WO2017179857A1 - Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same - Google Patents

Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same Download PDF

Info

Publication number
WO2017179857A1
WO2017179857A1 PCT/KR2017/003782 KR2017003782W WO2017179857A1 WO 2017179857 A1 WO2017179857 A1 WO 2017179857A1 KR 2017003782 W KR2017003782 W KR 2017003782W WO 2017179857 A1 WO2017179857 A1 WO 2017179857A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
alkyl
transition metal
alkyl group
Prior art date
Application number
PCT/KR2017/003782
Other languages
French (fr)
Korean (ko)
Inventor
김명운
이상익
채원묵
임상준
이강용
조아라
전상용
임행돈
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170040141A external-priority patent/KR101959519B1/en
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to US16/093,012 priority Critical patent/US10913755B2/en
Priority to JP2018552842A priority patent/JP6979032B2/en
Priority to EP17782612.0A priority patent/EP3444255A1/en
Priority to CN201780023511.7A priority patent/CN109071571B/en
Publication of WO2017179857A1 publication Critical patent/WO2017179857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention relates to a novel transition metal compound, a method for preparing the same, and a composition for depositing a transition metal-containing thin film including the same, and more particularly, a novel transition metal compound that can be usefully used as a precursor of a transition metal-containing thin film, and a It relates to a manufacturing method, a transition metal-containing thin film deposition composition comprising the same, a transition metal-containing thin film and a transition metal-containing thin film using the transition metal-containing thin film deposition composition.
  • silicon oxide SiO 2
  • Such silicon oxide has a simple manufacturing process, but has a relatively low dielectric constant, so that when the thickness is thin, a gate-to-channel leakage current occurs from the gate.
  • various processes eg, atomic layer deposition (ALD) and chemical vapor deposition (CVD)
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the preparation of a zirconium oxide thin film by atomic layer deposition using a zirconium precursor or chemical vapor deposition has been developed in various ways depending on the ligand structure of the zirconium precursor.
  • ZrCl 4, ZrI 4 the zirconium oxide thin film by atomic layer deposition or chemical vapor deposition method using an inorganic salt, such as ZrF 4 is an inorganic salt in the inner films (Cl -, F -, I -) electrical characteristics of the thin film to the remaining There is a problem that this deterioration and agglomeration of the thin film is likely to occur. In addition, the roughness of the zirconium oxide film can not be arbitrarily adjusted, and the thickness of the thin film is also difficult to adjust.
  • zirconium oxide thin film formed from a zirconium compound having an amido ligand coordinated as a precursor is known.
  • Zr (NMeEt) 4 Alternatively, all zirconium amido compounds represented by Zr (NEt 2 ) 4 exist in liquid state with low viscosity at room temperature, and have high vapor pressure and easy removal of amido ligands by ozone and water vapor. It is most used as a precursor of ZrO 2 thin film production.
  • these zirconium amido compounds have high reactivity and are not easily stored for long periods of time.
  • the zirconium amido compounds have been recently known to decompose during vaporization to greatly affect the quality of the thin film.
  • the present invention provides a transition metal compound and a method for producing the same, which can be used as a precursor for thin film deposition with excellent thermal stability in order to solve the above problems.
  • the present invention also provides a composition for depositing a transition metal-containing thin film comprising the transition metal compound of the present invention, a transition metal-containing thin film prepared using the same, and a method for producing a transition metal-containing thin film using the same.
  • the present invention provides a transition metal compound having high volatility, excellent thermal stability, and excellent cohesive force that can be used as a precursor for thin film deposition.
  • the transition metal compound of the present invention is represented by the following Chemical Formula 1.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl
  • the alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • n is an integer of 1 or 2.
  • M may be titanium, zirconium or hafnium
  • R 1 to R 6 may be independently a hydrogen atom or a (C1-C7) alkyl group.
  • R 11 to R 13 in the general formula 1 may be independently a hydrogen atom or a (C1-C20) alkyl group
  • X is independently of each other (C1-C20) alkyl or (C6 -C20) aryl or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl substituted or unsubstituted amide group, (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group Or a (C1-C20) alkoxy group.
  • M in the formula 1 is zirconium, hafnium or titanium;
  • R 1 to R 6 independently represent a hydrogen atom or a (C1-C7) alkyl group and each other;
  • X may independently be an amino group substituted with (C1-C20) alkyl, a (C1-C20) alkyl group, a (C3-C20) heterocycloalkyl group or a (C1-C20) alkoxy group.
  • the transition metal compound of Formula 1 according to an embodiment of the present invention may be selected from the following compounds.
  • the present invention provides a method for preparing a transition metal compound represented by the following Chemical Formula 1, wherein the following Chemical Formula 1 is prepared by reacting Chemical Formula 2 with Chemical Formula 3 to prepare a transition metal compound represented by Chemical Formula 1. It includes.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is - (CR 11 R 12) a - , and, R 11 and R 12 are independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl (C1-C20) to each other An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl
  • the alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20 A cycloalkyl group, a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • n is an integer of 1 or 2.
  • Chemical Formula 2 may be prepared by reacting Chemical Formula 4 with Chemical Formula 5 to produce Chemical Formula 6, and then reacting Chemical Formula 6 with Chemical Formula 7.
  • M 1 is an alkali metal
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • the alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A and D is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6 - May be further substituted with a -C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • X 1 and X 2 are independently of each other halogen
  • n is an integer of 1 or 2.
  • the present invention also provides a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
  • the transition metal of the transition metal compound included in the transition metal-containing thin film deposition composition of the present invention may be zirconium, hafnium or titanium.
  • the present invention provides a transition metal-containing thin film and a transition metal-containing thin film prepared by using the transition metal-containing thin film deposition composition of the present invention.
  • novel transition metal compound of the present invention can be used as a precursor of a transition metal-containing thin film due to its high volatility, excellent thermal stability and cohesion.
  • novel transition metal compound of the present invention has a low melting point and is mostly present as a liquid at room temperature, and has high thermal stability and excellent storage stability.
  • the transition metal-containing thin film deposition composition of the present invention may be applied to various thin film deposition methods by including the transition metal compound of the present invention having high thermal stability as a precursor, and the thin film prepared by using the same has high density and purity.
  • the transition metal-containing thin film deposition composition of the present invention has high volatility, excellent thermal stability and cohesion, and low melting point, so that the transition metal thin film is formed by including the transition metal compound of the present invention, which is mostly liquid at room temperature. It is possible to obtain a high purity thin film having excellent step coverage and high density.
  • FIG. 3 is a diagram showing step coverage characteristics of Experimental Example 4.
  • the present invention provides a transition metal compound represented by the following Chemical Formula 1 having high volatility, excellent thermal stability and excellent cohesion.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or With an unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, an unsubstituted siloxy group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20)
  • the alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • n is an integer of 1 or 2.
  • the transition metal compound represented by Chemical Formula 1 of the present invention may be easily used as a precursor for preparing a thin film containing a transition metal having high volatility and high thermal stability.
  • the transition metal compound represented by Chemical Formula 1 of the present invention has a low melting point, and thus exists in most liquids at room temperature, and thus has high storage stability. Thus, a thin film of high purity can be manufactured with high density.
  • the transition metal compound represented by the formula (1) of the present invention is one molecule of silicon and transition metal Since it is possible to manufacture a transition metal silicate thin film using only one precursor, it is economical and efficient, and the purity of the thin film is very excellent.
  • X independently of each other (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) Alkyl group, (C1-C20) alkoxy group, siloxy group substituted with (C3-C20) alkyl, mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, mono (C1-C20) alkylamide group, Di (C1-C20) alkylamide groups, phosphine groups substituted with (C1-C20) alkyl, or phosphido groups substituted with (C1-C20) alkyl, preferably amino groups substituted with (C1-C20) alkyl , (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (
  • M in accordance with an embodiment of the present invention to increase the dielectric constant may be titanium, zirconium or hafnium.
  • R 1 to R 6 may be independently a hydrogen atom or a (C1-C7) alkyl group each other, independently represent a hydrogen atom specifically, methyl group, ethyl group, n- propyl group, isopropyl Propyl group, n-butyl group, sec -butyl group, tert -butyl group or n-pentyl group.
  • R 11 and R 12 of A are independently of each other a hydrogen atom, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) It may be an alkyl group or a (C1-C20) alkoxy group, preferably a hydrogen atom or a (C1-C20) alkyl group, specifically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec -butyl group, tert - butyl or n- pentyl group, a may be an integer from 1 to 3 of an integer, preferably from 1 to 2.
  • R 13 of D is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1- C20) alkyl, (C1-C20) alkyl carbonyl group or (C3-C20) cycloalkyl-carbonyl may be date, a specific example, methyl, ethyl, n- propyl, isopropyl, sec - butyl or tert - Butyl, cyclohexyl, dicyclohexylmethyl, adamantyl, phenyl, phenylmethyl, methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, tert -butylcarbonyl or adamantylcarbon And may be a specific example, methyl, ethyl
  • X independently of each other mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, mono (C1-C20) alkylamide group, di (C1-C20) alkyl Amide group, (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group, more preferably mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, It may be a (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group, and examples of mono (C1-C20) alkylamino group and di (C1-C20) alkylamino group include methylamino group and ethyl Amino group, n-propylamino group, isoprop
  • a tert -butyl group, and a specific example of a (C3-C20) heterocycloalkyl group is an aziridinyl group, a pyrrolidinyl group, a peridinyl group, an azepanyl group or an azocanyl group, preferably May be a pyrrolidinyl group or a piperidinyl group, and a specific example of a (C1-C20) alkoxy group Methoxy, ethoxy, n- propoxy, iso-propoxy, n- butoxy, sec - butoxy, tert - butoxy group, n- pentoxy group, neo-pentoxy group, n- heksok group, n- oktok time Or n-dodecoxy group, of which methoxy, ethoxy, isopropoxy or tert -butoxy groups are preferred.
  • the transition metal compound according to an embodiment of the present invention is a precursor for depositing a transition metal-containing thin film, and in view of obtaining a high-quality transition metal-containing thin film having high volatility and high thermal stability, preferably, R 1 to R 6 are independently hydrogen.
  • An atom or a (C1-C7) alkyl group; X may independently be a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, a (C1-C20) alkyl group, a (C3-C20) heterocycloalkyl group or a (C1-C20) alkoxy group, more
  • M is zirconium, hafnium, titanium
  • R 1 to R 6 are each independently a hydrogen atom or a (C1-C7) alkyl group
  • X may independently be a di (C1-C20) alkylamino group or a (C1-C20) alkoxy group.
  • the transition metal compound represented by Chemical Formula 1 of the present invention may be selected from the following compounds, but is not limited thereto.
  • Substituents including the "alkyl”, “alkoxy” and other “alkyl” moieties described herein include all linear or pulverized forms, preferably 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 Having from 4 to 4 carbon atoms.
  • aryl described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a single or fused ring containing 4 to 7 ring atoms, preferably 5 or 6 ring atoms, as appropriate for each ring. It includes a ring system, a form in which a plurality of aryl is connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.
  • Cycloalkyl described in the present invention means a non-aromatic monocyclic or polycyclic ring system having 3 to 20 carbon atoms, and the monocyclic ring is, without limitation, cyclopropyl, cyclobutyl , Cyclopentyl and cyclohexyl.
  • Examples of polycyclic cycloalkyl groups include perhydronaphthyl, perhydroindenyl, and the like; Bridged polycyclic cycloalkyl groups include adamantyl, norbornyl, and the like.
  • Heterocycloalkyl described in the present invention means a substituted or unsubstituted non-aromatic 3 to 15 membered ring radical composed of carbon atoms and 1 to 5 heteroatoms selected from nitrogen, phosphorus, oxygen and sulfur, and heterocycloalkyl
  • the radical may be a monocyclic, bicyclic or tricyclic ring system which may be fused, bridged or comprise a spiro ring system and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radicals may May be oxidized in some cases.
  • the nitrogen atom may be quaternized in some cases.
  • the present invention provides a method for preparing a transition metal compound represented by the following Chemical Formula 1, comprising the step of preparing a transition metal compound represented by the following Chemical Formula 1 by reacting the following Chemical Formula 2 and Chemical Formula 3.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl
  • the alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • n is an integer of 1 or 2.
  • Formula 2 may include the step of preparing the following Chemical Formula 6 by reacting the following Chemical Formula 4 and Chemical Formula 5 and then reacting the Chemical Formula 6 with the Chemical Formula 7.
  • M 1 is an alkali metal
  • R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group
  • R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
  • A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
  • D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
  • the alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A and D is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6 - May be further substituted with a -C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
  • X 1 and X 2 are independently of each other halogen
  • n is an integer of 1 or 2.
  • heterocycloalkyl in Chemical Formula 1 according to an embodiment of the present invention, after preparing a compound having X or a monoalkylamino group or a dialkylamino group in Chemical Formula 1, heterocycloalkyl, for example, pyrrolidine and It can be prepared by reaction with piperidine.
  • the preparation method of the present invention can be represented by the following schemes 1-3.
  • the solvent used in the production method of the present invention may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitrate It is preferable to use at least one selected from the group consisting of nitromethan, tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA). Do.
  • the reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials.
  • the reaction of Scheme 1 is in the range of 10 to 30 ° C.
  • the reaction in Scheme 2 is in the range of 55 to 70. It may be carried out at °C °C, in the case of Scheme 3 may be carried out at 20 to 30 °C, to confirm the complete consumption of the starting material through NMR, etc. to complete the reaction.
  • the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
  • the present invention also provides a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
  • the transition metal-containing thin film deposition composition may include only the transition metal compound of the present invention as a precursor.
  • the transition metal compound of the present invention may be represented by the formula (1) as described above, preferably in the formula (1) M may be titanium, zirconium or hafnium.
  • the transition metal-containing thin film deposition composition according to an embodiment of the present invention may include a compound in which R 1 to R 6 and R 11 to R 13 in Formula 1 are independently a hydrogen atom or a (C1-C7) alkyl group. have.
  • X is independently a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, or a mono (C1-C20) It may include a compound that is an alkylamide group, a di (C1-C20) alkylamide group, a (C1-C20) alkyl group or a (C1-C20) alkoxy group.
  • the transition metal-containing thin film deposition composition according to an embodiment of the present invention may include only the transition metal compound represented by Formula 1 used as a precursor, and has high thermal stability and excellent step coverage.
  • the transition metal compound of Formula 1 is wherein R 1 to R 6 are independently a hydrogen atom or a (C1-C7) alkyl group; X may independently be a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, a (C1-C20) alkyl group or a (C1-C20) alkoxy group.
  • the present invention also provides a transition metal-containing thin film prepared by using the transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
  • the transition metal-containing thin film of the present invention is excellent in thermal stability of the present invention, by using a transition metal-containing thin film deposition composition comprising a transition metal compound having a high volatility as a precursor can be produced a high quality thin film of high density and high purity. .
  • the transition metal-containing thin film of the present invention can be prepared by conventional methods used in the art, for example, organometallic chemical vapor deposition (MOCVD), atomic layer deposition (ALD) process, low pressure vapor deposition (LPCVD), plasma enhanced Vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD);
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • LPCVD low pressure vapor deposition
  • PECVD plasma enhanced Vapor deposition
  • PEALD plasma enhanced atomic layer deposition
  • the transition metal-containing thin film of the present invention is prepared using a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention as a precursor, but is not limited to, for example, transition metal oxide film, transition metal nitride film, transition metal It may be a carbon nitride film or a transition metal silicon nitride film, and may be a gate insulating film of a transistor or a dielectric film of a capacitor.
  • the present invention also provides a method for producing a transition metal-containing thin film using the composition for depositing a transition metal-containing thin film of the present invention.
  • the method for producing a transition metal-containing thin film of the present invention may be prepared using only the transition metal compound of the present invention as a precursor for thin film deposition.
  • deposition conditions may be controlled according to the structure or thermal characteristics of the desired thin film, and the deposition conditions according to an embodiment of the present invention include a transition metal compound.
  • Input flow rate of the composition for depositing the transition metal-containing thin film containing, the flow rate of the reaction gas, carrier gas, pressure, RF power, substrate temperature and the like can be exemplified, non-limiting example of such a deposition condition is a transition metal-containing thin film
  • the flow rate of the composition for deposition is 10 to 1000 cc / min
  • the carrier gas is 10 to 1000 cc / min
  • the flow rate of the reaction gas is 1 to 1000 cc / min
  • the pressure is 0.5 to 10 torr
  • the RF power is 200 to 1000 W.
  • the substrate temperature may be adjusted in the range of 150 to 400 °C but is not limited thereto.
  • the reaction gas used in the method for producing a transition metal-containing thin film of the present invention is not limited, but hydrogen (H 2 ), hydrazine (N 2 H 4 ), ozone (O 3 ), ammonia (NH 3 ), nitrogen ( N 2 ), silane (SiH 4 ), borane (BH 3 ), diborane (B 2 H 6 ) and phosphine (PH 3 ) may be one or more mixed gas selected from, the carrier gas is nitrogen (N 2 ), argon (Ar) and helium (He) may be one or more mixed gas selected from.
  • a substrate used in the method for manufacturing a transition metal-containing thin film according to an embodiment of the present invention includes a substrate comprising at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP; SOI (Silicon On Insulator) substrate; Quartz substrates; Or glass substrates for displays; Polyimide, Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN, PolyEthylene Naphthalate), Polymethyl Methacrylate (PMMA), Polycarbonate (PC, PolyCarbonate), Polyethersulfone Flexible plastic substrates such as (PES) and polyester; It may be, but is not limited thereto.
  • the transition metal-containing thin film may include a plurality of conductive layers, dielectric layers, or insulating layers between the substrate and the transition metal-containing thin film.
  • Chloro (chloromethyl) dimethyl silane (228g, 1.6mol) was added to 1500ml of pentane, followed by adding methylamine (100g, 3.2mol) at -10 ° C and stirring at room temperature (25 ° C) for 24 hours. After the reaction was completed, the resultant was filtered to remove the amine salt, and then the solvent and the volatile byproduct were removed under reduced pressure, and distilled under reduced pressure to obtain 197.1 g (89.4%) of the title compound.
  • Chloro (chloromethyl) dimethyl silane (109g, 0.8mol) was added to 1000ml of pentane, followed by normalpropylamine (90g, 1.5mol) at -10 ° C, followed by stirring at room temperature (25 ° C) for 24 hours. After completion of the reaction, the mixture was filtered to remove the amine salt, and the solvent and the volatile byproducts were removed under reduced pressure and distilled under reduced pressure to obtain 100 g (79%) of the title compound.
  • Chloro (chloromethyl) dimethyl silane 130g, 0.9mol was added to 1000ml of pentane, and isopropylamine (108g, 1.8mol) was added at -10 ° C and stirred at room temperature (25 ° C) for 24 hours. After completion of the reaction, the mixture was filtered to remove the amine salt, and the solvent and the volatile byproduct were removed under reduced pressure and distilled under reduced pressure to obtain 120 g (79%) of the title compound.
  • a zirconium silicate thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon substrate was maintained at 300 ° C., and the (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 precursor synthesized in Example 4 was used. Filled in a stainless steel bubbler container was maintained at 129 °C.
  • the precursor of Example 4 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • the zirconium silicate precursor compound was removed using argon gas (4000 sccm) for about 15 seconds.
  • ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a zirconium silicate thin film.
  • argon gas (4000 sccm) was used to remove reaction by-products and residual reaction gas for about 10 seconds.
  • the zirconium silicate thin film was formed by repeating 100 cycles using the above process as one cycle.
  • Example 1 Synthesis in Example 1 instead of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 precursor synthesized in Example 4 in Example 10 Except that the temperature of the stainless bubble vessel is maintained at 120 ° C. using the prepared precursor (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2 . A thin film was formed in the same manner as in Example 10.
  • a hafnium silicate thin film was prepared on a silicon substrate by atomic layer deposition.
  • the silicon substrate was maintained at 300 ° C.
  • the (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Hf (N (CH 3 ) 2 ) 2 precursor synthesized in Example 2 was subjected to a stainless steel bubbler.
  • the vessel was filled and kept at 129 ° C.
  • the hafnium silicate precursor vaporized in a stainless steel bubbler container was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate.
  • the tin precursor compound was removed for about 15 seconds using argon gas (4000 sccm).
  • hafnium silicate thin film was formed by repeating 100 cycles using the above process as one cycle.
  • Table 1 shows the composition analysis results analyzed by X-ray photoelectron spectroscopy of the thin film deposited in Examples 10 to 12 above.
  • the ratio of zirconium, silicon, and oxygen is about 1: 1: 4, and it can be confirmed that zirconium silicate (ZrSiO 4 ) or hafnium silicate (HfSiO 4 ) is formed with high purity without carbon impurities.
  • the transition metal compound of the present invention includes both the transition metal and the silyl group in one molecule, so that when the transition metal compound of the present invention is used as a precursor, a transition metal silicate film is formed. It can be seen that only the oxide film is formed.
  • a zirconium silicate thin film was formed on a trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 10 to confirm the step coating characteristics, and the results are shown in FIG. 1.
  • a zirconium silicate thin film was formed on the trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 11 to confirm the step coating characteristics, and the results are shown in FIG. 2.
  • FIG. 2 can also confirm high step coverage properties of 92% or more.
  • a hafnium silicate thin film was formed on a trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 12, and the results are shown in FIG. 3.
  • DSC Differential Scanning Calorimeter, DSC3, METTLER TOLEDO
  • the thermal decomposition temperature was compared with the onset temperature of DSC, and the thermal stability was increased compared to the (C 5 H 5 ) Zr (N (CH 3 ) 2 ) 3 zirconium compound of Comparative Example 1. It can be seen that, it is possible to form a thin film at a higher temperature, it can be seen that leading to an increase in the step coverage in the fine pattern.

