KR101787204B1 - Organic metal precursor compound for atomic layer deposition and ald deposition using the same - Google Patents

Organic metal precursor compound for atomic layer deposition and ald deposition using the same Download PDF

Info

Publication number
KR101787204B1
KR101787204B1 KR1020150164082A KR20150164082A KR101787204B1 KR 101787204 B1 KR101787204 B1 KR 101787204B1 KR 1020150164082 A KR1020150164082 A KR 1020150164082A KR 20150164082 A KR20150164082 A KR 20150164082A KR 101787204 B1 KR101787204 B1 KR 101787204B1
Authority
KR
South Korea
Prior art keywords
ald
atomic layer
layer deposition
precursor
deposition
Prior art date
Application number
KR1020150164082A
Other languages
Korean (ko)
Other versions
KR20170059742A (en
Inventor
박정우
임민혁
박종률
염보라
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to KR1020150164082A priority Critical patent/KR101787204B1/en
Priority to PCT/KR2016/006128 priority patent/WO2017090854A1/en
Priority to TW105122839A priority patent/TWI652277B/en
Publication of KR20170059742A publication Critical patent/KR20170059742A/en
Application granted granted Critical
Publication of KR101787204B1 publication Critical patent/KR101787204B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition

Abstract

본 발명은 유기금속 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition; ALD)을 통하여 박막 증착이 가능한 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법에 관한 것이다. The present invention relates to an organometallic precursor compound, and more particularly, to an organometallic precursor compound capable of thin film deposition through atomic layer deposition (ALD) and an ALD deposition method using the same.

Description

원자층 증착용(ALD) 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법{ORGANIC METAL PRECURSOR COMPOUND FOR ATOMIC LAYER DEPOSITION AND ALD DEPOSITION USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to an atomic layer deposition (ALD) organometallic precursor compound, and an ALD deposition method using the same. BACKGROUND ART [0002]

본 발명은 유기금속 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition; ALD)을 통하여 박막 증착이 가능한 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법에 관한 것이다.The present invention relates to an organometallic precursor compound, and more particularly, to an organometallic precursor compound capable of thin film deposition through atomic layer deposition (ALD) and an ALD deposition method using the same.

나노 스케일 집적소자의 제작을 위해 금속, 반도체, 산화물 등을 이용한 다양한 박막의 적용이 연구되어 오고 있다. 이들 다양한 박막의 형성 공정에 있어, 계속되는 소자의 극미세화와 더불어 새로운 형태의 소자가 지속적으로 제안됨에 따라 나노 스케일에서 복잡한 형태의 구조에 원자층 수준에서 두께가 조절되는 박막 증착 공정의 필요성과 단차 도포성(step coverage)의 중요성이 함께 증가되고 있다. 특히, 반도체 소자에 사용되는 박막은 원자 단위로 제어가능하고, 단차 피복성이 우수한 특성을 가져야하며, 계면에서 확산과 산화가 일어나지 않게 하기 위해서 증착 온도가 낮아야 한다. 이에 적용가능한 기술이 원자층 증착법(Atomic Layer Deposition; ALD)이다. 나노 수준의 두께 조절이 가능한 고등방성의 박막 증착 방법의 개발이 매우 중요한 요인이 됨에 따라, 원자층 증착법은 나노 크기의 소자의 많은 응용에 가장 가능성이 있는 증착 기술로 주목받고 있다. 원자층 증착법은 고누설 전류와 같은 소자 미세화에 의해 야기된 문제들을 해결할 수 있을 것으로 기대되며, 단일 고유전 물질의 증착을 제외하고, 원자층 증착법은 원자 수준의 조성 변화를 가진 박막을 증착할 수 있는 추가적인 이점을 또한 가진다. 원자층 증착법의 원리는 불활성 기체(Ar, N2 등)에 의해서 분리되어진 각각의 반응물을 웨이퍼 위에 공급함에 의해서 하나의 원자층이 증착되어지며, 원하는 두께를 증착하기 위해서 반복적으로 증착하게 되어진다. 하나의 반응물이 박막이 증착되는 기판 위에 화학 흡착이 일어난 후, 제2 또는 제3의 기체가 들어와 기판 위에서 다시 화학 흡착이 일어나면서 박막이 형성되는 반응이다. 반응물은 단원소 또는 화합물이 사용되어지며, 이러한 반응물은 휘발성이 높고, 물질이 안정해야 하며, 반응성이 높아야 한다.Application of various thin films using metals, semiconductors, and oxides for the fabrication of nanoscale integrated devices has been studied. In the process of forming these various thin films, the necessity of the thin film deposition process in which the thickness is controlled at the atomic layer level in the nanoscale complex structure and the step application The importance of step coverage is also increasing. Particularly, the thin film used for a semiconductor device must be controllable on an atomic basis, have excellent step coverage, and have a low deposition temperature in order to prevent diffusion and oxidation at the interface. An applicable technique is Atomic Layer Deposition (ALD). As the development of a highly isotropic thin film deposition method capable of controlling the thickness of the nano level becomes a very important factor, the atomic layer deposition method is attracting attention as a most promising deposition technique for many applications of nano-sized devices. Atomic layer deposition is expected to solve the problems caused by device refinement such as high leakage currents. Except for the deposition of a single high dielectric constant material, atomic layer deposition can deposit thin films with atomic compositional changes It also has an additional advantage. The principle of atomic layer deposition is that one atomic layer is deposited by supplying each reactant separated by an inert gas (Ar, N 2, etc.) onto the wafer, and is repeatedly deposited to deposit the desired thickness. One reaction is a reaction in which a chemical adsorption occurs on a substrate on which a thin film is deposited, a second or a third gas is introduced, and a chemical adsorption occurs again on the substrate to form a thin film. The reactants are either monosaccharides or compounds, which must be highly volatile, stable, and highly reactive.

이러한 원자층 증착 공정을 이용하여 박막을 증착하는 전구체로 chloride 화합물들이 있다. chloride 화합물들은 상온에서 기체이거나 높은 증기압을 갖고 있어서 챔퍼 내로 공급하는 것이 쉽고 고순도 물질로 비교적 저렴하게 사용할 수 있는 장점이 있다. 하나 증착 공정을 통하여 생성되는 염화 부산물(HCl or NH4Cl 등)들이 완벽하게 제거되지 않고 박막 공정 중 박막에 재흡착되면서 박막의 전기적 혹은 물리적 특성을 저하 시키는 오염요인으로 작용할 수가 있다. 이런 예들로는 테트라클로로실란 (tetrachlorosilane; SiCl4), 다이클로로실란 (dichlorosilane; DCS), 헥산클로로다이실란 (hexachlorodisilane; HCDS(Si2Cl6), 테트라클로로저머늄(tetrachlorogermanium; GeCl4), 테트라클로로틴 (tetrchlorotin; SnCl4)등이 포함 될 수 있으나, 이에 제한되는 것은 아니다. 상기 chloride 전구체들이 증착 공정에 의해 생성되는 염화 부산물 제거 및 반응성을 향상시키고자 증착 공정 중에 촉매를 사용하거나 300℃ 이상 고온 공정으로 박막을 형성함으로써 물성을 향상 킬 수가 있으나 공정이 복잡해 지고 새로운 공정 기술 개발이 요구된다. 이런 이유로 chloride 화합물보다는 염소(Cl)를 포함하지 되지 않은 전구체가 더 바람직할 수 있다.Chloride compounds are precursors for depositing thin films using these atomic layer deposition processes. Chloride compounds are gas at room temperature or have a high vapor pressure, so it is easy to supply them into chambers and they can be used at relatively low cost as high purity materials. One of the chlorinated byproducts (HCl or NH 4 Cl) produced through the deposition process is not completely removed and re-adsorbed to the thin film during the thin film process, which may act as a pollutant to deteriorate the electrical or physical properties of the thin film. Examples of these include tetrachlorosilane (SiCl 4 ), dichlorosilane (DCS), hexachlorodisilane (HCDS (Si 2 Cl 6 ), tetrachlorogermanium (GeCl 4 ), tetrachloro tin. (tetrchlorotin; SnCl 4), etc., but it can be included, limited to but is not the chloride precursors to the use of a catalyst in the chloride by-product was removed, and improve the reactivity chair deposition process is produced by the deposition process, or more than 300 ℃ high temperature Although it is possible to improve the physical properties by forming the thin film by the process, the process is complicated and new process technology development is required. For this reason, a precursor not containing chlorine (Cl) may be more preferable than the chloride compound.

다른 종류의 전구체로는 알콕사이드(alkoxide) 및 알킬(alkyl) 화합물이 사용될 수 있다. 이 예로는 테트라에톡시실란 [tetraethoxylsilane; Si(OEt)4], 트리(터트부톡시)실란올 [tri(tert-butoxyl)silanol; (tBuO)3SiOH], 도데카실란올, 옥타데실실록산[octadecylsiloxane], 트리스아이소프로필에틸메틸저머늄 [tris(isopropyl)ethylmethylaminogermanium; iPr3Ge(NMeEt)], 테트라에톡시저머늄 [tetraethoxylgermanium; Ge(OEt)4], 테트라메틸틴 [tetramehtyltin; Sn(Me)4], 테트라에틸틴 [tetraethyltin; Sn(Et)4], 비스아세틸아세톤틴 [bisacetylacetonatetin; Sn(acac)2]등이 포함될 수 있으나, 이에 제한되는 것은 아니다. 이런 전구체는 기판과 반응성이 매우 낮아 일반적인 증착 온도(200℃~300℃)에서는 박막이 형성되지 않는다. 이런 문제를 해결하고자 전구체 공급량을 늘리고 높은 공정 온도(400℃ 이상) 및 촉매(NH3, trimethylalumium, triethylamine 등), 플라즈마 등을 사용하여 박막의 성장 속도를 향상 시켜고자 공정 개발이 이루어지고 있다. 그러나 이런 개선에도 불구하고 여전히 불균일한 도포성과 박막내 불순물(탄소)이 잔존하는 문제점이 발생하여 여전히 연구 개발이 진행되고 있는 상황이다. 위와 같이 알코올 및 알킬기를 갖는 화합물은 반응가스(NO, O2, H2O, O3, NH3 등)와 반응성이 낮기 때문이며 이보다 기판 및 반응가스에 반응성이 좋은 아미노 화합물이 원자층 증착법의 전구체로 더 바람직 할 수 있다.Other precursors may be alkoxide and alkyl compounds. Examples include tetraethoxylsilane; Si (OEt) 4 ], tri (tert-butoxyl) silanol; (tBuO) 3SiOH], dodecasilanol, octadecylsiloxane, tris (isopropyl) ethylmethylaminogermanium; i Pr 3 Ge (NMeEt)], tetraethoxylgermanium; Ge (OEt) 4 ], tetramethyltin [tetramehtyltin; Sn (Me) 4 ], tetraethyltin; Sn (Et) 4 ], bisacetylacetonatetin; Sn (acac) 2 ], and the like, but the present invention is not limited thereto. These precursors are very reactive with the substrate and do not form thin films at typical deposition temperatures (200 ° C to 300 ° C). In order to solve this problem, the precursor process is being developed by increasing the precursor supply amount, increasing the growth rate of the thin film by using a high process temperature (over 400 ° C.), a catalyst (NH 3 , trimethylalumium, triethylamine, etc.) Despite these improvements, however, there is still a problem that non-uniform application and residual impurities (carbon) in the thin film remain, and research and development is proceeding. Since the compound having an alcohol and an alkyl group as described above is low in reactivity with the reaction gas (NO, O 2 , H 2 O, O 3 , NH 3, etc.), an amino compound having better reactivity with the substrate and the reaction gas is used as the precursor May be more preferable.

