(NMe2)2Hf(NMeSiMe3)의 경우 100~120℃ 전 구간에서 평균 0.63Å/cycle으로 일정한 증착률을 보임을 확인하였으며, ALD 성장 특성을 보임을 알 수 있었다. (Me3Si)CpHf(NMe2)3의 경우 90℃이상의 온도에서 0.73Å/cycle의 증착률을 보임을 확인할 수 있었고 90℃이상에서 ALD 성장함을 확인하였다.3 shows the results of the deposition rate of Experimental Example A, the Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ) was confirmed that the average deposition rate of 0.63 Å / cycle in the entire 100 ~ 120 ℃ section, ALD growth It can be seen that the characteristics. In the case of (Me 3 Si) CpHf (NMe 2 ) 3 , it was confirmed that the deposition rate was 0.73 Å / cycle at a temperature of 90 ° C. or higher, and ALD growth was observed at 90 ° C. or higher.

도 4 는 실험예 B 의 증착률 결과를 나타낸 것으로 왼쪽 그래프는 전구체 주입 시간별, 오른쪽은 오존 주입 시간별 성장 특성을 보여준다. 먼저 전구체 주입 시간별로 증착 특성을 확인한 결과이다. 증착 실험에 사용된 3종의 전구체 모두 5초 이상의 주입시간에서 일정한 증착률을 나타냄을 확인할 수 있다. Cp(NMe2)2Hf(NMeSiMe3)의 경우 평균 0.66Å/cycle, Cp(NMe2)2Hf(NEtSiMe3)의 경우 평균 0.63Å/cycle, (Me3Si)CpHf(NMe2)3의 경우 0.73Å/cycle의 일정한 증착률을 나타냄을 도면 2를 통해 확인할 수 있으며, 이는 상기 전구체가 ALD성장함을 확인한 것이다.4 shows the deposition rate results of Experimental Example B. The graph on the left shows growth characteristics by precursor injection time and on the right by ozone injection time. First, the deposition characteristics of the precursor injection time were confirmed. It can be seen that all three precursors used in the deposition experiments exhibited a constant deposition rate at an injection time of 5 seconds or more. Cp of (NMe 2) 2 Hf For (NMeSiMe 3) average 0.66Å / cycle, Cp (NMe 2 ) 2 average of 0.63Å / cycle, (Me 3 Si ) for Hf (NEtSiMe 3) CpHf (NMe 2) 3 When it can be confirmed through Figure 2 that shows a constant deposition rate of 0.73 Å / cycle, which confirms that the precursor is ALD growth.

오존의 주입 시간에 따라서는 주입 시간이 2초 이상일 경우 Cp(NMe2)2Hf(NMeSiMe3)은 평균 0.61Å/cycle, Cp(NMe2)2Hf(NEtSiMe3)은 평균 0.59Å/cycle로 일정한 증착률을 나타냄을 확인하였고 이는 전구체가 ALD 성장함을 나타낸 결과이다. Depending on the injection time of ozone, if the injection time is more than 2 seconds, the average Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ) is 0.61Å / cycle, and the average Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) is 0.59Å / cycle. It was confirmed that it showed a constant deposition rate, which is a result showing that the precursor ALD growth.

도 5는 기판 온도별 증착 특성을 나타낸 것이다. Cp(NMe2)2Hf(NMeSiMe3)과 Cp(NMe2)2Hf(NEtSiMe3)의 경우 전체 기판온도 225~390℃의 구간에서 증착률이 약간씩 증가하는 경향을 보였으며, (Me3Si)CpHf(NMe2)3의 경우 275℃ 이상에서 증착률 변화폭이 더 크게 나타났다. 5 shows deposition characteristics of substrate temperatures. Cp (NMe 2) 2 Hf ( NMeSiMe 3) and Cp (NMe 2) 2 was a case of Hf (NEtSiMe 3) the deposition rate across the substrate range of the temperature 225 ~ 390 ℃ beam a tendency to increase slightly, (Me 3 In the case of Si) CpHf (NMe 2 ) 3, the change rate of deposition rate was greater than 275 ° C.