Abstract

The present invention relates to: a novel transition metal compound; a preparation method therefor; a composition for depositing a transition metal-containing thin film, containing the same; a transition metal-containing thin film using the composition for depositing a transition metal-containing thin film; and a method for preparing a transition metal-containing thin film. The transition metal compound of the present invention has high thermal stability, high volatility, and high storage stability, and thus a transition metal-containing thin film having high-density and high-purity can be easily prepared by using the same as a precursor.

Description

전이금속 화합물, 이의 제조방법 및 이를 포함하는 전이금속함유 박막증착용 조성물Transition metal compound, preparation method thereof, and composition for thin film deposition comprising transition metal containing same
본 발명은 신규한 전이금속 화합물, 이의 제조방법 및 이를 포함하는 전이금속함유 박막증착용 조성물에 관한 것으로, 보다 상세하게는 전이금속함유 박막의 전구체로 유용하게 사용될 수 있는 신규한 전이금속 화합물, 이의 제조방법, 이를 포함하는 전이금속함유 박막증착용 조성물, 전이금속함유 박막증착용 조성물을 이용한 전이금속함유 박막 및 전이금속함유 박막의 제조방법에 관한 것이다.The present invention relates to a novel transition metal compound, a method for preparing the same, and a composition for depositing a transition metal-containing thin film including the same, and more particularly, a novel transition metal compound that can be usefully used as a precursor of a transition metal-containing thin film, and a It relates to a manufacturing method, a transition metal-containing thin film deposition composition comprising the same, a transition metal-containing thin film and a transition metal-containing thin film using the transition metal-containing thin film deposition composition.
반도체 공정에 있어서, 게이트 유전체로 주로 실리콘 산화물(SiO2)이 사용되어 왔다. 이러한 실리콘 산화물은 제조 공정은 단순하나, 비교적 낮은 유전 상수를 지니기 때문에 두께가 얇은 경우 게이트로부터 채널로 누설 전류(gate-to-channel leakage current)가 발생하는 문제점을 가진다.In the semiconductor process, mainly silicon oxide (SiO 2 ) has been used as the gate dielectric. Such silicon oxide has a simple manufacturing process, but has a relatively low dielectric constant, so that when the thickness is thin, a gate-to-channel leakage current occurs from the gate.
이러한 문제점을 해결하기위해 절연성이 뛰어나고 유전율이 높아 유전 손실이 적은 고유전 물질로서, high-k 물질에 대한 연구가 활발하게 진행되고 있다.In order to solve this problem, high-k materials with high dielectric constant and high dielectric constant and low dielectric loss are being actively researched.
나아가 반도체 구조가 직접화 미세화 되어감에 따라 미세한 패턴에서도 우수한 단차 피복성을 가질 수 있는 다양한 공정(일례로, 원자층 증착법(ALD: atomic layer deposition), 화학 기상 증착법(CVD: chemical vapor deposition))에 적용이 가능할 수 있도록 고유전 물질로써 높은 열안정성을 가지며, 휘발성이 높고, 가능한 상온에서 액체인 전구체 화합물에 대한 요구가 높아지고 있다.Furthermore, as the semiconductor structure is directly miniaturized, various processes (eg, atomic layer deposition (ALD) and chemical vapor deposition (CVD)) may have excellent step coverage even in fine patterns. There is a high demand for a precursor compound having high thermal stability, high volatility, and liquid liquid at room temperature so as to be applicable to the high dielectric material.
일례로, 지르코늄 전구체를 이용한 원자층 증착법 또는 화학 기상 증착법을 통한 지르코늄 산화물 박막의 제조는 지르코늄 전구체의 리간드 구조에 따라 다양하게 발전 해왔다.For example, the preparation of a zirconium oxide thin film by atomic layer deposition using a zirconium precursor or chemical vapor deposition has been developed in various ways depending on the ligand structure of the zirconium precursor.
ZrCl4, ZrI4, ZrF4 등의 무기염을 이용하여 원자층 증착법 또는 화학 기상 증착법을 통한 지르코늄 산화물 박막은 박막 내부에 무기염(Cl-, F-, I-)이 잔존하여 박막의 전기적 특성이 열화되고 박막의 응집(aggromeration) 현상이 발생하기 쉬운 문제점이 있다. 또한 지르코늄 산화막의 조도를 임의로 조정 할 수 없으며, 박막두께의 조정도 어려운 단점이 있다.ZrCl 4, ZrI 4, the zirconium oxide thin film by atomic layer deposition or chemical vapor deposition method using an inorganic salt, such as ZrF 4 is an inorganic salt in the inner films (Cl -, F -, I -) electrical characteristics of the thin film to the remaining There is a problem that this deterioration and agglomeration of the thin film is likely to occur. In addition, the roughness of the zirconium oxide film can not be arbitrarily adjusted, and the thickness of the thin film is also difficult to adjust.
Master. Chem., 1994, 4, 1815에 지르코늄 알콕사이드 전구체를 이용한 지르코늄 산화물 박막을 공지하고 있으며, 전구체로 Zr(OtBu)4를 사용하고 있다. 그러나 Zr(OtBu)4는 반응성이 매우 높아 박막 제조 공정에서 다루기가 매우 까다롭고 미량의 수분에도 촉매적 가수분해 (catalytic hydrolytic decomposition) 반응을 일으키므로 저장 수명이 매우 짧은 단점을 가진다.Master. Chem., 1994, 4, 1815 discloses a zirconium oxide thin film using a zirconium alkoxide precursor, and Zr (OtBu) 4 is used as a precursor. However, Zr (OtBu) 4 is very difficult to handle in the thin film manufacturing process due to its high reactivity, and has a short shelf life because it causes a catalytic hydrolytic decomposition reaction even in a small amount of water.
또한 Chem. Mater., 2002, 14, 4350에 아미도 리간드가 배위되어 있는 지르코늄 화합물을 전구체로 형성된 지르코늄 산화물 박막을 공지하고 있다. Zr(NMeEt)4 또는 Zr(NEt2)4로 대표되는 지르코늄 아미도 화합물은 모두 상온에서 점성이 낮은 액체상태로 존재하며, 증기압이 매우 높고 오존 및 수증기에 의해 아미도 리간드의 제거가 용이하여 원자층 증착법 공정을 이용한 ZrO2박막제조의 전구체로서 가장 많이 이용되고 있다. 그러나 이러한 지르코늄 아미도 화합물들은 매우 반응성이 높아 장기 보관성이 용이하지 않으며, 특히 열적 안정성이 낮아 기화 도중에 분해하여 박막의 품질에 크게 영향을 미치는 것으로 최근 알려지고 있다.See also Chem. Mater., 2002, 14, 4350 A zirconium oxide thin film formed from a zirconium compound having an amido ligand coordinated as a precursor is known. Zr (NMeEt) 4 Alternatively, all zirconium amido compounds represented by Zr (NEt 2 ) 4 exist in liquid state with low viscosity at room temperature, and have high vapor pressure and easy removal of amido ligands by ozone and water vapor. It is most used as a precursor of ZrO 2 thin film production. However, these zirconium amido compounds have high reactivity and are not easily stored for long periods of time. In particular, the zirconium amido compounds have been recently known to decompose during vaporization to greatly affect the quality of the thin film.
앞서 언급한 기존의 무기염, 알콕사이드, 아미도 리간드가 가지는 단점을 보완하고 지르코늄 전구체의 열안정성을 증가시키는 노력을 진행하고 있으며, 씨클로펜타다이엔(Cp: cyclopentadiene)기를 리간드로 가지는 CpZr(N(CH3)2)3와 같이 지르코늄 전구체등이 공지되어 있으나, 아직까지 만족할만한 결과를 얻지 못하였다.Efforts have been made to make up for the shortcomings of the aforementioned inorganic salts, alkoxides and amido ligands and to increase the thermal stability of zirconium precursors, and CpZr (N () having a cyclopentadiene (Cp) ligand as a ligand. Zirconium precursors are known, such as CH 3 ) 2 ) 3 , but have not yet obtained satisfactory results.
따라서 기존의 박막증착용 전구체로 사용된 화합물과 대비하여 보다 우수한 특성을 가지는 박막증착용 전구체에 대한 연구가 여전히 요구되는 실정이다.Therefore, there is still a need for research on thin film deposition precursors having more excellent properties as compared to the compounds used as conventional thin film deposition precursors.
따라서 본 발명은 상기와 같은 문제점을 해결하고자 열안정성이 우수하여 박막증착용 전구체로 이용가능한 전이금속 화합물 및 이의 제조방법을 제공한다.Accordingly, the present invention provides a transition metal compound and a method for producing the same, which can be used as a precursor for thin film deposition with excellent thermal stability in order to solve the above problems.
또한 본 발명은 본 발명의 전이금속 화합물을 포함하는 전이금속함유 박막증착용 조성물, 이를 이용하여 제조된 전이금속함유 박막 및 이를 이용하는 전이금속함유 박막의 제조방법을 제공한다.The present invention also provides a composition for depositing a transition metal-containing thin film comprising the transition metal compound of the present invention, a transition metal-containing thin film prepared using the same, and a method for producing a transition metal-containing thin film using the same.
본 발명은 휘발성이 높고, 열안정성이 우수하며, 우수한 응집력을 가져 박막증착의 전구체로 이용가능한 전이금속 화합물을 제공하는 것으로, 본 발명의 전이금속 화합물은 하기 화학식 1로 표시된다.The present invention provides a transition metal compound having high volatility, excellent thermal stability, and excellent cohesive force that can be used as a precursor for thin film deposition. The transition metal compound of the present invention is represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2017003782-appb-I000001
Figure PCTKR2017003782-appb-I000001
[상기 화학식 1에서,[In Formula 1,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실릴기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
바람직하게는 본 발명의 일 실시예에 따른 상기 화학식 1에서, M은 티타늄, 지르코늄 또는 하프늄일 수 있으며, R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기일 수 있다.Preferably in Formula 1 according to an embodiment of the present invention, M may be titanium, zirconium or hafnium, R 1 to R 6 may be independently a hydrogen atom or a (C1-C7) alkyl group.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1에서 R11 내지 R13은 서로 독립적으로 수소원자 또는 (C1-C20)알킬기일 수 있으며, X는 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환된 또는 비치환된 아마이드기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있다.Preferably R 11 to R 13 in the general formula 1 according to an embodiment of the present invention may be independently a hydrogen atom or a (C1-C20) alkyl group, X is independently of each other (C1-C20) alkyl or (C6 -C20) aryl or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl substituted or unsubstituted amide group, (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group Or a (C1-C20) alkoxy group.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1에서 M은 지르코늄, 하프늄 또는 티타늄이며; R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기이며; X는 서로 독립적으로 (C1-C20)알킬로 치환된 아미노기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있다.Preferably M in the formula 1 according to an embodiment of the present invention is zirconium, hafnium or titanium; R 1 to R 6 independently represent a hydrogen atom or a (C1-C7) alkyl group and each other; X may independently be an amino group substituted with (C1-C20) alkyl, a (C1-C20) alkyl group, a (C3-C20) heterocycloalkyl group or a (C1-C20) alkoxy group.
본 발명의 일 실시예에 따른 상기 화학식 1의 전이금속 화합물은 하기 화합물로부터 선택될 수 있다.The transition metal compound of Formula 1 according to an embodiment of the present invention may be selected from the following compounds.
Figure PCTKR2017003782-appb-I000002
Figure PCTKR2017003782-appb-I000002
Figure PCTKR2017003782-appb-I000003
Figure PCTKR2017003782-appb-I000003
Figure PCTKR2017003782-appb-I000004
Figure PCTKR2017003782-appb-I000004
Figure PCTKR2017003782-appb-I000005
Figure PCTKR2017003782-appb-I000005
Figure PCTKR2017003782-appb-I000006
Figure PCTKR2017003782-appb-I000006
Figure PCTKR2017003782-appb-I000007
Figure PCTKR2017003782-appb-I000007
Figure PCTKR2017003782-appb-I000009
Figure PCTKR2017003782-appb-I000009
Figure PCTKR2017003782-appb-I000010
Figure PCTKR2017003782-appb-I000010
Figure PCTKR2017003782-appb-I000011
Figure PCTKR2017003782-appb-I000011
Figure PCTKR2017003782-appb-I000012
Figure PCTKR2017003782-appb-I000012
Figure PCTKR2017003782-appb-I000013
Figure PCTKR2017003782-appb-I000013
본 발명은 하기 화학식 1로 표시되는 전이금속 화합물을 제조하는 방법을 제공하는 것으로, 본 발명의 하기 화학식 1은 하기 화학식 2와 화학식 3을 반응시켜 하기 화학식 1로 표시되는 전이금속 화합물을 제조하는 단계를 포함한다.The present invention provides a method for preparing a transition metal compound represented by the following Chemical Formula 1, wherein the following Chemical Formula 1 is prepared by reacting Chemical Formula 2 with Chemical Formula 3 to prepare a transition metal compound represented by Chemical Formula 1. It includes.
[화학식 1][Formula 1]
Figure PCTKR2017003782-appb-I000014
Figure PCTKR2017003782-appb-I000014
[화학식 2][Formula 2]
Figure PCTKR2017003782-appb-I000015
Figure PCTKR2017003782-appb-I000015
[화학식 3][Formula 3]
M(X)4 M (X) 4
[상기 화학식 1 내지 3에서,[In Formulas 1 to 3,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is - (CR 11 R 12) a - , and, R 11 and R 12 are independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl (C1-C20) to each other An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실릴기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20 A cycloalkyl group, a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
본 발명의 일 실시예에 따른 화학식 2는 하기 화학식 4와 화학식 5를 반응시켜 하기 화학식 6을 제조한 후 하기 화학식 6을 하기 화학식 7과 반응시켜 제조될 수 있다.Chemical Formula 2 according to an embodiment of the present invention may be prepared by reacting Chemical Formula 4 with Chemical Formula 5 to produce Chemical Formula 6, and then reacting Chemical Formula 6 with Chemical Formula 7.
[화학식 4][Formula 4]
Figure PCTKR2017003782-appb-I000016
Figure PCTKR2017003782-appb-I000016
[화학식 5][Formula 5]
DH2 DH 2
[화학식 6][Formula 6]
Figure PCTKR2017003782-appb-I000017
Figure PCTKR2017003782-appb-I000017
[화학식 7][Formula 7]
M1-C5H(R1)(R2)(R3)(R4)M 1 -C 5 H (R 1 ) (R 2 ) (R 3 ) (R 4 )
[상기 화학식 4 내지 7에서,[In Formulas 4 to 7,
M1은 알칼리 금속이며;M 1 is an alkali metal;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
상기 R1 내지 R6, A 및 D의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A and D is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6 -May be further substituted with a -C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
X1 및 X2는 서로 독립적으로 할로겐이며;X 1 and X 2 are independently of each other halogen;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
또한 본 발명은 본 발명의 전이금속 화합물을 포함하는 전이금속함유 박막증착용 조성물을 제공한다.The present invention also provides a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
바람직하게 본 발명의 전이금속함유 박막증착용 조성물에 포함되는 전이금속 화합물의 전이금속은 지르코늄, 하프늄 또는 티타늄일 수 있다.Preferably, the transition metal of the transition metal compound included in the transition metal-containing thin film deposition composition of the present invention may be zirconium, hafnium or titanium.
또한 본 발명은 본 발명의 전이금속함유 박막증착용 조성물을 이용하여 제조된 전이금속함유 박막 및 전이금속함유 박막의 제조방법을 제공한다.In another aspect, the present invention provides a transition metal-containing thin film and a transition metal-containing thin film prepared by using the transition metal-containing thin film deposition composition of the present invention.
본 발명의 신규한 전이금속 화합물은 휘발성이 높고, 열안정성 및 응집력이 우수하여 전이금속함유 박막의 전구체로 사용가능하다.The novel transition metal compound of the present invention can be used as a precursor of a transition metal-containing thin film due to its high volatility, excellent thermal stability and cohesion.
또한 본 발명의 신규한 전이금속 화합물은 녹는점이 낮아 대부분 상온에서 액체로 존재하며, 열안정성이 높아 저장안정성이 매우 우수하다.In addition, the novel transition metal compound of the present invention has a low melting point and is mostly present as a liquid at room temperature, and has high thermal stability and excellent storage stability.
본 발명의 전이금속함유 박막증착용 조성물은 열안정성이 높은 본 발명의 전이금속 화합물을 전구체로 포함함으로써 다양한 박막증착방법에 적용할 수 있으며, 이를 이용하여 제조된 박막은 밀도 및 순도가 높다.The transition metal-containing thin film deposition composition of the present invention may be applied to various thin film deposition methods by including the transition metal compound of the present invention having high thermal stability as a precursor, and the thin film prepared by using the same has high density and purity.