아미노 화합물은 다른 전구체(염화화합물, 알콕시화합물, 알킬화합물 등)에 비해 기판과 반응가스에 반응성이 우수하여 균일한 박막 형성이 가능하며 반응으로 생성된 부산물 제거도 용이하다. 또한, 전구체가 가지는 일반적인 성질로 상온에서 액체이며 좋은 증기압을 가지고 있어 작업이 용이하다는 장점이 있다. 이런 아미노 화합물의 예로는 부틸아미노 실란 (butylamino silane; BAS), 비스(tert-부틸아미노)실란 (Bis(tertiary-butylamino)silane; BTBAS), 디메틸아미노실란 (dimethylaminosilane; DMAS), 디에틸 아미노실란 (diethyl aminosilane; DEAS), 비스(디에틸 아미노실란) (bis(diethyl aminosilane); BDEAS), 디프로필 아미노실란 (dipropyl aminosilane; DPAS), 또는 디이소프로필 아미노실란 (diisopropyl aminosilane; DIPAS), 테트라키스(다이메틸아미노)저머늄 [tetrakis(dimethylamino)germanium; Ge(NMe2)4], 비스(n-부틸아미노)저머늄 [bis(n-butylamino)germanium; (n-BuN)2Ge], 테트라키스(에틸메틸아미노)틴 [tetrakis(ethylmethylamino)tin; Sn(NMeEt)4]등이 포함될 수 있으나, 이에 제한되는 것은 아니다. 이런 전구체를 사용한 예로 메톡시실리아이소시아네이트[methoxy-sily-iso-cyanate; CH3OSi(NCO)3], 테트라아이소실릴시아네이트[tetraisocyanate; Si(NCO)4]이 있다. 이 경우 상온(25℃)에서도 SiO2 박막을 형성할 수 있으나 공정 온도가 증가할수록 박막 성장 속도가 감소되는 경향을 지닌다. 또한 비스(디메틸아미노)실란 [bis(dimethyl aminosilane); BDMAS], 트리스(디메틸아미노)실란 [tris(dimethylamino)silane; TDMAS], 테트라키스(다이메틸아미노)틴 [tetrakis(dimethylamino)tin; Sn(NMe2)4]는 200℃~300℃의 온도 구간에서 전기적으로 우수한 특성을 갖는 박막을 형성하나 공정 온도의 변화에 따라 박막의 흡착보다는 탈착 효과가 증가하거나 반대로 탈착보다는 흡착 효과가 증가하여 일정한 증착 속도로 원하는 두께를 조절하는 원자층 증착법의 전구체로 사용하기에는 다소 부적합한 물성을 지닌다. 하지만 아미노 화합물은 구조적인 변경 범위가 넓고, 보관 안전성, 화학 반응성 및 조작성 등이 실용적인 관점에서 알콕시 화합물 또는 염화 화합물보다 더 바람직할 수 있다. Compared to other precursors (chlorinated compounds, alkoxy compounds, alkyl compounds, etc.), the amino compounds have excellent reactivity with the substrate and the reaction gas, so that a uniform thin film can be formed and the by-products generated by the reaction can be easily removed. In addition, since the precursor has a general property, it is liquid at room temperature and has a good vapor pressure, which is advantageous in that it is easy to work. Examples of such amino compounds include butylamino silane (BAS), bis (tertiary-butylamino) silane (BTBAS), dimethylaminosilane (DMAS), diethylaminosilane diethyl aminosilane (DEAS), bis (diethyl aminosilane), BDEAS, dipropyl aminosilane (DPAS), diisopropyl aminosilane (DIPAS), tetrakis Dimethylamino) germanium [tetrakis (dimethylamino) germanium; Ge (NMe 2 ) 4 ], bis (n-butylamino) germanium; (n-BuN) 2 Ge], tetrakis (ethylmethylamino) tin; Sn (NMeEt) 4 ], and the like, but the present invention is not limited thereto. Examples using these precursors include methoxy-sily-iso-cyanate; CH 3 OSi (NCO) 3 ], tetraisocyanate; Si (NCO) 4 ]. In this case, a SiO 2 thin film can be formed even at room temperature (25 ° C), but the growth rate of the thin film tends to decrease as the process temperature increases. Also bis (dimethylamino) silane [bis (dimethyl aminosilane); BDMAS], tris (dimethylamino) silane [tris (dimethylamino) silane; TDMAS], tetrakis (dimethylamino) tin; Sn (NMe 2 ) 4 ] forms a thin film having excellent electrical properties in a temperature range of 200 ° C to 300 ° C. However, as the process temperature is changed, the desorption effect is increased rather than the thin film adsorption, It is somewhat unsuitable for use as a precursor for atomic layer deposition which controls the desired thickness at a constant deposition rate. However, the amino compound has a wide range of structural changes, and storage stability, chemical reactivity, and operability can be more preferable from the practical viewpoint than the alkoxy compound or the chlorinated compound.

한편, Ⅳ족 2가 전구체 화합물 관련 연구로서 문헌 [Synthesis of N-Heterocyclic Stannylene (Sn(II)) and Germylene (Ge(II)) and a Sn(II) Amidinate and Their Application as Precursors for Atomic Layer Deposition (Chem. Master. 2014, 26, 3065-3073)]에 n-heterocyclic stannylene (Sn(II)), Germylene (Ge(II)), Sn(II) amidinate의 제조방법이 개시된 바 있으나, 상기 물질들의 원자층 증착 적용 여부는 확인된 바 없다. As a study on the precursors of the Group IV divalent precursors, Synthesis of N-Heterocyclic Stannylene (Sn (II)) and Germylene (Ge (II)) and a Sn (II) Amidinate and Their Application as Precursors for Atomic Layer Deposition (II), germanium (II), and tin (II) amidinates in the presence of an atom (s) The application of layer deposition has not been confirmed.

또한, 문헌 [Synthesis and characterization of three new thermally stable n-heterocyclic germylenes (Journal of Organometallic Chemistry, 694(2009), 2122-2125)]에 개시된 n-heterocyclic germylene은 비대칭형 구조의 유기금속이나, 상온에서 고체상이며 고온의 증착 온도에 적용 가능하지 않다는 단점을 가지고 있다. 또한 Si 2가 전구체 화합물을 이용한 SiO2 ALD 특허 [Silicon precursors for low temperature ALD of silicon-based Thin-Films (미국공개특허공보 제2015/0147824호)]에 n-heterocyclic Silylene (Si(II))과 Sn 2가 전구체 화합물을 이용한 SnOx 논문 [Low Temperature Atomic Layer Deposition of Tin Oxide (Chem. Master. 2010, 22, 4964-4973)]의 n-heterocyclic Stannylene (Sn(II))에 제조 방법과 증착이 개시된 바 있으나, 상기 물질들은 휘발성이 낮고 상온에서 고체인 전구체이며 원자층 증착 공정 온도가 50℃~200℃의 낮은 온도 구간에서만 박막이 형성되는 단점을 가지고 있다.The n-heterocyclic germylene disclosed in Synthesis and characterization of three new thermally stable n-heterocyclic germylenes (Journal of Organometallic Chemistry, 694 (2009), 2122-2125) is an organic metal having an asymmetric structure, And it is not applicable to a high temperature deposition temperature. In addition, n-heterocyclic Silylene (Si (II)) and Sn (II) are doped in a Si02 ALD patent using a Si2 precursor compound [US Patent Application Publication No. 2015/0147824] (Sn (II)) of the SnO x article (Low Temperature Atomic Layer Deposition of Tin Oxide (Chem. Master. 2010, 22, 4964-4973) using a divalent precursor compound) However, these materials are low in volatility and solid at room temperature, and have a disadvantage in that a thin film is formed only at a low temperature range of 50 ° C to 200 ° C in an atomic layer deposition process.

따라서 좋은 휘발성을 갖으며 상온에서 액상인 원자층 증착용(ALD) Ⅳ족 2가 유기금속 전구체 화합물의 새로운 구조 설계를 통해, 구조적으로 안정하여 폭넓은 온도 구간에서 박막을 형성할 수 있는 아미노 전구체 개발의 필요성이 대두되고 있다. 또한 높은 수율 및 고순도의 전구체 화합물을 합성할 수 있는 제조기술이 요구되고 있다. Therefore, it is necessary to develop an amino precursor which can form a thin film in a wide temperature range by structurally stabilizing the structure of an organic metal precursor compound having a good volatility and a liquid phase at room temperature (ALD) IV group 2 The need for There is also a demand for a manufacturing technique capable of synthesizing a precursor compound having a high yield and a high purity.

이에, 본원은 원자층 증착법(ALD)에 적용가능한 신규 유기금속 전구체 화합물 및 상기 유기금속 전구체 화합물이 증착된 박막의 제조방법을 제공하고자 한다.Accordingly, the present invention provides a novel organometallic precursor compound applicable to atomic layer deposition (ALD) and a method for producing the thin film on which the organometallic precursor compound is deposited.

본원은 14족(group) 메탈(Si, Ge, Sn)의 산화수를 조절한 유기금속 화합물을 제조하여 기판과의 반응성을 향상시켜 원자층 증착법을 이용한 박막 증착이 저온뿐만 아니라 고온에서도 일정한 박막 성장 속도를 얻어 균일한 도포성과 단차피복성, 우수한 전기적 물성을 확보하는데 그 목적이 있으며, 또한 기존에 알려진 대부분의 2가 금속 전구체는 고체상(solid phase)이며 휘발성이 낮고 공정 용이성이 낮은 단점을 가지고 있다. 이를 휘발성이 우수한 액체상 전구체를 제조함으로써 원자층 증착법의 전구체로 활용할 수 있는 유기금속 화합물을 제공하는데 목적이 있다.The present invention relates to an organic metal compound having a controlled oxidation number of Group 14 metal (Si, Ge, Sn) to improve the reactivity with the substrate, so that the thin film deposition using the atomic layer deposition not only low temperature, To obtain uniform coating, step coverage, and excellent electrical properties, and most of the known bivalent metal precursors have a solid phase, a low volatility, and a low processability. It is an object of the present invention to provide an organometallic compound which can be used as a precursor of atomic layer deposition by preparing a liquid phase precursor having excellent volatility.

그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

본원의 일 측면은, 하기 화학식 1로서 표시되는 원자층 증착용(ALD) 유기금속 전구체 화합물을 제공한다:One aspect of the present invention provides an atomic layer deposition (ALD) organometallic precursor compound represented by the following formula:

Figure 112015114095752-pat00001
Figure 112015114095752-pat00001

상기 화학식 1에서, In Formula 1,

M은 Si, Ge 및 Sn 중에서 선택된 어느 하나이고, M is any one selected from Si, Ge and Sn,

R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms, or an isomer thereof.

본원의 다른 측면은, 상기 화학식 1로서 표시되는 원자층 증착용(ALD) 유기금속 전구체 화합물이 증착된 박막을 제공한다.Another aspect of the present invention provides a thin film on which an atomic layer deposition (ALD) organometallic precursor compound represented by Chemical Formula 1 is deposited.

본원의 또 다른 측면은, 기판 상에 상기 원자층 증착용(ALD) 유기금속 전구체 화합물을 물리/화학흡착하고, 비활성 기체로 미흡착된 상기 유기금속 전구체 화합물을 퍼징한 후에 반응가스를 주입하는 단계를 포함하는, 원자층 증착용(ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법을 제공한다.According to another aspect of the present invention, there is provided a method for fabricating a semiconductor device, comprising physically / chemically adsorbing an atomic layer deposition (ALD) organometallic precursor compound on a substrate, purging the organometallic precursor compound not adsorbed with an inert gas, (ALD) organometallic precursor compound, wherein the atomic layer deposition (ALD) organometallic precursor compound is deposited.

본원에 의하면, Si 및 Ge, Sn 중에서 선택되는 1종의 금속을 포함하는 비평면 또는 비대칭형의 2가 유기금속 전구체 화합물의 제조가 가능하다. 위와 같은 2가 유기금속 전구체는 기판과의 반응성이 기존에 알려진 다른 전구체에 비해 우수하여 넓은 온도 구간에서 원자층 증착법을 통한 박막 형성이 가능하며, 전구체의 짧은 투입 시간으로도 일정한 박막 성장 속도를 가지며 불순물 함량이 낮은 우수한 성막 형성이 가능하기에 전구체의 사용량 절감과 공정 시간 단축이 가능하다.According to the present invention, it is possible to prepare non-planar or asymmetric divalent organometallic precursor compounds containing one kind of metal selected from Si, Ge and Sn. The divalent organometallic precursor is superior to other known precursors in that it can form a thin film through atomic layer deposition in a wide temperature range and has a constant film growth rate even with a short time of precursor injection It is possible to form an excellent film having a low impurity content and thus it is possible to reduce the amount of the precursor used and shorten the process time.