표 2는 XPS를 이용하여 막내 원소 분포도를 분석한 결과이다. Cp(NMe2)2Hf(NMeSiMe3)의 경우 250~390℃ 구간에서 증착 막내 규소의 함유량은 대략 10.4~11.1 at% 대로 나타났으며, 막내 전체 양이온 하프늄과 규소의 중 규소의 존재 비율은 0.27~0.32로 나타났다. Cp(NMe2)2Hf(NEtSiMe3)의 경우 11.1~12.9 at% 대로 나타났으며 막내 전체 양이온 내 규소의 존재 비율은 0.31~0.36로 나타났다. (Me3Si)CpHf(NMe2)3은 250~350℃에서 성장한 막내 규소 함유량이 9.6~11.3at%로 나타났으며, 전체 양이온 내 규소의 존재 비율은 0.31~0.34로 나타났다. Table 2 shows the results of analyzing the element distribution in the film using XPS. In the case of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ), the content of silicon in the deposited film was about 10.4 ~ 11.1 at% in the range of 250 ~ 390 ℃, and the ratio of silicon in the total cation hafnium and silicon in the film was 0.27. Was found to be 0.32. Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) showed 11.1 ~ 12.9 at% and the ratio of silicon in the total cation in the membrane was 0.31 ~ 0.36. The content of (Me 3 Si) CpHf (NMe 2 ) 3 in the film grown at 250 ~ 350 ℃ was 9.6 ~ 11.3at%, and the ratio of silicon in the total cation was 0.31 ~ 0.34.

이로써 규소가 함유된 ligand를 포함한 Cp(NMe2)2Hf(NMeSiMe3), Cp(NMe2)2Hf(NEtSiMe3) 및 (Me3Si)CpHf(NMe2)3의 전구체 화합물을 사용함으로써 추가적인 규소 전구체의 사용없이 규소 도핑 효과를 낼 수 있었다.
This is further accomplished by using precursor compounds of Cp (NMe 2 ) 2 Hf (NMeSiMe 3 ), Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) and (Me 3 Si) CpHf (NMe 2 ) 3 containing silicon-containing ligands. Silicon doping effects could be achieved without the use of silicon precursors.

<< 실험예Experimental Example 3 > 3>

본 발명을 따르는 신규 하프늄 전구체들 중에서 실시예 8과 실시예 9의 전구체 화합물을 이용하여 원자층 증착 (Atomic layer deposition(ALD)) 공정에 의한 성막 평가를 수행하였다. 산화제로는 물을 사용하였고 불활성 기체인 아르곤은 퍼지 목적으로 사용하였다. 전구체, 아르곤, 물 그리고 아르곤을 주입하는 것을 한 싸이클로 하였으며 증착은 불산 처리한 Si 웨이퍼 상에서 수행하였다. Film formation evaluation by an atomic layer deposition (ALD) process was performed using the precursor compounds of Examples 8 and 9 among the novel hafnium precursors according to the present invention. Water was used as the oxidant and inert gas argon was used for purging purposes. Injection of the precursor, argon, water and argon was made into one cycle and deposition was carried out on a hydrofluoricated Si wafer.

증착한 막은 엘립소미터(Ellipsometer)를 통하여 두께를 측정하였고, FESEM을 이용하여 두께를 확인하였다. 막내 규소함유량 및 탄소와 질소 등의 불순물 함유량은 XPS(X-ray photoelectron spectroscopy) 뎁쓰 프로파일(depth profile) 분석을 통해 측정하였다.The deposited film was measured by an ellipsometer (Ellipsometer) and the thickness was confirmed by using the FESEM. The silicon content in the film and the impurity contents such as carbon and nitrogen were measured by X-ray photoelectron spectroscopy (XPS) depth profile analysis.

구체적인 성막 평가 시 증착 조건은 표 3과 같다. 실험예 A는 (Me3Si)CpHf(NMe2)3 전구체 온도를 100℃, 기판 온도 325℃, 물 주입시간을 0.5초로 고정하고, 전구체 주입 시간을 1~15초로 변화시켰다. 실험예 B는 기판 온도별 성장 특성을 확인하기 위한 실험으로 전구체 온도 및 전구체와 물 주입 시간은 각각 100℃, 5초, 0.5초로 고정하고 증착 온도는 225~390℃의 기판 온도 범위에서 증착 특성을 평가하였다. 실험예 A, B의 증착률 결과는 도 6 ~ 도 7에 나타내었다. 또한 증착 온도별 막내 규소함량 결과는 표 4에 나타내었다.
The deposition conditions in the specific film formation evaluation are shown in Table 3. Experimental Example A fixed the (Me 3 Si) CpHf (NMe 2 ) 3 precursor temperature at 100 ° C., the substrate temperature at 325 ° C., and the water injection time at 0.5 seconds, and changed the precursor injection time to 1 to 15 seconds. Experimental Example B is an experiment for confirming the growth characteristics of each substrate temperature, the precursor temperature, the precursor and water injection time is fixed at 100 ℃, 5 seconds, 0.5 seconds, respectively, and the deposition temperature in the substrate temperature range of 225 ~ 390 ℃ Evaluated. The deposition rate results of Experimental Examples A and B are shown in FIGS. 6 to 7. In addition, the silicon content in the film according to deposition temperature is shown in Table 4.