본 발명의 전이금속함유 박막증착용 조성물은 휘발성이 높고, 열안정성 및 응집력이 우수하며, 녹는점이 낮아 대부분 상온에서 액체로 존재하는 본 발명의 전이금속 화합물을 전구체로 포함함으로써 이를 이용한 전이금속 박막형성시 우수한 단차피복성을 가지며, 밀도가 높은 고순도 박막을 얻을 수 있다.The transition metal-containing thin film deposition composition of the present invention has high volatility, excellent thermal stability and cohesion, and low melting point, so that the transition metal thin film is formed by including the transition metal compound of the present invention, which is mostly liquid at room temperature. It is possible to obtain a high purity thin film having excellent step coverage and high density.
도 1은 실험예 2의 단차피복특성을 나타낸 도면이며,1 is a view showing the step coating characteristics of Experimental Example 2,
도 2는 실험예 3의 단차피복특성을 나타낸 도면이며,2 is a view showing the step coating characteristics of Experimental Example 3,
도 3은 실험예 4의 단차피복특성을 나타낸 도면이다.3 is a diagram showing step coverage characteristics of Experimental Example 4. FIG.
본 발명의 신규한 전이금속 화합물 및 이의 제조방법에 대하여 이하에 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The novel transition metal compound of the present invention and a method for preparing the same are described below, but unless otherwise defined in the technical and scientific terms used herein, one of ordinary skill in the art generally understands the present invention. In the following description, descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
본 발명은 휘발성이 높고, 열적 안정성이 우수할 뿐 아니라 우수한 응집력을 가지는 하기 화학식 1로 표시되는 전이금속 화합물을 제공한다.The present invention provides a transition metal compound represented by the following Chemical Formula 1 having high volatility, excellent thermal stability and excellent cohesion.
[화학식 1][Formula 1]
Figure PCTKR2017003782-appb-I000018
Figure PCTKR2017003782-appb-I000018
[상기 화학식 1에서,[In Formula 1,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실록시기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or With an unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, an unsubstituted siloxy group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
본 발명의 상기 화학식 1로 표시되는 전이금속 화합물은 휘발성이 높고, 열안정성이 높아 전이금속을 함유하는 박막을 제조하는 전구체로 용이하게 사용될 수 있다.The transition metal compound represented by Chemical Formula 1 of the present invention may be easily used as a precursor for preparing a thin film containing a transition metal having high volatility and high thermal stability.
또한 본 발명의 상기 화학식 1로 표시되는 전이금속 화합물은 녹는점이 낮아 상온에서 대부분 액체로 존재함으로써 저장안정성이 높으며, 따라서 이를 이용하여 높은 밀도로 고순도의 박막을 제조할 수 있다.In addition, the transition metal compound represented by Chemical Formula 1 of the present invention has a low melting point, and thus exists in most liquids at room temperature, and thus has high storage stability. Thus, a thin film of high purity can be manufactured with high density.
또한 전이금속 실리케이트 박막을 만들기위해서는 각각의 전이금속 전구체와 실리콘 전구체 각각의 두 개의 혼합물을 전구체로 사용하는 종래와는 달리 본 발명의 상기 화학식 1로 표시되는 전이금속 화합물은 규소와 전이금속이 한분자에 포함하고 있어 하나의 전구체만으로 전이금속 실리케이트 박막을 제조할 수 있어 경제적이며 효율적이고 박막의 순도가 매우 우수하다.In addition, unlike the conventional method using two mixtures of each of the transition metal precursor and the silicon precursor to make a transition metal silicate thin film as a precursor, the transition metal compound represented by the formula (1) of the present invention is one molecule of silicon and transition metal Since it is possible to manufacture a transition metal silicate thin film using only one precursor, it is economical and efficient, and the purity of the thin film is very excellent.
구체적으로 본 발명의 일 실시예에 따른 X는 서로 독립적으로 (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환된 실록시기, 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, 모노(C1-C20)알킬아마이드기, 디(C1-C20)알킬아마이드기, (C1-C20)알킬로 치환된 포스핀기 또는 (C1-C20)알킬로 치환된 포스피도기일 수 있으며, 바람직하게는 (C1-C20)알킬로 치환된 아미노기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있고, 보다 바람직하게는 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, 또는 (C3-C20)헤테로시클로알킬기일 수 있으며, 단 X가 시클로펜타디에닐 유도체인 것은 제외되는 것일 수 있다.Specifically, X according to one embodiment of the present invention independently of each other (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) Alkyl group, (C1-C20) alkoxy group, siloxy group substituted with (C3-C20) alkyl, mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, mono (C1-C20) alkylamide group, Di (C1-C20) alkylamide groups, phosphine groups substituted with (C1-C20) alkyl, or phosphido groups substituted with (C1-C20) alkyl, preferably amino groups substituted with (C1-C20) alkyl , (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group, more preferably mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, or It may be a (C3-C20) heterocycloalkyl group, except that X is a cyclopentadienyl derivative.
바람직하게 유전율을 높이기위한 측면에서 본 발명의 일 실시예에 따른 M은 티타늄, 지르코늄 또는 하프늄일 수 있다.Preferably M in accordance with an embodiment of the present invention to increase the dielectric constant may be titanium, zirconium or hafnium.
바람직하게 본 발명의 일 실시예에 따른 R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기일 수 있으며, 구체적으로 서로 독립적으로 수소원자, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기 또는 n-펜틸기일 수 있다.And preferably one embodiment R 1 to R 6 according to the embodiment of the present invention may be independently a hydrogen atom or a (C1-C7) alkyl group each other, independently represent a hydrogen atom specifically, methyl group, ethyl group, n- propyl group, isopropyl Propyl group, n-butyl group, sec -butyl group, tert -butyl group or n-pentyl group.
바람직하게 본 발명의 일 실시예에 따른 A의 R11 및 R12는 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기일 수 있으며, 바람직하게 수소원자 또는 (C1-C20)알킬기일 수 있으며, 구체적으로 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기 또는 n-펜틸기, a는 1 내지 3의 정수, 바람직하게 1 내지 2의 정수일 수 있다.Preferably R 11 and R 12 of A according to an embodiment of the present invention are independently of each other a hydrogen atom, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) It may be an alkyl group or a (C1-C20) alkoxy group, preferably a hydrogen atom or a (C1-C20) alkyl group, specifically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec -butyl group, tert - butyl or n- pentyl group, a may be an integer from 1 to 3 of an integer, preferably from 1 to 2.
바람직하게 본 발명의 일 실시예에 따른 D의 R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기일 수 있으며, 구체적 일례로, 메틸기, 에틸기, n-프로필기, 이소프로필기, sec-부틸기 또는 tert-부틸기, 시클로헥실기, 디시클로헥실메틸기, 아다만틸기, 페닐기, 페닐메틸기, 메틸카보닐기, 에틸카보닐기, n-프로필카보닐기, 이소프로필카보닐기, tert-부틸카보닐기 또는 아다만틸카보닐기일 수 있으며, 바람직하게는 메틸기, 에틸기, n-프로필기, 이소프로필기, sec-부틸기 또는 tert-부틸기, 시클로헥실기, 디시클로헥실메틸기, 아다만틸기, 페닐기, 페닐메틸기, 메틸카보닐기, 에틸카보닐기, n-프로필카보닐기, 이소프로필카보닐기, tert-부틸카보닐기 또는 아다만틸카보닐기일 수 있으며, 바람직하게는 수소 원자 또는 (C1-C20)알킬기일 수 있으며, 바람직한 구체적인 일례로 메틸기, 에틸기, n-프로필기, 이소프로필기, sec-부틸기 또는 tert-부틸기일 수 있다.Preferably R 13 of D according to an embodiment of the present invention is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1- C20) alkyl, (C1-C20) alkyl carbonyl group or (C3-C20) cycloalkyl-carbonyl may be date, a specific example, methyl, ethyl, n- propyl, isopropyl, sec - butyl or tert - Butyl, cyclohexyl, dicyclohexylmethyl, adamantyl, phenyl, phenylmethyl, methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, tert -butylcarbonyl or adamantylcarbon And may be a methyl group, preferably a methyl group, an ethyl group, n-propyl group, isopropyl group, sec -butyl group or tert -butyl group, cyclohexyl group, dicyclohexylmethyl group, adamantyl group, phenyl group, phenylmethyl group, methyl carbonyl, ethyl carbonyl group, propyl carbonyl group, n-, isopropyl carbonyl group, tert - butyl carbonyl group or adamantyl Carbonyl can group, and preferably may be a hydrogen atom or a (C1-C20) alkyl group, a methyl group as a preferred specific example, ethyl group, n- propyl group, an isopropyl group, sec-butyl may be a t-butyl group or a tert.
바람직하게 본 발명의 일 실시예에 따른 X는 서로 독립적으로 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, 모노(C1-C20)알킬아마이드기, 디(C1-C20)알킬아마이드기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있으며, 보다 바람직하게 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있고, 모노(C1-C20)알킬아미노기 및 디(C1-C20)알킬아미노기의 일례로 메틸아미노기, 에틸아미노기, n-프로필아미노기, 이소프로필아미노기, n-부틸아미노기, sec-부틸아미노기, tert-부틸아미노기, 이소부틸아미노기, n-헥실아미노기, n-옥틸아미노기, n-데실아미노기, 디메틸아미노기, 디에틸아미노기, 디-n-프로필아미노기, 디이소프로필아미노기, 디-n-부틸아미노기, 디-sec-부틸아미노기, 디-tert-부틸아미노기, 디이소부틸아미노기, tert-부틸이소프로필아미노기, 디-n-헥실아미노기, 디-n-옥틸아미노기, 디-n-데실아미노기를 들 수 있고, 이 중 바람직한 것은 디메틸아미노기, 디에틸아미노기 또는 디이소프로필아미노기이며, (C1-C20)알킬기의 구체적인 일례로는 n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기 또는 n-에이코실기이고, 이 중 바람직한 것은 메틸기, 에틸기, 이소프로필기 또는 tert-부틸기이며, (C3-C20)헤테로시클로알킬기의 구체적인 일례로, 아지리디닐기, 피롤리디닐기, 페페리디닐기, 아제판일기(azepanyl) 또는 아조칸일기(azocanyl)이고, 바람직하게는 피로리디닐기 또는 페페리디닐기일 수 있으며, (C1-C20)알콕시기의 구체적인 일례는 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, sec-부톡시기, tert-부톡시기, n-펜톡시기, 네오펜톡시기, n-헥속시기, n-옥톡시기 또는 n-도데속시기를 들 수 있고, 이 중 바람직한 것은 메톡시기, 에톡시기, 이소프로폭시기 또는 tert-부톡시기이다.Preferably X according to an embodiment of the present invention independently of each other mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, mono (C1-C20) alkylamide group, di (C1-C20) alkyl Amide group, (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group, more preferably mono (C1-C20) alkylamino group, di (C1-C20) alkylamino group, It may be a (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group, and examples of mono (C1-C20) alkylamino group and di (C1-C20) alkylamino group include methylamino group and ethyl Amino group, n-propylamino group, isopropylamino group, n-butylamino group, sec -butylamino group, tert -butylamino group, isobutylamino group, n-hexylamino group, n-octylamino group, n-decylamino group, dimethylamino group, diethyl group, a di -n- propylamino group, diisopropyl amino group, a di -n- butyl group, a di - sec - butyl amino Group, di - tert - butyl group, a di-isobutyl group, tert - butyl isopropyl group, a di -n- hexyl group, a di -n- octyl group, a di -n- decyl can be mentioned an amino group, of which preferred are A dimethylamino group, diethylamino group or diisopropylamino group, and specific examples of the (C1-C20) alkyl group include n-propyl group, isopropyl group, n-butyl group, sec -butyl group, tert -butyl group and n- Pentyl group, neopentyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group or n-eicosyl group, of which methyl, ethyl and isopropyl groups are preferred. Or a tert -butyl group, and a specific example of a (C3-C20) heterocycloalkyl group is an aziridinyl group, a pyrrolidinyl group, a peridinyl group, an azepanyl group or an azocanyl group, preferably May be a pyrrolidinyl group or a piperidinyl group, and a specific example of a (C1-C20) alkoxy group Methoxy, ethoxy, n- propoxy, iso-propoxy, n- butoxy, sec - butoxy, tert - butoxy group, n- pentoxy group, neo-pentoxy group, n- heksok group, n- oktok time Or n-dodecoxy group, of which methoxy, ethoxy, isopropoxy or tert -butoxy groups are preferred.
본 발명의 일 실시예에 따른 전이금속 화합물은 전이금속함유 박막증착용 전구체로 휘발성이 높고 열안정성이 높아 양질의 전이금속함유 박막을 얻기위한 측면에서 바람직하게 R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기이며; X는 서로 독립적으로 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기일 수 있으며, 보다 바람직하게는 M은 지르코늄, 하프늄, 티타늄이며; R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기이며; X는 서로 독립적으로 디(C1-C20)알킬아미노기 또는 (C1-C20)알콕시기일 수 있다.The transition metal compound according to an embodiment of the present invention is a precursor for depositing a transition metal-containing thin film, and in view of obtaining a high-quality transition metal-containing thin film having high volatility and high thermal stability, preferably, R 1 to R 6 are independently hydrogen. An atom or a (C1-C7) alkyl group; X may independently be a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, a (C1-C20) alkyl group, a (C3-C20) heterocycloalkyl group or a (C1-C20) alkoxy group, more Preferably M is zirconium, hafnium, titanium; R 1 to R 6 are each independently a hydrogen atom or a (C1-C7) alkyl group; X may independently be a di (C1-C20) alkylamino group or a (C1-C20) alkoxy group.
본 발명의 상기 화학식 1로 표시되는 전이금속 화합물은 하기 화합물에서 선택될 수 있으나, 이에 한정이 있는 것은 아니다.The transition metal compound represented by Chemical Formula 1 of the present invention may be selected from the following compounds, but is not limited thereto.
Figure PCTKR2017003782-appb-I000019
Figure PCTKR2017003782-appb-I000019
Figure PCTKR2017003782-appb-I000020
Figure PCTKR2017003782-appb-I000020
Figure PCTKR2017003782-appb-I000021
Figure PCTKR2017003782-appb-I000021
Figure PCTKR2017003782-appb-I000022
Figure PCTKR2017003782-appb-I000022
Figure PCTKR2017003782-appb-I000023
Figure PCTKR2017003782-appb-I000023
Figure PCTKR2017003782-appb-I000024
Figure PCTKR2017003782-appb-I000024
Figure PCTKR2017003782-appb-I000025
Figure PCTKR2017003782-appb-I000026
Figure PCTKR2017003782-appb-I000025
Figure PCTKR2017003782-appb-I000026
Figure PCTKR2017003782-appb-I000027
Figure PCTKR2017003782-appb-I000027
Figure PCTKR2017003782-appb-I000028
Figure PCTKR2017003782-appb-I000028
Figure PCTKR2017003782-appb-I000029
Figure PCTKR2017003782-appb-I000029
Figure PCTKR2017003782-appb-I000030
Figure PCTKR2017003782-appb-I000030
본 발명에 기재된「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함하며, 1 내지 20개의 탄소원자 바람직하게는 1 내지 10, 보다 바람직하게는 1 내지 4의 탄소원자를 갖는다. Substituents including the "alkyl", "alkoxy" and other "alkyl" moieties described herein include all linear or pulverized forms, preferably 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 Having from 4 to 4 carbon atoms.
또한 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. In addition, "aryl" described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a single or fused ring containing 4 to 7 ring atoms, preferably 5 or 6 ring atoms, as appropriate for each ring. It includes a ring system, a form in which a plurality of aryl is connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.
본 발명에 기재된 「시클로알킬」은 3 내지 20개 탄소원자를 갖는 비방향족 일환식(monocyclic) 또는 다환식(multicyclic)고리 계를 의미하는 것으로, 일환식 고리는, 비제한적으로, 시클로프로필, 시클로부틸, 시클로펜틸 및 시클로헥실을 포함한다. 다환식 시클로알킬기의 일례는 퍼히드로나프틸, 퍼히드로인데닐 등을 포함하고; 브리지화된 다환식 시클로알킬기는 아다만틸 및 노르보르닐 등을 포함한다.    "Cycloalkyl" described in the present invention means a non-aromatic monocyclic or polycyclic ring system having 3 to 20 carbon atoms, and the monocyclic ring is, without limitation, cyclopropyl, cyclobutyl , Cyclopentyl and cyclohexyl. Examples of polycyclic cycloalkyl groups include perhydronaphthyl, perhydroindenyl, and the like; Bridged polycyclic cycloalkyl groups include adamantyl, norbornyl, and the like.