또한, 상기 유기금속 전구체 화합물은 2가 금속 이온이다. 알려진 2가 유기금속 전구체 화합물의 경우, 대칭적이거나 평면구조의 화합물로 대부분 고체상(solid phase)이나, 비대칭 리간드를 도입함으로써 비평면 또는 비대칭 구조를 유도하여 상온에서 액상인 전구체 제조가 가능하다. 이는 분자량 변화없이 기존 화합물의 탄소 위치를 변경시키는 것으로 가능하며, 액상의 물질은 고체상 물질에 비해 분자간 힘이 약하기 때문에 휘발성이 개선되는 물성을 가지게 된다. 이런 휘발성 향상은 균일한 박막 형성이 가능하여 이로 인해 우수한 박막 특성 및 단차 피복성을 갖는 증착이 가능하다. 상기 유기금속 전구체 화합물을 통해 고유전율 박막 및 금속 게이트를 제조할 수 있다.In addition, the organometallic precursor compound is a divalent metal ion. In the case of known divalent organometallic precursor compounds, it is possible to prepare precursors which are liquid phase at room temperature by inducing non-planar or asymmetric structures by introducing mostly solid phase or asymmetric ligand as symmetrical or planar structure compounds. It is possible to change the carbon position of the existing compound without changing the molecular weight, and the liquid phase material has a property of improving the volatility because the intermolecular force is weaker than that of the solid phase phase material. Such volatility enhancement enables uniform thin film formation, which enables deposition with excellent thin film characteristics and step coverage. The high dielectric constant thin film and the metal gate can be produced through the organometallic precursor compound.

도 1은 유기금속 전구체 화합물들의 특성을 비교한 열중량분석(thermogravimetric analysis; TGA) 그래프이다.
도 2는 실험예 3의 상이한 온도에 따른 SiO2의 박막 증착율을 나타내는 그래프이다.
도 3은 실험예 3에 따라 원자층 증착법(ALD)으로 증착된 SiO2 박막 내 성분 함량을 나타내는 X선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS) 그래프이다.
도 4는 실험예 3의 상이한 온도에 따른 GeO2의 박막 증착율을 나타내는 그래프이다.
도 5은 실험예 3에 따라 원자층 증착법(ALD)으로 증착된 GeO2 박막 내 성분 함량을 나타내는 X선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS) 그래프이다.
도 6는 실험예 3에 따라 원자층 증착법(ALD)으로 증착된 GeO2 박막 내 결정구조를 확인하기 위한 X선 회절분석법(X-ray Diffractometer; XRD) 그래프이다.
도 7는 실험예 3의 상이한 온도에 따른 SnO1 .44의 박막 증착율을 나타내는 그래프이다.
도 8은 실험예 3에 따라 원자층 증착법(ALD)으로 증착된 SnO1 .44 박막 내 성분 함량을 나타내는 X선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS) 그래프이다
도 9은 실험예 3에 따라 원자층 증착법(ALD)으로 증착된 SnO1 .44 박막 내 결정구조를 확인하기 위한 X선 회절분석법(X-ray Diffractometer; XRD) 그래프이다.
Figure 1 is a thermogravimetric analysis (TGA) graph comparing the properties of organometallic precursor compounds.
FIG. 2 is a graph showing the deposition rate of SiO 2 according to different temperatures in Experimental Example 3. FIG.
3 is an X-ray photoelectron spectroscopy (XPS) graph showing the content of components in the SiO 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3. FIG.
FIG. 4 is a graph showing the deposition rate of GeO 2 according to different temperatures in Experimental Example 3. FIG.
FIG. 5 is an X-ray photoelectron spectroscopy (XPS) graph showing the content of components in a GeO 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3. FIG.
FIG. 6 is an X-ray diffractometer (XRD) graph for confirming the crystal structure in the GeO 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3. FIG.
Figure 7 is a graph showing a film deposition rate of SnO 1 .44 according to the different temperatures of the Example 3.
8 is an X-ray photoelectron spectroscopy (XPS) graph showing the content of components in the SnO 1 .44 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3
9 is an X-ray diffractometer (XRD) graph for confirming the crystal structure in the SnO 1 .44 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3.

이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. It should be understood, however, that the present invention may be embodied in many different forms and is not limited to the embodiments and examples described herein. In order to clearly explain the present invention in the drawings, parts not related to the description are omitted.

본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is "on " another member, it includes not only when the member is in contact with the other member, but also when there is another member between the two members.

본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when an element is referred to as "including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.

본 명세서에서 사용되는 정도의 용어 "약"은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the term "about" is used in its sense or approximation to the manufacturing and material tolerances inherent in the meanings mentioned, and is intended to cover either an exact or absolute value It is used to prevent unauthorized intruders from exploiting the mentioned disclosure. Also, throughout the present specification, the phrase " step "or" step "does not mean" step for.

본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination thereof" included in the expression of the machine form means one or more combinations or combinations selected from the group consisting of the constituents described in the expression of the machine form, And the like.

본원 명세서 전체에서, Me는 메틸기, Et는 에틸기 및 tBu는 tert-부틸기를 의미한다.Throughout this specification, Me means a methyl group, Et means an ethyl group and t Bu means a tert-butyl group.

본원의 일 측면은 하기 화학식 1로서 표시되는 원자층 증착용(ALD) 유기금속 전구체 화합물을 제공한다:One aspect of the present invention provides an atomic layer deposition (ALD) organometallic precursor compound represented by Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112015114095752-pat00002
Figure 112015114095752-pat00002

상기 화학식 1에서, In Formula 1,

M은 Si, Ge 및 Sn 중에서 선택된 어느 하나이고, M is any one selected from Si, Ge and Sn,

R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms, or an isomer thereof.

본원의 일 구현예에 있어서, 상기 화학식 1의 R은 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기, sec-펜틸기, tert-펜틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, R in formula (1) is a group selected from the group consisting of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, But are not limited to, a pentyl group, an iso-pentyl group, a neo-pentyl group, a sec-pentyl group, a tert-pentyl group and an isomer thereof.

본원의 일 구현예에 있어서, 상기 유기금속 전구체 화합물은 tBu_Si, Me_Ge, Et_Ge, tBu_Ge, tBu_Sn 및 이들의 조합들로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다(여기서, Me는 메틸기, Et는 에틸기 및 tBu는 tert-부틸기를 의미함). 상기 tBu_Si, Me_Ge, Et_Ge, tBu_Ge, 및tBu_Sn의 구조식은 하기와 같다.In one embodiment of the present application, the organometallic precursor compound may be at least one selected from the group consisting of t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge, t Bu_Sn, and combinations thereof , Me is a methyl group, Et is an ethyl group, and t Bu is a tert-butyl group). The structural formulas of t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge, and t Bu_Sn are as follows.

Figure 112015114095752-pat00003
Figure 112015114095752-pat00003

본원의 일 구현예에 있어서, 상기 화학식 1의 유기금속 전구체 화합물은 비평면 또는 비대칭 구조일 수 있다. 단, 본 발명이 대칭 구조의 전구체 화합물을 발명의 범주에서 제외하는 것은 아니다. 입자간 거리가 가까워질수록 분자간의 힘이 작용하게 되어 원래의 구조가 방해되거나 불안정하게 되는 입체장애가 발생하게 되는데, 이로인해 전구체 화합물을 박막에 균일하게 증착하는 것이 어려울 수 있다. 증착 물질인 유기금속 전구체 화합물이 박막에 일정한 간격과 두께로 증착되지 못할 경우, 예를 들어, 반도체 물질로 도입시 누설전류의 문제 등이 발생하게 된다. 비평면 또는 비대칭 구조의 전구체 화합물을 이용한다면, 박막에 증착시 전구체 화합물을 보다 촘촘하고 균일하게 증착하는 것이 가능하고 박막의 순도 및 분산도를 향상시킬 수 있으며, 복합체에 적용시에도 적용된 복합체의 효율을 향상시키는 것이 가능하다.In one embodiment of the present invention, the organometallic precursor compound of Formula 1 may be non-planar or asymmetric. However, the present invention does not exclude a precursor compound having a symmetric structure from the scope of the invention. As the inter-particle distance gets closer, the intermolecular force acts and the steric hindrance that causes the original structure to become disturbed or unstable occurs, which may make it difficult to uniformly deposit the precursor compound on the thin film. If the organometallic precursor compound, which is a deposition material, can not be deposited at a constant interval and thickness in the thin film, for example, there is a problem of leakage current when introduced into a semiconductor material. When a non-planar or asymmetric precursor compound is used, the precursor compound can be deposited more densely and uniformly on the thin film, the purity and dispersion of the thin film can be improved, and the efficiency Can be improved.

본원의 일 구현예에 있어서, 상기 화학식 1의 유기금속 전구체 화합물은 상온에서 액상 또는 휘발성일 수 있다. 원자층 증착(ALD)에 있어서, 반응물은 휘발성이 높고, 물질이 안정해야 하며, 반응성이 높아야 한다. 원자층 증착법(ALD)은 반응 원료를 각각 분리하여 공급하는 방식으로 한 사이클(cycle) 증착 시에 표면 반응에 의해 단층(monolayer) 이하의 박막이 성장되게 되며, 기판 위에 흡착된 반응 원료의 리간드는 이후에 공급되는 다른 반응 원료와 화학 반응을 통해 제거된다. 원자층 증착을 위해 반응물인 전구체 화합물을 가열할 시에 액상일 경우 고체상보다 반응속도 및 공정에 있어 훨씬 유리하다. 본원의 유기금속 전구체 화합물은 상온에서 액상 또는 휘발성일 수 있다.In one embodiment of the present invention, the organometallic precursor compound of Formula 1 may be liquid or volatile at room temperature. In atomic layer deposition (ALD), the reactants must be highly volatile, the material must be stable, and must be highly reactive. Atomic layer deposition (ALD) is a method in which reaction materials are separately supplied. In a cycle deposition, a thin film below a monolayer is grown by surface reaction, and the ligand of the reaction material adsorbed on the substrate is It is removed through chemical reaction with other reaction materials supplied later. For atomic layer deposition, the precursor compound, which is the reactant, is much more advantageous in terms of reaction rate and process than the solid phase when it is liquid. The organometallic precursor compounds herein may be liquid or volatile at ambient temperature.

본원의 다른 측면은, 상기 화학식 1로서 표시되는 원자층 증착용(ALD) 유기금속 전구체 화합물이 증착된 박막을 제공한다.Another aspect of the present invention provides a thin film on which an atomic layer deposition (ALD) organometallic precursor compound represented by Chemical Formula 1 is deposited.

본원의 또 다른 측면은, 기판 상에 상기 화학식 1의 원자층 증착용(ALD) 유기금속 전구체 화합물을 물리/화학흡착하고, 비활성 기체로 미흡착된 상기 유기금속 전구체 화합물을 퍼징한 후에 반응가스를 주입하는 단계를 포함하는, 원자층 증착용(ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법을 제공한다.According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device, which comprises physically / chemically adsorbing an atomic layer deposition (ALD) organometallic precursor compound of Formula 1 on a substrate, purging the organometallic precursor compound not adsorbed with an inert gas, And depositing an atomic layer deposition (ALD) organometallic precursor compound, wherein the atomic layer deposition (ALD) organometallic precursor compound is deposited.

본원의 일 구현예에 있어서, 상기 기판의 증착 온도는 50℃ 내지 400℃ 일 수 있으나, 이에 제한되는 것은 아니다. 원자층 증착의 다른 중요한 특성은 낮은 성장 온도에서 양질의 박막을 얻을 수 있다는 것이다. 흡착된 전구체 분자들은 반응종과 완전하게 반응하기 때문에, 함유되는 불순물 수준은 낮은 성장 온도에서도 화학기상 증착법에 비해 낮다. 본원의 유기금속 전구체 화합물을 이용한 원자층 증착은 저온뿐만 아니라 고온에서도 양질의 박막을 얻을 수 있다는 장점이 있다. 원자층 증착법에서 전구체 분자 흡착과 기판의 표면 반응에 대한 열적인 활성화는 원자층 증착에서는 필수적이기 때문에, 일반적으로 기판 가열이 요구된다. 상기 기판의 온도는, 예를 들어, 50℃ 내지 400℃, 100℃ 내지 400℃, 150℃ 내지 400℃, 200℃ 내지 400℃, 250℃ 내지 400℃, 300℃ 내지 400℃, 350℃ 내지 400℃, 50℃ 내지 350℃, 50℃ 내지 300℃, 50℃ 내지 250℃, 50℃ 내지 200℃, 50℃ 내지 150℃ 또는 50℃ 내지 100℃일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the invention, the deposition temperature of the substrate may be in the range of 50 ° C to 400 ° C, but is not limited thereto. Another important property of atomic layer deposition is that good thin films can be obtained at low growth temperatures. Because the adsorbed precursor molecules react completely with the reactive species, the level of impurities contained is low compared to chemical vapor deposition even at low growth temperatures. The atomic layer deposition using the organometallic precursor compound of the present invention has an advantage that a thin film of good quality can be obtained not only at a low temperature but also at a high temperature. In the atomic layer deposition method, substrate heating is generally required since thermal activation of precursor molecule adsorption and surface reaction of the substrate is essential for atomic layer deposition. The temperature of the substrate may be, for example, 50 to 400 캜, 100 캜 to 400 캜, 150 캜 to 400 캜, 200 캜 to 400 캜, 250 캜 to 400 캜, 300 to 400 캜, 50 C to 350 C, 50 C to 300 C, 50 C to 250 C, 50 C to 200 C, 50 C to 150 C, or 50 C to 100 C, but is not limited thereto.