증착 조건 Deposition conditions 실험 예 A 전구체 주입시간별Experimental Example A Precursor Injection Time 실험 예 B 기판온도별Experimental Example B By Substrate Temperature 전구체 온도
(℃)
Precursor temperature
(℃)
전구체 주입시간(sec)Precursor injection time (sec) 기판온도
(℃)
Substrate temperature
(℃)
전구체 온도
(℃)
Precursor temperature
(℃)
전구체 주입시간(sec)Precursor injection time (sec) 기판온도
(℃)
Substrate temperature
(℃)
(Me3Si)CpHf(NMe2)3,
Cp(NMe2)2Hf(NEtSiMe3)
(Me 3 Si) CpHf (NMe 2 ) 3 ,
Cp (NMe 2 ) 2 Hf (NEtSiMe 3 )
100100 1~151 to 15 325325 100100 55 225~390225-390

증착 결과 - 규소 함량Deposition Result-Silicon Content 증착온도 (℃)
규소 함량
Deposition Temperature (℃)
Silicon content
250250 300300 350350 390390
(Me3Si)CpHf(NMe2)3 (Me 3 Si) CpHf (NMe 2 ) 3 Si (at%)Si (at%) 4.34.3 3.53.5 5.35.3 6.16.1 Si/(Hf+Si)Si / (Hf + Si) 0.130.13 0.110.11 0.160.16 0.180.18 Cp(NMe2)2Hf(NEtSiMe3)Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) Si (at%)Si (at%) 2.72.7 1.31.3 4.44.4 5.75.7 Si/(Hf+Si)Si / (Hf + Si) 0.090.09 0.040.04 0.130.13 0.160.16

표 3의 증착 조건으로 Cp(NMe2)2Hf(NEtSiMe3) 및 (Me3Si)CpHf(NMe2)3 전구체 화합물과 물을 사용하여 성막 평가를 수행하였으며, 조건별 증착률 결과는 도면 6~7 로 나타내었다.Film deposition evaluation was performed using Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) and (Me 3 Si) CpHf (NMe 2 ) 3 precursor compounds and water as the deposition conditions of Table 3. It is represented by -7.

도 6 는 실험 예 A의 증착률 결과를 나타낸 것으로 전구체 주입 시간별 성장 특성을 보여준다. 증착 실험에 사용된 2종의 전구체 모두 3초 이상의 주입시간에서 일정한 증착률을 나타냄을 확인할 수 있다. Cp(NMe2)2Hf(NEtSiMe3)의 경우 평균 0.82Å/cycle, (Me3Si)CpHf(NMe2)3의 경우 0.706Å/cycle의 일정한 증착률을 나타냄을 확인했고, 이는 상기 전구체가 ALD성장함을 확인한 것이다.6 shows the deposition rate results of Experimental Example A, showing growth characteristics according to precursor injection time. It can be seen that both precursors used in the deposition experiments exhibited a constant deposition rate at an injection time of 3 seconds or more. It was confirmed that the average deposition rate of 0.82 Å / cycle for Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ), and 0.706 Å / cycle for (Me 3 Si) CpHf (NMe 2 ) 3 , indicating that the precursor ALD growth is confirmed.

도 7은 기판 온도별 증착 특성을 나타낸 것이다. Cp(NMe2)2Hf(NEtSiMe3)의 경우 전체 기판온도 225~390℃의 구간에서 증착률이 약간씩 증가하는 경향을 보였으며, (Me3Si)CpHf(NMe2)3의 경우 350℃까지 평균 증착률이 0.63Å/cycle으로 일정하게 유지됨을 확인할 수 있었고, 이는 상기 전구체가 ALD성장함을 확인한 것이다.Figure 7 shows the deposition characteristics by substrate temperature. In the case of Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ), the deposition rate tended to increase slightly over the entire substrate temperature of 225 ~ 390 ℃, and 350 ℃ for (Me 3 Si) CpHf (NMe 2 ) 3 . It was confirmed that the average deposition rate was kept constant at 0.63 Å / cycle, which confirms that the precursor grows ALD.