본 발명에 기재된 「헤테로시클로알킬」은 탄소 원자와 질소, 인, 산소 및 황으로부터 선택된 1 내지 5개 헤테로원자로 이루어진 치환된 또는 비치환된 비방향족 3 내지 15원 고리 라디칼을 의미하며, 헤테로시클로알킬 라디칼은 융합되거나, 브릿지화되거나 또는 스피로 고리 계를 포함할 수 있는 일환식, 이환식 또는 삼환식 고리계일 수 있고, 또 헤테로시클릭 고리 라디칼 중의 질소, 인,탄소, 산소 또는 황 원자는 다양한 산화 상태로 경우에 따라 산화될 수 있다. 또한, 질소 원자는 경우에 따라 4급화 될 수 있다.  "Heterocycloalkyl" described in the present invention means a substituted or unsubstituted non-aromatic 3 to 15 membered ring radical composed of carbon atoms and 1 to 5 heteroatoms selected from nitrogen, phosphorus, oxygen and sulfur, and heterocycloalkyl The radical may be a monocyclic, bicyclic or tricyclic ring system which may be fused, bridged or comprise a spiro ring system and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radicals may May be oxidized in some cases. In addition, the nitrogen atom may be quaternized in some cases.
본 발명은 하기 화학식 1로 표시되는 전이금속 화합물의 제조방법을 제공하는 것으로, 하기 화학식 2와 화학식 3을 반응시켜 하기화학식 1로 표시되는 전이금속 화합물을 제조단계를 포함한다.The present invention provides a method for preparing a transition metal compound represented by the following Chemical Formula 1, comprising the step of preparing a transition metal compound represented by the following Chemical Formula 1 by reacting the following Chemical Formula 2 and Chemical Formula 3.
[화학식 1][Formula 1]
Figure PCTKR2017003782-appb-I000031
Figure PCTKR2017003782-appb-I000031
[화학식 2][Formula 2]
Figure PCTKR2017003782-appb-I000032
Figure PCTKR2017003782-appb-I000032
[화학식 3][Formula 3]
M(X)4 M (X) 4
[상기 화학식 1 내지 3에서,[In Formulas 1 to 3,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실릴기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
본 발명이 일 실시예에 따른 상기 화학식 2는 하기 화학식 4와 화학식 5를 반응시켜 하기 화학식 6을 제조한 후 하기 화학식 6을 하기 화학식 7과 반응시켜 제조되는 단계를 포함할 수 있다.Formula 2 according to an embodiment of the present invention may include the step of preparing the following Chemical Formula 6 by reacting the following Chemical Formula 4 and Chemical Formula 5 and then reacting the Chemical Formula 6 with the Chemical Formula 7.
[화학식 4][Formula 4]
Figure PCTKR2017003782-appb-I000033
Figure PCTKR2017003782-appb-I000033
[화학식 5][Formula 5]
DH2 DH 2
[화학식 6][Formula 6]
Figure PCTKR2017003782-appb-I000034
Figure PCTKR2017003782-appb-I000034
[화학식 7][Formula 7]
M1-C5H(R1)(R2)(R3)(R4)M 1 -C 5 H (R 1 ) (R 2 ) (R 3 ) (R 4 )
[상기 화학식 4 내지 7에서,[In Formulas 4 to 7,
M1은 알칼리 금속이며;M 1 is an alkali metal;
R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is-(CR 11 R 12 ) a- , and R 11 and R 12 are each independently hydrogen, (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
상기 R1 내지 R6, A 및 D의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A and D is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6 -May be further substituted with a -C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
X1 및 X2는 서로 독립적으로 할로겐이며;X 1 and X 2 are independently of each other halogen;
n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
본 발명의 일 실시예에 따른 상기 화학식 1에서 X가 헤테로시클로알킬인 경우는 상기 화학식 1에서 X가 모노알킬아미노기 또는 디알킬아미노기를 가지는 화합물을 제조한 후 헤테로시클로알킬, 일례로 피롤리딘 및 피페리딘과 반응시켜 제조할 수 있다.When X is heterocycloalkyl in Chemical Formula 1 according to an embodiment of the present invention, after preparing a compound having X or a monoalkylamino group or a dialkylamino group in Chemical Formula 1, heterocycloalkyl, for example, pyrrolidine and It can be prepared by reaction with piperidine.
본 발명의 제조방법을 하기 반응식 1 내지 3으로 나타낼 수 있다.The preparation method of the present invention can be represented by the following schemes 1-3.
[반응식1][Scheme 1]
X2(AX1)SiR5R6 + DH2→DH(AX1)SiR5R6 X 2 (AX 1 ) SiR 5 R 6 + DH 2 → DH (AX 1 ) SiR 5 R 6
[반응식2][Scheme 2]
DH(AX1)SiR5R6 + M1Cp → DH(CpA)SiR5R6 DH (AX 1 ) SiR 5 R 6 + M 1 Cp → DH (CpA) SiR 5 R 6
[반응식3] Scheme 3
DH(CpA)SiR5R6 + Zr(X)4 → {D(CpA)SiR5R6}M(X)2 DH (CpA) SiR 5 R 6 + Zr (X) 4 ¡Æ {D (CpA) SiR 5 R 6 } M (X) 2
[상기 반응식 1 내지 3에서 A, D, X, M, R5, R6, X1, X2 및 M1은 상기 화학식 1에서의 정의와 동일하며, CP는 시클로펜타디에닐이다.][A, D, X, M, R 5 , R 6 , X 1 , X 2 and M 1 in Schemes 1 to 3 are the same as defined in Formula 1, and C P is cyclopentadienyl.]
본 발명의 제조방법에서 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 헥산, 펜탄, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.The solvent used in the production method of the present invention may be any organic solvent, but hexane, pentane, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), nitrate It is preferable to use at least one selected from the group consisting of nitromethan, tetrahydrofuran (THF), N, N -dimethyl formamide (DMF) and N, N -dimethylacetamide (DMA). Do.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, 바람직하게 반응식 1 의 반응은 10 내지 30℃에서, 반응식 2의 반응은 55 내지 70℃에서 수행될 수 있으며, 반응식 3의 경우 20 내지 30℃에서 수행될 수 있고, NMR 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.The reaction temperature may be used at a temperature used in conventional organic synthesis, but may vary depending on the amount of reactants and starting materials. Preferably, the reaction of Scheme 1 is in the range of 10 to 30 ° C., and the reaction in Scheme 2 is in the range of 55 to 70. It may be carried out at ℃ ℃, in the case of Scheme 3 may be carried out at 20 to 30 ℃, to confirm the complete consumption of the starting material through NMR, etc. to complete the reaction. After the reaction is completed, the solvent may be distilled off under reduced pressure after the extraction process, and the desired product may be separated and purified through conventional methods such as column chromatography.
또한 본 발명은 본 발명의 전이금속 화합물을 포함하는 전이금속함유 박막증착용 조성물을 제공한다.The present invention also provides a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
바람직하게는 전이금속함유 박막증착용 조성물은 전구체로 본 발명의 전이금속 화합물만을 단독으로 포함할 수 있다.Preferably, the transition metal-containing thin film deposition composition may include only the transition metal compound of the present invention as a precursor.
본 발명의 전이금속 화합물을 상기와 같이 화학식 1로 표시될 수 있으며, 바람직하게 상기 화학식 1에서 M은 티타늄, 지르코늄 또는 하프늄일 수 있다.The transition metal compound of the present invention may be represented by the formula (1) as described above, preferably in the formula (1) M may be titanium, zirconium or hafnium.
본 발명의 일 실시예에 따른 전이금속함유 박막증착용 조성물은 상기 화학식 1에서 R1 내지 R6 및 R11 내지 R13은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기인 화합물을 포함할 수 있다.The transition metal-containing thin film deposition composition according to an embodiment of the present invention may include a compound in which R 1 to R 6 and R 11 to R 13 in Formula 1 are independently a hydrogen atom or a (C1-C7) alkyl group. have.
또한 본 발명의 일 실시예에 따른 전이금속함유 박막증착용 조성물은 상기 화학식 1에서 X가 서로 독립적으로 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, 모노(C1-C20)알킬아마이드기, 디(C1-C20)알킬아마이드기, (C1-C20)알킬기 또는 (C1-C20)알콕시기인 화합물을 포함할 수 있다.In addition, in the transition metal-containing thin film deposition composition according to an embodiment of the present invention, in Formula 1, X is independently a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, or a mono (C1-C20) It may include a compound that is an alkylamide group, a di (C1-C20) alkylamide group, a (C1-C20) alkyl group or a (C1-C20) alkoxy group.
바람직하게 본 발명의 일 실시예에 따른 전이금속함유 박막증착용 조성물은 전구체로 사용되는 상기 화학식 1로 표시되는 전이금속 화합물만을 포함할 수 있으며, 높은 열안정성을 가지고 우수한 단차 피복성(Step coverage)을 가지며, 높은 밀도의 전이금속박막을 증착하기위한 측면에서 상기 화학식 1의 전이금속 화합물은 상기 R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기이며; X는 서로 독립적으로 모노(C1-C20)알킬아미노기, 디(C1-C20)알킬아미노기, (C1-C20)알킬기 또는 (C1-C20)알콕시기일 수 있다.Preferably, the transition metal-containing thin film deposition composition according to an embodiment of the present invention may include only the transition metal compound represented by Formula 1 used as a precursor, and has high thermal stability and excellent step coverage. In the aspect for depositing a high density transition metal thin film, the transition metal compound of Formula 1 is wherein R 1 to R 6 are independently a hydrogen atom or a (C1-C7) alkyl group; X may independently be a mono (C1-C20) alkylamino group, a di (C1-C20) alkylamino group, a (C1-C20) alkyl group or a (C1-C20) alkoxy group.
또한 본 발명은 본 발명의 전이금속 화합물을 포함하는 전이금속함유 박막증착용 조성물을 이용하여 제조되는 전이금속함유 박막을 제공한다.The present invention also provides a transition metal-containing thin film prepared by using the transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention.
본 발명의 전이금속함유 박막은 본 발명의 열적 안정성이 뛰어나고, 휘발성이 높은 전이금속 화합물을 전구체로 포함하는 전이금속함유 박막증착용 조성물이용함으로써 밀도가 높고 순도 또한 높은 양질의 박막을 제조할 수 있다.The transition metal-containing thin film of the present invention is excellent in thermal stability of the present invention, by using a transition metal-containing thin film deposition composition comprising a transition metal compound having a high volatility as a precursor can be produced a high quality thin film of high density and high purity. .
본 발명의 전이금속함유 박막은 당업계에서 사용되는 통상적인 방법으로 제조될 수 있으며, 일례로 유기금속 화학기상 증착법(MOCVD), 원자층 증착법(ALD) 공정, 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD) 또는 플라즈마 강화 원자층 증착법(PEALD)등을 들 수 있다.The transition metal-containing thin film of the present invention can be prepared by conventional methods used in the art, for example, organometallic chemical vapor deposition (MOCVD), atomic layer deposition (ALD) process, low pressure vapor deposition (LPCVD), plasma enhanced Vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD);
본 발명의 전이금속함유 박막은 본 발명의 전이금속화합물을 전구체로 포함하는 전이금속함유 박막증착용 조성물을 이용하여 제조되며, 한정이 있는 것은 아니나, 일례로 전이금속산화막, 전이금속질화막, 전이금속탄소질화막 또는 전이금속규소질화막일 수 있으로, 트랜지스터의 게이트 절연막 또는 캐패시터의 유전막일 수 있다.The transition metal-containing thin film of the present invention is prepared using a transition metal-containing thin film deposition composition comprising the transition metal compound of the present invention as a precursor, but is not limited to, for example, transition metal oxide film, transition metal nitride film, transition metal It may be a carbon nitride film or a transition metal silicon nitride film, and may be a gate insulating film of a transistor or a dielectric film of a capacitor.
또한 본 발명은 본 발명의 전이금속함유 박막증착용 조성물을 이용하는 전이금속함유 박막의 제조방법을 제공한다.The present invention also provides a method for producing a transition metal-containing thin film using the composition for depositing a transition metal-containing thin film of the present invention.
바람직하게 본 발명의 전이금속함유 박막의 제조방법은 박막증착용 전구체로 본 발명의 전이금속 화합물만을 단독으로 사용하여 제조될 수 있다.Preferably, the method for producing a transition metal-containing thin film of the present invention may be prepared using only the transition metal compound of the present invention as a precursor for thin film deposition.
본 발명의 일 실시예에 따른 전이금속함유 박막의 제조방법은 목적하는 박막의 구조 또는 열적 특성에 따라 증착 조건이 조절될 수 있으며, 본 발명의 일 실시예에 따른 증착 조건으로는 전이금속 화합물을 함유하는 전이금속함유 박막증착용 조성물의 투입 유량, 반응가스, 운반 가스의 투입 유량, 압력, RF 파워, 기판 온도 등이 예시될 수 있으며, 이러한 증착 조건의 비한정적인 일예로는 전이금속함유 박막증착용 조성물의 투입 유량은 10 내지 1000 cc/min, 운반가스는 10 내지 1000 cc/min, 반응가스의 유량은 1 내지 1000 cc/min, 압력은 0.5 내지 10 torr, RF 파워는 200 내지 1000 W 및 기판 온도는 150 내지 400 ℃ 범위에서 조절될 수 있으나 이에 한정이 있는 것은 아니다.In the method for manufacturing a transition metal-containing thin film according to an embodiment of the present invention, deposition conditions may be controlled according to the structure or thermal characteristics of the desired thin film, and the deposition conditions according to an embodiment of the present invention include a transition metal compound. Input flow rate of the composition for depositing the transition metal-containing thin film containing, the flow rate of the reaction gas, carrier gas, pressure, RF power, substrate temperature and the like can be exemplified, non-limiting example of such a deposition condition is a transition metal-containing thin film The flow rate of the composition for deposition is 10 to 1000 cc / min, the carrier gas is 10 to 1000 cc / min, the flow rate of the reaction gas is 1 to 1000 cc / min, the pressure is 0.5 to 10 torr, and the RF power is 200 to 1000 W. And the substrate temperature may be adjusted in the range of 150 to 400 ℃ but is not limited thereto.
본 발명의 전이금속함유 박막의 제조방법에서 사용되는 반응가스는 한정이 있는 것은 아니나, 수소(H2), 히드라진(N2H4), 오존(O3), 암모니아(NH3), 질소(N2), 실란(SiH4), 보란(BH3), 디보란(B2H6) 및 포스핀(PH3)에서 선택되는 하나 또는 하나이상의 혼합기체일 수 있으며, 운반가스는 질소(N2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 하나 또는 둘 이상의 혼합기체일 수 있다.The reaction gas used in the method for producing a transition metal-containing thin film of the present invention is not limited, but hydrogen (H 2 ), hydrazine (N 2 H 4 ), ozone (O 3 ), ammonia (NH 3 ), nitrogen ( N 2 ), silane (SiH 4 ), borane (BH 3 ), diborane (B 2 H 6 ) and phosphine (PH 3 ) may be one or more mixed gas selected from, the carrier gas is nitrogen (N 2 ), argon (Ar) and helium (He) may be one or more mixed gas selected from.
본 발명의 일 실시예에 따른 전이금속 함유 박막의 제조방법에 사용되는 기판은 Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs 및 InP중 하나 이상의 반도체 재료를 포함하는 기판; SOI(Silicon On Insulator)기판; 석영 기판; 또는 디스플레이용 유리 기판; 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이트(PET, PolyEthylene Terephthalate), 폴리에틸렌 나프탈레이트(PEN, PolyEthylene Naphthalate), 폴리 메틸메타크릴레이트(PMMA, Poly Methyl MethAcrylate), 폴리카보네이트(PC, PolyCarbonate), 폴리에테르술폰(PES), 폴리에스테르(Polyester) 등의 가요성 플라스틱 기판; 일 수 있으나 이에 한정되는 것은 아니다. A substrate used in the method for manufacturing a transition metal-containing thin film according to an embodiment of the present invention includes a substrate comprising at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP; SOI (Silicon On Insulator) substrate; Quartz substrates; Or glass substrates for displays; Polyimide, Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN, PolyEthylene Naphthalate), Polymethyl Methacrylate (PMMA), Polycarbonate (PC, PolyCarbonate), Polyethersulfone Flexible plastic substrates such as (PES) and polyester; It may be, but is not limited thereto.
또한 상기 전이금속함유 박막은 상기 기판에 직접 박막을 형성하는 것 이외, 상기 기판과 상기 전이금속함유 박막 사이에 다수의 도전층, 유전층 또는 절연층 등이 형성될 수 있다.In addition, in addition to forming a thin film directly on the substrate, the transition metal-containing thin film may include a plurality of conductive layers, dielectric layers, or insulating layers between the substrate and the transition metal-containing thin film.
아래에 실시 예를 통하여 본 발명을 더 구체적으로 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적인 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형 예들이 있음을 이해하여야 한다.The present invention will be described in more detail with reference to the following examples. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, they can be replaced at the time of the present application It should be understood that there are various equivalents and variations.
[실시예 1](C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2의 합성Example 1 Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000035
Figure PCTKR2017003782-appb-I000035
ClCH2Si(CH3)2NH(CH3)의 합성Synthesis of ClCH 2 Si (CH 3 ) 2 NH (CH 3 )