본원의 일 구현예에 있어서, 상기 유기금속 전구체 화합물의 주입 시간은 1초 내지 20초일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the invention, the injection time of the organometallic precursor compound may be from 1 second to 20 seconds, but is not limited thereto.

본원의 일 구현예에 있어서, 상기 원자층 증착용(ALD) 유기금속 전구체 화합물은 Si, Ge, Sn 및 이들의 조합들로 이루어진 군에서 선택된 1종일 수 있으나, 이에 제한되는 것은 아니다. 본원에 의해 제조된 원자층 증착용(ALD) 유기금속 전구체 화합물의 금속은 2가 이온이다. 종래의 유기금속 전구체 화합물의 경우, 대칭적이거나 평면구조의 화합물로 대부분 고체상(solid phase)이나, 비대칭 리간드를 도입함으로써 비평면 또는 비대칭 구조의 유도가 가능하다. 이는 분자량의 변화 없이 종래의 화합물에서 리간드 백본(back bone) 탄소의 위치를 변경시키는 것, 즉 본원의 경우 아민기의 탄소 위치를 변경시키는 것으로 가능하며, 액상의 물질은 고체상 물질에 비해 분자간 힘이 약하기 때문에 휘발성 또한 향상되는 결과가 초래된다.In one embodiment, the atomic layer deposition (ALD) organometallic precursor compound may be one selected from the group consisting of Si, Ge, Sn, and combinations thereof, but is not limited thereto. The metal of the atomic layer deposition (ALD) organometallic precursor compound produced by the present application is a divalent ion. In the case of conventional organometallic precursor compounds, it is possible to induce a non-planar or asymmetric structure by introducing mostly a solid phase or an asymmetric ligand as a symmetric or planar compound. It is possible to change the position of the ligand backbone carbon in conventional compounds without changing the molecular weight, i. E. To change the carbon position of the amine group in this case, The result is that the volatility is also improved because it is weak.

본원의 일 구현예에 있어서, 상기 반응가스는 암모니아(NH3), 과산화수소(H2O2), 수증기(H2O), 산소(O2), 또는 오존(O3)을 포함하며, 상기 반응가스의 주입 시간은 1초 내지 30초일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the reaction gas comprises ammonia (NH 3 ), hydrogen peroxide (H 2 O 2 ), water vapor (H 2 O), oxygen (O 2 ), or ozone (O 3 ) The injection time of the reaction gas may be from 1 second to 30 seconds, but is not limited thereto.

이하, 실시예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

본 실시예에서 이용된 모든 시약들은 일반적으로 시판되는 것을 사용한 것이며, 구체적인 기재가 없는 경우는 특별한 정제 없이 사용한 것이다.All of the reagents used in the present embodiment are generally commercially available, and in the absence of specific description, they are used without special purification.

[ 실시예 1] [N 1,N 2-di-tert-butyl-2-methylpropane-1,2-diamine]의 제조 [ Example 1] Preparation of [ N 1 , N 2 -di- tert- butyl-2-methylpropane-1,2-diamine]

tert-부틸아민 [tBuNH2] 210.2 ml (2.00 mol)을 메틸렌클로라이드 [Methylene chloride, MC] 1.5L에 용해시켰다. 상기 용액에 2-브로모아이소부티릴 브로마이드 [2-Bromoisobutyryl bromide] 200g (0.86 mol)을 MC 500ml로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 2 시간 정도 교반하였다. 반응 종료 후 상기 교반된 용액에 물을 넣고 MC로 추출한 후, 감압 하에서 용매 및 남은 tBuNH2을 제거하여 백색 고체의 2-브로모-N-tert-부틸-2-메틸프로판아마이드 [2-Bromo-N-tert-butyl-2-methylpropanamide] 187.6g (0.84 mol) (수율 : 97.1%)을 얻었다.210.2 ml (2.00 mol) of tert-butylamine [tBuNH 2 ] was dissolved in 1.5 L of methylene chloride, MC. A solution prepared by dissolving 200 g (0.86 mol) of 2-bromoisobutyryl bromide in 500 ml of MC was slowly added to the solution at a low temperature, followed by stirring at room temperature for about 2 hours. After the completion of the reaction, water was added to the stirred solution, and the mixture was extracted with MC. Then, the solvent and remaining tBuNH 2 were removed under reduced pressure to obtain 2 -bromo- N-tert- N - tert- butyl-2-methylpropanamide] (yield: 97.1%).

상기 고체를 MC 2.0L로 용해시킨 후 tBuNH2 221.8ml (2.11 mol)를 첨가하였다. 상기 용액에 소듐하이드록사이드 [NaOH] 67.56g (1.69 mol)을 첨가한 후, 환류 콘덴서를 이용하여 20시간 동안 환류 반응시켰다. 반응 종료 후 용액에 물을 넣고 MC로 추출한 후, 감압 하에서 용매 및 남은 tBuNH2을 제거하여 백색 고체의 2-(tert-부틸아미노)-N-tert-부틸-2-메틸프로판아마이드 [2-(tert-butylamino)-N-tert-butyl-2-methylpropanamide] 173.7g (0.81mol) (수율 : 96.0%)을 얻었다.The solid was dissolved in 2.0 L MC and then t BuNH 2 221.8 ml (2.11 mol) was added. 67.56 g (1.69 mol) of sodium hydroxide [NaOH] was added to the solution, followed by reflux reaction for 20 hours using a reflux condenser. After completion of the reaction, water was added to the solution, and the mixture was extracted with MC. The solvent and the remaining t BuNH 2 were removed under reduced pressure to obtain 2- (tert-butylamino) -N-tert- butyl-2-methylpropanamide [2- (tert-butylamino) - N - tert -butyl-2-methylpropanamide] 173.7g (0.81mol) ( yield: 96.0%) was obtained.

리튬알루미늄하이드라이드 [LiAlH4] 153.8g (4.05mol)을 저온에서 테트라하이드로퓨란 [Tetrahydrofurane, THF] 2.0L로 현탁 시킨 후, 상기 합성된 고체를 THF 500mL로 용해시킨 용액을 저온에서 천천히 첨가하였다. 이후 상기 현탁액을 환류 콘덴서를 이용하여 3일 동안 환류 반응시켰다. 반응 종류 후 저온에서 물을 넣고 MC로 추출하여 감압 하에서 용매를 제거하여 투명한 주황색 액체를 얻었다. 상기 투명한 주황색 액체를 감압 정제하여 무색의 액체인 N 1,N 2-디-tert-부틸-2-메틸프로판-1,2-디아민 [N 1 ,N 2 -di-tert-butyl-2-methylpropane-1,2-diamine] 129.4g (수율 : 80%)을 수득하였다.153.8 g (4.05 mol) of lithium aluminum hydride [LiAlH 4 ] was suspended in 2.0 L of tetrahydrofuran (THF) at a low temperature, and then a solution prepared by dissolving the synthesized solid in 500 mL of THF was slowly added at a low temperature. Then, the suspension was refluxed for 3 days using a reflux condenser. After the reaction, water was added at low temperature and extracted with MC, and the solvent was removed under reduced pressure to obtain a transparent orange liquid. The purified reduced pressure to a clear amber liquid is a colorless liquid N 1, N 2 - di -tert- butyl-2-methyl-1,2-diamine [N 1, N 2 -di- tert -butyl-2-methylpropane -1,2-diamine] (yield: 80%).

끓는점 : 40℃ @ 0.2torr (bath 기준)Boiling point: 40 ℃ @ 0.2 torr (bath basis)

1H-NMR(C6D6) : δ 1.049 ((CH 3)3CNHC(CH3)2CH2NHC(CH3)3, s, 9H),1 H-NMR (C6D6):? 1.049 ((C H 3 ) 3 CNHC (CH 3 ) 2 CH 2 NHC (CH 3 ) 3 , s, 9H)

δ 1.179 ((CH3)3CNHC(CH 3)2CH2NHC(CH3)3, s, 6H), δ 1.179 ((CH 3) 3 CNHC (C H 3) 2 CH 2 NHC (CH 3) 3, s, 6H),

δ 1.183 ((CH3)3CNHC(CH3)2CH2NHC(CH 3)3, s, 9H), δ 1.183 ((CH 3) 3 CNHC (CH 3) 2 CH 2 NHC (C H 3) 3, s, 9H),

δ 2.341 ((CH3)3CNHC(CH3)2CH 2NHC(CH3)3, s, 2H) δ 2.341 ((CH 3) 3 CNHC (CH 3) 2 C H 2 NHC (CH 3) 3, s, 2H)

[ 실시예 2] [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene, tBu_Si]의 제조Preparation of [Example 2] [1,3-bis (1,1 -dimethylethyl) -4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene, t Bu_Si]

상기 실시예 1에 의해 제조된 N 1,N 2-디-tert-부틸-2-메틸프로판-1,2-디아민 [N 1 ,N 2 -di-tert-butyl-2-methylpropane-1,2-diamine] 52.0g (0.26mol)을 톨루엔 [Toluene] 1.5L에 용해시키고, 이 용액에 트라이에틸아민 [Triethylamine, TEA] 109mL (0.779mol)를 첨가하였다. 상기 용액에 실리콘(IV) 클로라이드 [Silicon(IV) chloride, SiCl4]를 Toluene 500mL로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 20시간 동안 환류 반응시켰다. 반응 종류 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 진한 주황색 액체를 얻었다. 상기 진한 주황색 액체를 감압 정제하여 무색의 액체인 2,2-디클로로-1,3-비스(1,1-디메틸에틸)-4,4-디메틸-1,3,2-디아자실롤리딘 [2,2-dichloro-1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3,2-diazasilolidine] 71.0g (수율 : 92.0%)을 얻었다.Prepared by Example 1 N 1, N 2 - di -tert- butyl-2-methyl-1,2-diamine [N 1, N 2 -di- tert -butyl-2-methylpropane-1,2 -diamine] was dissolved in 1.5 L of toluene [Toluene], and 109 mL (0.779 mol) of triethylamine (TEA) was added to this solution. A solution of silicon (IV) chloride (SiCl 4 ) diluted with 500 mL of Toluene was added to the solution at a low temperature, followed by reflux reaction for 20 hours using a reflux condenser. The reaction mixture was filtered through a filter, and the solvent was removed under reduced pressure to obtain a dark orange liquid. The dark orange liquid was subjected to vacuum filtration to give 2,2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3,2-diazacyllolidine , 71.0 g (yield: 92.0%) of 2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3,2-diazasilolidine.

포타슘 [Potassium, K] 10.0g (0.26mol)과 소듐 [Sodium, Na] 2.94g (0.13mol)에 정제된 THF 150mL를 첨가한 후, 환류 콘덴서를 이용하여 약 12시간 동안 환류하여 소듐포타슘 합금 [NaK2 Alloy]을 제조하였다. 상기 제조된 2,2-디클로로-1,3-비스(1,1-디메틸에틸)-4,4-디메틸-1,3,2-디아자실롤리딘 [1,3-di-tert-butyl-2,2-dichloro-4,4-dimethyl-1,3,2-diazasilolidine] 58.0g (0.19mol)을 정제된 THF 300mL에 용해시켰다. 상기 용액에 NaK2 Alloy를 40℃에서 2시간 동안 천천히 첨가한 후 24시간 정도 교반하였다. 반응 종료 후 상기 교반된 용액을 셀라이트 [Celite]가 있는 필터로 여과시키고, 감압 하에서 용매를 제거하여 주황색의 액체를 얻었다. 상기 액체를 감압 정제하여 황색 액체인 1,3-비스(1,1-디메틸에틸)-4,4-디메틸-1,3-디아자-2-실라사이크로펜트-2-일리딘 [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene] 29.6g (수율 : 67.0%)을 수득하였다.150 mL of purified THF was added to 10.0 g (0.26 mol) of potassium [Potassium, K] and 2.94 g (0.13 mol) of sodium, and the mixture was refluxed for about 12 hours using a reflux condenser to obtain sodium potassium alloy [ NaK 2 Alloy]. The above prepared 2,2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3,2 dia care unit pyrrolidine [1,3-di- tert -butyl- 58.0 g (0.19 mol) of 2,2-dichloro-4,4-dimethyl-1,3,2-diazasilolidine was dissolved in 300 mL of purified THF. NaK 2 Alloy was slowly added to the solution at 40 ° C for 2 hours and then stirred for 24 hours. After completion of the reaction, the stirred solution was filtered through a filter with Celite, and the solvent was removed under reduced pressure to obtain an orange liquid. The liquid was subjected to vacuum purification The yellow liquid 1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-silacyclopent-2-y lidine [ 1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene] (yield: 67.0%).