표 4는 XPS를 이용하여 막내 원소 분포도를 분석한 결과이다. Cp(NMe2)2Hf(NEtSiMe3)의 경우 1.3~5.7 at% 대로 나타났으며 막내 전체 양이온 내 규소의 존재 비율은 0.04~0.16으로 나타났다. (Me3Si)CpHf(NMe2)3은 250~390℃에서 성장한 막내 규소 함유량이 3.5~6.1at%로 나타났으며, 전체 양이온 내 규소의 존재 비율은 0.11~0.18로 나타났다. Table 4 shows the results of analyzing the element distribution in the film using XPS. In the case of Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ), the proportion of silicon in the total cation in the membrane was 0.04 ~ 0.16. The content of (Me 3 Si) CpHf (NMe 2 ) 3 in the film grown at 250 ~ 390 ℃ was 3.5 ~ 6.1at%, and the ratio of silicon in the total cation was 0.11 ~ 0.18.

이로써 규소가 함유된 ligand를 포함한 Cp(NMe2)2Hf(NEtSiMe3) 및 (Me3Si)CpHf(NMe2)3의 전구체 화합물을 사용함으로써 추가적인 규소 전구체의 사용없이 규소 도핑 효과를 낼 수 있었다.This enabled the use of precursor compounds of Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) and (Me 3 Si) CpHf (NMe 2 ) 3 with silicon-containing ligands to produce silicon doping effects without the use of additional silicon precursors. .

Claims (17)

삭제delete 삭제delete 삭제delete 하기 화학식 4로 정의되는 금속 산화물 또는 금속-규소 산화물 박막 증착용 유기금속 전구체 화합물:
<화학식 4>
Figure 112013027234499-pat00020


상기 화학식 4에서, M은 Ti, Zr, Hf 중에서 선택된 하나이고; R1 내지 R10은 각각 같거나 다른 것으로서 수소, 탄소수 1 내지 6의 알킬기 또는 SiR12R13R14 중에서 선택되며, R11은 SiR12R13R14 이고, 이때 R3-R6 중에서 적어도 어느 하나는 메틸기 또는 에틸기이며, R12~R14는 각각 같거나 다른 것으로서 수소 또는 탄소수 1 내지 6의 알킬기이고; x는 0~1의 정수이다.
An organometallic precursor compound for depositing a metal oxide or metal-silicon oxide thin film defined by Formula 4 below:
&Lt; Formula 4 >
Figure 112013027234499-pat00020


In Formula 4, M is one selected from Ti, Zr, Hf; R 1 to R 10 are the same as or different from each other and are selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, or SiR 12 R 13 R 14 , wherein R 11 is SiR 12 R 13 R 14, wherein at least any of R 3 -R 6 One is a methyl group or an ethyl group, and R 12 to R 14 are the same or different and each is hydrogen or an alkyl group having 1 to 6 carbon atoms; x is an integer of 0-1.
청구항 4에 있어서, 상기 화학식 4로 표시되는 유기금속 전구체 화합물이 Cp(NMe2)2Hf(NMeSiMe3), Cp(NMe2)2Zr(NEtSiMe3), Cp(NMe2)2Hf(NEtSiMe3), (Me3Si)CpHf(NMe2)3 또는 (Me2HSi)CpHf(NMe2)3인 것을 특징으로 하는 유기 금속 전구체 화합물:
상기 식에서 Zr은 지르코늄, Hf는 하프늄, Et은 에틸기, Me은 메틸기, Cp는 싸이클로펜타디에닐기를 각각 나타낸다.
The method of claim 4, wherein the organometallic precursor compound represented by Formula 4 is Cp (NMe 2 ) 2 Hf (NMeSiMe 3), Cp (NMe 2 ) 2 Zr (NEtSiMe 3 ), Cp (NMe 2 ) 2 Hf (NEtSiMe 3 ) , (Me 3 Si) CpHf (NMe 2 ) 3 or (Me2HSi) CpHf (NMe 2 ) 3 , wherein the organometallic precursor compound is:
In the formula, Zr represents zirconium, Hf represents hafnium, Et represents ethyl group, Me represents methyl group, and Cp represents cyclopentadienyl group.
삭제delete 하기 반응식 2의 방법으로 제조되는 것을 특징으로 하는 청구항 4 또는 청구항 5 항의 유기금속 전구체 화합물의 제조방법:
<반응식 2>
Figure 112013027234499-pat00021