펜탄 1500ml에 클로로(클로로 메틸)다이메틸 실란 (228g,1.6mol)을 투입 후, -10℃에서 메틸아민 (100g,3.2mol)을 투입하여 상온(25℃)에서 24시간동안 교반하였다. 반응이 완료되면 여과하여 아민 염을 제거한 후 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류하여 표제 화합물, 197.1g(89.4%)을 얻었다.Chloro (chloromethyl) dimethyl silane (228g, 1.6mol) was added to 1500ml of pentane, followed by adding methylamine (100g, 3.2mol) at -10 ° C and stirring at room temperature (25 ° C) for 24 hours. After the reaction was completed, the resultant was filtered to remove the amine salt, and then the solvent and the volatile byproduct were removed under reduced pressure, and distilled under reduced pressure to obtain 197.1 g (89.4%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 2.50(2H, s, ClCH2Si), 2.25(3H, d, CH3NH), 1.21(1H, m, CH3NH), 0.01(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d 6, ppm) δ 2.50 (2H, s, Cl CH 2 Si), 2.25 (3H, d, CH 3 NH), 1.21 (1H, m, CH 3 NH ) , 0.01 (6H, s, Si (CH 3) 2 ).
(C5H5)CH2Si(CH3)2NH(CH3)의 합성Synthesis of (C 5 H 5 ) CH 2 Si (CH 3 ) 2 NH (CH 3 )
0℃에서 테트라하이드로퓨란 2000ml에 소디움 싸이클로펜타다이엔 (132.4g,1.5mol)을 녹인 후, 상온(25℃)에서 메틸아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (197.1g,1.4mmol)을 투입한 후 24시간동안 환류교반하였다. 반응을 종료한 후 여과하여 소디움 클로라이드의 염을 제거 하고 감압 하에서 용매 및 휘발성 부생성물을 제거한 후 감압증류(반응기하부온도기준 60℃, 0.2torr)하여 표제 화합물 75g(31.3%)을 얻었다.Sodium cyclopentadiene (132.4 g, 1.5 mol) was dissolved in 2000 ml of tetrahydrofuran at 0 ° C., and then methylamino (cyclopentadienylmethyl) dimethyl silane (197.1 g, 1.4 mmol) at room temperature (25 ° C.). After stirring, reflux was stirred for 24 hours. After completion of the reaction, the resultant was filtered to remove the salt of sodium chloride, and the solvent and the volatile byproducts were removed under reduced pressure, followed by distillation under reduced pressure (60 ° C. under a reactor, 0.2torr) to obtain 75 g (31.3%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 5.81(5H, s, CpCH2Si), 2.83(3H, d, CH3NH), 1.83(2H, s, CpCH2Si), 0.03(6H, s, Si(CH3)2) 1 H-NMR (solvent: benzene-d6, ppm) δ 5.81 (5H, s, Cp CH2Si), 2.83 (3H, d, CH3 NH), 1.83 (2H, s, Cp CH2 Si), 0.03 (6H, s , Si (CH3) 2)
(C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2
펜탄 500ml에 테트라키스 다이메틸아미노 지르코늄(80g,0.3mol)을 녹여준 후, 0℃에서 메틸아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (50g,0.3mol)을 투입한 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 95℃, 0.2torr)하여 표제 화합물 67g(65%)을 얻었다. After dissolving tetrakis dimethylamino zirconium (80g, 0.3mol) in 500ml of pentane, methylamino (cyclopentadienylmethyl) dimethyl silane (50g, 0.3mol) was added at 0 ° C, and then room temperature (25 ° C). ) For 24 hours. After the reaction was completed, the solvent and the volatile by-products were removed under reduced pressure, and then distillation under reduced pressure (95 ° C., 0.2 torr based on the reactor bottom temperature) gave 67 g (65%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 5.83(4H, q, CpCH2Si), 3.11(3H, s, CH3N), 2.90(12H, s, Zr[N(CH3)2]2), 1.99(2H, s, CpCH2Si), 0.15(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene -d6, ppm) δ 5.83 (4H, q, Cp CH2Si), 3.11 (3H, s, CH3 N), 2.90 (12H, s, Zr [N (CH3) 2] 2) , 1.99 (2H, s, Cp CH 2 Si), 0.15 (6H, s, Si (CH 3) 2 ).
[실시예 2]Example 2
(C5H4)CH2Si(CH3)2N(CH3)Hf(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Hf (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000036
Figure PCTKR2017003782-appb-I000036
펜탄 500ml에 테트라키스 다이메틸아미노 하프늄(177g,0.5mol)을 녹여준 후, 0℃에서 메틸아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (84g,0.5mol)을 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 130℃, 0.3torr)하여 표제 화합물 (151)g(70%)을 얻었다.After dissolving tetrakis dimethylamino hafnium (177 g, 0.5 mol) in 500 ml of pentane, methylamino (cyclopentadienylmethyl) dimethyl silane (84 g, 0.5 mol) was added at 0 ° C. and stirred for 24 hours. It was. After completion of the reaction, the solvent and the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (130 ° C., 0.3 torr based on the reactor bottom temperature) to obtain the title compound (151) g (70%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.78(4H, q, CpCH2Si), 3.09(3H, s, CH3N), 2.94(12H, s, Hf[N(CH3)2]2), 1.97(2H, s, CpCH2Si), 0.13(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene -d 6, ppm) δ 5.78 (4H, q, Cp CH2Si), 3.09 (3H, s, CH3 N), 2.94 (12H, s, Hf [N (CH3) 2] 2 ), 1.97 (2H, s, Cp CH 2 Si), 0.13 (6H, s, Si (CH 3) 2 ).
[실시예 3]Example 3
(C5H4)CH2Si(CH3)2N(CH3)Ti(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Ti (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000037
Figure PCTKR2017003782-appb-I000037
펜탄 500ml에 테트라키스 다이메틸아미노 티타늄(112g,0.5mol)을 녹여준 후, 0℃에서 메틸 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (84g,0.5mol)을 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 118℃, 0.3torr)하여 표제 화합물 (90)g(60%)을 얻었다. After dissolving tetrakis dimethylamino titanium (112g, 0.5mol) in 500ml of pentane, methylamino (cyclopentadienylmethyl) dimethyl silane (84g, 0.5mol) was added at 0 ° C and stirred for 24 hours. It was. After the reaction was completed, the solvent and the volatile by-products were removed under reduced pressure and distilled under reduced pressure (118 ° C. under a reactor, 0.3torr) to obtain the title compound (90) g (60%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.70(4H, q, CpCH2Si), 3.41(3H, s, CH3N), 3.05(12H, s, Ti[N(CH3)2]2), 1.94(2H, s, CpCH2Si), 0.12(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene -d 6, ppm) δ 5.70 (4H, q, Cp CH2Si), 3.41 (3H, s, CH3 N), 3.05 (12H, s, Ti [N (CH3) 2] 2 ), 1.94 (2H, s, Cp CH2 Si), 0.12 (6H, s, Si (CH3) 2).
[실시예 4] (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2의 합성Example 4 Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000038
Figure PCTKR2017003782-appb-I000038
ClCH2Si(CH3)2NH(CH2CH2CH3)의 합성Synthesis of ClCH 2 Si (CH 3 ) 2 NH (CH 2 CH 2 CH 3 )
펜탄 1000ml에 클로로(클로로 메틸)다이메틸 실란 (109g,0.8mol)을 투입 후, -10℃에서 노말프로필아민(90g,1.5mol)을 투입하여 상온(25℃)에서 24시간동안 교반하였다. 반응을 종료한 후 여과하여 아민 염을 제거하고 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류하여 표제 화합물, 100g(79%)을 얻었다.Chloro (chloromethyl) dimethyl silane (109g, 0.8mol) was added to 1000ml of pentane, followed by normalpropylamine (90g, 1.5mol) at -10 ° C, followed by stirring at room temperature (25 ° C) for 24 hours. After completion of the reaction, the mixture was filtered to remove the amine salt, and the solvent and the volatile byproducts were removed under reduced pressure and distilled under reduced pressure to obtain 100 g (79%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 2.50(2H, s, ClCH2Si), 2.48(2H, t, CH3CH2CH2NH), 1.19(2H, m, CH3CH2CH2NH), 0.75(3H, t, CH3CH2CH2NH), 0.03(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d 6, ppm) δ 2.50 (2H, s, Cl CH2 Si), 2.48 (2H, t, CH3CH2 CH2 NH), 1.19 (2H, m, CH3 CH2 CH2NH), 0.75 ( 3H, t, CH 3 CH 2 CH 2 NH, 0.03 (6H, s, Si (CH 3) 2 ).
(C5H5)CH2Si(CH3)2NH(CH2CH2CH3)의 합성Synthesis of (C 5 H 5 ) CH 2 Si (CH 3 ) 2 NH (CH 2 CH 2 CH 3 )
0℃에서 테트라하이드로퓨란 250ml에 소디움 싸이클로펜타다이엔 (53g, 0.6mol)을 녹인 후, 상온(25℃)에서 노말 프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (53g,0.6mol)을 투입한 후 24시간동안 환류교반하였다. 반응을 종료한 후 여과하여 소디움 클로라이드의 염을 제거 하고 감압 하에서 용매 및 휘발성 부생성물을 제거한 후 감압증류(반응기하부온도기준 80℃, 0.2torr)하여 표제 화합물 65g(55%)을 얻었다.Sodium cyclopentadiene (53 g, 0.6 mol) was dissolved in 250 ml of tetrahydrofuran at 0 ° C., and normal propyl amino (cyclopentadienylmethyl) dimethyl silane (53 g, 0.6 mol) was added at room temperature (25 ° C.). After the addition, the mixture was stirred under reflux for 24 hours. After completion of the reaction, the salt of sodium chloride was removed by filtration and the solvent and the volatile by-products were removed under reduced pressure and distilled under reduced pressure (80 ° C, 0.2torr based on the reactor temperature) to obtain 65 g (55%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 5.81(5H, s, CpCH2Si), 2.55(2H, t, CH3CH2CH2NH), 1.84(2H, s, CpCH2Si), 1.289(2H, m, CH3CH2CH2NH), 0.799(3H, t, CH3CH2CH2NH), 0.04(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.81 (5H, s, Cp CH2Si), 2.55 (2H, t, CH3CH2 CH2 NH), 1.84 (2H, s, Cp CH2 Si), 1.289 (2H, m, CH 3 CH 2 CH 2 NH), 0.799 (3H, t, CH 3 CH 2 CH 2 NH), 0.04 (6H, s, Si (CH 3) 2 ).
(C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2
펜탄 500ml에 테트라키스 다이메틸아미노 지르코늄(114g,0.4mol)을 녹여준 후, 0℃에서 프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (83.26g,0.4mol)을 투입한 후 상온(25℃)에서 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 130℃, 0.2torr)하여 표제 화합물 140g(85%)을 얻었다. After dissolving tetrakis dimethylamino zirconium (114 g, 0.4 mol) in 500 ml of pentane, propyl amino (cyclopentadienylmethyl) dimethyl silane (83.26 g, 0.4 mol) was added at 0 ° C, and then room temperature (25 Agitation) for 24 h. After completion of the reaction, the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (130 ° C based on the reactor's lower temperature, 0.2 torr) to obtain 140 g (85%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 5.84(2H, t, CpCH2Si), 5.80(2H, t, CpCH2Si), 3.38(2H, t, CH3CH2CH2NH), 2.86(12H, s, Zr[N(CH3)2]2), 1.99(2H, s, CpCH2Si), 1.46(2H, m, CH3CH2CH2NH), 0.88(3H, t, CH3CH2CH2NH), 0.19(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.84 (2H, t, Cp CH2Si), 5.80 (2H, t, Cp CH2Si), 3.38 (2H, t, CH3CH2 CH2 NH), 2.86 (12H, s , Zr [N (CH3) 2] 2 ), 1.99 (2H, s, Cp CH2 Si), 1.46 (2H, m, CH3 CH2 CH2NH), 0.88 (3H, t, CH3 CH2CH2NH), 0.19 (6H, s, Si (CH3) 2 ).
[실시예 5]Example 5
(C5H4)CH2Si(CH3)2N(CH2CH2CH3)Hf(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Hf (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000039
Figure PCTKR2017003782-appb-I000039
펜탄 500ml에 테트라키스 다이메틸아미노 하프늄(142g,0.4mol)을 녹여준 후, 0℃에서 노말프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (78g,0.4mol)을 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 110℃, 0.2torr)하여 표제 화합물 (120)g(65%)을 얻었다. After dissolving tetrakis dimethylamino hafnium (142 g, 0.4 mol) in 500 ml of pentane, normalpropyl amino (cyclopentadienylmethyl) dimethyl silane (78 g, 0.4 mol) was added at 0 ° C. for 24 hours. Stirred. After completion of the reaction, the solvent and the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (110 ° C. based on the reactor's lower temperature, 0.2 torr) to obtain the title compound (120) g (65%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.82(2H, t, CpCH2Si), 5.75(2H, t, CpCH2Si), 3.33(2H, t, CH3CH2CH2NH), 2.90(12H, s, Hf[N(CH3)2]2), 1.98(2H, s, CpCH2Si), 1.44(2H, m, CH3CH2CH2NH), 0.88(3H, t, CH3CH2CH2NH), 0.18(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.82 (2H, t, Cp CH2Si), 5.75 (2H, t, Cp CH2Si), 3.33 (2H, t, CH3CH2 CH2 NH), 2.90 (12H, s , Hf [N (CH3) 2] 2 ), 1.98 (2H, s, Cp CH2 Si), 1.44 (2H, m, CH3 CH2 CH2NH), 0.88 (3H, t, CH3 CH2CH2NH), 0.18 (6H, s, Si (CH3) 2 ).
[실시예 6]Example 6
(C5H4)CH2Si(CH3)2N(CH2CH2CH3)Ti(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Ti (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000040
Figure PCTKR2017003782-appb-I000040
펜탄 500ml에 테트라키스 다이메틸아미노 티타늄(135g,0.6mol)을 녹여준 후, 0℃에서 노말프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (117g,0.6mol)을 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 150℃, 0.7torr)하여 표제 화합물 (118)g(60%)을 얻었다. After dissolving tetrakis dimethylamino titanium (135g, 0.6mol) in 500ml of pentane, normalpropyl amino (cyclopentadienylmethyl) dimethyl silane (117g, 0.6mol) was added at 0 ° C for 24 hours. Stirred. After the reaction was completed, the solvent and the volatile by-products were removed under reduced pressure and distilled under reduced pressure (150 ° C., 0.7torr based on the reactor bottom temperature) to obtain the title compound (118) g (60%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.74(2H, t, CpCH2Si), 5.62(2H, t, CpCH2Si), 3.62(2H, t, CH3CH2CH2NH), 3.01(12H, s, Ti[N(CH3)2]2), 1.96(2H, s, CpCH2Si), 1.40(2H, m, CH3CH2CH2NH), 0.94(3H, t, CH3CH2CH2NH), 0.17(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.74 (2H, t, Cp CH2Si), 5.62 (2H, t, Cp CH2Si), 3.62 (2H, t, CH3CH2 CH2 NH), 3.01 (12H, s , Ti [N (CH3) 2] 2 ), 1.96 (2H, s, Cp CH2 Si), 1.40 (2H, m, CH3 CH2 CH2NH), 0.94 (3H, t, CH3 CH2CH2NH), 0.17 (6H, s, Si (CH3) 2 ).
[실시예 7] (C5H4)CH2Si(CH3)2N(CH(CH3)2)Zr(N(CH3)2)2의 합성Example 7 Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH (CH 3 ) 2 ) Zr (N (CH 3 ) 2 ) 2
Figure PCTKR2017003782-appb-I000041
Figure PCTKR2017003782-appb-I000041
ClCH2Si(CH3)2NH(CH(CH3)2)의 합성Synthesis of ClCH 2 Si (CH 3 ) 2 NH (CH (CH 3 ) 2 )
펜탄 1000ml에 클로로(클로로 메틸)다이메틸 실란 (130g,0.9mol)을 투입 후, -10℃에서 아이소프로필아민(108g,1.8mol)을 투입하여 상온(25℃)에서 24시간동안 교반하였다. 반응을 종료한 후 여과하여 아민 염을 제거하고 감압 하에서 용매 및 휘발성 부생성물을 제거하고 감압 증류하여 표제 화합물, 120g(79%)을 얻었다. Chloro (chloromethyl) dimethyl silane (130g, 0.9mol) was added to 1000ml of pentane, and isopropylamine (108g, 1.8mol) was added at -10 ° C and stirred at room temperature (25 ° C) for 24 hours. After completion of the reaction, the mixture was filtered to remove the amine salt, and the solvent and the volatile byproduct were removed under reduced pressure and distilled under reduced pressure to obtain 120 g (79%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 2.81(1H, m, (CH3)2CHNH), 2.50(2H, s, ClCH2Si), 0.89(6H, d, (CH3)2CHNH), 0.04(6H, s, Si(CH3)2) 1 H-NMR (solvent: benzene-d 6, ppm) δ 2.81 (1H, m, (CH3) 2 CH NH), 2.50 (2H, s, Cl CH2 Si), 0.89 (6H, d, (CH3) 2 CHNH), 0.04 (6H, s, Si (CH3) 2)
(C5H5)CH2Si(CH3)2NH(CH(CH3)2)의 합성Synthesis of (C 5 H 5 ) CH 2 Si (CH 3 ) 2 NH (CH (CH 3 ) 2 )
0℃에서 테트라하이드로퓨란 (250)ml에 소디움 싸이클로펜타다이엔 (102g, 1.1mol)을 녹인 후, 상온(25℃)에서 아이소프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (184g,1.1mol)을 투입한 후 24시간동안 환류교반하였다. 반응을 종료한 후 여과하여 소디움 클로라이드의 염을 제거 하고 감압 하에서 용매 및 휘발성 부생성물을 제거한 후 감압증류(반응기하부온도기준 80℃, 0.2torr)하여 표제 화합물 (105)g(74%)을 얻었다.Sodium cyclopentadiene (102 g, 1.1 mol) was dissolved in tetrahydrofuran (250) ml at 0 ° C., and then isopropyl amino (cyclopentadienylmethyl) dimethyl silane (184 g, 1.1) at room temperature (25 ° C.). mol) was added and stirred under reflux for 24 hours. After completion of the reaction, the resultant was filtered to remove the salt of sodium chloride, the solvent and the volatile by-products were removed under reduced pressure, and then distilled under reduced pressure (80 ° C. under the reactor, 0.2 torr) to obtain the title compound (105) g (74%). .
1H-NMR (solvent : benzene-d6, ppm) δ 5.97(5H, s, CPCH2Si), 2.84(1H, m, (CH3)2CHNH), 1.85(2H, s, CpCH2Si), 0.94(6H, d, (CH3) 2CHNH), 0.05(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.97 (5H, s, CP CH2Si), 2.84 (1H, m, (CH3) 2 CH NH), 1.85 (2H, s, Cp CH2 Si), 0.94 (6H, d, (CH3) 2 CHNH), 0.05 (6H, s, Si (CH3) 2 ).
(C5H4)CH2Si(CH3)2N(CH(CH3)2)Zr(N(CH3)2)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH (CH 3 ) 2 ) Zr (N (CH 3 ) 2 ) 2