끓는점 : 70℃ @ 0.2torr (bath 기준)Boiling point: 70 ℃ @ 0.2torr (bath basis)

29Si-NMR(C6D6) : δ130.01 29 Si-NMR (C6D6): delta 130.01

1H-NMR(C6D6) : δ 1.263 ([(CH3)3CNC(CH3)2CH2NC(CH 3)3]-Si, s, 9H),1H-NMR (C6D6): δ 1.263 ([(CH 3) 3 CNC (CH 3) 2 CH 2 NC (C H 3) 3] -Si, s, 9H),

δ 1.274 ([(CH3)3CNC(CH 3)2CH2NC(CH3)3]-Si, s, 6H),? 1.274 ([(CH 3 ) 3 CNC (C H 3 ) 2 CH 2 NC (CH 3 ) 3 ] -Si, s, 6H)

δ 1.438 ([(CH 3)3CNC(CH3)2CH2NC(CH3)3]-Si, s, 9H),? 1.438 ([(C H 3 ) 3 CNC (CH 3 ) 2 CH 2 NC (CH 3 ) 3 ] -Si, s, 9H)

δ 2.969 ([(CH3)3CNC(CH3)2CH 2NC(CH3)3]-Si, s, 2H)? 2.969 ([(CH 3 ) 3 CNC (CH 3 ) 2 C H 2 NC (CH 3 ) 3 ] -Si, s, 2H)

[ 실시예 3] [3-tert-butyl-1-methyl-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, Me_Ge]의 제조 Example 3 Preparation of [3- tert -butyl-1-methyl -4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, Me_Ge]

실시예 1과 유사한 방법으로 무색의 액체인 N 2-tert-부틸-N 1 -메틸-2-메틸프로판-1,2-디아민 [N 2 -tert-butyl-N 1 -methyl-2-methylpropane-1,2-diamine]을 제조하였다. Example 1 Following a process similar to a colorless liquid N 2 -tert- butyl - N 1 - methyl-2-methyl-1,2-diamine [N 2 - tert -butyl- N 1 -methyl-2-methylpropane- 1,2-diamine].

끓는점 : 30℃ @ 0.2torr (bath 기준)Boiling point: 30 ℃ @ 0.2 torr (bath basis)

1H-NMR(C6D6) : δ 1.137 ((CH 3)3CNHC(CH 3)2CH2NHCH3, s, 15H),1 H-NMR (C6D6):? 1.137 ((C H 3 ) 3 CNHC (C H 3 ) 2 CH 2 NHCH 3 ,

δ 2.271 ((CH3)3CNHC(CH3)2CH 2NHCH3, s, 2H), δ 2.271 ((CH 3) 3 CNHC (CH 3) 2 C H 2 NHCH 3, s, 2H),

δ 2.318 ((CH3)3CNHC(CH3)2CH2NHCH 3, s, 3H) δ 2.318 ((CH 3) 3 CNHC (CH 3) 2 CH 2 NHC H 3, s, 3H)

상기 액체 N 2-tert-부틸-N 1 -메틸-2-메틸프로판-1,2-디아민 6.81g (0.043mol)을 헥산 [Hexane] 30mL에 용해시키고, 트라이에틸아민 [Triethylamine, TEA] 17mL (0.12mol)를 첨가하였다. 상기 혼합용액에 저머늄(IV) 클로라이드 [Germanium(IV) chloride, GeCl4] 10.14g (0.047mol)을 Hexane 10mL로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 15시간 동안 환류 반응시켰다. 반응 종류 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 황색 액체를 얻었다. 상기 액체를 감압 정제하여 무색의 액체인 3-tert-부틸-2,2-디클로로-1-메틸-4,4-디메틸-1,3,2-디아자저몰리딘 [3-tert-butyl-2,2-dichloro-1-methyl-4,4-dimethyl-1,3,2-diazagermolidine] 7.30g (수율 : 56.6%)을 얻었다.6.81 g (0.043 mol) of the liquid N 2 -tert-butyl- N 1 -methyl-2-methylpropane-1,2-diamine was dissolved in 30 mL of hexane and 17 mL of triethylamine (TEA) 0.12 mol). A solution prepared by diluting 10.14 g (0.047 mol) of germanium (IV) chloride [GeCl 4 ] with 10 mL of hexane was added to the mixed solution at a low temperature and refluxed for 15 hours using a reflux condenser . The reaction mixture was filtered through a filter, and the solvent was removed under reduced pressure to obtain a yellow liquid. Reduced pressure refining the liquid to a colorless liquid 3-tert- butyl-2,2-dichloro-1-methyl-4,4-dimethyl-1,3,2 dia jajeo Molly Dean [3- tert -butyl-2 , 2-dichloro-1-methyl-4,4-dimethyl-1,3,2-diazagermolidine] (yield: 56.6%).

리튬 [Lithium, Li] 0.35g (0.05mol)에 정제된 THF 30mL를 첨가한 후, 위에서 제조된 3-tert-부틸-2,2-디클로로-1-메틸-4,4-디메틸-1,3,2-디아자저몰리딘 [3-tert-butyl-2,2-dichloro-1-methyl-4,4-dimethyl-1,3,2-diazagermolidine] 7.30g (0.024mol)를 정제된 THF 10mL로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3시간 교반하였다. 반응 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 흑색의 고체를 얻었다. 상기 고체를 감압 승화하여 백색의 고체인 3-터드부틸-1-메틸-4-4-디메틸-1,3-디아자-2-저마사이클로펜트-2-일리딘 [3-tert-butyl-1-methyl-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene] 2.52g (수율 : 45.2%)을 수득하였다.30 mL of purified THF was added to 0.35 g (0.05 mol) of lithium [Lithium, Li], and then 3-tert-butyl-2,2-dichloro-1-methyl-4,4- (0.024 mol) of 3- tert- butyl-2,2-dichloro-1-methyl-4,4-dimethyl-1,3,2-diazagermolidine was dissolved in 10 mL of purified THF The dissolved solution was slowly added at a low temperature and then stirred at room temperature for 3 hours. After completion of the reaction, the solution was filtered through a filter having Celite, and the solvent was removed under reduced pressure to obtain a black solid. The solid was reduced in pressure to obtain a white solid 3-butyl-1-methyl -4-4- teodeu-dimethyl-1,3-diaza-2-cyclopent-2-germanium sense Dean [3- tert -butyl-1-methyl -4,4-dimethyl-1 , 3-diaza-2-germacyclopent-2-ylidene] (yield: 45.2%).

승화점 : 30℃ @ 0.3torr (bath 기준)Sublimation point: 30 ℃ @ 0.3torr (bath standard)

1H-NMR(C6D6) : δ 1.322 ([(CH3)3CNHC(CH 3)2CH2NHCH3]-Ge, s, 6H),1H-NMR (C6D6): δ 1.322 ([(CH 3) 3 CNHC (C H 3) 2 CH 2 NHCH 3] -Ge, s, 6H),

δ 1.395 ([(CH 3)3CNHC(CH3)2CH2NHCH3]-Ge, s, 9H),? 1.395 ([(C H 3 ) 3 CNHC (CH 3 ) 2 CH 2 NHCH 3 ] -Ge, s, 9H)

δ 2.877 ([(CH3)3CNHC(CH3)2CH2NHCH 3]-Ge, s, 3H),δ 2.877 ([(CH 3 ) 3 CNHC (CH 3 ) 2 CH 2 NHC H 3 ] -Ge, s, 3H)

δ 3.016 ([(CH3)3CNHC(CH3)2CH 2NHCH3]-Ge, s, 2H),? 3.016 ([(CH 3 ) 3 CNHC (CH 3 ) 2 C H 2 NHCH 3 ] -Ge, s, 2H)

[ 실시예 4] [3-tert-butyl-1-ethyl-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, Et_Ge]의 제조 [ Example 4] Preparation of [3- tert- butyl-1-ethyl-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, Et_Ge]

실시예 1과 유사한 방법으로 무색의 액체인 N 2-tert-부틸-N 1 -에틸-2-메틸프로판-1,2-디아민 [N 2 -tert-butyl-N 1 -ethyl-2-methylpropane-1,2-diamine]을 제조하였다. Example 1 Following a process similar to the process as a colorless liquid N 2 -tert- butyl - N 1 - ethyl-2-methyl-1,2-diamine [N 2 - tert -butyl- N 1 -ethyl-2-methylpropane- 1,2-diamine].

끓는점 : 32℃ @ 0.2torr (bath 기준)Boiling point: 32 ° C @ 0.2 torr (based on bath)

1H-NMR(C6D6) : δ 1.033 ((CH3)3CNHC(CH3)2CH2NH(CH2CH 3), t, 3H),1H-NMR (C6D6): δ 1.033 ((CH 3) 3 CNHC (CH 3) 2 CH 2 NH (CH 2 C H 3), t, 3H),

δ 1.149 ((CH 3)3CNHC(CH3)2CH2NH(CH2CH3), s, 9H),? 1.149 ((C H 3 ) 3 CNHC (CH 3 ) 2 CH 2 NH (CH 2 CH 3 ), s, 9H)

δ 1.158 ((CH3)3CNHC(CH 3)2CH2NH(CH2CH3), s, 6H), δ 1.158 ((CH 3) 3 CNHC (C H 3) 2 CH 2 NH (CH 2 CH 3), s, 6H),

δ 2.350 ((CH3)3CNHC(CH3)2CH 2NH(CH2CH3), s, 2H), δ 2.350 ((CH 3) 3 CNHC (CH 3) 2 C H 2 NH (CH 2 CH 3), s, 2H),

δ 2.561 ((CH3)3CNHC(CH3)2CH2NH(CH 2CH3), q, 2H) δ 2.561 ((CH 3) 3 CNHC (CH 3) 2 CH 2 NH (C H 2 CH 3), q, 2H)

상기 액체 N 2-tert-부틸-N 1 -에틸-2-메틸프로판-1,2-디아민 128.6g (0.747mol)을 헥산 [Hexane] 1.5L에 용해시키고, 이 용액에 트라이에틸아민 [Triethylamine, TEA] 260mL (1.87mol)를 첨가하였다. 상기 혼합용액에 저머늄(IV) 클로라이드 [Germanium(IV) chloride, GeCl4] 176.14g (0.822mol)을 Hexane 200mL로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 15시간 동안 환류 반응시켰다. 반응 종류 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 진한 주황색 액체를 얻었다. 상기 진한 주황색 액체를 감압 정제하여 무색의 액체인 3-tert-부틸-2,2-디클로로-1-에틸-4,4-디메틸-1,3,2-디아자저몰리딘 [3-tert-butyl-2,2-dichloro-1-ethyl-4,4-dimethyl-1,3,2-diazagermolidine] 185.00g (수율 : 78.9%)을 얻었다.128.6 g (0.747 mol) of the liquid N 2 -tert-butyl- N 1 -ethyl-2-methylpropane-1,2-diamine was dissolved in 1.5 L of hexane [Hexane], and to this solution was added triethylamine [ 260 mL (1.87 mol) of TEA was added. A solution prepared by diluting 176.14 g (0.822 mol) of germanium (IV) chloride [GeCl 4 ] with 200 mL of hexane was added to the mixed solution at a low temperature, and the mixture was refluxed for 15 hours using a reflux condenser . The reaction mixture was filtered through a filter, and the solvent was removed under reduced pressure to obtain a dark orange liquid. The dark orange liquid with the pressure-sensitive tablet is a colorless liquid 3-tert- butyl-2,2-dichloro-1-ethyl-4,4-dimethyl-1,3,2 dia jajeo Molly Dean [3- tert -butyl -2,2-dichloro-1-ethyl-4,4-dimethyl-1,3,2-diazagermolidine] (yield: 78.9%).