상기 반응식 2에서 M 및 R1 내지 R11은 상기 화학식 4에서 정의한 것과 같고, Cp는 싸이클로펜타디에닐기를 의미한다.
A process for preparing the organometallic precursor compound of claim 4 or 5, which is prepared by the method of Scheme 2.
<Reaction Scheme 2>
Figure 112013027234499-pat00021

In Scheme 2, M and R 1 to R 11 are the same as defined in Formula 4, and Cp means a cyclopentadienyl group.
청구항 4 또는 청구항 5의 유기금속 전구체 화합물을 이용하여 기판상에 금속 박막, 금속 산화물 박막 또는 금속-규소 산화물 박막을 형성하는 것을 특징으로 하는 박막 증착 방법.
A method of depositing a thin film comprising forming a metal thin film, a metal oxide thin film or a metal-silicon oxide thin film on a substrate using the organometallic precursor compound of claim 4 or 5.
청구항 8에 있어서, 상기 박막 증착 방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 유기 금속 화학 증착법(Metal Organic Chemical Vapor Deposition, MOCVD)을 사용하는 것을 특징으로 하는 박막 증착 방법.
The method of claim 8, wherein the thin film deposition method uses atomic layer deposition (ALD) or metal organic chemical vapor deposition (MOCVD).
청구항 8에 있어서, 상기 금속 전구체 화합물을 사용하여 기판상에 증착함에 있어서, 증착 온도는 100~700 ℃인 것을 특징으로 하는 박막 증착 방법.
The method of claim 8, wherein the deposition temperature is 100 to 700 ° C. in the deposition on the substrate using the metal precursor compound.
청구항 8에 있어서, 증착 온도에 따라 금속 규소 산화막 내 규소 함유량을 조절하는 것을 특징으로 하는 박막 증착 방법.
The thin film deposition method according to claim 8, wherein the silicon content in the metal silicon oxide film is adjusted according to the deposition temperature.
청구항 8에 있어서, 상기 유기금속 전구체 화합물을 기판상에 이동시키는 전달 방식은 휘발된 기체를 이송시키는 방식, 직접 액체 주입 (DLI : Direct Liquid Injection) 방식 또는 전구체 화합물을 유기 용매에 녹여 이송하는 액체 이송방식을 사용하는 것을 특징으로 하는 박막 증착 방법.
The method of claim 8, wherein the transfer method of moving the organometallic precursor compound on a substrate is a method of transferring a volatilized gas, a direct liquid injection (DLI) method, or a liquid transfer of dissolving the precursor compound in an organic solvent. Thin film deposition method characterized by using a method.
청구항 8에 있어서, 상기 유기금속 전구체 화합물을 기판상에 이동시키기 위한 운송가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He) 또는 수소(H2) 중에서 선택된 하나 이상을 사용하는 것을 특징으로 하는 박막 증착 방법.
The method of claim 8, wherein the transport gas or diluent gas for moving the organometallic precursor compound on the substrate using at least one selected from argon (Ar), nitrogen (N 2 ), helium (He) or hydrogen (H 2 ). Thin film deposition method characterized in that.
청구항 8에 있어서, 상기 유기금속 전구체 화합물을 사용하여 기판상에 증착시 열에너지 또는 플라즈마를 이용하거나 또는 기판상에 바이어스를 인가하는 방법을 사용하는 것을 특징으로 하는 박막 증착 방법.
The method of claim 8, wherein the organometallic precursor compound is used to deposit heat on the substrate or to apply a bias on the substrate.
청구항 8에 있어서, 기판상에 금속 산화물 박막이나 금속-규소 산화막 박막을 증착하기 위한 반응가스로는 수증기(H2O), 산소(O2)또는 오존(O3)을 사용하는 것을 특징으로 하는 박막 증착 방법.
The thin film according to claim 8, wherein water vapor (H 2 O), oxygen (O 2 ), or ozone (O 3 ) is used as a reaction gas for depositing a metal oxide thin film or a metal-silicon oxide thin film on a substrate. Deposition method.
청구항 9에 있어서, 상기 원자층 증착 공정(Atomic layer deopsition;ALD) 을 이용하는 방법은
(A) 청구항 4 또는 청구항 5의 유기금속 전구체 화합물을 증착 챔버 내로 이송 시키기 위하여 유기 금속 전구체 화합물을 20 ℃내지 200 ℃ 의 공급원 온도로 가열하거나 혹은 액체 이송장치를 이용하여 이송시키는 단계;
(B) 상기 이송된 유기 금속 전구체 화합물을 기판상에 흡착시켜 0.1초~1분 동안 전구체 층을 기판 위에 형성시키는 단계;
(C) 기판위에 흡착되지 않는 과량의 전구체를 불활성 기체를 이용하여 제거하는 단계;
(D) 금속 산화물 박막 또는 금속-규소산화물 박막을 기판위에 형성시키기 위해 상기한 반응가스 또는 이러한 반응가스를 불활성가스로 희석시킨 혼합가스를 0.1초~1분 이내의 시간 동안 상기 기판 위에 형성된 전구체 층과 반응시켜 금속산화물 박막 또는 금속-규소산화물 박막 및 부산물을 형성시키는 단계; 및
(E) 챔버 내로 불활성 기체를 주입하여 과량의 반응가스 및 생성된 부산물을 제거하는 단계;
를 한 주기(cycle)로 하여 주기를 반복함으로써 박막을 형성하는 것을 특징으로 하는 박막 증착 방법.
The method of claim 9, wherein the atomic layer deposition process (ALD) is used.
(A) heating the organometallic precursor compound to a source temperature of 20 ° C. to 200 ° C. or using a liquid transfer device to transfer the organometallic precursor compound of claim 4 or 5 into the deposition chamber;
(B) adsorbing the transferred organometallic precursor compound on a substrate to form a precursor layer on the substrate for 0.1 seconds to 1 minute;
(C) removing excess precursor that is not adsorbed onto the substrate using an inert gas;
(D) a precursor layer formed on the substrate for a time within 0.1 seconds to 1 minute of the reaction gas or a mixture gas diluted with the inert gas to form a metal oxide thin film or a metal-silicon oxide thin film on the substrate. Reacting with each other to form a metal oxide thin film or a metal-silicon oxide thin film and a byproduct; And
(E) injecting an inert gas into the chamber to remove excess reaction gas and generated byproducts;
Thin film deposition method characterized in that to form a thin film by repeating the cycle in a cycle (cycle).
청구항 16에 있어서, 상기 주기(cycle)은 10~1000회 실시하는 것을 특징으로 하는 박막 증착 방법.The method of claim 16, wherein the cycle is performed 10 to 1000 times.
KR1020100140183A 2010-12-31 2010-12-31 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom KR101284664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100140183A KR101284664B1 (en) 2010-12-31 2010-12-31 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100140183A KR101284664B1 (en) 2010-12-31 2010-12-31 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom

Publications (2)

Publication Number Publication Date
KR20120078025A KR20120078025A (en) 2012-07-10
KR101284664B1 true KR101284664B1 (en) 2013-07-11

Family

ID=46711430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100140183A KR101284664B1 (en) 2010-12-31 2010-12-31 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom

Country Status (1)

Country Link
KR (1) KR101284664B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499571B2 (en) 2014-12-23 2016-11-22 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Germanium- and zirconium-containing compositions for vapor deposition of zirconium-containing films
US9663547B2 (en) 2014-12-23 2017-05-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films
US10103026B2 (en) 2015-08-04 2018-10-16 Samsung Electronics Co., Ltd. Methods of forming material layer
US10106568B2 (en) 2016-10-28 2018-10-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
CN110573652A (en) * 2017-03-15 2019-12-13 弗萨姆材料美国有限责任公司 Novel formulations for the deposition of silicon-doped hafnium oxide as ferroelectric material
US11081337B2 (en) 2017-03-15 2021-08-03 Versum Materials U.S., LLC Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
US11631580B2 (en) 2017-03-15 2023-04-18 Versum Materials Us, Llc Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993355B1 (en) 2013-03-13 2019-09-30 삼성전자주식회사 Method of fabricating a semiconductor device
KR102052664B1 (en) 2013-03-15 2019-12-06 삼성전자주식회사 Trialkylsilane Si precursor compound and method of forming a layer using the same
KR101959519B1 (en) 2016-04-12 2019-03-18 (주)디엔에프 transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same
WO2017179857A1 (en) * 2016-04-12 2017-10-19 (주)디엔에프 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same
KR20230066846A (en) 2021-11-08 2023-05-16 한국표준과학연구원 Sampling device for evaluation of thermal stability in vacuum environment of organometallic precursors for deposition process and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091107A (en) * 2006-11-02 2009-08-26 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Antimony and germanium complexes useful for cvd/ald of metal thin films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091107A (en) * 2006-11-02 2009-08-26 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Antimony and germanium complexes useful for cvd/ald of metal thin films