펜탄 500ml에 테트라키스 다이메틸아미노 지르코늄(144g,0.5mol)을 녹여준 후, 0℃에서 이소프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실란 (105g,0.5mol)을 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 130℃, 0.2torr)하여 표제 화합물 (195)g(94%)을 얻었다. After dissolving tetrakis dimethylamino zirconium (144 g, 0.5 mol) in 500 ml of pentane, isopropyl amino (cyclopentadienylmethyl) dimethyl silane (105 g, 0.5 mol) was added at 0 ° C. for 24 hours. Stirred. After the reaction was completed, the solvent and the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (130 ° C. under a reactor, 0.2torr) to obtain the title compound (195) g (94%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.86(2H, t, CpCH2Si), 5.78(2H, t, CpCH2Si), 4.01(1H, m, (CH3)2CHN), 2.84(12H, s, Zr[N(CH3)2]2), 1.99(2H, s, CpCH2Si), 1.18(6H, d, (CH3)2CHN), 0.27(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.86 (2H, t, Cp CH2Si), 5.78 (2H, t, Cp CH2Si), 4.01 (1H, m, (CH3) 2 CHN ), 2.84 (12H , s, Zr [N ( CH3) 2 ] 2), 1.99 (2H, s, Cp CH2 Si), 1.18 (6H, d, (CH3) 2 CHN), 0.27 (6H, s, Si (CH3) 2 ) .
[실시예 8] (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(NC4H8)2의 합성Example 8 Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (NC 4 H 8 ) 2
Figure PCTKR2017003782-appb-I000042
Figure PCTKR2017003782-appb-I000042
(C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(NC4H8)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (NC 4 H 8 ) 2
노말프로필 아미노(싸이클로펜타다이에닐메틸)다이메틸 실릴 다이메틸 아미노 지르코늄(35g, 90mmol)에 상온에서 피롤리딘(13g, 181mmol)을 서서히 투입한 후 24시간동안 환류교반하였다. 반응이 종료된 후 감압 하에서 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 172℃,0.2torr)하여 표제 화합물 (21)g(53%)을 얻었다.Pyrrolidine (13 g, 181 mmol) was slowly added to normal propyl amino (cyclopentadienylmethyl) dimethyl silyl dimethyl amino zirconium (35 g, 90 mmol) at room temperature, followed by stirring under reflux for 24 hours. After completion of the reaction, the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (172 ° C, 0.2torr based on the reactor bottom temperature) to obtain the title compound (21) g (53%).
1H-NMR (solvent : benzene-d6, ppm) δ 5.88(2H, d, CpCH2Si), 5.86(2H, d, CpCH2Si), 3.45(3H, t, CH3CH2CH2N), 1.40(2H, m, CH3CH2CH2N), 3.38(8H, s, Zr(NC4H8)), 2.01(2H, s, CpCH2Si), 0.88(2H, t, CH3CH2CH2N), 0.20(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene-d6, ppm) δ 5.88 (2H, d, Cp CH2Si), 5.86 (2H, d, Cp CH2Si), 3.45 (3H, t, CH3 CH2CH2N), 1.40 (2H, m, CH3 CH2 CH2N), 3.38 (8H, s, Zr (N C4H8 )), 2.01 (2H, s, Cp CH2 Si), 0.88 (2H, t, CH3CH2 CH2 N), 0.20 (6H, s, Si (CH3) 2 ).
[실시예 9] (C5H4)CH2Si(CH3)2N(CH3)Zr(NC4H8)2의 합성Example 9 Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (NC 4 H 8 ) 2
Figure PCTKR2017003782-appb-I000043
Figure PCTKR2017003782-appb-I000043
(C5H4)CH2Si(CH3)2N(CH3)Zr(NC4H8)2의 합성Synthesis of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (NC 4 H 8 ) 2
메틸 아미노(싸이클로펜타다이에닐메틸)다이메틸 실릴 다이메틸 아미노 지르코늄(17g, 47mmol)에 상온에서 피롤리딘(6.7g, 95mmol)을 서서히 투입한 후 24시간동안 환류교반하였다. 반응이 종료된 후 감압 하에서 휘발성 부생성물을 제거한 뒤 감압 증류(반응기하부온도기준 115℃, 0.2torr)하여 표제 화합물 15g(38%)을 얻었다.Pyrrolidine (6.7 g, 95 mmol) was slowly added to methyl amino (cyclopentadienylmethyl) dimethyl silyl dimethyl amino zirconium (17 g, 47 mmol) at room temperature, followed by stirring under reflux for 24 hours. After completion of the reaction, the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure (115 ° C based on the reactor bottom temperature, 0.2torr) to obtain 15 g (38%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 5.89(2H, d, CpCH2Si), 5.85(2H, d, CpCH2Si), 3.09(3H, s, CH3N), 3.40(8H, s, Zr(NC4H8)), 2.00(2H, s, CpCH2Si), 0.15(6H, s, Si(CH3)2). 1 H-NMR (solvent: benzene -d6, ppm) δ 5.89 (2H, d, Cp CH2Si), 5.85 (2H, d, Cp CH2Si), 3.09 (3H, s, CH3 N), 3.40 (8H, s, Zr (N C4H8)), 2.00 (2H, s, Cp CH2 Si), 0.15 (6H, s, Si (CH3) 2).
[비교예 1] (C5H5)Zr(N(CH3)2)3의 합성Comparative Example 1 Synthesis of (C 5 H 5 ) Zr (N (CH 3 ) 2 ) 3
헥산 3000ml에 2.3M 의 노르말 부틸 리튬 (520g,1.7mol)를 첨가하였다. 0℃에서 다이메틸아민 (79g,1.7mol)을 투입한 후 상온(25℃)에서 24시간동안 교반한 후 상온(25℃)에서 테트라하이드로퓨란을 1000ml를 넣어준 후, 지르코늄 클로라이드(100g, 0.4mol)을 천천히 투입한 후 24시간동안 교반하였다. 반응이 종료된 후 여과한 후 상온(25℃)에서 크래킹한 싸이클로펜타다이엔(28g, 0.4mol)을 투입 후 24시간동안 교반하였다. 반응이 종료된 후 감압 하에서 용매 및 휘발성 부생성물을 제거한 뒤 감압 증류하여 표제 화합물 105g(85%)을 얻었다.To 3000 ml of hexane was added 2.3 M of normal butyl lithium (520 g, 1.7 mol). After adding dimethylamine (79 g, 1.7 mol) at 0 ° C., stirring at room temperature (25 ° C.) for 24 hours, and then adding 1000 ml of tetrahydrofuran at room temperature (25 ° C.), zirconium chloride (100 g, 0.4 mol) was slowly added and stirred for 24 hours. After the reaction was completed, the resultant was filtered and cyclopentadiene (28 g, 0.4 mol) cracked at room temperature (25 ° C.) was added thereto, followed by stirring for 24 hours. After the reaction was completed, the solvent and the volatile byproducts were removed under reduced pressure, and then distilled under reduced pressure to obtain 105 g (85%) of the title compound.
1H-NMR (solvent : benzene-d6, ppm) δ 6.03(5H, s, CpZr(N(CH3)2)3), 2.89(18H, s, CpZr(N(CH3)2)3) 1 H-NMR (solvent: benzene-d6, ppm) δ 6.03 (5H, s, Cp Zr (N (CH3) 2) 3), 2.89 (18H, s, CpZr (N ( CH3 ) 2) 3)
[실시예 10] (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2을 이용한 지르코늄 실리케이트 박막 제조Example 10 Preparation of Zirconium Silicate Thin Film Using (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2
원자층 증착법(Atomic layer deposition)에 의해 실리콘 기판에 지르코늄 실리케이트 박막을 제조하였다. 실리콘 기판은 300℃로 유지하였고, 실시예 4에서 합성된 (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2 전구체를 스테인레스 스틸 버블러 용기에 충진하여 129℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 실시예 4의 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송되어 실리콘 기판에 흡착되도록 하였다. 다음으로 아르곤 가스(4000sccm)을 이용하여 약 15초간 지르코늄 실리케이트 전구체 화합물을 제거하였다. 이후, 약 180g/m3 의 농도의 오존 가스를 500sccm으로 10초간 공급하여 지르코늄 실리케이트 박막을 형성하였다. 마지막으로 아르곤 가스(4000sccm)을 이용하여 약 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 100주기를 반복하여 지르코늄 실리케이트 박막을 형성하였다.A zirconium silicate thin film was prepared on a silicon substrate by atomic layer deposition. The silicon substrate was maintained at 300 ° C., and the (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 precursor synthesized in Example 4 was used. Filled in a stainless steel bubbler container was maintained at 129 ℃. First, the precursor of Example 4 vaporized in a stainless steel bubbler vessel was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate. Next, the zirconium silicate precursor compound was removed using argon gas (4000 sccm) for about 15 seconds. Thereafter, ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a zirconium silicate thin film. Finally, argon gas (4000 sccm) was used to remove reaction by-products and residual reaction gas for about 10 seconds. The zirconium silicate thin film was formed by repeating 100 cycles using the above process as one cycle.
[실시예 11] (C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2를 이용한 지르코늄 실리케이트 박막의 제조Example 11 Preparation of Zirconium Silicate Thin Film Using (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2
실시예 10에서 실시예 4에서 합성된 (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2 전구체 대신 실시예 1에서 합성된 전구체 (C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2를 이용하고 스테인레스 버블 용기의 온도는 120℃로 유지한 것을 제외하고는 실시예 10과 동일한 방법으로 박막을 형성하였다.Synthesis in Example 1 instead of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 precursor synthesized in Example 4 in Example 10 Except that the temperature of the stainless bubble vessel is maintained at 120 ° C. using the prepared precursor (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2 . A thin film was formed in the same manner as in Example 10.
[실시예 12] (C5H4)CH2Si(CH3)2N(CH3)Hf(N(CH3)2)2를 이용한 하프늄 실리케이트 박막의 제조Example 12 Preparation of Hafnium Silicate Thin Film Using (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Hf (N (CH 3 ) 2 ) 2
원자층 증착법(Atomic layer deposition)에 의해 실리콘 기판에 하프늄 실리케이트 박막을 제조하였다. 실리콘 기판은 300℃로 유지하였고, 실시예 2에서 합성된 (C5H4)CH2Si(CH3)2N(CH3)Hf(N(CH3)2)2 전구체를 스테인레스 스틸 버블러 용기에 충진하여 129℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 하프늄 실리케이트 전구체를 아르곤 가스(50sccm)를 이송 가스로 하여 실리콘 기판으로 이송시켜 실리콘 기판에 흡착되도록 하였다. 다음으로, 아르곤 가스(4000sccm)를 이용하여 약 15초간 주석 전구체 화합물을 제거하였다. 이후, 약 180g/m3 의 농도의 오존 가스를 500sccm으로 10초간 공급하여 하프늄 실리케이트 박막을 형성하였다. 마지막으로 아르곤 가스(4000sccm)을 이용하여 약 10초간 반응 부산물 및 잔류 반응 가스를 제거하였다. 위와 같은 공정을 1주기로 하여 100주기를 반복하여 하프늄 실리케이트 박막을 형성하였다.A hafnium silicate thin film was prepared on a silicon substrate by atomic layer deposition. The silicon substrate was maintained at 300 ° C., and the (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Hf (N (CH 3 ) 2 ) 2 precursor synthesized in Example 2 was subjected to a stainless steel bubbler. The vessel was filled and kept at 129 ° C. First, the hafnium silicate precursor vaporized in a stainless steel bubbler container was transferred to a silicon substrate by argon gas (50 sccm) as a transfer gas to be adsorbed onto the silicon substrate. Next, the tin precursor compound was removed for about 15 seconds using argon gas (4000 sccm). Thereafter, ozone gas having a concentration of about 180 g / m 3 was supplied at 500 sccm for 10 seconds to form a hafnium silicate thin film. Finally, argon gas (4000 sccm) was used to remove reaction by-products and residual reaction gas for about 10 seconds. The hafnium silicate thin film was formed by repeating 100 cycles using the above process as one cycle.
[실험예 1] 실시예 10 내지 실험예 12의 전이금속 실리케이트 박막 조성 분석Experimental Example 1 Transition Metal Silicate Thin Film Composition Analysis of Examples 10-12
하기 표 1에 상기의 실시예 10 내지 실시예 12에서 증착된 박막의 X선 광전자 분광법으로 분석된 조성분석 결과를 나타내었다. Table 1 shows the composition analysis results analyzed by X-ray photoelectron spectroscopy of the thin film deposited in Examples 10 to 12 above.
실험예 1내지 실험예3을 이용하여 증착된 박막의 조성 분석 결과Composition Analysis Results of Thin Films Deposited Using Experimental Examples 1--3
실시예Example AtomAtom
ZrZr HfHf SiSi OO CC
실시예 10Example 10 16.416.4 00 1616 67.667.6 00
실시예 11Example 11 16.216.2 00 16.116.1 67.767.7 00
실시예 12Example 12 00 16.216.2 1616 67.867.8 00
표 1에서 보이는 바와 같이 지르코늄, 실리콘, 산소의 비율이 약 1 : 1 : 4로 탄소 불순물 없이 지르코늄 실리케이트(ZrSiO4) 또는 하프늄 실리케이트(HfSiO4)가 높은 순도로 형성되었음을 확인할 수 있다.As shown in Table 1, the ratio of zirconium, silicon, and oxygen is about 1: 1: 4, and it can be confirmed that zirconium silicate (ZrSiO 4 ) or hafnium silicate (HfSiO 4 ) is formed with high purity without carbon impurities.
또한 표 1에서 보이는 바와 같이 본 발명의 전이금속 화합물은 전이금속 및 실릴기를 한 분자내에 모두 포함함으로써 본 발명의 전이금속 화합물을 전구체로 이용할 시 전이금속 실리케이트막이 형성되나 비교예 화합물의 경우는 전이금속산화막만이 형성됨을 알 수 있다.In addition, as shown in Table 1, the transition metal compound of the present invention includes both the transition metal and the silyl group in one molecule, so that when the transition metal compound of the present invention is used as a precursor, a transition metal silicate film is formed. It can be seen that only the oxide film is formed.
[실험예 2] (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2 박막의 단차피복특성Experimental Example 2 Step Coating Characteristics of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 Thin Film
단차피복특성을 확인하기위하여 실시예 10에 기술되어 있는 증착방법을 이용하여 종횡비가 약 1 : 6 인 트렌치 웨이퍼에 지르코늄 실리케이트 박막을 형성하였으며, 그 결과를 도 1에 나타내었다.A zirconium silicate thin film was formed on a trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 10 to confirm the step coating characteristics, and the results are shown in FIG. 1.
도 1에서 보이는 바와 같이 92% 이상의 높은 단차 피복 특성을 확인할 수 있다.As shown in FIG. 1, high step coverage properties of 92% or more can be confirmed.
[실험예 3] (C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2 이용한 박막의 단차피복특성Experimental Example 3 Step Coating Characteristics of Thin Film Using (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2
단차피복특성을 확인하기위하여 실시예 11에 기술되어 있는 증착방법을 이용하여 종횡비가 약 1 : 6 인 트렌치 웨이퍼에 지르코늄 실리케이트 박막을 형성하였으며, 그 결과를 도 2에 나타내었다.A zirconium silicate thin film was formed on the trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 11 to confirm the step coating characteristics, and the results are shown in FIG. 2.
도 1과 마찬가지로 도 2도 92% 이상의 높은 단차 피복 특성을 확인할 수 있다.As in FIG. 1, FIG. 2 can also confirm high step coverage properties of 92% or more.
[실험예 4] (C5H4)CH2Si(CH3)2N(CH3)Hf(N(CH3)2)2 박막의 단차피복특성Experimental Example 4 Step Coating Characteristics of (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Hf (N (CH 3 ) 2 ) 2 Thin Film
단차피복특성을 확인하기위하여 실시예 12에 기술되어 있는 증착방법을 이용하여 종횡비가 약 1 : 6 인 트렌치 웨이퍼에 하프늄 실리케이트 박막을 형성하였으며, 그 결과를 도 3에 나타내었다.In order to confirm the step coating characteristics, a hafnium silicate thin film was formed on a trench wafer having an aspect ratio of about 1: 6 using the deposition method described in Example 12, and the results are shown in FIG. 3.
도 3에서 보이는 바와 같이 90% 이상의 높은 단차 피복 특성을 확인할 수 있다.As shown in FIG. 3, high step coverage properties of 90% or more can be confirmed.
[실험예 5] 전구체의 열안정성 평가Experimental Example 5 Evaluation of Thermal Stability of Precursor
실시예 1, 4 내지 8 및 비교예 1에서 제조된 전구체의 열적 안정성 평가를 위하여 시차주사열량계(DSC : Differential Scanning Calorimeter, DSC3, 메틀러토레도)를 측정하여 열분해가 발생되는 온도를 표 2에 나타냈다.Differential scanning calorimetry (DSC: Differential Scanning Calorimeter, DSC3, METTLER TOLEDO) was measured to evaluate the thermal stability of the precursors prepared in Examples 1, 4 to 8 and Comparative Example 1. Indicated.
열적 안정성 평가Thermal stability evaluation
전구체Precursor 열 분해 온도 (℃)Pyrolysis Temperature (℃)
실시예 1Example 1 (C5H4)CH2Si(CH3)2N(CH3)Zr(N(CH3)2)2 (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 3 ) Zr (N (CH 3 ) 2 ) 2 289289
실시예 4Example 4 (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(N(CH3)2)2 (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (N (CH 3 ) 2 ) 2 292292
실시예 5Example 5 (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Hf(N(CH3)2)2 (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Hf (N (CH 3 ) 2 ) 2 324324
실시예 7Example 7 (C5H4)CH2Si(CH3)2N(CH(CH3)2)Zr(N(CH3)2)2 (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH (CH 3 ) 2 ) Zr (N (CH 3 ) 2 ) 2 292292
실시예 8Example 8 (C5H4)CH2Si(CH3)2N(CH2CH2CH3)Zr(NC4H8)2 (C 5 H 4 ) CH 2 Si (CH 3 ) 2 N (CH 2 CH 2 CH 3 ) Zr (NC 4 H 8 ) 2 306306
비교예 1Comparative Example 1 (C5H5)Zr(N(CH3)2)3 (C 5 H 5 ) Zr (N (CH 3 ) 2 ) 3 282282
표 2의 결과에서 보이는 바와 같이 열분해 온도를 DSC의 발열 시점(onset temperature)으로 비교하여, 비교예 1의 (C5H5)Zr(N(CH3)2)3 지르코늄 화합물 대비 열안정성이 증가한 것을 확인 할 수 있으며, 이는 보다 놓은 온도에서 박막형성이 가능하며, 미세패턴에서의 계단피복성 증가로 이어질 수 있음을 알 수 있다.As shown in the results of Table 2, the thermal decomposition temperature was compared with the onset temperature of DSC, and the thermal stability was increased compared to the (C 5 H 5 ) Zr (N (CH 3 ) 2 ) 3 zirconium compound of Comparative Example 1. It can be seen that, it is possible to form a thin film at a higher temperature, it can be seen that leading to an increase in the step coverage in the fine pattern.

Claims (12)

  1. 하기 화학식 1로 표시되는 전이금속 화합물.A transition metal compound represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2017003782-appb-I000044
    Figure PCTKR2017003782-appb-I000044
    [상기 화학식 1에서,[In Formula 1,
    M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
    R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
    R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R5 And R6Are independently from each other a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
    A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is - (CR 11 R 12) a - , and, R 11 and R 12 are independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl (C1-C20) to each other An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
    D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
    X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실릴기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
    상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
    n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
  2. 제1항에 있어서, 상기 M은 티타늄, 지르코늄 또는 하프늄인 것을 특징으로 하는 전이금속 화합물.The transition metal compound according to claim 1, wherein M is titanium, zirconium or hafnium.
  3. 제1항에 있어서, The method of claim 1,
    상기 R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기인 전이금속 화합물.R 1 to R 6 are each independently a hydrogen atom or a (C1-C7) alkyl group transition metal compound.
  4. 제1항에 있어서, The method of claim 1,
    상기 R11 내지 R13은 서로 독립적으로 수소원자 또는 (C1-C20)알킬기인 전이금속 화합물.R 11 to R 13 are each independently a hydrogen atom or a (C1-C20) alkyl group transition metal compound.
  5. 제1항에 있어서, The method of claim 1,
    X는 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기인 전이금속 화합물.X independently of each other is an amino group unsubstituted or substituted with (C1-C20) alkyl or (C6-C20) aryl, an amide group unsubstituted or substituted with (C1-C20) alkyl or (C6-C20) aryl, (C1 A transition metal compound which is a -C20) alkyl group, a (C3-C20) heterocycloalkyl group, or a (C1-C20) alkoxy group.
  6. 제1항에 있어서, The method of claim 1,
    상기 R1 내지 R6은 서로 독립적으로 수소원자 또는 (C1-C7)알킬기이며;R 1 to R 6 are each independently a hydrogen atom or a (C1-C7) alkyl group;
    X는 서로 독립적으로 (C1-C20)알킬로 치환된 아미노기, (C1-C20)알킬기, (C3-C20)헤테로시클로알킬기 또는 (C1-C20)알콕시기인 전이금속 화합물.X is a transition metal compound independently of each other being an amino group, (C1-C20) alkyl group, (C3-C20) heterocycloalkyl group or (C1-C20) alkoxy group substituted with (C1-C20) alkyl.
  7. 제1항에 있어서,The method of claim 1,
    전이금속 화합물은 하기 화합물로부터 선택되는 것인 전이금속 화합물.The transition metal compound is selected from the following compounds.
    Figure PCTKR2017003782-appb-I000045
    Figure PCTKR2017003782-appb-I000045
    Figure PCTKR2017003782-appb-I000046
    Figure PCTKR2017003782-appb-I000046
    Figure PCTKR2017003782-appb-I000047
    Figure PCTKR2017003782-appb-I000047
    Figure PCTKR2017003782-appb-I000048
    Figure PCTKR2017003782-appb-I000048
    Figure PCTKR2017003782-appb-I000049
    Figure PCTKR2017003782-appb-I000049
    Figure PCTKR2017003782-appb-I000050
    Figure PCTKR2017003782-appb-I000050
    Figure PCTKR2017003782-appb-I000051
    Figure PCTKR2017003782-appb-I000052
    Figure PCTKR2017003782-appb-I000051
    Figure PCTKR2017003782-appb-I000052
    Figure PCTKR2017003782-appb-I000053
    Figure PCTKR2017003782-appb-I000053
    Figure PCTKR2017003782-appb-I000054
    Figure PCTKR2017003782-appb-I000054
    Figure PCTKR2017003782-appb-I000055
    Figure PCTKR2017003782-appb-I000055
    Figure PCTKR2017003782-appb-I000056
    Figure PCTKR2017003782-appb-I000056
  8. 하기 화학식 2와 화학식 3을 반응시켜 하기화학식 1로 표시되는 전이금속 화합물을 제조하는 방법.A method of preparing a transition metal compound represented by Chemical Formula 1 by reacting Chemical Formula 2 with Chemical Formula 3 below.
    [화학식 1][Formula 1]
    Figure PCTKR2017003782-appb-I000057
    Figure PCTKR2017003782-appb-I000057
    [화학식 2][Formula 2]
    Figure PCTKR2017003782-appb-I000058
    Figure PCTKR2017003782-appb-I000058
    [화학식 3][Formula 3]
    M(X)4 M (X) 4
    [상기 화학식 1 내지 3에서,[In Formulas 1 to 3,
    M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the periodic table;
    R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
    R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
    A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is - (CR 11 R 12) a - , and, R 11 and R 12 are independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl (C1-C20) to each other An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
    D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
    X는 서로 독립적으로 (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬로 치환 또는 비치환된 실릴기, (C3-C20)헤테로시클로알킬기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아미노기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 아마이드기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스핀기, (C1-C20)알킬 또는 (C6-C20)아릴로 치환 또는 비치환된 포스피도기이고, 단 X가 시클로펜타디에닐 유도체인 것은 제외되며;X independently of each other is substituted with a (C1-C20) alkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl or Unsubstituted or unsubstituted amino group, (C1-C20) alkyl or (C6-C20) aryl, unsubstituted silyl group, (C3-C20) heterocycloalkyl group, (C1-C20) alkyl or (C6-C20) aryl Phosphyl unsubstituted or substituted with a substituted or unsubstituted amide group, (C1-C20) alkyl or (C6-C20) aryl, or a phosphine group unsubstituted with (C1-C20) alkyl or (C6-C20) aryl Except that the X is a cyclopentadienyl derivative;
    상기 R1 내지 R6, A, D 및 X의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A, D and X is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, May be further substituted with a (C6-C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
    n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
  9. 제 8항에 있어서,The method of claim 8,
    상기 화학식 2는 하기 화학식 4와 화학식 5를 반응시켜 하기 화학식 6을 제조한 후 하기 화학식 6을 하기 화학식 7과 반응시켜 제조되는 것인 방법.Chemical Formula 2 is prepared by reacting Chemical Formula 4 with Chemical Formula 5 to produce Chemical Formula 6 and then reacting Chemical Formula 6 with Chemical Formula 7.
    [화학식 4][Formula 4]
    Figure PCTKR2017003782-appb-I000059
    Figure PCTKR2017003782-appb-I000059
    [화학식 5][Formula 5]
    DH2 DH 2
    [화학식 6][Formula 6]
    Figure PCTKR2017003782-appb-I000060
    Figure PCTKR2017003782-appb-I000060
    [화학식 7][Formula 7]
    M1-C5H(R1)(R2)(R3)(R4)M 1 -C 5 H (R 1 ) (R 2 ) (R 3 ) (R 4 )
    [상기 화학식 4 내지 7에서,[In Formulas 4 to 7,
    M1은 알칼리 금속이며;M 1 is an alkali metal;
    R1 내지 R4는 서로 독립적으로 수소원자 또는 (C1-C20)알킬기이며;R 1 to R 4 are each independently a hydrogen atom or a (C1-C20) alkyl group;
    R5 및 R6은 서로 독립적으로 수소원자, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며;R 5 And R 6 independently of one another are a hydrogen atom, a (C1-C20) alkyl group, a (C6-C20) aryl group, a (C6-C20) aryl (C1-C20) alkyl group or a (C1-C20) alkoxy group;
    A는 -(CR11R12)a-이며, R11 및 R12는 서로 독립적으로 수소, (C1-C20)알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기 또는 (C1-C20)알콕시기이며, a는 1 내지 3의 정수이며;A is - (CR 11 R 12) a - , and, R 11 and R 12 are independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl (C1-C20) to each other An alkyl group or a (C1-C20) alkoxy group, a being an integer from 1 to 3;
    D는 -N(R13)-이고, R13은 수소 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기, (C6-C20)아릴(C1-C20)알킬기, (C1-C20)알킬카보닐기 또는 (C3-C20)시클로알킬카보닐기이며;D is -N (R 13 )-, R 13 is a hydrogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C20) aryl group, (C6-C20) aryl (C1-C20 An alkyl group, a (C1-C20) alkylcarbonyl group or a (C3-C20) cycloalkylcarbonyl group;
    상기 R1 내지 R6, A 및 D의 알킬기, 시클로알킬기, 아릴기, 아릴알킬기, 알킬카보닐기, 시클로알킬카보닐기 또는 알콕시기는 (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C20)아릴기 또는 (C6-C20)아릴(C10-C20)알킬기로 더 치환될 수 있으며;The alkyl group, cycloalkyl group, aryl group, arylalkyl group, alkylcarbonyl group, cycloalkylcarbonyl group or alkoxy group of R 1 to R 6 , A and D is a (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6 -May be further substituted with a -C20) aryl group or a (C6-C20) aryl (C10-C20) alkyl group;
    X1 및 X2는 서로 독립적으로 할로겐이며;X 1 and X 2 are independently of each other halogen;
    n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
  10. 제1항 내지 제7항에서 선택되는 어느 한항의 전이금속 화합물을 포함하는 전이금속함유 박막증착용 조성물.A transition metal-containing thin film deposition composition comprising the transition metal compound of any one of claims 1 to 7.
  11. 제 10항에 있어서,The method of claim 10,
    상기 전이금속 화합물의 전이금속은 지르코늄, 하프늄 또는 티타늄인 전이금속함유 박막증착용 조성물.The transition metal compound of the transition metal compound is zirconium, hafnium or titanium transition metal-containing thin film deposition composition.
  12. 제 10항의 조성물을 이용하는 전이금속함유 박막의 제조방법.Method for producing a transition metal-containing thin film using the composition of claim 10.
PCT/KR2017/003782 2016-04-12 2017-04-06 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same WO2017179857A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/093,012 US10913755B2 (en) 2016-04-12 2017-04-06 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same
JP2018552842A JP6979032B2 (en) 2016-04-12 2017-04-06 A transition metal compound, a method for producing the same, and a composition for thin film deposition containing a transition metal containing the same.
EP17782612.0A EP3444255A1 (en) 2016-04-12 2017-04-06 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same
CN201780023511.7A CN109071571B (en) 2016-04-12 2017-04-06 Transition metal compound, method for producing same, and composition for vapor deposition of transition metal-containing thin film comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0044683 2016-04-12
KR20160044683 2016-04-12
KR1020170040141A KR101959519B1 (en) 2016-04-12 2017-03-29 transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same
KR10-2017-0040141 2017-03-29

Publications (1)

Publication Number Publication Date
WO2017179857A1 true WO2017179857A1 (en) 2017-10-19

Family

ID=60042823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003782 WO2017179857A1 (en) 2016-04-12 2017-04-06 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same

Country Status (1)

Country Link
WO (1) WO2017179857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021513539A (en) * 2018-02-08 2021-05-27 メカロ カンパニー リミテッドMecaro Co.,Ltd. Organometallic compounds and thin films using them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635778B1 (en) * 1996-10-30 2003-10-21 Repsol Quimica S.A. Catalysts systems for the polymerization and copolymerization of alpha-olefins
KR20070121281A (en) * 2006-06-21 2007-12-27 (주)디엔에프 A precursor for zirconium dioxide thin film deposition and preparation method thereof
KR20120042971A (en) * 2009-07-14 2012-05-03 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Deposition of group iv metal-containing films at high temperature
KR20120078025A (en) * 2010-12-31 2012-07-10 주식회사 한솔케미칼 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635778B1 (en) * 1996-10-30 2003-10-21 Repsol Quimica S.A. Catalysts systems for the polymerization and copolymerization of alpha-olefins
KR20070121281A (en) * 2006-06-21 2007-12-27 (주)디엔에프 A precursor for zirconium dioxide thin film deposition and preparation method thereof
KR20120042971A (en) * 2009-07-14 2012-05-03 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Deposition of group iv metal-containing films at high temperature
KR20120078025A (en) * 2010-12-31 2012-07-10 주식회사 한솔케미칼 Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VALADE, L. ET AL.: "Evaluation of the Simultaneous Use of Cp2VMe2 and CpTiC12N (SiMe3)2 as Precursors to Ceramic: Thin Films Containing Titanium and Vanadium: towards Titanium-vanadium Carbonitride", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 12, 1998, pages 173 - 187, XP055433915 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021513539A (en) * 2018-02-08 2021-05-27 メカロ カンパニー リミテッドMecaro Co.,Ltd. Organometallic compounds and thin films using them
JP6999830B2 (en) 2018-02-08 2022-02-04 メカロ カンパニー リミテッド Organometallic compounds and thin films using them

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2022010214A1 (en) Growth inhibitor for forming pellicle protective thin film, method for forming pellicle protective thin film by using same, and mask manufactured therefrom
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2017179857A1 (en) Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2023200154A1 (en) Ruthenium precursor composition, preparation method therefor, and formation method for ruthenium-containing film using same
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2022045825A1 (en) Method for preparing deuterated aromatic compound and deuterated composition
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2016108398A1 (en) Organic group 13 precursor and method for depositing thin film using same
WO2023287196A1 (en) Silicon precursor compound, silicon-containing film formation composition comprising same, and method for forming film by using silicon-containing film formation composition
WO2023113308A1 (en) Molybdenum compound, method for preparing same, and composition comprising same for thin film deposition
WO2023287192A1 (en) Silicon precursor compound, composition for forming silicon-containing film comprising same, and method for forming film using composition for forming silicon-containing film
WO2022055201A1 (en) Group 4 metal element-containing compound, precursor composition including same, and method for manufacturing thin film using same
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2018182305A1 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
WO2023219446A1 (en) Film depositing composition including group 4 metal element-containing precursor compound and method for forming film using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017782612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782612

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782612

Country of ref document: EP

Kind code of ref document: A1