리튬 [Lithium, Li] 8.38g (1.20mol)에 정제된 THF 800mL를 첨가한 후, 상기 제조된 3-tert-부틸-2,2-디클로로-1-에틸-4,4-디메틸-1,3,2-디아자저몰리딘 [3-tert-butyl-2,2-dichloro-1-ethyl-4,4-dimethyl-1,3,2-diazagermolidine] 185.0g (0.589mol)을 정제된 THF 200mL로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3시간 교반하였다. 반응 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 어두운 황색의 액체를 얻었다. 상기 액체를 감압 정제하여 황색의 액체인 3-tert-부틸-1-에틸-4-4-디메틸-1,3-디아자-2-저마사이클로펜트-2-일리딘 [3-tert-butyl-1-ethyl-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene] 114.4g (수율 : 74.4%)을 얻었다.800 mL of purified THF was added to 8.38 g (1.20 mol) of lithium [Lithium, Li], and then 3-tert-butyl-2,2-dichloro-1-ethyl-4,4- (0.589 mol) of 3- tert- butyl-2,2-dichloro-1-ethyl-4,4-dimethyl-1,3,2-diazagermolidine was dissolved in 200 mL of purified THF The dissolved solution was slowly added at a low temperature and then stirred at room temperature for 3 hours. After completion of the reaction, the solution was filtered through a filter having Celite, and the solvent was removed under reduced pressure to obtain a dark yellow liquid. The liquid was subjected to vacuum purification to obtain a yellow liquid 3-tert- butyl-1-ethyl-1, 3-diaza-2-germanium -4-4- dimethyl cyclopent-2-sense Dean [3- tert -butyl-1-ethyl -4,4-dimethyl- 1,3,4-diaza-2-germacyclopent-2-ylidene] (yield: 74.4%).

끓는점 : 45℃ @ 0.2torr (bath 기준)Boiling point: 45 ℃ @ 0.2 torr (bath basis)

1H-NMR(C6D6) : δ 1.197 ([(CH3)3CNC(CH3)2CH2N(CH2CH 3)]-Ge, t, 3H),1H-NMR (C6D6): δ 1.197 ([(CH 3) 3 CNC (CH 3) 2 CH 2 N (CH 2 C H 3)] - Ge, t, 3H),

δ 1.330 ([(CH3)3CNC(CH 3)2CH2N(CH2CH3)]-Ge, s, 6H), δ 1.330 ([(CH 3) 3 CNC (C H 3) 2 CH 2 N (CH 2 CH 3)] - Ge, s, 6H),

δ 1.412 ([(CH 3)3CNC(CH3)2CH2N(CH2CH3)]-Ge, s, 9H), δ 1.412 ([(C H 3 ) 3 CNC (CH 3) 2 CH 2 N (CH 2 CH 3)] - Ge, s, 9H),

δ 3.075 ([(CH3)3CNC(CH3)2CH 2N(CH2CH3)]-Ge, s, 2H),? 3.075 ([(CH 3 ) 3 CNC (CH 3 ) 2 C H 2 N (CH 2 CH 3 )] - Ge, s, 2H)

δ 3.215 ([(CH3)3CNC(CH3)2CH2N(CH 2CH3)]-Ge, q, 2H) δ 3.215 ([(CH 3) 3 CNC (CH 3) 2 CH 2 N (C H 2 CH 3)] - Ge, q, 2H)

[ 실시예 5] [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, tBu_Ge]의 제조Preparation of [Example 5] [1,3-bis (1,1 -dimethylethyl) -4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, t Bu_Ge]

상기 실시예 1로 제조된 N 1,N 2-디-tert-부틸-2-메틸프로판-1,2-디아민 [N 1 ,N 2 -di-tert-butyl-2-methylpropane-1,2-diamine] 6.17g (0.031mol)을 헥산 [Hexane] 250mL에 용해시키고, 상기 용액에 트라이에틸아민 [Triethylamine, TEA] 12mL (0.086mol)를 첨가하였다. 상기 혼합용액에 저머늄(IV) 클로라이드 [Germanium(IV) chloride, GeCl4] 7.26g (0.034mol)을 Hexane 100mL로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 20시간 동안 환류 반응시켰다. 반응 종류 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 진한 주황색 액체를 얻었다. 상기 진한 주황색 액체를 감압 정제하여 무색의 액체인 2,2-디클로로-1,3-비스(1,1-디메틸에틸)-4,4-디메틸-1,3,2-디아자저몰리딘 [2,2-dichloro-1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3,2-diazagermolidine] 7.06g (수율 : 67.0%)을 얻었다. N 1, prepared by the Example 1 N 2 - di -tert- butyl-2-methyl-1,2-diamine [N 1, N 2 -di- tert -butyl-2-methylpropane-1,2- diamine] was dissolved in 250 mL of hexane [Hexane], and 12 mL (0.086 mol) of triethylamine (TEA) was added to the solution. A solution prepared by diluting 7.26 g (0.034 mol) of germanium (IV) chloride (GeCl 4 ) with 100 mL of hexane was added to the mixed solution at a low temperature, and the mixture was refluxed for 20 hours using a reflux condenser . The reaction mixture was filtered through a filter, and the solvent was removed under reduced pressure to obtain a dark orange liquid. The dark orange liquid was subjected to vacuum filtration to give 2,2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3,2-diazazorolidine , 7.06 g (Yield: 67.0%) of 2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3,2-diazagermolidine.

리튬 [Lithium, Li] 0.17g (0.024mol)에 정제된 THF 100mL를 첨가한 후, 상기 제조된 2,2-디클로로-1,3-비스(1,1-디메틸에틸)-4,4-디메틸-1,3,2-디아자저몰리딘 [2,2-dichloro-1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3,2-diazagermolidine] 4.07g (0.012mol)를 정제된 THF 100mL로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3시간 교반하였다. 반응 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 어두운 황색의 액체를 얻었다. 상기 어두운 황색 액체를 감압 정제하여 황색 액체인 1,3-비스(1,1-디메틸에틸)-4-4-디메틸-1,3-디아자-2-저마사이클로펜트-2-일리딘 [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene] 2.44g (수율 : 75.8%)을 얻었다.After adding 100 mL of purified THF to 0.17 g (0.024 mol) of lithium [Lithium, Li], 2,2-dichloro-1,3-bis (1,1-dimethylethyl) 1,1-dimethylethyl) -4,4-dimethyl-1,3,2-diazagermolidine], 0.07 mol (0.012 mol) of 2,2-dichloro-1,3- ) In 100 mL of purified THF was slowly added at a low temperature, followed by stirring at room temperature for 3 hours. After completion of the reaction, the solution was filtered through a filter having Celite, and the solvent was removed under reduced pressure to obtain a dark yellow liquid. The dark yellow liquid was subjected to vacuum purification to give 1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-1-methylcyclopent- -4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene] (yield: 75.8%).

1H-NMR(C6D6) : δ 1.272 ([(CH3)3CNC(CH3)2CH2NC(CH 3)3]-Ge, s, 9H),1H-NMR (C6D6): δ 1.272 ([(CH 3) 3 CNC (CH 3) 2 CH 2 NC (C H 3) 3] -Ge, s, 9H),

δ 1.327 ([(CH3)3CNC(CH 3)2CH2NC(CH3)3]-Ge, s, 6H), δ 1.327 ([(CH 3) 3 CNC (C H 3) 2 CH 2 NC (CH 3) 3] -Ge, s, 6H),

δ 1.438 ([(CH 3)3CNC(CH3)2CH2NC(CH3)3]-Ge, s, 9H),? 1.438 ([(C H 3 ) 3 CNC (CH 3 ) 2 CH 2 NC (CH 3 ) 3 ] -Ge, s, 9H)

δ 3.130 ([(CH3)3CNC(CH3)2CH 2NC(CH3)3]-Ge, s, 2H) δ 3.130 ([(CH 3) 3 CNC (CH 3) 2 C H 2 NC (CH 3) 3] -Ge, s, 2H)

[ 실시예 6] [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene, tBu_Sn] 의 제조Preparation of [Example 6] [1,3-bis (1,1 -dimethylethyl) -4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene, t Bu_Sn]

상기 실시예1로 제조된 N 1,N 2-디-tert-부틸-2-메틸프로판-1,2-디아민 [N 1 ,N 2 -di-tert-butyl-2-methylpropane-1,2-diamine] 45.7g (0.22mol)를 정제된 THF 100mL로 용해시킨 용액을 저온에서 노말부틸리튬 [nButhyl-Lithium, nBuLi] 182.5mL (0.45mol)을 천천히 첨가한 후 실온에서 6시간 교반하였다. 정제된 THF 150mL로 현탁시킨 틴(II) 클로라이드 [Tin(II) chloride, SnCl2] 43.2g (0.22mol)에 위 용액을 극저온(-78℃)에서 천천히 첨가한 후, 실온에서 15시간 교반하였다. 반응 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 흑색의 액체를 얻었다. 상기 흑색 액체를 감압 정제하여 검붉은색의 액체인 1,3-비스(1,1-디메틸에틸)-4-4-디메틸-1,3-디아자-2-스태나사이클로펜트-2-일리딘 [1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene] 37.0g (수율 : 51.2%)을 얻었다. N 1, prepared by the Example 1 N 2 - di -tert- butyl-2-methyl-1,2-diamine [N 1, N 2 -di- tert -butyl-2-methylpropane-1,2- diamine] in 100 mL of purified THF was slowly added 182.5 mL (0.45 mol) of n-butyl lithium [nButhyl-Lithium, nBuLi] at a low temperature, followed by stirring at room temperature for 6 hours. The above solution was slowly added to 43.2 g (0.22 mol) of tin (II) chloride [Tin (II) chloride, SnCl 2 ) suspended in 150 ml of purified THF at a very low temperature (-78 ° C), and the mixture was stirred at room temperature for 15 hours . After completion of the reaction, the solution was filtered through a filter having Celite, and the solvent was removed under reduced pressure to obtain a black liquid. The black liquid was subjected to vacuum filtration to obtain a dark red liquid 1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-stilanecyclopent- ) -4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene] (yield: 51.2%).

끓는점 : 75℃ @ 0.2torr (bath 기준)Boiling point: 75 ℃ @ 0.2torr (bath basis)

1H-NMR(C6D6) : δ 1.259 ([(CH3)3CNC(CH3)2CH2NC(CH 3)3]-Sn, s, 9H),1H-NMR (C6D6): δ 1.259 ([(CH 3) 3 CNC (CH 3) 2 CH 2 NC (C H 3) 3] -Sn, s, 9H),

δ 1.408 ([(CH 3)3CNC(CH 3)2CH2NC(CH3)3]-Sn, s, 15H),? 1.408 ([(C H 3 ) 3 CNC (C H 3 ) 2 CH 2 NC (CH 3 ) 3 ] -Sn, s,

δ 3.387 ([(CH3)3CNC(CH3)2CH2NC(CH 3)3]-Sn, s, 2H) δ 3.387 ([(CH 3) 3 CNC (CH 3) 2 CH 2 NC (C H 3) 3] -Sn, s, 2H)

[ [ 실험예Experimental Example 1] 유기금속 전구체 화합물들의 점도 측정 1] Viscosity measurement of organometallic precursor compounds

상기 실시예에 의해 제조된 tBu_Si, Et_Ge 및 tBu_Sn유기금속 전구체 화합물들의 점도 측정을 실시하였다.Viscosity measurements of t Bu_Si, Et_Ge and t Bu_Sn organometallic precursor compounds prepared according to the above examples were performed.

점도 측정 시 사용된 기기는 Brookfiled사의 점도계 DV-II+ Pro로 스핀들(spindle)은 SC4-18, 챔버(chamber)는 SC4-13R을 사용하였으며, 시료의 양은 6~8mL를 사용하여25℃에서 200RPM으로 20~30분 측정하였다. 같은 방법으로 3회 점도를 측정하여 평균 점도값을 확인하였다.The viscosity was measured using a Brookfiled viscometer DV-II + Pro. The spindle was SC4-18 and the chamber was SC4-13R. The volume of sample was 6-8 mL at 25 ° C and 200 RPM 20 to 30 minutes. The viscosity was measured three times in the same manner to confirm the average viscosity value.

[1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene, tBu_Si]의 점도 측정 값: 3.86cP (25℃)Viscosity measurement value of [1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-silacyclopent-2-ylidene, t Bu_Si]: 3.86 cP

[1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, tBu_Ge]의 점도 측정 값: 3.57cP (25℃)Viscosity measurement value of [1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-germacyclopent-2-ylidene, t Bu_Ge]: 3.57 cP

[1,3-bis(1,1-dimethylethyl)-4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene, tBu_Sn] 의 점도 측정 값: 14.9cP (25℃)Viscosity measurement value of [1,3-bis (1,1-dimethylethyl) -4,4-dimethyl-1,3-diaza-2-stannacyclopent-2-ylidene, t Bu_Sn]: 14.9 cP

상기 점도 측정 값은 하기 표 2를 통해 확인 가능하다.The viscosity measurements are shown in Table 2 below.