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499571B2 (en) 2014-12-23 2016-11-22 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Germanium- and zirconium-containing compositions for vapor deposition of zirconium-containing films
US9663547B2 (en) 2014-12-23 2017-05-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films
US9868753B2 (en) 2014-12-23 2018-01-16 L'Air Liquide, Société Anonyme our l'Etude et l'Exploitation des Procédés Georges Claude Germanium- and zirconium-containing composition for vapor deposition of zirconium-containing films
US10103026B2 (en) 2015-08-04 2018-10-16 Samsung Electronics Co., Ltd. Methods of forming material layer
US10468256B2 (en) 2015-08-04 2019-11-05 Samsung Electronics Co., Ltd. Methods of forming material layer
US10106568B2 (en) 2016-10-28 2018-10-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
CN110573652A (en) * 2017-03-15 2019-12-13 弗萨姆材料美国有限责任公司 Novel formulations for the deposition of silicon-doped hafnium oxide as ferroelectric material
US11081337B2 (en) 2017-03-15 2021-08-03 Versum Materials U.S., LLC Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
CN110573652B (en) * 2017-03-15 2022-07-22 弗萨姆材料美国有限责任公司 Novel formulations for depositing silicon doped hafnium oxide as ferroelectric material
US11631580B2 (en) 2017-03-15 2023-04-18 Versum Materials Us, Llc Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials

Also Published As

Publication number Publication date
KR20120078025A (en) 2012-07-10

Similar Documents

Publication Publication Date Title
KR101284664B1 (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
JP5535945B2 (en) Method for forming a titanium-containing layer on a substrate using atomic layer deposition (ALD)
KR101216068B1 (en) Organometallic precursors for thin-film deposition of metal oxide or silicon-containing metal oxide, and deposition process of the thin films therefrom
US6399208B1 (en) Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films
US9583335B2 (en) Method of forming dielectric films, new precursors and their use in semiconductor manufacturing
KR101787204B1 (en) Organic metal precursor compound for atomic layer deposition and ald deposition using the same
JP5469037B2 (en) Group 4 metal precursors for metal-containing films
WO2007015436A1 (en) Metal-containing compound, process for producing the same, metal-containing thin film, and method of forming the same
JP2012156491A (en) Metal-enolate precursors for depositing metal-containing films
US6736993B1 (en) Silicon reagents and low temperature CVD method of forming silicon-containing gate dielectric materials using same
KR20130049020A (en) Tantalum precursor compound and method for preparing the same
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
KR20220157741A (en) Novel hafnium compound, precursor composition comprising the same, thin film using the same and deposition method of the same
KR102093226B1 (en) Silicon-containing organic metal precursor compound, a method for the preparation thereof, and method of manufacturing a silicon metal-oxide thin film
JP5373945B2 (en) Method for depositing Group 4 metal-containing film
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
KR102472597B1 (en) Group 4 organometallic precursor compound into which η6 borata benzene ligand is introduced, a method for manufacturing the same, and a method for forming a thin film using the same
KR102557277B1 (en) Rare earth precursors, preparation method thereof and process for the formation of thin films using the same
KR102491073B1 (en) Silicon precursor compound, composition for forming a silicon-containing film comprising the same, and method for forming a film using the composition
KR102621779B1 (en) Niobium precursor compound for thin film deposition and method of forming thin film containing niobium using the same
KR102428276B1 (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
KR102365249B1 (en) Precursor compositions including organic silicon amine compound for film deposition, and depositing methods of film using the same
KR100508110B1 (en) Organometallic complex and the preparation thereof
TW202317801A (en) Molybdenum precursor compound, method for preparing the same, and method for depositing molybdenum-containing thin film using the same
KR20220113029A (en) Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180629

Year of fee payment: 6