[[ 실험예Experimental Example 2] 유기금속 전구체 화합물들의  2] of the organometallic precursor compounds 열중량분석Thermogravimetry (TG analysis)(TG analysis)

상기 실시예에 의해 제조된 tBu_Si, Me_Ge, Et_Ge, tBu_Ge 및 tBu_Sn 유기금속 전구체 화합물들의 열중량분석(TG analysis)을 실시하였다.Thermogravimetric analysis (TG analysis) of the t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge and t Bu_Sn organometallic precursor compounds prepared according to the above examples was performed.

열중량분석(TGA) 분석 시 사용 된 기기는 Mettler Toledo 사의 TGA/DSC 1 STARe System으로 50μL용량의 알루미나 도가니(alumina crucible)를 사용하였다. 모든 시료의 양은 8~11mg을 사용하였고 30℃에서 500℃까지 측정을 실시하였다. 열중량분석에 대한 구체적인 조건 및 측정값은 하기 표 3을 통해 확인 가능하다.The instrument used for thermogravimetric analysis (TGA) analysis was a 50 μL alumina crucible with Mettler Toledo's TGA / DSC 1 STAR e System. The amount of all samples was 8 to 11 mg, and the measurement was carried out from 30 ° C to 500 ° C. Specific conditions and measurement values for the thermogravimetric analysis are shown in Table 3 below.

[[ 실험예Experimental Example 3] 유기금속 전구체 화합물의  3] of the organometallic precursor compound 원자층Atomic layer 증착 공정을 통한  Through the deposition process 성막Tabernacle 평가 evaluation

상기 실시예에 의해 제조된 tBu_Si, Me_Ge, Et_Ge, tBu_Ge 및 tBu_Sn 유기금속 전구체 화합물들을 원자층 증착(ALD) 통한 성막 평가를 진행 하였다. 반응가스로는 오존(O3)을 사용하였고 불활성 기체인 아르곤은 퍼지 목적으로 사용하였다. 전구체, 아르곤, 오존 그리고 아르곤을 주입하는 것을 한 싸이클로 하였으며 증착은 Si(100) 웨이퍼 상에서 수행하였다.The t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge and t Bu_Sn organometallic precursor compounds prepared by the above examples were subjected to atomic layer deposition (ALD) deposition evaluation. Ozone (O 3 ) was used as the reaction gas and argon (argon gas) was used for the purge purpose. The precursors, argon, ozone and argon were injected into one cycle and deposition was performed on Si (100) wafers.

사용된 Si(100) 웨이퍼는 아세톤, 메탄올, 증류수(Di water) 순으로 5분간 초음파처리(sonication) 한 뒤 N2 블로잉(blowing) 하여 건조 시킨 후 30초 HF(10 %) 처리를 하고 증류수(Di water)에 1분간 담가서 잔여 하는 HF(10%)를 제거 후 N2 블로잉(blowing)하는 전 처리를 진행하여 사용하였다. The used Si (100) wafers were sonicated for 5 minutes in the order of acetone, methanol and distilled water (Di water), dried by N 2 blowing, dried, treated with HF (10% Di water for 1 minute to remove residual HF (10%) and then N 2 blowing.

증착한 성막은 엘립소미터(Ellipsometer)을 사용하여 두께를 측정하였고, 박막 내 실리콘(Si), 게르마늄(Ge), 주석(Sn) 함유량 및 탄소 등의 불순물 함유량은 XPS(X-ray photoelectron spectroscopy) 분석을 통해 측정하였으며 결정구조는 XRD(X-ray diffractometer)로 분석하였다. 구체적인 성막 평가 시 증착 조건은 하기 표 4와 같다.The thickness of the deposited film was measured using an ellipsometer and the content of impurities such as silicon (Si), germanium (Ge), tin (Sn) and carbon in the thin film was measured by X-ray photoelectron spectroscopy (XPS) The crystal structure was analyzed by X-ray diffractometer (XRD). The deposition conditions for the specific deposition evaluation are shown in Table 4 below.

Figure 112015114095752-pat00004
Figure 112015114095752-pat00004

상기 표 2를 통해, 상기 실시예에 의해 측정된 tBu_Si, Me_Ge, Et_Ge, tBu_Ge 및 tBu_Sn유기금속 전구체 화합물들의 상온에서의 상태 및 끓는점을 확인할 수 있다. tBu_Si, Et_Ge, tBu_Ge 및 tBu_Sn은 상온에서 액상이었으며, 매우 낮은 기압(각각, 0.2 Torr, 0.2 Torr, 0.3 Torr, 0.2 Torr)에서 끓는점은 45℃ 내지 80℃(각각, 80℃, 45℃, 70℃, 75℃)로 낮은 것으로 나타났다. 또한 실험예 1, 2 및 3을 통해 점도를 확인할 수 있다. tBu_Si, Et_Ge 및 tBu_Sn은 25℃에서 각각 3.86, 3.57, 14.9cP의 낮은 값으로 나타났다. 이를 통해, 본원에 의해 제조된 유기금속 전구체 화합물들이 휘발성이 큰 물질임을 알 수 있다.Through the above Table 2, the state and boiling point of the t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge and t Bu_Sn organic metal precursor compounds measured at the room temperature as measured by the above embodiment can be confirmed. t Bu_Si, Et_Ge, t Bu_Ge and t Bu_Sn were liquid at room temperature and boiling points were 45 ° C to 80 ° C (at 80 ° C and 45 ° C respectively) at very low pressures (0.2 Torr, 0.2 Torr and 0.3 Torr, , 70 ° C and 75 ° C), respectively. Also, the viscosity can be confirmed through Experimental Examples 1, 2 and 3. t Bu_Si, Et_Ge and t Bu_Sn at 25 ℃ were 3.86, 3.57 and 14.9 cP, respectively. Thus, it can be seen that the organometallic precursor compounds prepared according to the present invention are highly volatile.

Figure 112015114095752-pat00005
Figure 112015114095752-pat00005

상기 표 3은 상기 실험예 2에 의해 측정된 tBu_Si, Me_Ge, Et_Ge, tBu_Ge 및 tBu_Sn 유기금속 화합물들의 열중량분석(TG analysis) 값이며, 도 1의 열중량분석 그래프를 통해서도 그 값을 확인할 수 있다. 상기 실시예에 의해 제조된 유기금속 전구체 화합물들의 금속은 모두 2가 이온임을 특징으로 한다. Ⅳ족 원자인 Ge의 이온 반지름은 4가 이온일 때 67 pm, 2가 이온일 때 87 pm이고, Sn은 4가 이온일 때 83 pm, 2가 이온일 때 118 pm이다. tBu_Si의 분자량은 226.34 g/mol, T1/ 2(℃)은 173.1, TEnd(℃)는 189.2였으며, 300에서 전체 중량 대비 잔류량은 1.14%였다. Me_Ge의 분자량은 230.08 g/mol, T1/ 2(℃)은 149.2, TEnd(℃)는 167.9였으며, 300에서 전체 중량 대비 잔류량은 4.59%였다. Et_Ge 의 분자량은 244.10 g/mol, T1/ 2(℃)은 159.1, TEnd(℃)는 179.6였으며, 300에서 전체 중량 대비 잔류량은 3.35%였다. tBu_Ge 의 분자량은 272.13 g/mol, T1/ 2(℃)은 178.5, TEnd(℃)는 195.3였으며, 300에서 전체 중량 대비 잔류량은 1.16%였다. 또한, tBu_Sn의 분자량은 318.11 g/mol, T1/2(℃)은 181.4, TEnd(℃)는 197.1였으며, 300에서 전체 중량 대비 잔류량은 0.0%였다. 상기 tBu_Si, Me_Ge, Et_Ge, tBu_Ge 및 tBu_Sn 유기금속 화합물들 모두 200 이상에서는 잔류 중량이 매우 적은 것으로 확인되었다.Table 3 shows the TG analysis values of the t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge and t Bu_Sn organometallic compounds measured in Experimental Example 2, Can be confirmed. The metals of the organometallic precursor compounds prepared according to the above examples are all divalent ions. The ion radius of the Group IV atom Ge is 67 pm when tetravalent ion and 87 pm when bivalent ion, Sn is 83 pm when tetravalent ion and 118 pm when bivalent ion. t Bu_Si molecular weight of 226.34 g / mol, T 1/ 2 (℃) is 173.1, T End (℃) is was 189.2 and was at 300, based on the weight of the total remaining amount is 1.14%. Me_Ge of molecular weight 230.08 g / mol, T 1/ 2 (℃) is 149.2, T End (℃) is was 167.9 and was at 300, based on the weight of the total remaining amount is 4.59%. Et_Ge of molecular weight 244.10 g / mol, T 1/ 2 (℃) is 159.1, T End (℃) is was 179.6 and was at 300, based on the weight of the total remaining amount is 3.35%. tBu_Ge of molecular weight 272.13 g / mol, T 1/ 2 (℃) is 178.5, T End (℃) is was 195.3 and was at 300, based on the weight of the total remaining amount is 1.16%. The molecular weight of t Bu_Sn was 318.11 g / mol, T 1/2 (° C) was 181.4, T End (° C) was 197.1, and the residual amount relative to the total weight was 0.0% at 300. It was confirmed that the residual weight of t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge, and t Bu_Sn organometallic compounds was very low at 200 or more.

Figure 112015114095752-pat00006
Figure 112015114095752-pat00006

표 4의 Silicon 전구체 실험 조건으로 실시예 2(tBu_Si)가 담긴 캐니스터 온도를 40℃로 유지하고 전구체 주입 시간을 4초, 전구체 퍼지 시간을 10초, 오존 주입 시간을 2초, 오존 퍼지 시간을 10초로 고정시켰다. 공정 온도에 따른 박막의 물성은 첨부된 도 2에서와 같이 160℃ 내지 280℃의 넓은 온도 구간에서 ALD 윈도우 영역을 보였으며, 공정 온도 260℃에서 0.36 Å/cycle의 일정한 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 3의 XPS(X-ray photoelectron spectroscopy) 결과에 따라 <Si : Ox>의 atomic ratio 가 1 : 1.73로 나타나며 SiO1.73 박막이 형성되었음을 확인하였다.In the silicon precursor test conditions of Table 4, the temperature of the canister containing Example 2 ( t Bu_Si) was maintained at 40 ° C, the precursor injection time was 4 seconds, the precursor purge time was 10 seconds, the ozone injection time was 2 seconds, 10 sec. The physical properties of the thin film according to the process temperature were as shown in FIG. 2, and the ALD window region was observed in a wide temperature range of 160 ° C. to 280 ° C. and the ALD precursor having a constant thin film growth rate of 0.36 Å / . The atomic ratio of <Si: O x > was found to be 1: 1.73 and the SiO 1.73 film was formed according to the X-ray photoelectron spectroscopy (XPS) of FIG.

표 4의 Germanium 전구체 실험으로 실시예 4(Et_Ge)가 담긴 캐니스터 온도를 40℃로 유지하고, 전구체 주입 시간을 2초, 전구체 퍼지 시간을 10초, 오존 주입 시간을 4초, 오존 퍼지 시간을 10초로 고정시켰다. 공정 온도에 따른 박막의 특성은 첨부된 도 4에서와 같이 200℃ 내지 280℃에서 윈도우 구간을 보였으며 공정 온도 280℃에서 평균 0.53 Å/cycle의 일정한 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 5의 XPS(X-ray photoelectron spectroscopy) 결과에 따라 <Ge : Ox>의 atomic ratio 가 1 : 1.79로 나타나며 GeO1.79 박막이 형성되었음을 확인하였다. 또한 도 6의 XRD(X-ray diffractometer) 결과를 통해 비정질(amorphous) 상태의 결정구조임을 확인하였다.In the Germanium precursor experiment in Table 4, the temperature of the canister containing the Example 4 (Et_Ge) was maintained at 40 占 폚, the precursor injection time was 2 seconds, the precursor purge time was 10 seconds, the ozone injection time was 4 seconds, Sec. The characteristics of the thin film according to the process temperature were shown in FIG. 4, and the window period was observed at 200 ° C. to 280 ° C. and the ALD precursor had a constant thin film growth rate of 0.53 Å / cycle at 280 ° C. The atomic ratio of <Ge: O x > was found to be 1: 1.79 according to the X-ray photoelectron spectroscopy (XPS) of FIG. 5 and the GeO 1.79 film was formed. Also, the X-ray diffractometer (XRD) of FIG. 6 confirmed the crystal structure of the amorphous state.

실시예 6(tBu_Sn)의 박막 증착 실험은 전구체 캐니스터 온도, 전구체 주입시간, 퍼지 시간, 오존 주입시간들을 Germanium 전구체와 동일한 조건으로 진행 하였다. 온도별 증착 특성에 있어서는 도 7에 나타낸 바와 같이 250℃ ℃ 내지 320℃ 온도 구간에서 ALD 윈도우 영역을 보였으며 280℃의 공정 온도에서 평균 1.40 Å/cycle의 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 8의 XPS(X-ray photoelectron spectroscopy) 결과에서 <Sn : Ox>의 atomic ratio 가 1 : 1.23 로 나타나며 SnO1 .23 박막이 형성됨을 확인하였다. 또한 도 9의XRD(X-ray diffractometer) 결과를 통해 비정질(amorphous) 상태의 결정구조임을 확인하였다.Example 6 The thin film deposition experiment of ( t Bu_Sn) proceeded under the same conditions as the Germanium precursor for precursor canister temperature, precursor injection time, purge time, and ozone injection time. As shown in FIG. 7, the ALD window region was observed at a temperature range of 250 ° C. to 320 ° C., and it was found that the ALD precursor had an average growth rate of 1.40 Å / cycle at a process temperature of 280 ° C. . The X-ray photoelectron spectroscopy (XPS) of FIG. 8 shows that the atomic ratio of <Sn: O x > is 1: 1.23 and the SnO 1 .23 thin film is formed. Also, it was confirmed through an X-ray diffractometer (XRD) of FIG. 9 that the crystal structure is an amorphous state.

전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. It will be understood by those of ordinary skill in the art that the foregoing description of the embodiments is for illustrative purposes and that those skilled in the art can easily modify the invention without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (13)

하기 화학식 1로서 표시되는 원자층 증착(ALD) 전구체:
[화학식 1]
Figure 112017035997599-pat00007

상기 화학식 1에서,
M은 Si, Ge 및 Sn 중에서 선택된 어느 하나이고,
R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다(단, R이 tert-부틸기(tBu)인 경우를 제외함).
An atomic layer deposition (ALD) precursor represented as Chemical Formula 1:
[Chemical Formula 1]
Figure 112017035997599-pat00007

In Formula 1,
M is any one selected from Si, Ge and Sn,
R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms, or an isomer thereof (except when R is a tert-butyl group ( t Bu)).
제1항에 있어서,
상기 화학식 1의 R은 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기, sec-펜틸기, tert-펜틸기, 및 이들의 이성질체로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는, 원자층 증착(ALD) 전구체.
The method according to claim 1,
R in the above-mentioned formula (1) is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- butyl group, (ALD) precursor which is one kind selected from the group consisting of isobutyl, sec-pentyl, tert-pentyl, and isomers thereof.
하기 화학식 2로서 표시되는 원자층 증착(ALD) 전구체:
[화학식 2]
Figure 112017092073418-pat00017

상기 화학식 2에서,
M은 Sn이고, R은 tBu임.
(여기서, tBu는 tert-부틸기를 의미함)
An atomic layer deposition (ALD) precursor represented as Chemical Formula 2:
(2)
Figure 112017092073418-pat00017

In Formula 2,
M is Sn, and R is t Bu.
(Wherein t Bu means a tert-butyl group)
제1항에 있어서,
상기 화학식 1의 M은 Ge이고, R은 Me인, 원자층 증착(ALD) 전구체.
(여기서, Me는 메틸기를 의미함)
The method according to claim 1,
The atomic layer deposition (ALD) precursor of claim 1 wherein M is Ge and R is Me.
(Wherein Me represents a methyl group)
제1항에 있어서,
상기 화학식 1의 M은 Ge이고, R은 Et인, 원자층 증착(ALD) 전구체.
(여기서, Et는 에틸기를 의미함)
The method according to claim 1,
The atomic layer deposition (ALD) precursor of claim 1 wherein M is Ge and R is Et.
(Wherein Et means ethyl group)
삭제delete 삭제delete 제1항에 있어서,
상기 화학식 1의 원자층 증착 (ALD) 전구체는 상온에서 액상 또는 휘발성인 것을 특징으로 하는, 원자층 증착(ALD) 전구체.
The method according to claim 1,
The atomic layer deposition (ALD) precursor of Formula 1 is characterized by being liquid or volatile at room temperature.
삭제delete 기판 상에 하기 화학식 3으로 표시되는 원자층 증착(ALD) 전구체를 주입하고, 비활성 기체로 미흡착된 상기 전구체를 퍼징한 후에 반응가스를 주입하는 단계를 포함하는, 원자층 증착 (ALD) 전구체가 증착된 박막의 제조 방법.
[화학식 3]
Figure 112017035997599-pat00018

상기 화학식 3에서,
M은 Si, Ge 및 Sn 중에서 선택된 어느 하나이고, R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.
An atomic layer deposition (ALD) precursor, comprising: injecting an atomic layer deposition (ALD) precursor represented by the following formula (3) on a substrate, purging the precursor unadsorbed with an inert gas, &Lt; / RTI &gt;
(3)
Figure 112017035997599-pat00018

In Formula 3,
M is any one selected from Si, Ge and Sn, and R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms, or an isomer thereof.
제10항에 있어서,
상기 기판의 증착 온도는 50℃ 내지 400℃인 것을 특징으로 하는, 원자층 증착(ALD) 전구체가 증착된 박막의 제조 방법.
11. The method of claim 10,
Wherein the deposition temperature of the substrate is between 50 ° C and 400 ° C.
제10항에 있어서,
상기 원자층 증착(ALD) 전구체의 주입 시간은 1초 내지 20초인 것인, 원자층 증착(ALD) 전구체가 증착된 박막의 제조 방법.
11. The method of claim 10,
Wherein the atomic layer deposition (ALD) precursor is implanted at a time of 1 second to 20 seconds.
제10항에 있어서,
상기 반응가스는 암모니아(NH3), 과산화수소(H2O2), 수증기(H2O), 산소(O2), 또는 오존(O3)을 포함하며, 상기 반응가스의 주입 시간은 1초 내지 30초인 것인, 원자층 증착(ALD) 전구체가 증착된 박막의 제조 방법.
11. The method of claim 10,
The reaction gas includes ammonia (NH 3 ), hydrogen peroxide (H 2 O 2 ), water vapor (H 2 O), oxygen (O 2 ), or ozone (O 3 ) To about 30 seconds, wherein the atomic layer deposition (ALD) precursor is deposited.
KR1020150164082A 2015-11-23 2015-11-23 Organic metal precursor compound for atomic layer deposition and ald deposition using the same KR101787204B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150164082A KR101787204B1 (en) 2015-11-23 2015-11-23 Organic metal precursor compound for atomic layer deposition and ald deposition using the same
PCT/KR2016/006128 WO2017090854A1 (en) 2015-11-23 2016-06-09 Organometallic precursor composition for atomic layer deposition (ald), and ald deposition method using same
TW105122839A TWI652277B (en) 2015-11-23 2016-07-20 Organic metal precursor compound for atomic layer deposition, film deposited with the same and manufacturing method of the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150164082A KR101787204B1 (en) 2015-11-23 2015-11-23 Organic metal precursor compound for atomic layer deposition and ald deposition using the same

Publications (2)

Publication Number Publication Date
KR20170059742A KR20170059742A (en) 2017-05-31
KR101787204B1 true KR101787204B1 (en) 2017-10-18

Family

ID=58763369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150164082A KR101787204B1 (en) 2015-11-23 2015-11-23 Organic metal precursor compound for atomic layer deposition and ald deposition using the same

Country Status (3)

Country Link
KR (1) KR101787204B1 (en)
TW (1) TWI652277B (en)
WO (1) WO2017090854A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203407A1 (en) 2018-04-18 2019-10-24 주식회사 한솔케미칼 Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
KR20210047938A (en) * 2018-11-22 2021-04-30 미쓰이 가가쿠 가부시키가이샤 Semiconductor device intermediate and method for manufacturing semiconductor device intermediate
KR20210093011A (en) 2020-01-17 2021-07-27 주식회사 한솔케미칼 Precursor compound for atomic layer deposition(ald), chemical vapor deposition(cvd) and ald/cvd deposition using the same
KR20220012632A (en) 2020-07-23 2022-02-04 연세대학교 산학협력단 Method for improving electric property of metal oxide thin film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103346B1 (en) * 2017-11-15 2020-04-22 에스케이트리켐 주식회사 Precursor Solution for Vapor Deposition and Fabrication Method of Thin Film Using the Same
KR102157137B1 (en) 2018-11-30 2020-09-17 주식회사 한솔케미칼 Silicon precursor and fabrication method of silicon-containing thin film using the same
KR20210103486A (en) * 2018-12-17 2021-08-23 가부시키가이샤 아데카 Raw material for thin film formation for atomic layer deposition, thin film manufacturing method and alkoxide compound
CN110128373B (en) * 2019-06-12 2023-03-24 鸿翌科技有限公司 Piperazinyl tin complex, preparation method thereof, thin film and solar cell
JPWO2021075397A1 (en) * 2019-10-17 2021-04-22
KR20220049970A (en) * 2020-10-15 2022-04-22 한화솔루션 주식회사 Method for preparing metal catalyst deposited with layer film by ALD process and metal catalyst thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318966B2 (en) * 2006-06-23 2012-11-27 Praxair Technology, Inc. Organometallic compounds
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
KR101216068B1 (en) * 2010-12-24 2012-12-27 주식회사 한솔케미칼 Organometallic precursors for thin-film deposition of metal oxide or silicon-containing metal oxide, and deposition process of the thin films therefrom
KR20140067786A (en) * 2012-11-27 2014-06-05 주식회사 유피케미칼 Silicon precursors, and depositing method of silicon-containing thin film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Journal of Organometallic Chemistry, Vol. 694, pp. 2122-2125
Journal of semiconductor technology and science, vol.8(2), 2008, pp. 111-114
Organometallics, Vol. 28, pp. 378-381(2008.11. 25.)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203407A1 (en) 2018-04-18 2019-10-24 주식회사 한솔케미칼 Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
KR20190121468A (en) 2018-04-18 2019-10-28 주식회사 한솔케미칼 Precursor compound for atomic layer deposition(ald), chemical vapor deposition(cvd) and ald/cvd deposition using the same
KR20210047938A (en) * 2018-11-22 2021-04-30 미쓰이 가가쿠 가부시키가이샤 Semiconductor device intermediate and method for manufacturing semiconductor device intermediate
KR102526810B1 (en) 2018-11-22 2023-04-27 미쓰이 가가쿠 가부시키가이샤 Semiconductor element intermediates and methods for producing semiconductor element intermediates
KR20210093011A (en) 2020-01-17 2021-07-27 주식회사 한솔케미칼 Precursor compound for atomic layer deposition(ald), chemical vapor deposition(cvd) and ald/cvd deposition using the same
KR20220012632A (en) 2020-07-23 2022-02-04 연세대학교 산학협력단 Method for improving electric property of metal oxide thin film

Also Published As

Publication number Publication date
TWI652277B (en) 2019-03-01
TW201718606A (en) 2017-06-01
WO2017090854A1 (en) 2017-06-01
KR20170059742A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
KR101787204B1 (en) Organic metal precursor compound for atomic layer deposition and ald deposition using the same
KR101924630B1 (en) Organoaminodisilane precursors and methods for depositing films comprising same
KR101506940B1 (en) Halogenated organoaminosilane precursors and methods for depositing films comprising same
KR101284664B1 (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
JP2019530235A (en) Compositions and methods for deposition of silicon oxide films
KR20150034123A (en) Organosilane precursors for ald/cvd silicon-containing film applications
KR101659610B1 (en) Organo germanium compounds and method of depositing thin film using them as precursors
KR101216068B1 (en) Organometallic precursors for thin-film deposition of metal oxide or silicon-containing metal oxide, and deposition process of the thin films therefrom
US20190318925A1 (en) Monoorganoaminodisilane Precursors and Methods for Depositing Films Comprising Same
KR101149811B1 (en) Deposition method of thin film using silicon precursor
TW201738250A (en) Transition metal compound, preparation method thereof, and composition for depositing transition metal-containing thin film comprising the same
KR102105977B1 (en) silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
KR102286114B1 (en) Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR102428276B1 (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
WO2023190386A1 (en) Sulfur-containing siloxane, composition for forming silicon-containing film comprising said sulfur-containing siloxane, sulfur-containing siloxane production method, silicon-containing film, and silicon-containing film production method
KR20150108664A (en) precursor compounds and thin film deposition method using the precusor compoumds
KR20140029136A (en) Cyclic aminosilane compounds having excellent affinity towards silicon and metal atoms, preparing method thereof, and its application
KR20150059129A (en) Organo group 14 metalloid azide compounds and method of thin film deposition using them as precursors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant