JP5063948B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5063948B2
JP5063948B2 JP2006196526A JP2006196526A JP5063948B2 JP 5063948 B2 JP5063948 B2 JP 5063948B2 JP 2006196526 A JP2006196526 A JP 2006196526A JP 2006196526 A JP2006196526 A JP 2006196526A JP 5063948 B2 JP5063948 B2 JP 5063948B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
positive electrode
additive
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006196526A
Other languages
Japanese (ja)
Other versions
JP2007053083A (en
Inventor
崇 竹内
貴也 齊藤
隆行 白根
敦史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006196526A priority Critical patent/JP5063948B2/en
Publication of JP2007053083A publication Critical patent/JP2007053083A/en
Application granted granted Critical
Publication of JP5063948B2 publication Critical patent/JP5063948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は非水電解質二次電池及びその製造方法に関する。より詳しくは、高い充電終止電圧を利用する非水電解質二次電池の放電レート特性及び高温保存特性の改善に関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same. More specifically, the present invention relates to an improvement in discharge rate characteristics and high-temperature storage characteristics of a non-aqueous electrolyte secondary battery that uses a high end-of-charge voltage.

リチウムイオン二次電池に代表される非水電解質二次電池は、高い作動電圧と高エネルギー密度とを有している。このため携帯電話、ノート型パソコン、ビデオカムコーダー等のポータブル電子機器の駆動用電源としてリチウムイオン二次電池が実用化されてきており、さらに急速にその需要が拡大している。代表的なリチウムイオン二次電池は、遷移金属含有複合酸化物であるコバルト酸リチウムを正極活物質として含む正極と、炭素材料を負極活物質として含む負極と、微多孔質フィルムからなるセパレータと、環状あるいは鎖状の炭酸エステル及び環状カルボン酸エステル等からなる非水溶媒に六フッ化リン酸リチウム(LiPF6)等の溶質を溶解させた非水電解液とを主構成要素として有している。 Nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high operating voltage and high energy density. For this reason, lithium ion secondary batteries have been put into practical use as a driving power source for portable electronic devices such as mobile phones, notebook computers, and video camcorders, and the demand for these batteries is rapidly expanding. A typical lithium ion secondary battery includes a positive electrode including lithium cobaltate, which is a transition metal-containing composite oxide, as a positive electrode active material, a negative electrode including a carbon material as a negative electrode active material, a separator made of a microporous film, A main component is a non-aqueous electrolyte solution in which a solute such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a non-aqueous solvent composed of a cyclic or chain carbonic acid ester and a cyclic carboxylic acid ester. .

近年、携帯電話等の高機能化に伴い、さらに高容量で、しかも大電流での放電レート特性に優れるリチウムイオン二次電池が望まれている。このような特性を有するリチウムイオン二次電池を得るための方法としては、正極及び負極の活物質自体を高容量化する手法の他に、活物質からより多くの容量を引き出すために電池の充電終止電圧を高く設定する手法が挙げられる。すなわち、一般的にリチウムイオン二次電池の充電終止電圧は、汎用の正極活物質であるコバルト酸リチウムの充放電特性を考慮して4.1〜4.2V付近に設定されている。このため、例えば、Coの一部をNi及びMnで置換した遷移金属含有複合酸化物(LiNi1-q-rMnqCor2)を正極活物質として用いるとともに、充電終止電圧を4.25〜4.7Vの高電圧に設定することにより正極活物質の充電深度を高め、高容量化を実現する手段が本出願人によって先に提案されている(特許文献1)。一方、リチウムイオン二次電池の電池性能の安定化を目的として、非水電解液の改良も活発に行われている。例えば、非水電解液へのプロパンスルトンまたは1,4−ブタンスルトンの添加が提案されている(特許文献2)。特許文献2によれば、上記スルトンが負極活物質である炭素材料の表面に不働態被膜を形成するため電解液の分解を抑制でき、それによって電池の耐久性(サイクル特性)が改善できるとされている。従って、特許文献1のようにCoの一部を他の元素で置換した遷移金属含有複合酸化物を正極活物質として用いた電池で高い充電終止電圧を利用する場合、正極及び負極の活物質表面を介した各種電池材料の分解反応が活性化するため、特許文献2の手法を組み合わせることは有効と考えられる。
特開2004−055539号公報 特開2000−003724号公報
In recent years, with the enhancement of functions of mobile phones and the like, lithium ion secondary batteries having higher capacity and excellent discharge rate characteristics at a large current are desired. As a method for obtaining a lithium ion secondary battery having such characteristics, in addition to a method for increasing the capacity of the active material itself of the positive electrode and the negative electrode, charging of the battery in order to extract more capacity from the active material. A method of setting the end voltage high is an example. That is, in general, the end-of-charge voltage of a lithium ion secondary battery is set in the vicinity of 4.1 to 4.2 V in consideration of the charge / discharge characteristics of lithium cobaltate, which is a general-purpose positive electrode active material. Therefore, for example, a transition metal-containing composite oxide (LiNi 1-qr Mn q Co r O 2 ) in which a part of Co is substituted with Ni and Mn is used as the positive electrode active material, and the charge end voltage is set to 4.25. A means for increasing the charging depth of the positive electrode active material by setting it to a high voltage of 4.7 V and realizing high capacity has been proposed by the present applicant (Patent Document 1). On the other hand, non-aqueous electrolytes are being actively improved for the purpose of stabilizing the battery performance of lithium ion secondary batteries. For example, addition of propane sultone or 1,4-butane sultone to a nonaqueous electrolytic solution has been proposed (Patent Document 2). According to Patent Document 2, since the sultone forms a passive film on the surface of the carbon material which is the negative electrode active material, it is possible to suppress decomposition of the electrolytic solution, thereby improving battery durability (cycle characteristics). ing. Therefore, when a high end-of-charge voltage is used in a battery using a transition metal-containing composite oxide in which a part of Co is substituted with another element as a positive electrode active material as in Patent Document 1, the active material surfaces of the positive electrode and the negative electrode are used. Since the decomposition reaction of various battery materials through the activation is activated, it is considered effective to combine the methods of Patent Document 2.
JP 2004-055539 A JP 2000-003724 A

しかしながら上記のような両手法を単に併用しただけでは、当初期待されたような電池特性に優れたリチウムイオン二次電池を得ることは困難であった。具体的には、Coの一部を他の元素で置換した遷移金属含有複合酸化物を正極活物質として用いて充電終止電圧を高く設定できるようにするとともに、負極表面での電解液の分解を抑制するため、スルトン系の添加剤を非水電解液に多量に添加したリチウムイオン二次電池では、非水電解液中の多量の添加剤よって放電レート特性が低下することが本発明の検討過程において明らかとなった。また、上記電池が高電圧の充電状態で高温下保存されると、保存後に放電容量が著しく低下するという問題が生じた。リチウムイオン二次電池の使用形態が拡大していることから、放電特性だけでなく、上記のような高温保存特性は特に重要である。   However, it has been difficult to obtain a lithium ion secondary battery excellent in battery characteristics as originally expected by simply using both of the above-described methods in combination. Specifically, a transition metal-containing composite oxide in which a part of Co is substituted with another element is used as a positive electrode active material, so that the charge end voltage can be set high, and decomposition of the electrolyte solution on the negative electrode surface is performed. In the lithium ion secondary battery in which a large amount of a sultone-based additive is added to a non-aqueous electrolyte in order to suppress the discharge rate characteristics are degraded by a large amount of the additive in the non-aqueous electrolyte. It became clear in. Further, when the battery is stored at a high temperature in a high voltage state of charge, there is a problem that the discharge capacity is remarkably reduced after storage. Since usage forms of lithium ion secondary batteries are expanding, not only discharge characteristics but also high-temperature storage characteristics as described above are particularly important.

本発明は上記課題を鑑みてなされたものであり、高容量化のために高い充電終止電圧が利用された場合でも、放電レート特性に優れるとともに、充電状態の電池を高温で保存したときに容量劣化の少ない高温保存特性に優れた非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above problems. Even when a high end-of-charge voltage is used to increase the capacity, the discharge rate characteristics are excellent and the capacity of a charged battery is stored at a high temperature. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is excellent in high-temperature storage characteristics with little deterioration.

本発明の一局面は、遷移金属含有複合酸化物を正極活物質として含む正極、リチウムを可逆的に吸蔵放出可能な負極活物質を含む負極、セパレータ、及び非水電解液を備えた非水電解質二次電池であって、前記非水電解液が、エチレンサルファイト、プロピレンサルファイト、及びプロパンスルトンからなる群から選ばれる少なくとも1種の添加剤(A)と、無水マレイン酸、ビニレンカーボネート、ビニルエチレンカーボネート、及びLiBF4からなる群から選ばれる少なくとも1種の添加剤(B)とを含み、充電終止電圧が4.3〜4.5Vである非水電解質二次電池である。 One aspect of the present invention is a nonaqueous electrolyte including a positive electrode including a transition metal-containing composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, a separator, and a nonaqueous electrolyte. A secondary battery, wherein the non-aqueous electrolyte is at least one additive (A) selected from the group consisting of ethylene sulfite, propylene sulfite, and propane sultone, maleic anhydride, vinylene carbonate, vinyl A non-aqueous electrolyte secondary battery comprising at least one additive (B) selected from the group consisting of ethylene carbonate and LiBF 4 and having a charge end voltage of 4.3 to 4.5V.

本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。   The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.

本発明によれば、高容量化のために4.3〜4.5Vの高い充電終止電圧を利用する場合でも、放電レート特性及び高温保存特性に優れた非水電解質二次電池が得られる。   According to the present invention, a nonaqueous electrolyte secondary battery excellent in discharge rate characteristics and high-temperature storage characteristics can be obtained even when a high end-of-charge voltage of 4.3 to 4.5 V is used to increase the capacity.

上記したように本発明の一局面は、遷移金属含有複合酸化物を正極活物質として含む正極、リチウムを可逆的に吸蔵放出可能な負極活物質を含む負極、セパレータ、及び非水電解液を備えた非水電解質二次電池であって、非水電解液中に、エチレンサルファイト(以下、ESと略記)、プロピレンサルファイト(以下、PRSと略記)、プロパンスルトン(以下、PSと略記)からなる群から選ばれる少なくとも1種の添加剤(A)と、無水マレイン酸(以下、MAと略記)、ビニレンカーボネート(以下、VCと略記)、ビニルエチレンカーボネート(以下、VECと略記)、及びLiBF4からなる群から選ばれる少なくとも1種の添加剤(B)とを含み、充電終止電圧が4.3〜4.5Vである非水電解質二次電池である。 As described above, one aspect of the present invention includes a positive electrode including a transition metal-containing composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, a separator, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery comprising ethylene sulfite (hereinafter abbreviated as ES), propylene sulfite (hereinafter abbreviated as PRS), and propane sultone (hereinafter abbreviated as PS) in a non-aqueous electrolyte. At least one additive (A) selected from the group consisting of maleic anhydride (hereinafter abbreviated as MA), vinylene carbonate (hereinafter abbreviated as VC), vinyl ethylene carbonate (hereinafter abbreviated as VEC), and LiBF A non-aqueous electrolyte secondary battery comprising at least one additive (B) selected from the group consisting of 4 and having a charge end voltage of 4.3 to 4.5V.

本発明者等の検討によれば、高容量化のためにCoの一部を他の元素で置換した遷移金属含有複合酸化物を正極活物質として用いることにより高い充電終止電圧を利用する非水電解質二次電池において、高電圧の充電状態の電池を高温で保存した後に放電容量が顕著に低下する原因は、保存時に正極活物質から金属イオンが非水電解液中に溶出し、それが負極に析出して電池のインピーダンスを上昇させるためであることが判明した。特に、Coの一部を他の元素で置換した遷移金属含有複合酸化物は、高い充電電圧を利用できる一方、従来の正極活物質に比べて高電圧の充電状態で金属イオンの溶出が多いと考えられた。従って、これらの正極活物質を使用する場合には、添加剤により負極表面に被膜を形成するだけでなく、正極表面からの金属イオンの溶出を抑制する必要がある。   According to the study by the present inventors, a non-aqueous solution that utilizes a high end-of-charge voltage by using a transition metal-containing composite oxide in which a part of Co is substituted with another element for increasing the capacity as a positive electrode active material. The reason for the significant decrease in discharge capacity after storing a high-voltage charged battery at a high temperature in an electrolyte secondary battery is that metal ions are eluted from the positive electrode active material into the non-aqueous electrolyte during storage. It has been found that it is for the purpose of increasing the impedance of the battery. In particular, transition metal-containing composite oxides in which a part of Co is substituted with other elements can use a high charging voltage, but metal ions are more eluted in a charged state at a higher voltage than conventional positive electrode active materials. it was thought. Therefore, when using these positive electrode active materials, it is necessary not only to form a film on the negative electrode surface with the additive, but also to suppress elution of metal ions from the positive electrode surface.

上記知見から、高電圧仕様の遷移金属含有複合酸化物を正極活物質として含有する正極を用いた場合でも、正極表面からの金属イオンの溶出を抑制しうる手段について検討した結果、ES、PRS、PSからなる群から選ばれる少なくとも1種の添加剤(A)と、MA、VC、VEC、及びLiBF4からなる群から選ばれる少なくとも1種の添加剤(B)の両者を含有する非水電解液を用いれば、放電レート特性及び高温保存特性に優れる非水電解質二次電池が得られることが見出された。 From the above findings, as a result of examining means capable of suppressing the elution of metal ions from the positive electrode surface even when using a positive electrode containing a transition metal-containing composite oxide of high voltage specification as a positive electrode active material, ES, PRS, Non-aqueous electrolysis containing both at least one additive (A) selected from the group consisting of PS and at least one additive (B) selected from the group consisting of MA, VC, VEC and LiBF 4 It has been found that a non-aqueous electrolyte secondary battery excellent in discharge rate characteristics and high-temperature storage characteristics can be obtained by using a liquid.

この理由は現在のところ必ずしも明らかではない。しかしながら、添加剤(A)としてPSを、添加剤(B)としてLiBFを含む非水電解液を用いた電池の電子プローブX線マイクロアナリシス(EPMA:Electron Probe X−ray Microanalysis)による分析で、正極及び負極の表面に各添加剤に由来すると考えられる成分(正極で硫黄含有成分、負極でホウ素含有成分)が確認されたことから、両添加剤が非水電解液中に共存する場合、電極表面での添加剤による被膜形成が優先順位を持って競争的に起こることが考えられた。すなわち、低電圧下において、添加剤(A)はそれのみを添加剤として含有する非水電解液中では本来負極表面で分解して被膜を形成する。しかしながら、両添加剤が非水電解液中に共存する場合、添加剤(A)よりも添加剤(B)が優先的に負極表面で分解して被膜を形成し、それによって、添加剤(A)と作用できる負極表面部分が減少する。そして、従来負極表面に被膜を形成すると考えられていた添加剤(A)が、高電圧の充電状態において、遷移金属含有複合酸化物と作用することにより主として正極表面に吸着あるいは分解して被膜を形成する。この高電圧状態の遷移金属含有複合酸化物と添加剤(A)の作用により形成される被膜が、充電状態の電池が高温保存されたときに正極活物質から溶出してくる金属イオンを大幅に減少させることができるため、高温保存特性が改善できると考えられる。また、添加剤(A)単独の非水電解液中では添加剤(A)が正極よりも負極に優先的に被膜を形成するため、大量に添加しても高温保存特性が改善されないだけでなく、添加剤の増加により非水電解液のインピーダンスが上昇して大電流での放電レート特性も低下する。これに対し、添加剤(A)及び添加剤(B)の両添加剤を含有する非水電解液中では、添加剤(B)が優先的に負極表面に被膜が形成するため両添加剤の添加量も少量に抑えられ、また両添加剤が各電極表面で被膜を形成するため非水電解液のインピーダンスの上昇も抑えられ、結果的に放電レート特性を低下させることなく、高温保存特性を改善することができる。 The reason for this is not always clear at present. However, in the analysis by electron probe X-ray microanalysis (EPMA) of the battery using PS as additive (A) and non-aqueous electrolyte containing LiBF 4 as additive (B), Since the components considered to be derived from each additive (the sulfur-containing component at the positive electrode and the boron-containing component at the negative electrode) were confirmed on the surfaces of the positive electrode and the negative electrode, when both additives coexist in the non-aqueous electrolyte, the electrode It was thought that film formation by additives on the surface occurred competitively with priority. That is, under a low voltage, the additive (A) is originally decomposed on the negative electrode surface in a non-aqueous electrolyte containing only it as an additive to form a film. However, when both additives coexist in the non-aqueous electrolyte, the additive (B) preferentially decomposes on the negative electrode surface over the additive (A) to form a film, whereby the additive (A ) And the negative electrode surface portion that can act. The additive (A), which was conventionally considered to form a film on the negative electrode surface, acts on the transition metal-containing composite oxide in a charged state at a high voltage to mainly adsorb or decompose on the positive electrode surface. Form. The coating formed by the action of the high-voltage state transition metal-containing composite oxide and the additive (A) greatly reduces metal ions eluted from the positive electrode active material when the charged battery is stored at high temperature. Since it can be reduced, it is considered that the high-temperature storage characteristics can be improved. In addition, the additive (A) alone forms a film on the negative electrode rather than the positive electrode in the non-aqueous electrolyte containing the additive (A) alone. The increase in the additive increases the impedance of the non-aqueous electrolyte and decreases the discharge rate characteristics at a large current. In contrast, in the non-aqueous electrolyte containing both additive (A) and additive (B), the additive (B) preferentially forms a film on the negative electrode surface, so both additives The amount added can be reduced to a small amount, and both additives form a film on the surface of each electrode, so the increase in impedance of the non-aqueous electrolyte is also suppressed, resulting in high temperature storage characteristics without reducing the discharge rate characteristics. Can be improved.

なお、上記において、添加剤(A)はいずれも分子内にSO結合を有する5員環化合物であり、4.3V以上の高電圧下で遷移金属含有複合酸化物を含む正極表面と作用し、被膜を形成するという共通した性質を有している。また、添加剤(B)はいずれもLi電位基準に対して非水電解液用の非水溶媒として一般的に用いられるエチレンカーボネートが被膜を形成する電位より高い電位で、負極表面に被膜を形成するという共通した性質を有している。このため、添加剤(B)は充電時に非水溶媒や添加剤(A)よりも優先的に被膜を形成することができる。   In the above, the additive (A) is a 5-membered ring compound having an SO bond in the molecule, and acts on the positive electrode surface containing the transition metal-containing composite oxide under a high voltage of 4.3 V or higher. It has the common property of forming a film. In addition, all additives (B) form a film on the negative electrode surface at a potential higher than the potential at which ethylene carbonate, which is generally used as a nonaqueous solvent for nonaqueous electrolytes, forms a film with respect to the Li potential reference. Have the common property of For this reason, the additive (B) can form a film preferentially over the non-aqueous solvent and the additive (A) during charging.

非水電解液中の添加剤(A)の添加量は、0.03〜5質量%が好ましく、0.05〜4質量%がより好ましい。添加剤(A)の添加量が0.03〜5質量%であれば、正極表面に被膜を十分に形成することができるとともに、非水電解液のインピーダンスの増加を抑えることができる。また、非水電解液中の添加剤(B)の添加量は、0.03〜5質量%が好ましく、0.05〜4質量%がより好ましい。添加剤(B)の添加量が0.03〜5質量%であれば、負極表面に被膜を十分に形成することができるとともに、非水電解液のインピーダンスの増加を抑えることができる。非水電解液中の添加剤(A)及び添加剤(B)の混合割合は、特に限定されるものではないが、正極及び負極の各表面に添加剤(A)及び添加剤(B)の各被膜を十分に形成するために、添加剤(A)/添加剤(B)の質量比で、1/3〜3/1が好ましく、1/2〜2/1がより好ましく、略等量が最も好ましい。   0.03-5 mass% is preferable and, as for the addition amount of the additive (A) in a non-aqueous electrolyte, 0.05-4 mass% is more preferable. When the additive (A) is added in an amount of 0.03 to 5% by mass, a coating film can be sufficiently formed on the surface of the positive electrode, and an increase in impedance of the nonaqueous electrolytic solution can be suppressed. Moreover, 0.03-5 mass% is preferable and, as for the addition amount of the additive (B) in a non-aqueous electrolyte, 0.05-4 mass% is more preferable. If the addition amount of the additive (B) is 0.03 to 5% by mass, a coating film can be sufficiently formed on the negative electrode surface, and an increase in impedance of the nonaqueous electrolytic solution can be suppressed. The mixing ratio of the additive (A) and the additive (B) in the nonaqueous electrolytic solution is not particularly limited, but the additive (A) and the additive (B) are added to each surface of the positive electrode and the negative electrode. In order to sufficiently form each film, the mass ratio of additive (A) / additive (B) is preferably 1/3 to 3/1, more preferably 1/2 to 2/1, and substantially the same amount. Is most preferred.

添加剤(A)及び添加剤(B)の添加量の総量は、0.1〜10質量%が好ましく、0.1〜8質量%がより好ましく、0.1〜4質量%が最も好ましい。上記したように、添加剤(B)が負極に優先的に被膜を形成し、添加剤(A)が高電圧の充電状態で正極に被膜を形成するため、非水電解液中の両添加剤の総量を抑えることができる。このため、少量の添加量で高温保存特性を改善することができ、それによって放電レート特性の低下も抑えられ、高温保存特性と放電レート特性とを高いレベルで両立することができる。   0.1-10 mass% is preferable, as for the total amount of the addition amount of an additive (A) and an additive (B), 0.1-8 mass% is more preferable, and 0.1-4 mass% is the most preferable. As described above, additive (B) preferentially forms a film on the negative electrode, and additive (A) forms a film on the positive electrode in a charged state at a high voltage, so both additives in the non-aqueous electrolyte solution The total amount of can be suppressed. For this reason, the high temperature storage characteristics can be improved with a small addition amount, thereby suppressing the decrease in the discharge rate characteristics, and the high temperature storage characteristics and the discharge rate characteristics can be compatible at a high level.

非水電解液は、上記の添加剤以外に、非水溶媒と、その非水溶媒に溶解するリチウム塩とを含有する。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の非環状カーボネート類等の非プロトン性有機溶媒を挙げることができる。これらの非水溶媒は単独または二種以上を混合して使用してもよい。これらの中でも、環状カーボネートと非環状カーボネートとを主成分とする非水溶媒が好ましい。   The non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent, in addition to the above-described additives. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Mention may be made of aprotic organic solvents such as acyclic carbonates such as dipropyl carbonate (DPC). These nonaqueous solvents may be used alone or in combination of two or more. Among these, a non-aqueous solvent containing a cyclic carbonate and an acyclic carbonate as main components is preferable.

上記の溶媒に溶解するリチウム塩としては、例えば、LiClO4 、LiPF6 、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3 SO3 、LiCF3 CO2、Li(CF3SO22、LiAsF6 、LiN(CF3SO22等を挙げることができ、これらの中でもLiPF6がより好ましい。これらのリチウム塩は単独又は二種以上を組み合わせて使用してもよい。リチウム塩の溶解量は、特に限定されるものではないが、0.2〜2mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。なお、LiBFはリチウム塩として使用してもよいが、負極表面で分解して被膜を形成するため、他のリチウム塩とともに使用することが好ましい。 Examples of the lithium salt dissolved in the above solvent include LiClO 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6. , LiN (CF 3 SO 2 ) 2 and the like. Among these, LiPF 6 is more preferable. These lithium salts may be used alone or in combination of two or more. The amount of lithium salt dissolved is not particularly limited, but is preferably 0.2 to 2 mol / L, and more preferably 0.5 to 1.5 mol / L. LiBF 4 may be used as a lithium salt, but is preferably used together with other lithium salts because it decomposes on the negative electrode surface to form a film.

上記非水溶媒とリチウム塩の組み合わせは、特に限定されるものではないが、非水溶媒としてECとEMCを少なくとも含み、リチウム塩としてLiPF6を少なくとも含む非水電解液が好ましい。 The combination of the nonaqueous solvent and the lithium salt is not particularly limited, but a nonaqueous electrolytic solution containing at least EC and EMC as the nonaqueous solvent and at least LiPF 6 as the lithium salt is preferable.

正極は、非水電解質二次電池に使用されるLiCoO、LiNiO等の遷移金属含有複合酸化物を正極活物質として含有する。これらの遷移金属含有複合酸化物の中でも、高い充電終止電圧を使用でき、また高電圧状態で添加剤(A)がその表面に吸着あるいは分解して良質な被膜を形成しうるCoの一部を他の元素で置換した遷移金属含有複合酸化物が好ましい。このような遷移金属含有複合酸化物としては、具体的には、例えば、一般式LixNi1-(y+z)Coyz2(式中、0.95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50であり、Mは、Al,Mn,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素である)で表される遷移金属含有複合酸化物が挙げられる。特に、上記一般式において、Mが、Mnと、Al,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素とを含む遷移金属含有複合酸化物は放電レート特性と高温保存特性とを高いレベルで両立できるだけでなく、初期容量特性、及び熱的安定性にも優れた非水電解質二次電池を得ることができる。上記遷移金属含有複合酸化物において、xが0.95未満の場合、電池容量が小さくなる傾向があり、xが1.12を超える場合は活物質表面に炭酸リチウム等のリチウム化合物が生成しやすくなり、高温保存時にガスを発生する傾向がある。また、yが0.01未満の場合、活物質の結晶安定性が低下し寿命特性が低下する傾向があり、yが0.35を超える場合、希少金属であるCoが多く用いられるため、活物質自体が高価なものとなる。さらに、zが0.01未満の場合、熱的安定性が低下する傾向があり、0.50を超える場合、容量が低下する傾向がある。上記Coの一部を他の元素で置換した遷移金属含有複合酸化物の比表面積は、0.15〜1.50m2/gが好ましく、0.15〜0.50m2/gがより好ましく、0.15〜0.30m2/gが最も好ましい。比表面積が0.15m2/g未満の場合、正極活物質表面での電荷移動抵抗が増大して放電レート特性が低下する傾向があり、比表面積が1.5m2/gを超える場合、充電状態での高温保存時に金属イオンの溶出が増加する傾向がある。なお、上記比表面積は、予め真空中で110℃3時間の乾燥を行った遷移金属含有複合酸化物を試料とし、窒素ガスを吸着ガスとして、BET法を用いて測定圧力5点の多点法により求めた値である。上記のような比表面積を測定できる機器としては、例えば、島津製作所製ASAP2010が挙げられる。 The positive electrode contains a transition metal-containing composite oxide such as LiCoO 2 or LiNiO 2 used for a nonaqueous electrolyte secondary battery as a positive electrode active material. Among these transition metal-containing composite oxides, a high end-of-charge voltage can be used, and a part of Co that can form a good-quality film by adsorbing or decomposing the additive (A) on the surface in a high-voltage state. Transition metal-containing composite oxides substituted with other elements are preferred. As such a transition metal-containing composite oxide, specifically, for example, a general formula Li x Ni 1- (y + z) Co y M z O 2 (wherein 0.95 ≦ x ≦ 1.12) , 0.01 ≦ y ≦ 0.35, 0.01 ≦ z ≦ 0.50, and M is at least one selected from the group consisting of Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca. Transition metal-containing composite oxide represented by the above-mentioned element. In particular, the transition metal-containing composite oxide in which M in the above general formula includes Mn and at least one element selected from the group consisting of Al, Ti, Mg, Mo, Y, Zr, and Ca is a discharge rate. It is possible to obtain a non-aqueous electrolyte secondary battery that not only achieves both high performance and high-temperature storage characteristics, but also has excellent initial capacity characteristics and thermal stability. In the above transition metal-containing composite oxide, when x is less than 0.95, the battery capacity tends to be small, and when x exceeds 1.12, lithium compounds such as lithium carbonate are easily generated on the active material surface. It tends to generate gas during high temperature storage. In addition, when y is less than 0.01, the crystal stability of the active material tends to be reduced and the life characteristics tend to deteriorate. When y exceeds 0.35, Co, which is a rare metal, is often used. The material itself is expensive. Furthermore, when z is less than 0.01, the thermal stability tends to decrease, and when it exceeds 0.50, the capacity tends to decrease. The specific surface area of the part of the transition metal-containing composite oxide obtained by substituting another element of the Co is preferably from 0.15~1.50m 2 / g, more preferably 0.15~0.50m 2 / g, Most preferred is 0.15 to 0.30 m 2 / g. When the specific surface area is less than 0.15 m 2 / g, the charge transfer resistance on the surface of the positive electrode active material tends to increase and the discharge rate characteristics tend to decrease. When the specific surface area exceeds 1.5 m 2 / g, charging There is a tendency for elution of metal ions to increase during high-temperature storage in the state. The specific surface area is a multipoint method using a transition metal-containing composite oxide that has been dried in vacuum at 110 ° C. for 3 hours in advance, using nitrogen gas as an adsorbed gas, and measuring pressure of 5 points using the BET method. Is the value obtained by As an apparatus which can measure the above specific surface area, Shimadzu Corporation ASAP2010 is mentioned, for example.

上記遷移金属含有複合酸化物は、各金属元素の組成比に相当する量の原料化合物を混合し、焼成する従来公知の方法によって合成することができる。原料化合物としては、正極活物質を構成する各金属元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、硫酸塩、有機錯塩等を用いることができる。これらは単独又は2種以上を混合して用いてもよい。   The transition metal-containing composite oxide can be synthesized by a conventionally known method of mixing and firing raw material compounds in an amount corresponding to the composition ratio of each metal element. As the raw material compound, oxides, hydroxides, oxyhydroxides, carbonates, nitrates, sulfates, organic complex salts and the like of each metal element constituting the positive electrode active material can be used. You may use these individually or in mixture of 2 or more types.

上記遷移金属含有複合酸化物の合成に当たっては、上記のような原料化合物を使用してCo、Ni及び他の金属元素からなる水酸化物を沈殿法等により調製し、この水酸化物を一次焼成することによって各元素が固溶した酸化物を調製することが好ましい。一次焼成を行うことにより得られる酸化物の比表面積を減少することができる。一次焼成は、金属元素の種類にもよるが、例えば、300〜700℃の温度で、5〜15時間焼成することが好ましい。そして得られた酸化物と水酸化リチウム等のリチウム化合物とを混合し、二次焼成することにより、各金属元素を固溶した遷移金属含有複合酸化物を合成することができる。   In the synthesis of the transition metal-containing composite oxide, a hydroxide composed of Co, Ni and other metal elements is prepared by a precipitation method or the like using the raw material compounds as described above, and the hydroxide is subjected to primary firing. It is preferable to prepare an oxide in which each element is dissolved. The specific surface area of the oxide obtained by performing primary firing can be reduced. Although primary baking is based also on the kind of metal element, it is preferable to baking at the temperature of 300-700 degreeC for 5 to 15 hours, for example. The obtained oxide and a lithium compound such as lithium hydroxide are mixed and subjected to secondary firing, whereby a transition metal-containing composite oxide in which each metal element is dissolved can be synthesized.

正極活物質としては、2種以上の遷移金属含有複合酸化物が混合された混合物が使用されてもよい。例えば、上記のCoの一部を他の元素で置換した遷移金属含有複合酸化物とLiCoOとが混合された正極活物質を用いてもよい。混合時のLiCoOの量としては、正極活物質全体に対して、30〜90質量%が好ましい。さらに、正極活物質として上記一般式で表された遷移金属含有複合酸化物とは異なるLiCoO2のCoの一部を他の元素で置換した遷移金属含有複合酸化物を用いてもよい。置換元素としては、Mg、Al、Zr、Moを挙げることができる。前記置換元素の群から選ばれる1種以上の元素でCoを置換することにより、Mg、Alを用いた場合には耐熱安定性が、また、Zr、Moを用いた場合には放電分極特性が改善できる。前記置換元素は酸化還元反応に寄与しないため、添加量としては、置換元素の総量としてCoに対し10mol%以下が好ましい。添加量を10mol%以下とすることより、正極活物質の容量低下を抑制できる。 As the positive electrode active material, a mixture in which two or more transition metal-containing composite oxides are mixed may be used. For example, a positive electrode active material in which a transition metal-containing composite oxide obtained by substituting a part of Co with another element and LiCoO 2 may be used. The amount of LiCoO 2 at the time of mixing is preferably 30 to 90% by mass with respect to the whole positive electrode active material. Furthermore, a transition metal-containing composite oxide obtained by substituting a part of Co of LiCoO 2 different from the transition metal-containing composite oxide represented by the general formula may be used as the positive electrode active material. Examples of the substitution element include Mg, Al, Zr, and Mo. By substituting Co with one or more elements selected from the group of substitution elements, heat resistance stability is obtained when Mg and Al are used, and discharge polarization characteristics are obtained when Zr and Mo are used. Can improve. Since the substitution element does not contribute to the oxidation-reduction reaction, the addition amount is preferably 10 mol% or less with respect to Co as a total amount of substitution elements. By making the addition amount 10 mol% or less, a decrease in capacity of the positive electrode active material can be suppressed.

正極は、上記のような正極活物質、必要により結着剤、導電剤等を混合して得られる正極合剤をアルミニウム等の集電体上に塗着して得られる。導電剤としては、構成された電池において化学変化を起こさない電子伝導性材料を1種以上用いることができる。このような電子伝導性材料としては、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類;アセチレンブラック(AB)、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維、金属繊維等の導電性繊維類;フッ化カーボン、銅、ニッケル、アルミニウム、銀等の導電性粉末類;酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物類;ポリフェニレン誘導体等の有機導電性材料等が挙げられる。これらは単独または二種以上を混合して使用してもよい。これらの導電剤の中でも、人造黒鉛、アセチレンブラック、ニッケル粉末が特に好ましい。結着剤としては、分解温度が300℃以上のポリマーが好ましい。このような結着剤としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、カルボキシメチルセルロース(CMC)等が挙げられる。これらは単独または二種以上を混合して使用してもよい。これらの中でも、PVDF、PTFEが特に好ましい。   The positive electrode is obtained by coating a positive electrode mixture obtained by mixing the positive electrode active material as described above and, if necessary, a binder, a conductive agent, etc. on a current collector such as aluminum. As the conductive agent, one or more kinds of electron conductive materials that do not cause a chemical change in the constituted battery can be used. Examples of such an electron conductive material include graphites such as natural graphite (flaky graphite and the like) and artificial graphite; acetylene black (AB), ketjen black, channel black, furnace black, lamp black, thermal black and the like. Carbon blacks; conductive fibers such as carbon fibers and metal fibers; conductive powders such as carbon fluoride, copper, nickel, aluminum and silver; conductive whiskers such as zinc oxide and potassium titanate; titanium oxide And conductive metal oxides such as organic conductive materials such as polyphenylene derivatives. You may use these individually or in mixture of 2 or more types. Among these conductive agents, artificial graphite, acetylene black, and nickel powder are particularly preferable. As the binder, a polymer having a decomposition temperature of 300 ° C. or higher is preferable. Examples of such a binder include polyethylene (PE), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene. -Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene -Tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene -Chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, carboxymethyl cellulose (CMC), etc. Is mentioned. You may use these individually or in mixture of 2 or more types. Among these, PVDF and PTFE are particularly preferable.

負極活物質としては、炭素材料、リチウム含有複合酸化物、リチウムと合金化可能な材料等のリチウムを可逆的に吸蔵放出可能な材料を用いることができる。炭素材料としては、例えば、コークス、熱分解炭素類、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、黒鉛化メソフェーズ小球体、気相成長炭素、ガラス状炭素類、炭素繊維(ポリアクリロニトリル系、ピッチ系、セルロース系、気相成長炭素系)、不定形炭素、有機物の焼成された炭素材料等が挙げられる。これらは単独または二種以上を混合して使用してもよい。これらの中でもメソフェーズ小球体を黒鉛化した炭素材料や、天然黒鉛、人造黒鉛等の黒鉛材料が好ましい。また、リチウムと合金化可能な材料としては、例えば、Si単体あるいはSiとOとの化合物(SiO)等が挙げられる。これらは単独または二種以上を混合して使用してもよい。上記のようなケイ素系の負極活物質を使用することにより、さらに高容量の非水電解質二次電池が得られる。 As the negative electrode active material, a material capable of reversibly inserting and extracting lithium, such as a carbon material, a lithium-containing composite oxide, and a material that can be alloyed with lithium, can be used. Examples of carbon materials include coke, pyrolytic carbons, natural graphite, artificial graphite, mesocarbon microbeads, graphitized mesophase microspheres, vapor-grown carbon, glassy carbons, carbon fibers (polyacrylonitrile-based, pitch-based) , Cellulose-based, vapor-grown carbon-based), amorphous carbon, and carbon materials obtained by firing organic substances. You may use these individually or in mixture of 2 or more types. Among these, carbon materials obtained by graphitizing mesophase small spheres, and graphite materials such as natural graphite and artificial graphite are preferable. Examples of materials that can be alloyed with lithium include Si alone or a compound of Si and O (SiO x ). You may use these individually or in mixture of 2 or more types. By using the silicon-based negative electrode active material as described above, a higher capacity non-aqueous electrolyte secondary battery can be obtained.

負極は、上記のような負極活物質、必要により結着剤、導電剤等を混合して得られる負極合剤を銅箔等の集電体上に形成して得られる。炭素材料を負極活物質として使用する場合、電池理論容量(X)と、炭素材料の質量(Y)との比で表される負荷容量(X/Y)を、250〜360mAh/gの範囲に設定することが好ましい。上記負荷容量の範囲であれば、リチウムの円滑な吸蔵放出が可能となり、分極特性の低下が抑制できるため、高温保存特性に優れるとともに、放電レート特性にさらに優れる非水電解質二次電池が得られる。なお、前記電池理論容量は、正極活物質の単位質量当りの理論容量と正極中の正極活物質の含有量とから定まる正極容量から電池が使用される機器の通常の終止電圧で充放電を行なった際に生じる正極及び負極の不可逆容量を除くことによって求められる利用可能な電池容量を意味する。   The negative electrode is obtained by forming a negative electrode mixture obtained by mixing the negative electrode active material as described above, if necessary, a binder, a conductive agent, etc. on a current collector such as a copper foil. When the carbon material is used as the negative electrode active material, the load capacity (X / Y) represented by the ratio between the battery theoretical capacity (X) and the mass (Y) of the carbon material is in the range of 250 to 360 mAh / g. It is preferable to set. When the load capacity is within the above range, lithium can be smoothly occluded and released, and a decrease in polarization characteristics can be suppressed. Therefore, a nonaqueous electrolyte secondary battery having excellent high-temperature storage characteristics and further excellent discharge rate characteristics can be obtained. . The theoretical capacity of the battery is charged / discharged at the normal end voltage of the device in which the battery is used, based on the positive electrode capacity determined from the theoretical capacity per unit mass of the positive electrode active material and the content of the positive electrode active material in the positive electrode. It means the available battery capacity obtained by removing the irreversible capacity of the positive electrode and the negative electrode generated at the time.

上記導電剤としては、正極の導電剤と同様の電子伝導性材料を用いることができる。結着剤は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。これらの中でも分解温度が300℃以上のポリマーが好ましい。このような結着剤としては、例えば、PE、PP、PTFE、PVDF、スチレンブタジエンゴム(SBR)、FEP、PFA、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、ETFE樹脂、PCTFE、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、ECTFE、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、CMC等が挙げられる。これらは単独または二種以上を混合して使用してもよい。これらの中でも、SBR、PVDFが好ましく、SBRが最も好ましい。   As the conductive agent, an electron conductive material similar to the positive electrode conductive agent can be used. The binder may be either a thermoplastic resin or a thermosetting resin. Among these, a polymer having a decomposition temperature of 300 ° C. or higher is preferable. Examples of such a binder include PE, PP, PTFE, PVDF, styrene butadiene rubber (SBR), FEP, PFA, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-chlorotrifluoroethylene copolymer. Polymer, ETFE resin, PCTFE, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ECTFE, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-par Examples thereof include fluoromethyl vinyl ether-tetrafluoroethylene copolymer, CMC and the like. You may use these individually or in mixture of 2 or more types. Among these, SBR and PVDF are preferable, and SBR is most preferable.

セパレータとしては、大きなイオン透過度、及び所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、一定温度、例えば120℃以上で孔を閉塞し、抵抗を上げる機能を持つセパレータが好ましい。このようなセパレータとしては、耐有機溶剤性及び疎水性を有するPP、PE等が単独又は組合わされたオレフィン系ポリマーまたはガラス繊維等から作製されたシート、不織布、織布が挙げられる。   As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Further, a separator having a function of closing the holes and increasing the resistance at a certain temperature, for example, 120 ° C. or higher is preferable. Examples of such separators include sheets, nonwoven fabrics, and woven fabrics made from olefin-based polymers or glass fibers or the like, which are organic solvent resistant and hydrophobic PP, PE, or the like alone or in combination.

非水電解質二次電池は、上記の正極、負極がセパレータを介して捲回または積層された極板群を電池ケースに挿入し、これに非水電解液を注液して封口して組み立てられる。   A non-aqueous electrolyte secondary battery is assembled by inserting an electrode plate group in which the above-described positive electrode and negative electrode are wound or laminated through a separator into a battery case, and then injecting and sealing the non-aqueous electrolyte into the battery case. .

図1は巻回構造の極板群を有する非水電解質二次電池の一例を示す概略断面図である。極板群12は、正極リード2を備えた正極1と、負極リード4を備えた負極3とが、セパレータ5を介して渦巻き状に捲回された構造を有している。極板群12の上部には上部絶縁板6が、下部には下部絶縁板7が取り付けられている。そして、極板群12、及び非水電解液(図示せず)が入れられたケース8は、ガスケット9と正極端子11とを備えた封口板10で封口されている。   FIG. 1 is a schematic cross-sectional view showing an example of a nonaqueous electrolyte secondary battery having a wound electrode group. The electrode plate group 12 has a structure in which a positive electrode 1 including a positive electrode lead 2 and a negative electrode 3 including a negative electrode lead 4 are wound in a spiral shape with a separator 5 interposed therebetween. An upper insulating plate 6 is attached to the upper part of the electrode plate group 12, and a lower insulating plate 7 is attached to the lower part. The electrode group 12 and the case 8 in which a non-aqueous electrolyte (not shown) is placed are sealed with a sealing plate 10 including a gasket 9 and a positive electrode terminal 11.

非水電解質二次電池の製造においては、上記の組み立て工程後に、4.3〜4.5Vの範囲の電圧までの充電を少なくとも1回含む高電圧充電工程を設けることが好ましい。4.3〜4.5Vの高電圧まで非水電解質二次電池を予め充電することによって、添加剤(B)が負極表面に優先的に被膜を形成するとともに、添加剤(A)が主として正極表面に被膜を形成するため、添加剤(A)及び添加剤(B)による放電レート特性及び高温保存特性改善の効果を十分に発揮することができる。上記高電圧充電工程においては、少なくとも1回4.3〜4.5Vの範囲の電圧まで充電を行うことが好ましいが、高温保存特性により好適な被膜を両電極表面に形成するためにも、少なくとも2回充電を行うことがより好ましい。一方、生産性の観点から高電圧の充電は10回以下が好ましく、5回以下がより好ましい。2回以上充電を行なう場合の放電時の終止電圧は、特に限定されないが、過放電を避けるため、3.0V以上が好ましい。なお、高電圧充電工程における充電電圧が4.5Vより高い場合、正極からの金属イオンの溶出が顕著となり、また両添加剤の分解が顕著となって、均一な被膜の形成が困難となる傾向がある。   In the production of the non-aqueous electrolyte secondary battery, it is preferable to provide a high voltage charging step including at least one charging to a voltage in the range of 4.3 to 4.5 V after the assembly step. By precharging the nonaqueous electrolyte secondary battery to a high voltage of 4.3 to 4.5 V, the additive (B) preferentially forms a film on the negative electrode surface, and the additive (A) is mainly the positive electrode. Since the film is formed on the surface, the effect of improving the discharge rate characteristics and the high temperature storage characteristics by the additive (A) and the additive (B) can be sufficiently exhibited. In the high voltage charging step, it is preferable to charge at least once to a voltage in the range of 4.3 to 4.5 V, but at least in order to form a suitable film on both electrode surfaces due to high temperature storage characteristics. It is more preferable to charge twice. On the other hand, from the viewpoint of productivity, the high voltage charge is preferably 10 times or less, and more preferably 5 times or less. The end voltage at the time of discharging when charging twice or more is not particularly limited, but is preferably 3.0 V or more in order to avoid overdischarge. In addition, when the charging voltage in the high voltage charging process is higher than 4.5 V, the elution of metal ions from the positive electrode becomes remarkable, and the decomposition of both additives tends to become remarkable, so that it is difficult to form a uniform film. There is.

さらに、上記の組み立て工程後、高電圧充電工程前に、予備充電終止電圧が4.3V未満で、予備放電終止電圧が3.0V以上の充放電サイクルを少なくとも1回行なう予備充放電工程を設けることが好ましい。添加剤(A)は4.3V以上の高電圧で正極表面に吸着あるいは分解して被膜を形成するのに対し、添加剤(B)は低電圧でも添加剤(A)よりも優先的に負極表面に被膜を形成する。このため、正極表面での添加剤(A)の吸着あるいは分解が進行しない低電圧で電池を予め充放電することにより、負極表面に添加剤(B)による被膜を優先的に形成することができる。そして、低電圧の予備充電を行い、負極表面に添加剤(A)と作用する部位に予め添加剤(B)の被膜が形成された後、高電圧で電池を充電することにより、正極表面に添加剤(A)の被膜が形成されるため、さらに高温保存特性を改善することができる。上記充放電サイクルは、少なくとも1回行なうことが好ましいが、高温保存特性により好適な被膜を形成するためにも、少なくとも3回行なうことがより好ましい。一方、生産性の観点から充放電サイクルは10回以下が好ましく、5回以下がより好ましい。なお、予備充電終止電圧としては、4.3V未満であれば特に限定されないが、3.8V以上が好ましく、3.9V〜4.1Vがより好ましい。また、予備放電終止電圧としては、3.0V以上であれば特に限定されないが、3.6V以下がより好ましく、3.0〜3.4Vがより好ましい。   Further, a pre-charge / discharge step is performed after the above assembly step and before the high-voltage charge step, in which a pre-charge end voltage of less than 4.3V and a pre-discharge end voltage of 3.0V or higher is performed at least once. It is preferable. Additive (A) adsorbs or decomposes on the surface of the positive electrode at a high voltage of 4.3 V or higher to form a film, whereas additive (B) preferentially has a negative electrode over additive (A) even at a low voltage. A film is formed on the surface. For this reason, the battery can be preferentially formed on the negative electrode surface by precharging and discharging the battery at a low voltage that does not cause adsorption or decomposition of the additive (A) on the positive electrode surface. . Then, a low voltage precharge is performed, and after a film of the additive (B) is formed in advance on the negative electrode surface where the additive (A) acts, the battery is charged at a high voltage, whereby the positive electrode surface is Since a film of the additive (A) is formed, the high-temperature storage characteristics can be further improved. The charge / discharge cycle is preferably performed at least once, but more preferably at least three times in order to form a film more suitable for high temperature storage characteristics. On the other hand, the charge / discharge cycle is preferably 10 times or less and more preferably 5 times or less from the viewpoint of productivity. The precharge end voltage is not particularly limited as long as it is less than 4.3V, but is preferably 3.8V or more, and more preferably 3.9V to 4.1V. In addition, the preliminary discharge end voltage is not particularly limited as long as it is 3.0 V or more, but 3.6 V or less is more preferable, and 3.0 to 3.4 V is more preferable.

上記のようにして製造される非水電解質二次電池は、充電終止電圧が4.3〜4.5Vの範囲で通常使用される。充電終止電圧が4.3V未満では、低電圧であるため充電状態で高温保存したときの放電容量の低下は少ないが、高容量で、放電レート特性に優れる高電圧仕様の正極活物質を用いる意義が失われる。また、高電圧充電工程を設けずに、充電終止電圧が4.3V以下の範囲でのみ使用された場合、添加剤(A)が正極表面で被膜を十分に形成することができないため、放電レート特性の低下のみが顕著となる。一方、充電終止電圧が4.5Vより高いと、高電圧仕様の正極活物質を用いた場合、正極からの金属イオンの溶出が顕著となり、添加剤(A)及び添加剤(B)を併用しても高温保存特性が十分に改善されない。なお、上記充電終止電圧は単電池当たりの電圧である。複数の電池から構成される組電池の場合には、各単電池に設定される電圧を意味する。また、充電終止電圧とは、その電池が使用される機器における通常の使用時に設定される電圧を意味するものであり、過充電時等の異常使用時の電圧を意味するものではない。   The nonaqueous electrolyte secondary battery produced as described above is usually used in the range where the end-of-charge voltage is 4.3 to 4.5V. When the end-of-charge voltage is less than 4.3 V, the voltage is low, so there is little decrease in discharge capacity when stored at high temperature in the charged state, but the significance of using a high-voltage positive electrode active material with high capacity and excellent discharge rate characteristics Is lost. In addition, when the charge termination voltage is used only in the range of 4.3 V or less without providing a high voltage charging step, the additive (A) cannot sufficiently form a film on the surface of the positive electrode. Only the deterioration of the characteristics becomes significant. On the other hand, if the end-of-charge voltage is higher than 4.5V, when a high-voltage positive electrode active material is used, elution of metal ions from the positive electrode becomes significant, and the additive (A) and additive (B) are used in combination. However, the high temperature storage characteristics are not sufficiently improved. The charge end voltage is a voltage per unit cell. In the case of an assembled battery composed of a plurality of batteries, it means a voltage set for each single battery. Further, the end-of-charge voltage means a voltage that is set during normal use in a device in which the battery is used, and does not mean a voltage during abnormal use such as overcharge.

上記使用時における充電は、定電流・定電圧充電を行うことが好ましい。すなわち、4.3〜4.5Vの充電終止電圧に達するまで定電流充電を行い、その後、4.3〜4.5Vの範囲を超えないように定電圧充電することが好ましい。   It is preferable to perform constant current / constant voltage charging during the above-described use. That is, it is preferable to perform constant current charging until reaching a charge end voltage of 4.3 to 4.5 V, and then perform constant voltage charging so as not to exceed the range of 4.3 to 4.5 V.

本発明の非水電解質二次電池は、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型の電池あるいは電気自動車等に用いる大型電池等いずれの形状、大きさにも適用できる。また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車及びハイブリッド電気自動車等に用いられるが、特にこれらに限定されない。   The non-aqueous electrolyte secondary battery of the present invention can be of any shape and size, such as a coin-type, button-type, sheet-type, stacked-type, cylindrical-type, flat-type, square-type battery, or a large battery used in an electric vehicle. Applicable. The non-aqueous electrolyte secondary battery of the present invention is used in portable information terminals, portable electronic devices, small household power storage devices, motorcycles, electric vehicles, hybrid electric vehicles, and the like, but is not particularly limited thereto.

以上本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本発明がそれらに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。   Although the present invention has been described in detail above, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.

以下に、本発明に関する実施例が示されるが、本発明はこれら実施例に限定されるものでない。   Examples relating to the present invention are shown below, but the present invention is not limited to these examples.

[実施例1]
(実施例1−1)
<正極>
正極活物質として以下の方法により合成された組成式Li1.05Ni1/3Co1/3Mn1/32で表される遷移金属含有複合酸化物が用いられた。
[Example 1]
(Example 1-1)
<Positive electrode>
As the positive electrode active material, a transition metal-containing composite oxide represented by the composition formula Li 1.05 Ni 1/3 Co 1/3 Mn 1/3 O 2 synthesized by the following method was used.

NiSO4水溶液に、Co及びMnの各硫酸塩が所定比率で加えられ、飽和水溶液が調製された。この飽和水溶液が低速で撹拌されながら水酸化ナトリウムを溶解したアルカリ溶液が滴下されて、三元系の水酸化物Ni1/3Co1/3Mn1/3(OH)2の沈殿が共沈法により得られた。この沈殿物が、ろ過、水洗され、空気中80℃で乾燥された。得られた水酸化物の平均粒径は、約10μmであった。 Co and Mn sulfates were added to the NiSO 4 aqueous solution at a predetermined ratio to prepare a saturated aqueous solution. While this saturated aqueous solution is stirred at a low speed, an alkaline solution in which sodium hydroxide is dissolved is added dropwise to coprecipitate the precipitation of the ternary hydroxide Ni 1/3 Co 1/3 Mn 1/3 (OH) 2. Obtained by law. This precipitate was filtered, washed with water, and dried at 80 ° C. in air. The average particle diameter of the obtained hydroxide was about 10 μm.

次に、上記で得られた水酸化物が大気中380℃で10時間熱処理(以下、一次焼成と記載)され、三元系の酸化物Ni1/3Co1/3Mn1/3Oが得られた。得られた酸化物は粉末X線回折により単一相であることが確認された。 Next, the hydroxide obtained above was heat-treated in the atmosphere at 380 ° C. for 10 hours (hereinafter referred to as primary firing), and the ternary oxide Ni 1/3 Co 1/3 Mn 1/3 O was formed. Obtained. The obtained oxide was confirmed to be a single phase by powder X-ray diffraction.

上記で得られた酸化物に、Ni、Co、Mnのモル数の和とLiのモル数との比が1.00:1.05になるように水酸化リチウム・1水和物が加えられ、乾燥空気中1000℃で10時間熱処理(以下、二次焼成と記載)されて、目的とするLi1.05Ni1/3Co1/3Mn1/32が得られた。得られた遷移金属含有複合酸化物は粉末X線回折により単一相の六方晶層状構造であるとともに、Co、及びMnの固溶が確認された。そして、粉砕、分級の処理を経て正極活物質粉末が調製された[平均粒径:8.5μm、BET法による比表面積(以下、単に比表面積という):0.15m2/g]。 Lithium hydroxide monohydrate was added to the oxide obtained above so that the ratio of the sum of the number of moles of Ni, Co, and Mn to the number of moles of Li was 1.00: 1.05. Then, it was heat-treated in dry air at 1000 ° C. for 10 hours (hereinafter referred to as secondary firing) to obtain the target Li 1.05 Ni 1/3 Co 1/3 Mn 1/3 O 2 . The obtained transition metal-containing composite oxide had a single-phase hexagonal layered structure by powder X-ray diffraction, and solid solution of Co and Mn was confirmed. A positive electrode active material powder was prepared through pulverization and classification treatment [average particle size: 8.5 μm, specific surface area by BET method (hereinafter simply referred to as specific surface area): 0.15 m 2 / g].

この正極活物質粉末は、走査型電子顕微鏡による観察から、0.1〜1.0μm程度の一次粒子が多数凝集して略球状乃至楕円体状の二次粒子を形成していることが確認された。   In this positive electrode active material powder, it was confirmed by observation with a scanning electron microscope that a large number of primary particles of about 0.1 to 1.0 μm aggregated to form secondary particles having a substantially spherical or ellipsoidal shape. It was.

上記で得られた正極活物質100質量部に、導電剤としてABが2.5質量部加えられた。この混合物に、N−メチルピロリドン(NMP)の溶剤に結着剤としてPVDFが溶解された溶液が混練されてペーストが調製された。なお、PVDFは活物質100質量部に対して2質量部となるように調整されて添加された。次いで、このペーストがアルミニウム箔の両面に塗着され、乾燥、圧延されて、活物質密度3.30g/cc、厚み0.152mm、合剤幅56.5mm、長さ520mmの正極が作製された。   2.5 parts by mass of AB as a conductive agent was added to 100 parts by mass of the positive electrode active material obtained above. The mixture was kneaded with a solution in which PVDF was dissolved as a binder in a solvent of N-methylpyrrolidone (NMP) to prepare a paste. In addition, PVDF was adjusted and added so that it might become 2 mass parts with respect to 100 mass parts of active materials. Next, this paste was applied to both sides of an aluminum foil, dried and rolled to produce a positive electrode having an active material density of 3.30 g / cc, a thickness of 0.152 mm, a mixture width of 56.5 mm, and a length of 520 mm. .

<負極>
負極活物質として人造黒鉛が用いられた。この人造黒鉛とSBRとCMC水溶液が質量比で、人造黒鉛:SBR:CMC=100:1:1の割合で混合されてペーストが調製された。このペーストが銅箔の両面に塗着され、乾燥、圧延されて、活物質密度1.60g/cc、厚み0.174mm、合剤幅58.5mm、長さ580mmの負極が作製された。なお負極の作製において、正極合剤層と負極合剤層とが対向する面の単位体積当り、正極活物質の質量に対する負極活物質の質量の比が0.61となり、充電終止電圧を4.4Vとした場合の負荷容量が300mAh/gとなるように負極活物質量が調整された。
<Negative electrode>
Artificial graphite was used as the negative electrode active material. The artificial graphite, SBR, and CMC aqueous solution were mixed at a mass ratio of artificial graphite: SBR: CMC = 100: 1: 1 to prepare a paste. This paste was applied to both sides of the copper foil, dried and rolled to produce a negative electrode having an active material density of 1.60 g / cc, a thickness of 0.174 mm, a mixture width of 58.5 mm and a length of 580 mm. In the production of the negative electrode, the ratio of the mass of the negative electrode active material to the mass of the positive electrode active material per unit volume of the surface where the positive electrode mixture layer and the negative electrode mixture layer face each other is 0.61, and the end-of-charge voltage is 4. The amount of the negative electrode active material was adjusted so that the load capacity at 4 V was 300 mAh / g.

<非水電解液>
非水電解液は、ECとDMCとEMCを20:60:20の体積比で混合した溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF6)を溶解し、さらに、添加剤(A)としてPRSを1質量%、添加剤(B)としてLiBF4を1質量%ずつ混合して調製された。
<Non-aqueous electrolyte>
The non-aqueous electrolyte is prepared by dissolving 1.0 mol / L lithium hexafluorophosphate (LiPF 6 ) in a solvent in which EC, DMC, and EMC are mixed at a volume ratio of 20:60:20. It was prepared by mixing 1% by mass of PRS as A) and 1% by mass of LiBF 4 as additive (B).

<非水電解質二次電池>
正極にはアルミニウム製の正極リード、負極にはニッケル製の負極リードが各合剤層の一部を剥離後それぞれ取り付けられた。この正極及び負極が、PPとPEとからなるセパレータを介して渦巻き状に捲回され、極板群が作製された。極板群の上部にはPP製の上部絶縁板が、極板群の下部にはPP製の下部絶縁板が取り付けられ、鉄にニッケルメッキを施した直径18mm、高さ65mmのケースに挿入された。上記で調製された非水電解液がケースに注液された後、開口部が封口板により封口されて、実施例1−1の非水電解質二次電池が作製された(充電終止電圧が4.4V時の理論容量:2350mAh)。
<Nonaqueous electrolyte secondary battery>
A positive electrode lead made of aluminum was attached to the positive electrode, and a negative electrode lead made of nickel was attached to the negative electrode after peeling a part of each mixture layer. The positive electrode and the negative electrode were spirally wound through a separator made of PP and PE to produce an electrode plate group. An upper insulating plate made of PP is attached to the upper portion of the electrode plate group, and a lower insulating plate made of PP is attached to the lower portion of the electrode plate group, and is inserted into a case having a diameter of 18 mm and a height of 65 mm obtained by nickel-plating iron. It was. After the non-aqueous electrolyte prepared above was poured into the case, the opening was sealed with a sealing plate to produce the non-aqueous electrolyte secondary battery of Example 1-1 (charge end voltage was 4). . Theoretical capacity at 4 V: 2350 mAh).

(実施例1−2)
実施例1−1において、添加剤(B)としてLiBF4の代わりにMAが用いられた以外は、実施例1−1と同様にして実施例1−2の非水電解質二次電池が作製された。
(Example 1-2)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-2 was fabricated in the same manner as Example 1-1 except that MA was used as the additive (B) instead of LiBF 4. It was.

(実施例1−3)
実施例1−1において、添加剤(B)としてLiBF4の代わりにVCが用いられた以外は、実施例1−1と同様にして実施例1−3の非水電解質二次電池が作製された。
(Example 1-3)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-3 was fabricated in the same manner as in Example 1-1 except that VC was used instead of LiBF 4 as the additive (B). It was.

(実施例1−4)
実施例1−1において、添加剤(B)としてLiBF4の代わりにVECが用いられた以外は、実施例1−1と同様にして実施例1−4の非水電解質二次電池が作製された。
(Example 1-4)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-4 was fabricated in the same manner as in Example 1-1 except that VEC was used instead of LiBF 4 as the additive (B). It was.

(実施例1−5)
実施例1−1において、添加剤(B)としてMAがさらに1質量%加えられた以外は、実施例1−1と同様にして実施例1−5の非水電解質二次電池が作製された。
(Example 1-5)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-5 was produced in the same manner as in Example 1-1, except that 1% by mass of MA was further added as the additive (B). .

(実施例1−6)
実施例1−1において、添加剤(A)としてPRSの代わりにESが用いられた以外は、実施例1−1と同様にして実施例1−6の非水電解質二次電池が作製された。
(Example 1-6)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-6 was produced in the same manner as Example 1-1 except that ES was used instead of PRS as the additive (A). .

(実施例1−7)
実施例1−1において、添加剤(A)としてPRSの代わりにPSが用いられた以外は、実施例1−1と同様にして実施例1−7の非水電解質二次電池が作製された。
(Example 1-7)
In Example 1-1, the nonaqueous electrolyte secondary battery of Example 1-7 was produced in the same manner as in Example 1-1 except that PS was used instead of PRS as the additive (A). .

(比較例1)
実施例1−1において、添加剤(A)としてPRSが2質量%用いられ、添加剤(B)が用いられなかった以外は、実施例1−1と同様にして比較例1の非水電解質二次電池が作製された。
(Comparative Example 1)
In Example 1-1, the nonaqueous electrolyte of Comparative Example 1 was the same as Example 1-1 except that 2 mass% of PRS was used as the additive (A) and the additive (B) was not used. A secondary battery was produced.

(比較例2)
実施例1−1において、添加剤(B)としてLiBF4が2質量%用いられ、添加剤(A)が用いられなかった以外は、実施例1−1と同様にして比較例2の非水電解質二次電池が作製された。
(Comparative Example 2)
In Example 1-1, 2% by mass of LiBF 4 was used as the additive (B), and the non-aqueous solution of Comparative Example 2 was used in the same manner as in Example 1-1 except that the additive (A) was not used. An electrolyte secondary battery was produced.

<初期充放電>
上記の各非水電解質二次電池は、予備充放電、エージング、及び高電圧充電の各工程からなる初期充放電が行われた。予備充放電工程では、各非水電解質二次電池は、20℃環境下、480mAの定電流で4.1Vの予備充電終止電圧まで充電し、480mAの定電流で3.0Vの予備放電終止電圧まで放電する充放電サイクルが3回行なわれた。その後、エージング工程では、各非水電解質二次電池は、20℃環境下、480mAの定電流で4.1Vまで充電され、60℃環境下にて2日間放置された後、20℃環境下、480mAの定電流で3.0Vまで放電された。そして、高電圧充電工程では、各非水電解質二次電池は、20℃環境下、1680mAの定電流で4.4Vまで充電し、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電した後、480mAの定電流で3.0Vまで放電する充放電サイクルが2回行なわれた。
<Initial charge / discharge>
Each non-aqueous electrolyte secondary battery described above was subjected to initial charging / discharging consisting of preliminary charging / discharging, aging, and high-voltage charging. In the precharge / discharge process, each non-aqueous electrolyte secondary battery is charged to a precharge end voltage of 4.1 V at a constant current of 480 mA in a 20 ° C. environment, and a predischarge end voltage of 3.0 V at a constant current of 480 mA. The charge / discharge cycle was discharged three times. Thereafter, in the aging process, each non-aqueous electrolyte secondary battery is charged to 4.1 V at a constant current of 480 mA in a 20 ° C. environment, left in a 60 ° C. environment for 2 days, and then in a 20 ° C. environment. The battery was discharged to 3.0 V at a constant current of 480 mA. In the high voltage charging process, each non-aqueous electrolyte secondary battery is charged to 4.4 V at a constant current of 1680 mA in a 20 ° C. environment, and at a constant voltage of 4.4 V until the charging current is further reduced to 120 mA. After charging, a charge / discharge cycle of discharging to 3.0 V at a constant current of 480 mA was performed twice.

(実施例1−8)
上記初期充放電において、実施例1−1で作製された非水電解質二次電池を用いて、予備充放電及びエージングを行ない、高電圧充電の充放電サイクルを1回だけ行なった以外は、実施例1−1と同様にして実施例1−8の非水電解質二次電池が調製された。
(Example 1-8)
In the initial charge / discharge, the non-aqueous electrolyte secondary battery produced in Example 1-1 was used, except that preliminary charge / discharge and aging were performed, and the high-voltage charge / discharge cycle was performed only once. A nonaqueous electrolyte secondary battery of Example 1-8 was prepared in the same manner as Example 1-1.

(実施例1−9)
上記初期充放電において、実施例1−1で作製された非水電解質二次電池を用いて、予備充放電を行なわず、エージング及び高電圧充電を行なった以外は、実施例1−1と同様にして実施例1−9の非水電解質二次電池が調製された。
(Example 1-9)
In the initial charge / discharge, the same procedure as in Example 1-1 was performed, except that the nonaqueous electrolyte secondary battery produced in Example 1-1 was used, and aging and high-voltage charge were performed without performing preliminary charge / discharge. Thus, the nonaqueous electrolyte secondary battery of Example 1-9 was prepared.

(実施例1−10)
上記初期充放電において、実施例1−1で作製された非水電解質二次電池を用いて、予備充放電及びエージングを行ない、高電圧充電を行なわなかった以外は、実施例1−1と同様にして実施例1−10の非水電解質二次電池が調製された。
(Example 1-10)
In the initial charge / discharge, the same procedure as in Example 1-1 was performed except that the non-aqueous electrolyte secondary battery produced in Example 1-1 was used for preliminary charge / discharge and aging, and high voltage charge was not performed. Thus, the nonaqueous electrolyte secondary battery of Example 1-10 was prepared.

上記の各非水電解質二次電池は、以下に示す試験が行なわれた。表1は、その結果を示す。   Each nonaqueous electrolyte secondary battery was tested as follows. Table 1 shows the results.

(放電レート試験)
各非水電解質二次電池が、20℃環境下、1680mAの定電流で4.4Vまで充電され、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電された後、4800mAの定電流で3.0Vまで放電が行なわれた。このときの放電容量の高電圧充電工程における2サイクル目の充電後の放電容量に対する比率が、放電レート特性として評価された。なお、実施例1−8については、高電圧充電工程における1サイクル目の充電後の放電容量が基準とされた。また、実施例1−10については、実施例1−1の高電圧充電工程における2サイクル目の充電後の放電容量が基準とされた。
(Discharge rate test)
Each non-aqueous electrolyte secondary battery is charged to 4.4 V at a constant current of 1680 mA in a 20 ° C. environment, and further charged to a constant voltage of 4.4 V until the charging current is reduced to 120 mA. Discharging was performed to 3.0V with current. The ratio of the discharge capacity at this time to the discharge capacity after the second charge in the high-voltage charging step was evaluated as a discharge rate characteristic. In addition, about Example 1-8, the discharge capacity after the 1st charge in a high voltage charging process was made into the reference | standard. Moreover, about Example 1-10, the discharge capacity after the 2nd cycle charge in the high voltage charging process of Example 1-1 was used as a reference.

(高温保存試験)
各非水電解質二次電池が、20℃環境下、1680mAの定電流で4.4Vまで充電され、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電された後、充電状態のまま60℃環境下、20日間保存された。保存後の各電池を、480mAの定電流で3.0Vまで放電を行った後、20℃環境下、1680mAの定電流で4.4Vまで充電し、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電した後、480mAの定電流で3.0Vまで放電された。このときの放電容量の高電圧充電工程における2サイクル目の放電容量に対する比率が、高温保存特性として評価された。なお、実施例1−8については、高電圧充電工程における1サイクル目の充電後の放電容量が基準とされた。また、実施例1−10については、実施例1−1の高電圧充電工程における2サイクル目の充電後の放電容量が基準とされた。
(High temperature storage test)
Each non-aqueous electrolyte secondary battery is charged to 4.4 V at a constant current of 1680 mA in a 20 ° C. environment, and further charged to a constant voltage of 4.4 V until the charging current is reduced to 120 mA. It was stored for 20 days in an environment of 60 ° C. Each battery after storage was discharged to 3.0 V at a constant current of 480 mA, then charged to 4.4 V at a constant current of 1680 mA in a 20 ° C. environment, and further until the charging current decreased to 120 mA. After charging with a constant voltage of 4V, the battery was discharged to 3.0V with a constant current of 480 mA. The ratio of the discharge capacity at this time to the discharge capacity at the second cycle in the high voltage charging step was evaluated as a high temperature storage characteristic. In addition, about Example 1-8, the discharge capacity after the 1st charge in a high voltage charging process was made into the reference | standard. Moreover, about Example 1-10, the discharge capacity after the 2nd cycle charge in the high voltage charging process of Example 1-1 was used as a reference.

Figure 0005063948
Figure 0005063948

表1の結果から明らかなように、高電圧仕様の正極活物質を用いて4.4Vの高い充電終止電圧が使用された場合でも、添加剤(A)及び添加剤(B)の双方が添加された非水電解液を用いた非水電解質二次電池は、放電レート特性及び高温保存特性の両方に優れることがわかる。これに対して、添加剤(A)あるいは添加剤(B)が単独で添加された非水電解液を用いた比較例1あるいは2の非水電解質二次電池は、高電圧仕様の正極活物質を用いているため放電レート特性は実施例のそれと同等であるが、高温保存特性に劣ることがわかる。これは、添加剤(A)あるいは添加剤(B)が非水電解液中に単独で添加されているため、充電終止電圧が4.4Vの高電圧に設定された際に正極からの金属イオンの溶出を抑制するための被膜が正極表面に十分に形成されず、金属イオンが負極表面において析出する反応を抑制できなかったことが原因と考えられる。   As is apparent from the results in Table 1, both additive (A) and additive (B) are added even when a high end-of-charge voltage of 4.4 V is used using a positive electrode active material with a high voltage specification. It can be seen that the non-aqueous electrolyte secondary battery using the prepared non-aqueous electrolyte is excellent in both discharge rate characteristics and high-temperature storage characteristics. On the other hand, the non-aqueous electrolyte secondary battery of Comparative Example 1 or 2 using the non-aqueous electrolyte to which the additive (A) or the additive (B) is added alone is a high-voltage positive electrode active material. Since the discharge rate characteristic is the same as that of the example, it can be seen that the high temperature storage characteristic is inferior. This is because the additive (A) or additive (B) is added alone to the non-aqueous electrolyte, so that the metal ions from the positive electrode when the end-of-charge voltage is set to a high voltage of 4.4V. This is probably because the film for suppressing the elution of selenium was not sufficiently formed on the surface of the positive electrode, and the reaction of depositing metal ions on the surface of the negative electrode could not be suppressed.

また、実施例1−1〜1−8の非水電解質二次電池は、組み立て工程後に予備充放電工程と高電圧充電工程の両方が行なわれているため、いずれか一方のみが行なわれた実施例1−9〜1−10の非水電解質二次電池に比べて、高温保存特性に優れることがわかる。   In addition, in the nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-8, both the preliminary charge / discharge step and the high-voltage charge step are performed after the assembly step, and therefore only one of them is performed. It turns out that it is excellent in a high temperature storage characteristic compared with the nonaqueous electrolyte secondary battery of Examples 1-9 to 1-10.

以上の結果から、高い充電終止電圧を利用するために、正極活物質として高電圧仕様の遷移金属含有複合酸化物を用い、ES、PRS、及びPSからなる群から選ばれる添加剤(A)と、MA、VC、VEC、及びLiBF4からなる群から選ばれる添加剤(B)とを少なくとも1種類ずつ含む非水電解液を用いることにより、放電レート特性と高温保存特性に優れる非水電解質二次電池が得られることがわかる。そして、上記非水電解質二次電池は、電池の組み立て後に、予備充放電及び高電圧充電が行なわれることにより、放電レート特性と高温保存特性とを高いレベルで両立できることがわかる。 From the above results, in order to use a high end-of-charge voltage, an additive (A) selected from the group consisting of ES, PRS, and PS using a high-voltage transition metal-containing composite oxide as a positive electrode active material and , MA, VC, VEC, and LiBF 4, by using a non-aqueous electrolyte solution containing at least one additive (B) selected from the group consisting of LiBF 4, a non-aqueous electrolyte having excellent discharge rate characteristics and high-temperature storage characteristics It turns out that a secondary battery is obtained. And it turns out that the said nonaqueous electrolyte secondary battery can make a discharge rate characteristic and a high temperature storage characteristic compatible at a high level by performing preliminary charging / discharging and high voltage charging after the assembly of a battery.

[実施例2]
次に、添加剤(A)及び添加剤(B)が添加された非水電解液を有する非水電解質二次電池において、負荷容量と電池特性との関係が検討された。
[Example 2]
Next, in the non-aqueous electrolyte secondary battery having the non-aqueous electrolyte solution to which the additive (A) and the additive (B) were added, the relationship between the load capacity and the battery characteristics was examined.

(実施例2−1)
実施例1−1において、正極の長さが470mmに調整された。また、負荷容量が250mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.214mm、負極の長さ:530mm)。上記以外は、実施例1−1と同様にして実施例2−1の非水電解質二次電池が作製された。
(Example 2-1)
In Example 1-1, the length of the positive electrode was adjusted to 470 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity was 250 mAh / g (negative electrode thickness: 0.214 mm, negative electrode length: 530 mm). A nonaqueous electrolyte secondary battery of Example 2-1 was produced in the same manner as Example 1-1 except for the above.

(実施例2−2)
実施例1−1において、正極の長さが560mmに調整された。また、負荷容量が360mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.151mm、負極の長さ:620mm)。上記以外は、実施例1−1と同様にして実施例2−2の非水電解質二次電池が作製された。
(Example 2-2)
In Example 1-1, the length of the positive electrode was adjusted to 560 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity was 360 mAh / g (negative electrode thickness: 0.151 mm, negative electrode length: 620 mm). A nonaqueous electrolyte secondary battery of Example 2-2 was produced in the same manner as Example 1-1 except for the above.

参考例2−3)
実施例1−1において、正極の長さが460mmに調整された。また、負荷容量が240mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.222mm、負極の長さ:520mm)。上記以外は、実施例1−1と同様にして参考例2−3の非水電解質二次電池が作製された。
( Reference Example 2-3)
In Example 1-1, the length of the positive electrode was adjusted to 460 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity was 240 mAh / g (negative electrode thickness: 0.222 mm, negative electrode length: 520 mm). Except for the above, a nonaqueous electrolyte secondary battery of Reference Example 2-3 was produced in the same manner as Example 1-1.

参考例2−4)
実施例1−1において、正極の長さが570mmに調整された。また、負荷容量が370mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.148mm、負極の長さ630mm)。上記以外は、実施例1−1と同様にして参考例2−4の非水電解質二次電池が作製された。
( Reference Example 2-4)
In Example 1-1, the length of the positive electrode was adjusted to 570 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity was 370 mAh / g (negative electrode thickness: 0.148 mm, negative electrode length 630 mm). A nonaqueous electrolyte secondary battery of Reference Example 2-4 was produced in the same manner as Example 1-1 except for the above.

上記の各非水電解質二次電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行なわれた。表2は、その結果を示す。   About each said nonaqueous electrolyte secondary battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Table 2 shows the results.

Figure 0005063948
Figure 0005063948

表2に示されるように、いずれの実施例の非水電解質二次電池も放電レート特性及び高温保存特性の両特性に優れている。また、これらの実施例の中で、負荷容量が250mAh/g未満の参考例2−3の非水電解質二次電池は、極板長の短縮に伴って、電極単位面積当たりの移動するリチウムイオン量が増加するため分極特性が低下し、他の実施例の非水電解質二次電池に比べて放電レート特性が低下する傾向にある。また、極板面積に対する電解液量の比が増加するため、高温保存特性も低下する傾向にある。一方、負荷容量が370mAh/gを超える参考例2−4の非水電解質二次電池は、充電時に黒鉛の層間に入りきれないリチウムが電解液と反応することによる不活性化が生じて、高温保存特性が低下する傾向にある。以上の結果から、炭素材料を負極活物質として用いた場合、負荷容量は250〜360mAh/gの範囲が好ましいことがわかる。 As shown in Table 2, the nonaqueous electrolyte secondary battery of any of the examples is excellent in both discharge rate characteristics and high-temperature storage characteristics. Among these examples, the nonaqueous electrolyte secondary battery of Reference Example 2-3 having a load capacity of less than 250 mAh / g is a lithium ion that moves per unit electrode area as the electrode plate length decreases. Since the amount increases, the polarization characteristics deteriorate, and the discharge rate characteristics tend to decrease as compared with the nonaqueous electrolyte secondary batteries of other examples. Moreover, since the ratio of the amount of the electrolyte solution to the electrode plate area increases, the high-temperature storage characteristics tend to decrease. On the other hand, the non-aqueous electrolyte secondary battery of Reference Example 2-4 having a load capacity exceeding 370 mAh / g is inactivated due to the reaction of lithium that cannot enter the graphite layer during charging with the electrolyte solution, resulting in a high temperature. Storage characteristics tend to be reduced. From the above results, it is understood that when the carbon material is used as the negative electrode active material, the load capacity is preferably in the range of 250 to 360 mAh / g.

[実施例3]
次に、添加剤(A)及び添加剤(B)を含有する非水電解液を用いた非水電解質二次電池において、充電終止電圧と電池特性の関係が検討された。
[Example 3]
Next, in the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte containing the additive (A) and the additive (B), the relationship between the end-of-charge voltage and the battery characteristics was examined.

(実施例3−1)
実施例1−1において、正極の長さが540mmに調整された。また、充電終止電圧を4.3Vとした場合の負荷容量が300mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.164mm、負極の長さ:600mm)。上記以外は、実施例1−1と同様にして実施例3−1の非水電解質二次電池が作製された。
(Example 3-1)
In Example 1-1, the length of the positive electrode was adjusted to 540 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity when the end-of-charge voltage was 4.3 V was 300 mAh / g (the thickness of the negative electrode: 0 164 mm, negative electrode length: 600 mm). A nonaqueous electrolyte secondary battery of Example 3-1 was produced in the same manner as Example 1-1 except for the above.

(実施例3−2)
実施例1−1において、正極の長さが510mmに調整された。また、充電終止電圧を4.5Vとした場合の負荷容量が300mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.180mm、負極の長さ:570mm)。上記以外は、実施例1−1と同様にして実施例3−2の非水電解質二次電池が作製された。
(Example 3-2)
In Example 1-1, the length of the positive electrode was adjusted to 510 mm. Moreover, the mass per unit area of the negative electrode active material applied to both sides of the copper foil was adjusted so that the load capacity when the end-of-charge voltage was 4.5 V was 300 mAh / g (negative electrode thickness: 0). 180 mm, negative electrode length: 570 mm). A nonaqueous electrolyte secondary battery of Example 3-2 was produced in the same manner as Example 1-1 except for the above.

(比較例3)
実施例1−1において、正極の長さが560mmに調整された。また、充電終止電圧を4.2Vとした場合の負荷容量が300mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.152mm、負極の長さ:620mm)。上記以外は、実施例1−1と同様にして比較例3の非水電解質二次電池が作製された。
(Comparative Example 3)
In Example 1-1, the length of the positive electrode was adjusted to 560 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity when the end-of-charge voltage was 4.2 V was 300 mAh / g (the thickness of the negative electrode: 0 152 mm, negative electrode length: 620 mm). A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as Example 1-1 except for the above.

(比較例4)
実施例1−1において、正極の長さが500mmに調整された。また、充電終止電圧を4.6Vとした場合の負荷容量が300mAh/gとなるように銅箔の両面に塗着する負極活物質の単位面積当たりの質量が調整された(負極の厚み:0.185mm、負極の長さ:560mm)。上記以外は、実施例1−1と同様にして比較例4の非水電解質二次電池が作製された。
(Comparative Example 4)
In Example 1-1, the length of the positive electrode was adjusted to 500 mm. Moreover, the mass per unit area of the negative electrode active material applied to both surfaces of the copper foil was adjusted so that the load capacity when the end-of-charge voltage was 4.6 V was 300 mAh / g (the thickness of the negative electrode: 0 185 mm, negative electrode length: 560 mm). A nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as Example 1-1 except for the above.

(比較例5及び9)
比較例3において、電解液組成(添加物を含む)としてそれぞれ比較例1及び2と同じ電解液組成が用いられた以外は、比較例3と同様にして比較例5及び9の非水電解質二次電池が作製された。
(Comparative Examples 5 and 9)
In Comparative Example 3, the non-aqueous electrolytes of Comparative Examples 5 and 9 were the same as Comparative Example 3 except that the same electrolytic solution composition as that of Comparative Examples 1 and 2 was used as the electrolytic solution composition (including additives). A secondary battery was produced.

(比較例6及び10)
実施例3−1において、電解液組成(添加物を含む)としてそれぞれ比較例1及び2と同じ電解液組成が用いられた以外は、実施例3−1と同様にして比較例6及び10の非水電解質二次電池が作製された。
(Comparative Examples 6 and 10)
In Example 3-1, the same electrolytic solution composition as in Comparative Examples 1 and 2 was used as the electrolytic solution composition (including additives), respectively. A non-aqueous electrolyte secondary battery was produced.

(比較例7及び11)
実施例3−2において、電解液組成(添加物を含む)としてそれぞれ比較例1及び2と同じ電解液組成が用いられた以外は、実施例3−2と同様にして比較例7及び11の非水電解質二次電池が作製された。
(Comparative Examples 7 and 11)
In Example 3-2, the same electrolyte solution composition as in Comparative Examples 1 and 2 was used as the electrolyte solution composition (including additives), respectively. A non-aqueous electrolyte secondary battery was produced.

(比較例8及び12)
比較例4において、電解液組成(添加物を含む)としてそれぞれ比較例1及び2と同じ電解液組成が用いられた以外は、比較例4と同様にして比較例8及び12の非水電解質二次電池が作製された。
(Comparative Examples 8 and 12)
In Comparative Example 4, the non-aqueous electrolytes 2 of Comparative Examples 8 and 12 were the same as Comparative Example 4 except that the same electrolytic solution composition as that of Comparative Examples 1 and 2 was used as the electrolytic solution composition (including additives). A secondary battery was produced.

上記の各非水電解質二次電池について、まず実施例1の初期充放電と同条件の予備充放電工程とエージング工程が行なわれた。次に、高電圧充電工程の際に充電電圧の上限が表3に示す各充電終止電圧に設定された以外は、実施例1と同条件で2サイクル充放電が行われた。この2サイクル目の放電容量が初期容量とされた。次に、上記の各非水電解質二次電池について、実施例1と同様にして放電レート試験及び高温保存試験が行なわれた。この際、各試験において、充電終止電圧及び高温保存時の充電電圧は表3に示す充電終止電圧に設定された。表3は、これらの結果を示す。   About each said nonaqueous electrolyte secondary battery, the preliminary | backup charge / discharge process and the aging process of the same conditions as the initial stage charge / discharge of Example 1 were first performed. Next, two-cycle charge / discharge was performed under the same conditions as in Example 1 except that the upper limit of the charge voltage was set to each end-of-charge voltage shown in Table 3 during the high-voltage charging step. The discharge capacity at the second cycle was set as the initial capacity. Next, a discharge rate test and a high-temperature storage test were performed on each of the nonaqueous electrolyte secondary batteries in the same manner as in Example 1. Under the present circumstances, in each test, the charge end voltage and the charge voltage at the time of high temperature storage were set to the charge end voltage shown in Table 3. Table 3 shows these results.

Figure 0005063948
Figure 0005063948

表3から明らかなように、実施例1−1、3−1及び3−2の非水電解質二次電池は、高電圧充電工程及び放電レート試験において、4.3〜4.5Vの範囲の充電終止電圧が利用されているため、高電圧仕様の正極活物質の特性を十分に発揮させることができ、高い初期容量が得られることがわかる。そして、上記充電終止電圧の範囲は、添加剤(B)が負極表面に被膜を形成し、添加剤(A)が正極表面に被膜を形成する電圧の範囲であるため、4.3〜4.5Vの高電圧の充電状態の電池が高温で保存されても、高温保存特性に優れることがわかる。従って、上記充電終止電圧が利用されることにより、初期容量、放電レート特性、及び高温保存特性のバランスの取れた非水電解質二次電池が得られることがわかる。   As is apparent from Table 3, the nonaqueous electrolyte secondary batteries of Examples 1-1, 3-1 and 3-2 were in the range of 4.3 to 4.5 V in the high voltage charging step and the discharge rate test. Since the end-of-charge voltage is used, it can be seen that the characteristics of the high-voltage specification positive electrode active material can be sufficiently exhibited, and a high initial capacity can be obtained. The charge end voltage range is a voltage range in which the additive (B) forms a film on the negative electrode surface and the additive (A) forms a film on the positive electrode surface. It can be seen that even when a battery with a high voltage of 5 V is stored at a high temperature, it has excellent high-temperature storage characteristics. Therefore, it can be seen that a nonaqueous electrolyte secondary battery in which the initial capacity, the discharge rate characteristic, and the high-temperature storage characteristic are balanced can be obtained by using the charge end voltage.

これに対して、充電終止電圧が4.5Vを超える比較例4の非水電解質二次電池は、添加剤(A)と添加剤(B)の両方が添加された非水電解液が用いられているにも拘らず、高温保存特性の低下が見られた。充電終止電圧が4.5Vより高いと、高電圧仕様の正極活物質では金属イオンの溶出が顕著となり、添加剤(A)及び添加剤(B)だけではインピーダンスの上昇を抑制できなかったため、保存特性が低下したと考えられる。また、充電終止電圧が4.3V未満の比較例3の非水電解質二次電池は、低い充電終止電圧が利用されたため高温保存特性の低下は抑えられているが、高電圧の正極活物質の有効利用が図られず、初期容量が顕著に低下する。さらに、放電レート特性も添加剤(A)あるいは添加剤(B)が単独で添加された非水電解液が用いられた比較例5及び9のそれより低下している。これは、充電終止電圧が低電圧であるため、添加剤(A)が正極に十分に被膜を形成することができず、電池内部のインピーダンスが増加したためと考えられる。以上の結果から、4.3〜4.5Vの範囲の充電終止電圧が利用された場合に、高容量で、放電レート特性及び高温保存特性に優れた非水電解質二次電池が得られることがわかる。また、高電圧充電工程において、充電電圧は4.3〜4.5Vの範囲が好ましいことがわかる。   On the other hand, the non-aqueous electrolyte secondary battery of Comparative Example 4 in which the end-of-charge voltage exceeds 4.5 V uses a non-aqueous electrolyte solution to which both additive (A) and additive (B) are added. In spite of this, a decrease in high-temperature storage characteristics was observed. When the end-of-charge voltage is higher than 4.5 V, the elution of metal ions becomes significant in the high-voltage positive electrode active material, and the increase in impedance cannot be suppressed only by the additive (A) and additive (B). It is considered that the characteristics have deteriorated. In addition, the nonaqueous electrolyte secondary battery of Comparative Example 3 having a charge end voltage of less than 4.3 V is suppressed from being deteriorated in high-temperature storage characteristics because a low charge end voltage is used. Effective utilization is not achieved, and the initial capacity is significantly reduced. Furthermore, the discharge rate characteristics are also lower than those of Comparative Examples 5 and 9 in which the nonaqueous electrolyte solution to which the additive (A) or the additive (B) was added alone was used. This is presumably because the charge termination voltage was low, so that the additive (A) could not sufficiently form a film on the positive electrode and the impedance inside the battery increased. From the above results, when a charge end voltage in the range of 4.3 to 4.5 V is used, a non-aqueous electrolyte secondary battery having a high capacity and excellent discharge rate characteristics and high temperature storage characteristics can be obtained. Recognize. Moreover, it turns out that the range of 4.3-4.5V is preferable in a high voltage charging process.

[実施例4]
次に、添加剤(A)及び添加剤(B)を含有する非水電解液を用いた非水電解質二次電池において、添加剤(A)及び添加剤(B)の添加量と電池特性の関係が検討された。
[Example 4]
Next, in the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte containing the additive (A) and the additive (B), the amount of the additive (A) and the additive (B) added and the battery characteristics The relationship was examined.

(実施例4−1〜4−7)
実施例1−1において、添加剤(A)及び添加剤(B)をそれぞれ表4に示す添加量で混合した非水電解液が用いられた以外は、実施例1−1と同様にして実施例4−1〜4−7の非水電解質二次電池が作製された。
(Examples 4-1 to 4-7)
In Example 1-1, the same procedure as in Example 1-1 was performed, except that a non-aqueous electrolyte in which additive (A) and additive (B) were mixed in the addition amounts shown in Table 4 was used. The nonaqueous electrolyte secondary batteries of Examples 4-1 to 4-7 were produced.

上記の各非水電解質二次電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行なわれた。表4は、その結果を示す。   About each said nonaqueous electrolyte secondary battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Table 4 shows the results.

Figure 0005063948
Figure 0005063948

表4に示されるように、いずれの実施例の非水電解質二次電池も放電レート特性及び高温保存特性の両特性に優れている。また、これらの実施例の中で、実施例4−1の非水電解質二次電池は、非水電解液中の添加剤(A)と添加剤(B)との総量が0.1質量%未満であるため高温保存特性が低下する傾向にある。一方、実施例4−5の非水電解質二次電池は、非水電解液中の添加剤(A)と添加剤(B)との総量が8質量%を超えるため放電レート特性が低下する傾向にある。以上の結果から、非水電解液中の添加剤(A)と添加剤(B)の総量は、0.1〜10質量%が好ましく、0.1〜8質量%がより好ましく、0.1〜4質量%がさらに好ましいことがわかる。   As shown in Table 4, the nonaqueous electrolyte secondary battery of any of the examples is excellent in both discharge rate characteristics and high-temperature storage characteristics. Among these examples, the nonaqueous electrolyte secondary battery of Example 4-1 has a total amount of the additive (A) and the additive (B) in the nonaqueous electrolyte of 0.1% by mass. Therefore, the high-temperature storage characteristics tend to decrease. On the other hand, in the nonaqueous electrolyte secondary battery of Example 4-5, the total amount of the additive (A) and the additive (B) in the nonaqueous electrolyte solution exceeds 8% by mass, so that the discharge rate characteristics tend to decrease. It is in. From the above results, the total amount of the additive (A) and the additive (B) in the nonaqueous electrolytic solution is preferably 0.1 to 10% by mass, more preferably 0.1 to 8% by mass, It can be seen that ˜4 mass% is more preferable.

[実施例5]
次に、添加剤(A)及び添加剤(B)を含有する非水電解液を用いた非水電解質二次電池において、正極活物質の比表面積と電池特性の関係が検討された。
[Example 5]
Next, in a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing the additive (A) and the additive (B), the relationship between the specific surface area of the positive electrode active material and the battery characteristics was examined.

(実施例5−1〜5−3)
実施例1−1において、正極活物質製造プロセスの一次及び二次焼成温度として表5に示す各温度が使用して合成された、0.12、1.50、2.00m2/gの各比表面積を有するLi1.05Ni1/3Co1/3Mn1/32が正極活物質として使用された以外は、実施例1−1と同様にして実施例5−1〜5−3の非水電解質二次電池が作製された。
(Examples 5-1 to 5-3)
In Example 1-1, each of 0.12, 1.50, and 2.00 m 2 / g synthesized using the temperatures shown in Table 5 as the primary and secondary firing temperatures of the positive electrode active material manufacturing process. Except that Li 1.05 Ni 1/3 Co 1/3 Mn 1/3 O 2 having a specific surface area was used as the positive electrode active material, the same as in Example 1-1, Examples 5-1 to 5-3 A non-aqueous electrolyte secondary battery was produced.

上記の各非水電解質二次電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行なわれた。表5は、その結果を示す。   About each said nonaqueous electrolyte secondary battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Table 5 shows the results.

Figure 0005063948
Figure 0005063948

表5に示されるように、いずれの実施例の非水電解質二次電池も放電レート特性及び高温保存特性の両特性に優れている。また、これらの実施例の中で、1.50m2/gを超える比表面積を有する正極活物質が用いられた実施例5−3の非水電解質二次電池は、活物質の表面積(反応面積)に比例して金属イオンの溶出量が増加するため高温保存特性が低下する傾向にある。一方、0.15m2/g未満の比表面積を有する正極活物質が用いられた実施例5−1の非水電解質二次電池は、活物質の表面積に比例して電池反応が鈍くなるため、放電レート特性が低下する傾向にある。以上の結果から、正極活物質の比表面積は、0.15〜1.50m2/gが好ましいことがわかる。 As shown in Table 5, the nonaqueous electrolyte secondary battery of any of the examples is excellent in both discharge rate characteristics and high-temperature storage characteristics. In addition, among these examples, the nonaqueous electrolyte secondary battery of Example 5-3 in which the positive electrode active material having a specific surface area exceeding 1.50 m 2 / g was used, the surface area of the active material (reaction area) ), The elution amount of metal ions increases, and the high-temperature storage characteristics tend to decrease. On the other hand, since the nonaqueous electrolyte secondary battery of Example 5-1 in which the positive electrode active material having a specific surface area of less than 0.15 m 2 / g was used, the battery reaction becomes dull in proportion to the surface area of the active material. Discharge rate characteristics tend to be reduced. From the above results, it can be seen that the specific surface area of the positive electrode active material is preferably 0.15 to 1.50 m 2 / g.

[実施例6]
次に、添加剤(A)及び添加剤(B)を含有する非水電解液を用いた非水電解質二次電池において、正極活物質の組成と電池特性の関係が検討された。
[Example 6]
Next, in the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte containing the additive (A) and the additive (B), the relationship between the composition of the positive electrode active material and the battery characteristics was examined.

(実施例6−1〜6−4)
実施例1−1の正極活物質の製造プロセスにおいて、三元系の酸化物Ni1/3Co1/3Mn1/3Oに対して、Ni、Co、及びMnのモル数の和とLiのモル数との比がそれぞれ、1.00:0.93、1.00:0.95、1.00:1.12、1.00:1.15となるように水酸化リチウム・1水和物が加えられた以外は、実施例1−1と同様にして正極活物質が合成された。これらの正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−1〜6−4の非水電解質二次電池が作製された。なお、正極活物質の比表面積はそれぞれ、0.53m2/g(実施例6−1)、0.40m2/g(実施例6−2)、0.20m2/g(実施例6−3)、0.17m2/g(実施例6−4)であった。
(Examples 6-1 to 6-4)
In the manufacturing process of the positive electrode active material of Example 1-1, the total number of moles of Ni, Co, and Mn and Li with respect to the ternary oxide Ni 1/3 Co 1/3 Mn 1/3 O Lithium hydroxide and 1 water so that the ratios to the number of moles are 1.00: 0.93, 1.00: 0.95, 1.00: 1.12, and 1.00: 1.15, respectively. A positive electrode active material was synthesized in the same manner as in Example 1-1 except that the Japanese product was added. Except that these positive electrode active materials were used, non-aqueous electrolyte secondary batteries of Examples 6-1 to 6-4 were produced in the same manner as Example 1-1. Incidentally, each of the specific surface area of the cathode active material, 0.53 m 2 / g (Example 6-1), 0.40m 2 / g (Example 6-2), 0.20m 2 / g (Example 6 3) and 0.17 m 2 / g (Example 6-4).

(実施例6−5)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にMnの硫酸塩が所定比率で加えられ、飽和水溶液が調製された。この飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて二元系の水酸化物Ni0.67Mn0.33(OH)2が生成された。得られた水酸化物を原材料として正極活物質Li1.05Ni0.67Mn0.332(比表面積:0.42m2/g)が合成された。この正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−5の非水電解質二次電池が作製された。
(Example 6-5)
In the manufacturing process of the positive electrode active material of Example 1-1, a Mn sulfate was added to the NiSO 4 aqueous solution at a predetermined ratio to prepare a saturated aqueous solution. An alkaline solution in which sodium hydroxide was dissolved was dropped into the saturated aqueous solution to produce a binary hydroxide Ni 0.67 Mn 0.33 (OH) 2 . A positive electrode active material Li 1.05 Ni 0.67 Mn 0.33 O 2 (specific surface area: 0.42 m 2 / g) was synthesized using the obtained hydroxide as a raw material. A nonaqueous electrolyte secondary battery of Example 6-5 was produced in the same manner as Example 1-1 except that this positive electrode active material was used.

(実施例6−6〜6−8)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCo及びMnの各硫酸塩が3種類の異なる混合比率で加えられ、各飽和水溶液が調製された。この各飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて三元系の水酸化物Ni0.67-vCoMn0.33(OH)2(v=0.01,0.35,0.40)が生成された。得られた各水酸化物を原材料として正極活物質Li1.05Ni0.67-vCoMn0.332(v=0.01,0.35,0.40)が合成された。これらの正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−6〜6−8の各非水電解質二次電池が作製された。なお、正極活物質の比表面積はそれぞれ、0.30m2/g(実施例6−6)、0.30m2/g(実施例6−7)、0.32m2/g(実施例6−8)であった。
(Examples 6-6 to 6-8)
In the manufacturing process of the positive electrode active material of Example 1-1, each of the sulfuric acid salts of Co and Mn was added to the NiSO 4 aqueous solution at three different mixing ratios to prepare each saturated aqueous solution. An alkaline solution in which sodium hydroxide is dissolved is dropped into each saturated aqueous solution to form a ternary hydroxide Ni 0.67-v Co v Mn 0.33 (OH) 2 (v = 0.01, 0.35, 0.40). ) Was generated. Using the obtained hydroxides as raw materials, a positive electrode active material Li 1.05 Ni 0.67-v Co v Mn 0.33 O 2 (v = 0.01, 0.35, 0.40) was synthesized. Except for using these positive electrode active materials, non-aqueous electrolyte secondary batteries of Examples 6-6 to 6-8 were produced in the same manner as Example 1-1. The specific surface areas of the positive electrode active materials were 0.30 m 2 / g (Example 6-6), 0.30 m 2 / g (Example 6-7), and 0.32 m 2 / g (Example 6), respectively. 8).

(実施例6−9)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCoの硫酸塩が所定比率で加えられ、飽和水溶液が調製された。この飽和水溶液に、水酸化ナトリウムを溶解したアルカリ溶液が滴下されて二元系の水酸化物Ni0.67Co0.33(OH)2が生成された。得られた水酸化物を原材料として正極活物質Li1.05Ni0.67Co0.332(比表面積:0.57m2/g)が合成された。この正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−9の非水電解質二次電池が作製された。
(Example 6-9)
In the manufacturing process of the positive electrode active material of Example 1-1, a sulfuric acid salt of Co was added to the NiSO 4 aqueous solution at a predetermined ratio to prepare a saturated aqueous solution. To this saturated aqueous solution, an alkaline solution in which sodium hydroxide was dissolved was dropped to form a binary hydroxide Ni 0.67 Co 0.33 (OH) 2 . A positive electrode active material Li 1.05 Ni 0.67 Co 0.33 O 2 (specific surface area: 0.57 m 2 / g) was synthesized using the obtained hydroxide as a raw material. A nonaqueous electrolyte secondary battery of Example 6-9 was produced in the same manner as Example 1-1 except that this positive electrode active material was used.

(実施例6−10〜6−12)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCo及びMnの各硫酸塩が3種類の異なる混合比率で加えられ、各飽和水溶液が調製された。この各飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて三元系の水酸化物Ni0.67-wCo0.33Mn(OH)2(w=0.01,0.50,0.55)が生成された。得られた水酸化物を原材料として正極活物質Li1.05Ni0.67-wCo0.33Mn2(w=0.01,0.50,0.55)が合成された。これらの正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−10〜6−12の各非水電解質二次電池が作製された。なお、正極活物質の比表面積はそれぞれ、0.30m2/g(実施例6−10)、0.30m2/g(実施例6−11)、0.28m2/g(実施例6−12)であった。
(Examples 6-10 to 6-12)
In the manufacturing process of the positive electrode active material of Example 1-1, each of the sulfuric acid salts of Co and Mn was added to the NiSO 4 aqueous solution at three different mixing ratios to prepare each saturated aqueous solution. An alkaline solution in which sodium hydroxide is dissolved is dropped into each saturated aqueous solution to form a ternary hydroxide Ni 0.67-w Co 0.33 Mn w (OH) 2 (w = 0.01, 0.50, 0.55). ) Was generated. Using the obtained hydroxide as a raw material, a positive electrode active material Li 1.05 Ni 0.67-w Co 0.33 Mn w O 2 (w = 0.01, 0.50, 0.55) was synthesized. Except for using these positive electrode active materials, non-aqueous electrolyte secondary batteries of Examples 6-10 to 6-12 were produced in the same manner as Example 1-1. The specific surface areas of the positive electrode active materials were 0.30 m 2 / g (Example 6-10), 0.30 m 2 / g (Example 6-11), and 0.28 m 2 / g (Example 6), respectively. 12).

(実施例6−13)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCo及びAlの各硫酸塩が所定比率で加えられ、飽和水溶液が調製された。この飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて三元系の水酸化物Ni0.82Co0.15Al0.03(OH)2が生成された。得られた水酸化物を原材料として、大気中600℃で10時間熱処理を行って、酸化物Ni0.82Co0.15Al0.03Oが生成された。次に、得られた酸化物に、Ni、Co、Alのモル数の和とLiのモル数との比が1.00:1.01になるように水酸化リチウム・1水和物が加えられ、乾燥空気中800℃で10時間熱処理されて正極活物質Li1.01Ni0.82Co0.15Al0.032(比表面積:0.30m2/g)が合成された。この正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−13の非水電解質二次電池が作製された。
(Example 6-13)
In the manufacturing process of the positive electrode active material of Example 1-1, each of the sulfate salts of Co and Al was added to the NiSO 4 aqueous solution at a predetermined ratio to prepare a saturated aqueous solution. An alkaline solution in which sodium hydroxide was dissolved was dropped into the saturated aqueous solution to produce a ternary hydroxide Ni 0.82 Co 0.15 Al 0.03 (OH) 2 . The obtained hydroxide was used as a raw material, and heat treatment was performed at 600 ° C. for 10 hours in the atmosphere to produce oxide Ni 0.82 Co 0.15 Al 0.03 O. Next, lithium hydroxide monohydrate was added to the obtained oxide so that the ratio of the sum of the number of moles of Ni, Co, and Al to the number of moles of Li was 1.00: 1.01. The positive electrode active material Li 1.01 Ni 0.82 Co 0.15 Al 0.03 O 2 (specific surface area: 0.30 m 2 / g) was synthesized by heat treatment at 800 ° C. for 10 hours in dry air. A nonaqueous electrolyte secondary battery of Example 6-13 was produced in the same manner as Example 1-1 except that this positive electrode active material was used.

(実施例6−14)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCo及びMnの各硫酸塩とTiの硝酸塩が所定比率で加えられ、飽和水溶液が調製された。この飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて四元系の水酸化物Ni0.33Co0.33Mn0.29Ti0.05(OH)2が生成された。得られた水酸化物を原材料として正極活物質Li1.05Ni0.33Co0.33Mn0.29Ti0.052(比表面積:0.33m2/g)が合成された。この正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−14の非水電解質二次電池が作製された。
(Example 6-14)
In the manufacturing process of the positive electrode active material of Example 1-1, each of the sulfates of Co and Mn and the nitrate of Ti were added to the NiSO 4 aqueous solution at a predetermined ratio to prepare a saturated aqueous solution. An alkaline solution in which sodium hydroxide was dissolved was dropped into the saturated aqueous solution to produce a quaternary hydroxide Ni 0.33 Co 0.33 Mn 0.29 Ti 0.05 (OH) 2 . Using the obtained hydroxide as a raw material, a positive electrode active material Li 1.05 Ni 0.33 Co 0.33 Mn 0.29 Ti 0.05 O 2 (specific surface area: 0.33 m 2 / g) was synthesized. A nonaqueous electrolyte secondary battery of Example 6-14 was produced in the same manner as Example 1-1, except that this positive electrode active material was used.

(実施例6−15〜6−19)
実施例1−1の正極活物質の製造プロセスにおいて、NiSO4水溶液にCo、Mn及びM(Mはそれぞれ、Mg、Mo、Y、Zr、Ca)の各硫酸塩が所定比率で加えられ、各飽和水溶液が調製された。この各飽和水溶液に水酸化ナトリウムを溶解したアルカリ溶液が滴下されて四元系の水酸化物Ni0.33Co0.33Mn0.290.05(OH)2(Mはそれぞれ、Mg、Mo、Y、Zr、Ca)が生成された。得られた水酸化物を原材料として正極活物質Li1.05Ni0.33Co0.33Mn0.290.052(Mはそれぞれ、Mg、Mo、Y、Zr、Ca)が合成された。これらの正極活物質が用いられた以外は、実施例1−1と同様にして実施例6−15〜6−19の非水電解質二次電池が作製された。なお、正極活物質の比表面積は、全て0.30m2/gであった。
(Examples 6-15 to 6-19)
In the manufacturing process of the positive electrode active material of Example 1-1, sulfates of Co, Mn, and M (M are each Mg, Mo, Y, Zr, Ca) are added to the NiSO 4 aqueous solution at a predetermined ratio, A saturated aqueous solution was prepared. An alkaline solution in which sodium hydroxide is dissolved is dropped into each saturated aqueous solution to form a quaternary hydroxide Ni 0.33 Co 0.33 Mn 0.29 M 0.05 (OH) 2 (M is Mg, Mo, Y, Zr, Ca, respectively). ) Was generated. Using the obtained hydroxide as a raw material, a positive electrode active material Li 1.05 Ni 0.33 Co 0.33 Mn 0.29 M 0.05 O 2 (M is Mg, Mo, Y, Zr, Ca) was synthesized. Except for using these positive electrode active materials, non-aqueous electrolyte secondary batteries of Examples 6-15 to 6-19 were produced in the same manner as Example 1-1. The specific surface area of the positive electrode active material was all 0.30 m 2 / g.

上記の各非水電解質二次電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行われた。さらに、下記に示す寿命試験及び熱的安定性試験が行われた。表6は、各実施例の正極活物質の組成を、表7は、その試験結果をそれぞれ示す。   About each said nonaqueous electrolyte secondary battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Furthermore, the following life test and thermal stability test were performed. Table 6 shows the composition of the positive electrode active material of each example, and Table 7 shows the test results.

(寿命試験)
各非水電解質二次電池を、20℃環境下、1680mAの定電流で4.4Vまで充電し、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電した後、480mAの定電流で3.0Vまで放電する充放電サイクルが300回繰り返された。2サイクル目の放電容量に対する300サイクル目の放電容量の比率が、容量維持率(寿命特性の尺度)として評価された。
(Life test)
Each non-aqueous electrolyte secondary battery was charged at a constant current of 1680 mA to 4.4 V in a 20 ° C. environment, and further charged at a constant voltage of 4.4 V until the charging current decreased to 120 mA, and then a constant current of 480 mA. The charge / discharge cycle for discharging to 3.0V was repeated 300 times. The ratio of the discharge capacity at the 300th cycle to the discharge capacity at the second cycle was evaluated as a capacity retention ratio (a measure of life characteristics).

(熱的安定性試験)
各非水電解質二次電池が、20℃環境下、1680mAの定電流で4.4Vまで充電され、さらに充電電流が120mAに低下するまで4.4Vの定電圧で充電された後、電池の表面に熱電対が取り付けられた。この各電池を、5℃/分の速度で昇温する環境槽に入れ、環境温度を150℃まで上昇させた。そして、各非水電解質二次電池を150℃で2時間保持した時の電池表面の最高到達温度が、熱的安定性の尺度として評価された。
(Thermal stability test)
After each non-aqueous electrolyte secondary battery is charged to 4.4 V at a constant current of 1680 mA in a 20 ° C. environment and further charged at a constant voltage of 4.4 V until the charging current is reduced to 120 mA, the surface of the battery A thermocouple was attached. Each battery was placed in an environmental tank that was heated at a rate of 5 ° C./min, and the environmental temperature was increased to 150 ° C. The maximum temperature reached on the battery surface when each nonaqueous electrolyte secondary battery was held at 150 ° C. for 2 hours was evaluated as a measure of thermal stability.

Figure 0005063948
Figure 0005063948

Figure 0005063948
Figure 0005063948

表7に示されるように、いずれの実施例の非水電解質二次電池も放電レート特性及び高温保存特性の両特性に優れている。また、これらの実施例の中で、一般式LixNi1-(y+z)Coyz2で表される正極活物質において、xが0.95未満の正極活物質が用いられた実施例6−1の非水電解質二次電池は、他の電池に比べ、放電レート特性が低下する傾向にある。これは理論容量に対して実質的に高いレートで放電されたためと考えられる。逆にxが1.12より多い正極活物質が用いられた実施例6−4の非水電解質二次電池は、他の電池に比べ、高温保存特性が低下する傾向にある。これは活物質表面に炭酸リチウム等のリチウム化合物が生成しやすくなり、高温保存時にガスが発生したためと考えられる。またyが0.01未満の正極活物質が用いられた実施例6−5の非水電解質二次電池は、他の電池に比べ、寿命特性が低下する傾向にある。これは正極活物質の結晶安定性が低下したためと考えられる。逆にyが0.35より多い正極活物質が用いられた実施例6−8の非水電解質二次電池は、特に特性上の不具合は見られないものの、希少金属であるCoが多く用いられているため活物質自体が高価となる。さらに、zが0.01未満の正極活物質が用いられた実施例6−9の非水電解質二次電池は、他の電池に比べ、熱的安定性が低下する傾向にある。逆にzが0.50より多い正極活物質が用いられた実施例6−12の非水電解質二次電池は、Mn(一般式でMで表される元素)が多くなり容量が低下する傾向にある。そして、Coの一部が、Mnと、Ti、Mg、Mo、Y、Zr、及びCaから選ばれる少なくとも1種の元素とで置換された遷移金属含有複合酸化物を正極活物質として用いた実施例6−14〜6−19の非水電解質二次電池は、いずれの特性にも優れていることがわかる。以上の結果から、正極活物質として、一般式LixNi1-(y+z)Coyz2(0.95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50,Mは、Al、Mn、Ti、Mg、Mo、Y、Zr、及びCaからなる群から選ばれる少なくとも1種の元素)で表される遷移金属含有複合酸化物が好ましいことがわかる。さらに、上記一般式において、Mが、Mnと、Ti、Mg、Mo、Y、Zr、及びCaからなる群から選ばれる少なくとも1種の元素とを含む遷移金属含有複合酸化物を正極活物質として用いた場合、高いレベルで電池特性のバランスの取れた非水電解質二次電池が得られることがわかる。 As shown in Table 7, the nonaqueous electrolyte secondary battery of any of the examples is excellent in both discharge rate characteristics and high-temperature storage characteristics. In these examples, in the positive electrode active material represented by the general formula Li x Ni 1- (y + z) Co y M z O 2 , a positive electrode active material having x of less than 0.95 is used. In addition, the non-aqueous electrolyte secondary battery of Example 6-1 tends to have lower discharge rate characteristics than other batteries. This is presumably because the battery was discharged at a rate substantially higher than the theoretical capacity. Conversely, the nonaqueous electrolyte secondary battery of Example 6-4 in which a positive electrode active material having more x than 1.12 tends to have a high temperature storage characteristic that is lower than that of other batteries. This is probably because lithium compounds such as lithium carbonate are easily generated on the surface of the active material, and gas is generated during high-temperature storage. In addition, the nonaqueous electrolyte secondary battery of Example 6-5 in which a positive electrode active material having y of less than 0.01 is used tends to have a reduced life characteristic as compared with other batteries. This is presumably because the crystal stability of the positive electrode active material was lowered. On the other hand, the nonaqueous electrolyte secondary battery of Example 6-8 in which the positive electrode active material having more y than 0.35 was used, although there was no particular problem in characteristics, but a rare metal Co was often used. Therefore, the active material itself is expensive. Furthermore, the non-aqueous electrolyte secondary battery of Example 6-9 in which a positive electrode active material having z of less than 0.01 is used tends to have lower thermal stability than other batteries. Conversely, in the non-aqueous electrolyte secondary battery of Example 6-12 in which a positive electrode active material having more z than 0.50 was used, the capacity tends to decrease due to an increase in Mn (an element represented by M in the general formula). It is in. An implementation in which a transition metal-containing composite oxide in which a part of Co is substituted with Mn and at least one element selected from Ti, Mg, Mo, Y, Zr, and Ca is used as a positive electrode active material It can be seen that the nonaqueous electrolyte secondary batteries of Examples 6-14 to 6-19 are excellent in all characteristics. From the above results, as the positive electrode active material, the general formula Li x Ni 1- (y + z) Co y M z O 2 (0.95 ≦ x ≦ 1.12, 0.01 ≦ y ≦ 0.35, 0 .01 ≦ z ≦ 0.50, where M is at least one element selected from the group consisting of Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca) Is preferable. Further, in the above general formula, a transition metal-containing composite oxide containing M as Mn and at least one element selected from the group consisting of Ti, Mg, Mo, Y, Zr, and Ca is used as a positive electrode active material. When used, it can be seen that a non-aqueous electrolyte secondary battery with a balanced battery characteristic at a high level can be obtained.

[実施例7]
次に、添加剤(A)及び添加剤(B)が添加された非水電解液を有する非水電解質二次電池において、正極活物質と電池特性の関係について検討された。
[Example 7]
Next, in the non-aqueous electrolyte secondary battery having the non-aqueous electrolyte solution to which the additive (A) and the additive (B) were added, the relationship between the positive electrode active material and the battery characteristics was examined.

(実施例7−1)
実施例1−1において、正極活物質として、Li1.05Ni1/3Co1/3Mn1/32とLiCoO2とが質量比70:30で混合された混合物が用いられた以外は、実施例1−1と同様にして実施例7−1の非水電解質二次電池が作製された。なお、本実施例で用いられたLiCoO2は以下の方法により合成された。
(Example 7-1)
In Example 1-1, except that a mixture in which Li 1.05 Ni 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2 were mixed at a mass ratio of 70:30 was used as the positive electrode active material. A nonaqueous electrolyte secondary battery of Example 7-1 was produced in the same manner as Example 1-1. The LiCoO 2 used in this example was synthesized by the following method.

まず、硫酸コバルトを溶解させた濃度1mol/Lの金属塩水溶液が調製された。撹拌下にある前記金属塩水溶液が50℃に維持され、その中に水酸化ナトリウムを30質量%含む水溶液がpH12になるまで滴下されて、水酸化コバルトの沈殿が共沈法により生成された。この沈殿物が、ろ過、水洗され、空気中80℃で乾燥された。次いで、400℃で5時間焼成されて、酸化コバルトが得られた。得られた酸化物は粉末X線回折により単一相であることが確認された。   First, an aqueous metal salt solution having a concentration of 1 mol / L in which cobalt sulfate was dissolved was prepared. The metal salt aqueous solution under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by mass of sodium hydroxide was dropped therein until the pH reached 12, and a cobalt hydroxide precipitate was produced by a coprecipitation method. This precipitate was filtered, washed with water, and dried at 80 ° C. in air. Subsequently, it baked at 400 degreeC for 5 hours, and the cobalt oxide was obtained. The obtained oxide was confirmed to be a single phase by powder X-ray diffraction.

次に、得られた酸化コバルトにCoのモル数とLiのモル数の比が1:1になるように炭酸リチウムが加えられた。この混合物がロータリーキルンに入れられ、空気雰囲気中650℃で10時間予備加熱された。ロータリーキルンから取り出された予備加熱後の混合物が電気炉内に入れられ、室温から850℃まで2時間で昇温した後、850℃で10時間の熱処理を行うことにより、目的とするLiCoO2が得られた。得られたLiCoO2は粉末X線回折により単一相の六方晶層状構造であることが確認された。そして粉砕、分級の処理を経て正極活物質粉末が調製された(平均粒径:10.3μm、比表面積:0.38m/g)。 Next, lithium carbonate was added to the obtained cobalt oxide so that the ratio of the number of moles of Co to the number of moles of Li was 1: 1. This mixture was placed in a rotary kiln and preheated at 650 ° C. for 10 hours in an air atmosphere. The preheated mixture taken out from the rotary kiln is put in an electric furnace, heated from room temperature to 850 ° C. over 2 hours, and then subjected to heat treatment at 850 ° C. for 10 hours, thereby obtaining the target LiCoO 2. It was. The obtained LiCoO 2 was confirmed to have a single-phase hexagonal layered structure by powder X-ray diffraction. A positive electrode active material powder was prepared through pulverization and classification (average particle size: 10.3 μm, specific surface area: 0.38 m 2 / g).

(比較例13)
実施例7−1において、添加剤(A)としてPRSが2質量%用いられ、添加剤(B)が用いられなかった以外は、実施例7−1と同様にして比較例13の非水電解質二次電池が作製された。
(Comparative Example 13)
In Example 7-1, 2 mass% of PRS was used as additive (A), and the nonaqueous electrolyte of Comparative Example 13 was the same as Example 7-1 except that additive (B) was not used. A secondary battery was produced.

(比較例14)
実施例7−1において、添加剤(B)としてLiBF4が2質量%用いられ、添加剤(A)が用いられなかった以外は、実施例7−1と同様にして比較例14の非水電解質二次電池が作製された。
(Comparative Example 14)
In Example 7-1, 2% by mass of LiBF 4 was used as the additive (B), and the non-water of Comparative Example 14 was the same as Example 7-1 except that the additive (A) was not used. An electrolyte secondary battery was produced.

上記の各非水電解質二次電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行なわれた。表8は、その結果を示す。   About each said nonaqueous electrolyte secondary battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Table 8 shows the results.

Figure 0005063948
Figure 0005063948

表8の結果から明らかなように、正極活物質としてLi1.05Ni1/3Co1/3Mn1/32とLiCoO2との混合物が用いられた場合でも、非水電解液に添加剤(A)及び添加剤(B)の双方を添加することによって優れた高温保存特性が得られることがわかる。 As is apparent from the results in Table 8, even when a mixture of Li 1.05 Ni 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2 is used as the positive electrode active material, the additive is added to the non-aqueous electrolyte. It can be seen that excellent high temperature storage characteristics can be obtained by adding both (A) and additive (B).

[実施例8]
次に、添加剤(A)及び添加剤(B)が添加された非水電解液を有する非水電解質二次電池において、負極活物質と電池特性との関係が検討された。
[Example 8]
Next, in the nonaqueous electrolyte secondary battery having the nonaqueous electrolyte solution to which the additive (A) and the additive (B) were added, the relationship between the negative electrode active material and the battery characteristics was examined.

(実施例8−1)
実施例1−1において、負極活物質として、炭素材料の代わりに、SiO0.5の組成式で表される酸化ケイ素が用いられた以外は、実施例1−1と同様にして実施例8−1の非水電解質二次電池が作製された。本実施例で用いられたSiO0.5は以下の方法により作製された。
(Example 8-1)
In Example 1-1, Example 8 was carried out in the same manner as Example 1-1 except that silicon oxide represented by the composition formula of SiO 0.5 was used instead of the carbon material as the negative electrode active material. A non-aqueous electrolyte secondary battery of -1 was produced. SiO 0.5 used in this example was produced by the following method.

ターゲット材として、純度99.9999%のケイ素単体((株)高純度化学研究所製)が、装置として、電子ビーム加熱手段を具備する蒸着装置((株)アルバック製)が用いられた。装置内の固定台上に水平面と63度傾斜させて電解銅箔(古河サーキットフォイル(株)製,厚み35μm)が設置された。その鉛直下にターゲットが配置された。流量80sccmで純度99.7%の酸素ガス(日本酸素(株)製)が装置内に導入された。加速電圧−8kV、エミッション500mAで電子ビームがターゲットに照射されて、固定台に設置された銅箔上にケイ素と酸素とを含む化合物(酸化ケイ素)からなる負極活物質層が形成された。堆積量は、充電終止電圧を4.4Vとしたときの負荷容量が1760mAh/gとなるように調整された。得られた試料は、負極活物質層が外表面となるように二つ折りにされた後、幅58.5mm、長さ580mmに裁断され、負極リードが取り付けられて負極が作製された。得られた負極活物質層に含まれる酸素量が燃焼法により定量された結果、酸化ケイ素の組成はSiO0.5であることが確認された。 As a target material, a silicon simple substance having a purity of 99.9999% (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used, and a vapor deposition apparatus having an electron beam heating means (manufactured by ULVAC, Inc.) was used as the apparatus. An electrolytic copper foil (manufactured by Furukawa Circuit Foil Co., Ltd., thickness 35 μm) was installed on a fixed base in the apparatus at an angle of 63 degrees with respect to the horizontal plane. A target was placed below the vertical. An oxygen gas (manufactured by Nippon Oxygen Co., Ltd.) having a flow rate of 80 sccm and a purity of 99.7% was introduced into the apparatus. The target was irradiated with an electron beam at an acceleration voltage of −8 kV and an emission of 500 mA, and a negative electrode active material layer made of a compound (silicon oxide) containing silicon and oxygen was formed on the copper foil placed on the fixed base. The amount of deposition was adjusted so that the load capacity was 1760 mAh / g when the end-of-charge voltage was 4.4V. The obtained sample was folded in half so that the negative electrode active material layer became the outer surface, and then cut into a width of 58.5 mm and a length of 580 mm, and a negative electrode lead was attached to produce a negative electrode. As a result of quantifying the amount of oxygen contained in the obtained negative electrode active material layer by a combustion method, it was confirmed that the composition of silicon oxide was SiO 0.5 .

(比較例15)
実施例8−1において、添加剤(A)としてPRSが2質量%用いられ、添加剤(B)が用いられなかった以外は、実施例8−1と同様にして比較例15の非水電解質二次電池が作製された。
(Comparative Example 15)
In Example 8-1, the nonaqueous electrolyte of Comparative Example 15 was the same as Example 8-1, except that 2% by mass of PRS was used as additive (A) and additive (B) was not used. A secondary battery was produced.

(比較例16)
実施例8−1において、添加剤(B)としてLiBF4が2質量%用いられ、添加剤(A)が用いられなかった以外は、実施例8−1と同様にして比較例16の非水電解質二次電池が作製された。
(Comparative Example 16)
In Example 8-1, non-aqueous solution of Comparative Example 16 was obtained in the same manner as in Example 8-1, except that 2% by mass of LiBF 4 was used as additive (B) and additive (A) was not used. An electrolyte secondary battery was produced.

(実施例8−2)
実施例8−1において、負極活物質として、酸化ケイ素の代わりにケイ素単体が用いられた以外は、実施例8−1と同様にして実施例8−2の非水電解質二次電池が作製された。なお、本実施例で用いられた負極は、実施例8−1の負極の作製プロセスにおいて、酸素ガスが放出されなかった以外は実施例8−1と同様にして作製された。
(Example 8-2)
In Example 8-1, the nonaqueous electrolyte secondary battery of Example 8-2 was produced in the same manner as Example 8-1, except that silicon alone was used instead of silicon oxide as the negative electrode active material. It was. The negative electrode used in this example was produced in the same manner as in Example 8-1 except that oxygen gas was not released in the production process of the negative electrode in Example 8-1.

(比較例17)
実施例8−2において、添加剤(A)としてPRSが2質量%用いられ、添加剤(B)が用いられなかった以外は、実施例8−2と同様にして比較例17の非水電解質二次電池が作製された。
(Comparative Example 17)
In Example 8-2, the nonaqueous electrolyte of Comparative Example 17 was the same as Example 8-2, except that 2 mass% of PRS was used as additive (A) and additive (B) was not used. A secondary battery was produced.

(比較例18)
実施例8−2において、添加剤(B)としてLiBF4が2質量%用いられ、添加剤(A)が用いられなかった以外は、実施例8−2と同様にして比較例18の非水電解質二次電池が作製された。
(Comparative Example 18)
In Example 8-2, 2% by mass of LiBF 4 was used as the additive (B), and the non-aqueous solution of Comparative Example 18 was used in the same manner as in Example 8-2 except that the additive (A) was not used. An electrolyte secondary battery was produced.

上記の各電池について、実施例1と同条件で初期充放電が行なわれた後、実施例1と同条件で放電レート試験及び高温保存試験が行なわれた。表9は、その結果を示す。   About each said battery, after initial charge / discharge was performed on the same conditions as Example 1, the discharge rate test and the high temperature storage test were performed on the same conditions as Example 1. FIG. Table 9 shows the results.

Figure 0005063948
Figure 0005063948

表9の結果から明らかなように、負極活物質としてSi単体やSiとOの化合物が用いられた非水電解質二次電池でも、添加剤(A)及び添加剤(B)の双方を含有する非水電解液を用いることによって優れた放電レート特性及び高温保存特性が得られることがわかる。   As is clear from the results in Table 9, even in the nonaqueous electrolyte secondary battery in which Si alone or a compound of Si and O is used as the negative electrode active material, both the additive (A) and the additive (B) are contained. It can be seen that excellent discharge rate characteristics and high temperature storage characteristics can be obtained by using a non-aqueous electrolyte.

以上、詳細に説明されたように、本発明の一局面は、遷移金属含有複合酸化物を正極活物質として含む正極、リチウムを可逆的に吸蔵放出可能な負極活物質を含む負極、セパレータ、及び非水電解液を備えた非水電解質二次電池であって、前記非水電解液が、エチレンサルファイト、プロピレンサルファイト、及びプロパンスルトンからなる群から選ばれる少なくとも1種の添加剤(A)と、無水マレイン酸、ビニレンカーボネート、ビニルエチレンカーボネート、及びLiBF4からなる群から選ばれる少なくとも1種の添加剤(B)とを含み、充電終止電圧が4.3〜4.5Vである非水電解質二次電池である。上記構成によれば、添加剤(B)が優先的に負極表面で分解して被膜を形成する。そして、従来負極表面に被膜を形成すると考えられていた添加剤(A)が、高電圧の充電状態において、遷移金属含有複合酸化物と作用することにより正極表面に吸着あるいは分解して被膜を形成する。この高電圧状態の遷移金属含有複合酸化物と添加剤(A)の作用により形成される被膜が、充電状態の電池が高温保存されたときに正極活物質から溶出してくる金属イオンを大幅に減少することができる。また、添加剤(B)が優先的に負極表面に被膜が形成するため両添加剤の添加量も少量に抑えられ、両添加剤が各電極表面で被膜を形成するため非水電解液のインピーダンスの上昇も抑えられる。このため、高容量化のために4.3〜4.5Vの高い充電終止電圧を利用する場合でも、放電レート特性及び高温保存特性に優れた非水電解質二次電池が得られる。 As described above in detail, one aspect of the present invention includes a positive electrode including a transition metal-containing composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, a separator, and A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, wherein the non-aqueous electrolyte is at least one additive (A) selected from the group consisting of ethylene sulfite, propylene sulfite, and propane sultone And at least one additive (B) selected from the group consisting of maleic anhydride, vinylene carbonate, vinylethylene carbonate, and LiBF 4 , and a non-aqueous battery having a charge end voltage of 4.3 to 4.5 V It is an electrolyte secondary battery. According to the said structure, an additive (B) decomposes | disassembles preferentially on the negative electrode surface, and forms a film. The additive (A), which was previously thought to form a film on the negative electrode surface, acts on the transition metal-containing composite oxide in a charged state at a high voltage to form a film by adsorbing or decomposing on the positive electrode surface. To do. The coating formed by the action of the high-voltage state transition metal-containing composite oxide and the additive (A) greatly reduces metal ions eluted from the positive electrode active material when the charged battery is stored at high temperature. Can be reduced. In addition, since additive (B) preferentially forms a film on the negative electrode surface, the amount of both additives added can be kept to a small amount, and both additives form a film on each electrode surface, so the impedance of the nonaqueous electrolyte solution The rise of can also be suppressed. For this reason, even when a high end-of-charge voltage of 4.3 to 4.5 V is used to increase the capacity, a nonaqueous electrolyte secondary battery excellent in discharge rate characteristics and high-temperature storage characteristics can be obtained.

上記非水電解液中の添加剤(A)と添加剤(B)との総量は、0.1〜10質量%が好ましい。上記構成によれば、添加剤(B)が負極に優先的に被膜を形成し、添加剤(A)が高電圧の充電状態で正極に被膜を形成するため、非水電解液中の両添加剤の総量を抑えることができる。このため、少量の添加量で高温保存特性を改善することができ、放電レート特性の低下も抑えられる。   The total amount of the additive (A) and the additive (B) in the nonaqueous electrolytic solution is preferably 0.1 to 10% by mass. According to the above configuration, the additive (B) preferentially forms a film on the negative electrode, and the additive (A) forms a film on the positive electrode in a high voltage charged state. The total amount of the agent can be suppressed. For this reason, the high temperature storage characteristics can be improved with a small addition amount, and the deterioration of the discharge rate characteristics can be suppressed.

また、上記正極は、正極活物質として一般式LixNi1-(y+z)Coyz2(式中、0.95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50であり、Mは、Al,Mn,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素である)で表され、かつ、0.15〜1.50m2/gの比表面積を有する遷移金属含有複合酸化物を含むことが好ましい。上記組成の遷移金属含有複合酸化物は、高い充電終止電圧を使用でき、また高電圧充電時に添加剤(A)がその表面に吸着あるいは分解して良質な被膜を形成することができる。さらに、上記範囲の比表面積を有する遷移金属含有複合酸化物は、表面での電荷移動抵抗が小さく、また金属イオンの溶出が少ない。このため、放電レート特性と高温保存特性を高いレベルで両立することができる。 The positive electrode has a general formula Li x Ni 1- (y + z) Co y M z O 2 (where 0.95 ≦ x ≦ 1.12, 0.01 ≦ y ≦ 0. 35, 0.01 ≦ z ≦ 0.50, and M is at least one element selected from the group consisting of Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca. And it is preferable that the transition metal containing complex oxide which has a specific surface area of 0.15-1.50m < 2 > / g is included. The transition metal-containing composite oxide having the above composition can use a high end-of-charge voltage, and the additive (A) can be adsorbed or decomposed on the surface during high-voltage charging to form a high-quality film. Furthermore, the transition metal-containing composite oxide having a specific surface area in the above range has a small charge transfer resistance on the surface and little elution of metal ions. For this reason, the discharge rate characteristic and the high temperature storage characteristic can be compatible at a high level.

そして、上記一般式LixNi1-(y+z)Coyz2のMが、Mnと、Al,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素とを含有する遷移金属含有複合酸化物を正極活物質として用いた場合、放電レート特性と高温保存特性とを高いレベルで両立できるだけでなく、容量特性、熱的安定性にも優れた非水電解質二次電池を得ることができる。 In the general formula Li x Ni 1- (y + z) Co y M z O 2 , M is at least one selected from the group consisting of Mn and Al, Ti, Mg, Mo, Y, Zr, and Ca. When a transition metal-containing composite oxide containing various elements is used as the positive electrode active material, not only can discharge rate characteristics and high-temperature storage characteristics be compatible at a high level, but also capacity characteristics and thermal stability are excellent. A nonaqueous electrolyte secondary battery can be obtained.

上記正極は、正極活物質として、さらにLiCoOを含有してもよい。上記構成によれば、複数種の正極活物質を含有する正極であっても、放電レート特性及び高温保存特性に優れた非水電解質二次電池が得られる。 The positive electrode may further contain LiCoO 2 as a positive electrode active material. According to the said structure, even if it is a positive electrode containing a multiple types of positive electrode active material, the nonaqueous electrolyte secondary battery excellent in the discharge rate characteristic and the high temperature storage characteristic is obtained.

また、上記負極は、リチウムを可逆的に吸蔵放出可能な負極活物質として炭素材料を含有してもよい。上記構成によれば、炭素材料を負極活物質として含有する負極を有する非水電解質二次電池においても、放電レート特性及び高温保存特性を改善することができる。   The negative electrode may contain a carbon material as a negative electrode active material capable of reversibly occluding and releasing lithium. According to the said structure, a discharge rate characteristic and a high temperature storage characteristic can be improved also in the nonaqueous electrolyte secondary battery which has a negative electrode containing a carbon material as a negative electrode active material.

そして、上記炭素材料を負極活物質として含有する負極は、電池理論容量(X)と前記炭素材料の質量(Y)との比で表される負荷容量(X/Y)が、250〜360mAh/gであることが好ましい。上記負荷容量の範囲であれば、リチウムイオンの円滑な吸蔵放出が可能となり、分極特性の低下が抑制され、放電レート特性及び高温保存特性のさらに優れた非水電解質二次電池が得られる。   And the negative electrode containing the said carbon material as a negative electrode active material has a load capacity (X / Y) represented by ratio of battery theoretical capacity | capacitance (X) and the mass (Y) of the said carbon material to 250-360 mAh /. It is preferable that it is g. Within the above load capacity range, lithium ions can be smoothly occluded and released, the deterioration of polarization characteristics is suppressed, and a non-aqueous electrolyte secondary battery with further excellent discharge rate characteristics and high-temperature storage characteristics can be obtained.

また、上記負極は、リチウムを可逆的に吸蔵放出可能な負極活物質としてSi単体、SiとOとの化合物のいずれかまたは両方を含有してもよい。上記構成によれば、高容量が得られるケイ素系材料を負極活物質として含有する負極を有する非水電解質二次電池においても、放電レート特性及び高温保存特性を改善することができる。   In addition, the negative electrode may contain either or both of Si alone and a compound of Si and O as a negative electrode active material capable of reversibly occluding and releasing lithium. According to the said structure, a discharge rate characteristic and a high temperature storage characteristic can be improved also in the nonaqueous electrolyte secondary battery which has a negative electrode which contains the silicon-type material from which high capacity | capacitance is obtained as a negative electrode active material.

また、上記一局面に係る非水電解質二次電池の製造に際しては、正極と、負極と、セパレータとを有する極板群、及び上記非水電解液を電池ケースに入れる組み立て工程と、前記組み立て工程後に、非水電解質二次電池を4.3〜4.5Vの範囲の電圧まで少なくとも1回充電する高電圧充電工程を設けることが好ましい。上記構成によれば、高電圧充電により添加剤(B)が負極表面に優先的に被膜を形成するとともに、添加剤(A)が主として正極表面に被膜を形成するため、添加剤(A)及び添加剤(B)による放電レート特性と高温保存特性を改善する効果が十分に発揮される。   Further, in the production of the nonaqueous electrolyte secondary battery according to the above aspect, an electrode plate group having a positive electrode, a negative electrode, and a separator, an assembly step of putting the nonaqueous electrolyte in a battery case, and the assembly step Later, it is preferable to provide a high voltage charging step of charging the nonaqueous electrolyte secondary battery at least once to a voltage in the range of 4.3 to 4.5V. According to the above configuration, the additive (B) preferentially forms a film on the negative electrode surface by high-voltage charging, and the additive (A) mainly forms a film on the positive electrode surface. The effect of improving the discharge rate characteristics and high-temperature storage characteristics by the additive (B) is sufficiently exhibited.

上記高電圧充電工程は、4.3〜4.5Vの範囲の電圧までの充電を少なくとも2回行なうことが好ましい。上記構成によれば、各被膜が正極、負極の各電極表面に十分に形成されるため、より確実に放電レート特性及び高温保存特性を改善することができる。   In the high voltage charging step, it is preferable to perform charging up to a voltage in the range of 4.3 to 4.5 V at least twice. According to the said structure, since each film is fully formed in each electrode surface of a positive electrode and a negative electrode, a discharge rate characteristic and a high temperature storage characteristic can be improved more reliably.

また、上記組み立て工程と高電圧充電工程の間に、予備充電終止電圧が4.3V未満で、予備放電終止電圧が3.0V以上の充放電サイクルを少なくとも1回行なう予備充放電工程を設けることが好ましい。上記構成によれば、添加剤(A)の負極表面での吸着あるいは分解が進行しない低電圧で電池を予め充放電することにより、負極表面に添加剤(B)による被膜を優先的に形成することができる。そして、低電圧の予備充電により、負極表面に添加剤(A)と作用する部位に予め添加剤(B)の被膜が形成された後、高電圧で電池を充電することによって、正極表面に添加剤(A)の被膜が形成されるため、さらに放電レート特性及び高温保存特性を改善することができる。   In addition, a pre-charge / discharge step of performing at least one charge / discharge cycle with a pre-charge end voltage of less than 4.3V and a pre-discharge end voltage of 3.0V or more is provided between the assembly step and the high voltage charge step. Is preferred. According to the above configuration, the battery is charged and discharged in advance at a low voltage at which the adsorption or decomposition of the additive (A) on the negative electrode surface does not proceed, thereby preferentially forming the coating film of the additive (B) on the negative electrode surface. be able to. Then, after a low-voltage pre-charge, a film of the additive (B) is formed in advance on the negative electrode surface where the additive (A) acts, and then added to the positive electrode surface by charging the battery at a high voltage. Since the film of the agent (A) is formed, the discharge rate characteristics and the high temperature storage characteristics can be further improved.

上記非水電解質二次電池の製造方法において、正極は、正極活物質として一般式LixNi1-(y+z)Coyz2(式中、0.95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50であり、Mは、Al,Mn,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素である)で表され、かつ、0.15〜1.50m2/gの比表面積を有する遷移金属含有複合酸化物を含むことが好ましい。上記組成式の遷移金属含有複合酸化物は、高い充電終止電圧を使用でき、また高電圧充電時にその表面に添加剤(A)が吸着あるいは分解して良質な被膜を形成することができる。さらに、上記範囲の比表面積を有する遷移金属含有複合酸化物は、表面での電荷移動抵抗が小さく、また金属イオンの溶出が少ない。このため、放電レート特性と高温保存特性を高いレベルで両立することができる。 In the method for producing a non-aqueous electrolyte secondary battery, the positive electrode has a general formula Li x Ni 1- (y + z) Co y M z O 2 (where 0.95 ≦ x ≦ 1.12 ) as a positive electrode active material. , 0.01 ≦ y ≦ 0.35, 0.01 ≦ z ≦ 0.50, and M is at least one selected from the group consisting of Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca. And a transition metal-containing composite oxide having a specific surface area of 0.15 to 1.50 m 2 / g. The transition metal-containing composite oxide having the above composition formula can use a high end-of-charge voltage, and can form a high-quality film by adsorbing or decomposing the additive (A) on the surface during high-voltage charging. Furthermore, the transition metal-containing composite oxide having a specific surface area in the above range has a small charge transfer resistance on the surface and little elution of metal ions. For this reason, the discharge rate characteristic and the high temperature storage characteristic can be compatible at a high level.

そして、上記一般式LixNi1-(y+z)Coyz2のMが、Mnと、Al,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素とを含有する遷移金属含有複合酸化物を正極活物質として用いた場合、放電レート特性と高温保存特性とをさらに高いレベルで両立できるだけでなく、容量特性、熱的安定性にも優れた非水電解質二次電池を得ることができる。 In the general formula Li x Ni 1- (y + z) Co y M z O 2 , M is at least one selected from the group consisting of Mn and Al, Ti, Mg, Mo, Y, Zr, and Ca. When a transition metal-containing composite oxide containing various elements is used as the positive electrode active material, not only can discharge rate characteristics and high-temperature storage characteristics be compatible at a higher level, but also excellent capacity characteristics and thermal stability. In addition, a non-aqueous electrolyte secondary battery can be obtained.

本発明の非水電解質二次電池は、高容量で、放電レート特性及び高温保存特性にも優れているので、携帯電話等のポータブル機器に使用される二次電池として利用可能である。また、高出力を有する電動工具等の駆動用電源としても利用が可能である。   Since the nonaqueous electrolyte secondary battery of the present invention has a high capacity and excellent discharge rate characteristics and high temperature storage characteristics, it can be used as a secondary battery used in portable devices such as mobile phones. It can also be used as a power source for driving electric tools having high output.

図1は、本発明の非水電解質二次電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the nonaqueous electrolyte secondary battery of the present invention.

符号の説明Explanation of symbols

1 正極
2 正極リード
3 負極
4 負極リード
5 セパレータ
6 上部絶縁板
7 下部絶縁板
8 ケース
9 ガスケット
10 封口板
11 正極端子
12 極板群
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead 3 Negative electrode 4 Negative electrode lead 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate 11 Positive electrode terminal 12 Electrode plate group

Claims (11)

遷移金属含有複合酸化物を正極活物質として含む正極、リチウムを可逆的に吸蔵放出可能な負極活物質を含む負極、セパレータ、及び非水電解液を備えた非水電解質二次電池であって、
前記非水電解液は、エチレンサルファイト、プロピレンサルファイト、及びプロパンスルトンからなる群から選ばれる少なくとも1種の添加剤(A)と、無水マレイン酸、ビニレンカーボネート、ビニルエチレンカーボネート、及びLiBF4からなる群から選ばれ
る少なくとも1種の添加剤(B)とを含み、
前記負極は、前記リチウムを可逆的に吸蔵放出可能な負極活物質として炭素材料を含有し、電池理論容量(X)と炭素材料の質量(Y)との比で表される負荷容量(X/Y)が、250〜360mAh/gであり、
充電終止電圧が4.3〜4.5Vである非水電解質二次電池。
A positive electrode including a transition metal-containing composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, a separator, and a nonaqueous electrolyte secondary battery including a nonaqueous electrolyte solution,
The non-aqueous electrolyte is composed of at least one additive (A) selected from the group consisting of ethylene sulfite, propylene sulfite, and propane sultone, maleic anhydride, vinylene carbonate, vinyl ethylene carbonate, and LiBF 4. And at least one additive (B) selected from the group consisting of:
The negative electrode contains a carbon material as a negative electrode active material capable of reversibly occluding and releasing lithium, and a load capacity (X / X) expressed by a ratio between a battery theoretical capacity (X) and a mass (Y) of the carbon material. Y) is 250 to 360 mAh / g,
A nonaqueous electrolyte secondary battery having an end-of-charge voltage of 4.3 to 4.5V.
前記非水電解液中の添加剤(A)と添加剤(B)の総量が、0.1〜10質量%である請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the total amount of the additive (A) and the additive (B) in the non-aqueous electrolyte is 0.1 to 10% by mass. 前記正極は、前記正極活物質として一般式LixNi1-(y+z)Coyz2(式中、0.
95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50であり、Mは、Al,Mn,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素である)で表され、かつ、0.15〜1.50m2/gの比表面積を有する遷
移金属含有複合酸化物を含む請求項1に記載の非水電解質二次電池。
The positive electrode has the general formula Li x Ni 1- (y + z) Co y M z O 2 (where
95 ≦ x ≦ 1.12, 0.01 ≦ y ≦ 0.35, 0.01 ≦ z ≦ 0.50, and M is from Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca. 2. The non-aqueous composition according to claim 1, which comprises a transition metal-containing composite oxide represented by (1) and a specific surface area of 0.15 to 1.50 m 2 / g. Electrolyte secondary battery.
前記一般式LixNi1-(y+z)Coyz2のMは、Mnと、Al,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素とを含む請求項3に記載の非水電解質二次電池。 M in the general formula Li x Ni 1- (y + z ) Co y M z O 2 has a Mn, Al, Ti, Mg, Mo, Y, Zr, and at least one selected from the group consisting of Ca The nonaqueous electrolyte secondary battery according to claim 3, comprising an element. 前記正極は、前記正極活物質として、さらにLiCoOを含有する請求項3に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 3, wherein the positive electrode further contains LiCoO 2 as the positive electrode active material. 前記負極は、前記リチウムを可逆的に吸蔵放出可能な負極活物質としてSi単体、SiとOとの化合物のいずれかまたは両方を含有する請求項1に記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode contains one or both of Si and a compound of Si and O as a negative electrode active material capable of reversibly occluding and releasing lithium. 遷移金属含有複合酸化物を正極活物質として含む正極、リチウムを可逆的に吸蔵放出可能な負極活物質を含む負極、セパレータ、及び非水電解液を備えた非水電解質二次電池の製造方法であって、
前記非水電解液は、エチレンサルファイト、プロピレンサルファイト、及びプロパンスルトンからなる群から選ばれる少なくとも1種の添加剤(A)と、無水マレイン酸、ビニレンカーボネート、ビニルエチレンカーボネート、及びLiBF4からなる群から選ばれ
る少なくとも1種の添加剤(B)とを含んでおり、
前記負極は、前記リチウムを可逆的に吸蔵放出可能な負極活物質として炭素材料を含有し、電池理論容量(X)と炭素材料の質量(Y)との比で表される負荷容量(X/Y)が、250〜360mAh/gであり、
前記正極と、前記負極と、前記セパレータとを有する極板群、及び前記非水電解液を電池ケースに入れる組み立て工程と、
前記組み立て工程後に、前記非水電解質二次電池を4.3〜4.5Vの範囲の電圧まで少なくとも1回充電する高電圧充電工程を有する非水電解質二次電池の製造方法。
A positive electrode including a transition metal-containing composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, a separator, and a non-aqueous electrolyte secondary battery manufacturing method including a non-aqueous electrolyte There,
The non-aqueous electrolyte is composed of at least one additive (A) selected from the group consisting of ethylene sulfite, propylene sulfite, and propane sultone, maleic anhydride, vinylene carbonate, vinyl ethylene carbonate, and LiBF 4. And at least one additive (B) selected from the group consisting of:
The negative electrode contains a carbon material as a negative electrode active material capable of reversibly occluding and releasing lithium, and a load capacity (X / X) expressed by a ratio between a battery theoretical capacity (X) and a mass (Y) of the carbon material. Y) is 250 to 360 mAh / g,
An electrode plate group having the positive electrode, the negative electrode, and the separator, and an assembly step of putting the non-aqueous electrolyte in a battery case;
A method for producing a non-aqueous electrolyte secondary battery, comprising a high-voltage charging step of charging the non-aqueous electrolyte secondary battery at least once to a voltage in the range of 4.3 to 4.5 V after the assembly step.
前記高電圧充電工程は、4.3〜4.5Vの範囲の電圧までの充電を少なくとも2回含む請求項に記載の非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 7 , wherein the high-voltage charging step includes at least twice charging up to a voltage in a range of 4.3 to 4.5V. 前記組み立て工程と前記高電圧充電工程の間に、予備充電終止電圧が4.3V未満で、予備放電終止電圧が3.0V以上の充放電サイクルを少なくとも1回行なう予備充放電工程を有する請求項に記載の非水電解質二次電池の製造方法。 A pre-charging / discharging step of performing at least one charging / discharging cycle having a pre-charging final voltage of less than 4.3 V and a pre-discharge final voltage of 3.0 V or more between the assembling step and the high voltage charging step. 8. A method for producing a non-aqueous electrolyte secondary battery according to 7 . 前記正極は、前記正極活物質として一般式LixNi1-(y+z)Coyz2(式中、0.
95≦x≦1.12,0.01≦y≦0.35,0.01≦z≦0.50であり、Mは、Al,Mn,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素である)で表され、かつ、0.15〜1.50m2/gの比表面積を有する遷
移金属含有複合酸化物を含む請求項に記載の非水電解質二次電池の製造方法。
The positive electrode has the general formula Li x Ni 1- (y + z) Co y M z O 2 (where
95 ≦ x ≦ 1.12, 0.01 ≦ y ≦ 0.35, 0.01 ≦ z ≦ 0.50, and M is from Al, Mn, Ti, Mg, Mo, Y, Zr, and Ca. The non-aqueous composition according to claim 7 , which comprises a transition metal-containing composite oxide represented by the above-mentioned and a specific surface area of 0.15 to 1.50 m 2 / g. Manufacturing method of electrolyte secondary battery.
前記一般式LixNi1-(y+z)Coyz2のMは、Mnと、Al,Ti,Mg,Mo,Y,Zr,及びCaからなる群から選ばれる少なくとも1種の元素とを含む請求項1に記載の非水電解質二次電池の製造方法。 M in the general formula Li x Ni 1- (y + z ) Co y M z O 2 has a Mn, Al, Ti, Mg, Mo, Y, Zr, and at least one selected from the group consisting of Ca non-aqueous method for producing electrolyte secondary battery according to claim 1 0, including an element.
JP2006196526A 2005-07-21 2006-07-19 Non-aqueous electrolyte secondary battery and manufacturing method thereof Active JP5063948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196526A JP5063948B2 (en) 2005-07-21 2006-07-19 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005210929 2005-07-21
JP2005210929 2005-07-21
JP2006196526A JP5063948B2 (en) 2005-07-21 2006-07-19 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007053083A JP2007053083A (en) 2007-03-01
JP5063948B2 true JP5063948B2 (en) 2012-10-31

Family

ID=37917366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196526A Active JP5063948B2 (en) 2005-07-21 2006-07-19 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5063948B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137301B2 (en) * 2005-09-08 2013-02-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4892931B2 (en) * 2005-11-04 2012-03-07 ソニー株式会社 Lithium ion secondary battery
CN101305484A (en) * 2005-12-20 2008-11-12 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
JP5256816B2 (en) * 2007-03-27 2013-08-07 学校法人神奈川大学 Cathode material for lithium-ion batteries
JP5545790B2 (en) * 2007-07-23 2014-07-09 日立マクセル株式会社 Non-aqueous secondary battery and electronic device using the same
JP5335218B2 (en) * 2007-10-22 2013-11-06 日立マクセル株式会社 Non-aqueous electrolyte secondary battery
CN102037600A (en) * 2008-05-19 2011-04-27 日本电气株式会社 Secondary battery
JP5484771B2 (en) * 2008-09-26 2014-05-07 日産自動車株式会社 Positive electrode for lithium ion battery
WO2010058993A2 (en) * 2008-11-20 2010-05-27 주식회사 엘지화학 Lithium secondary battery having improved characteristics
KR101056441B1 (en) 2009-04-01 2011-08-11 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery including additive and lithium secondary battery comprising same
JP5272870B2 (en) * 2009-04-17 2013-08-28 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
KR101364828B1 (en) 2009-08-24 2014-02-19 도요타지도샤가부시키가이샤 Method for producing nonaqueous electrolyte lithium ion secondary battery
JPWO2012014998A1 (en) * 2010-07-29 2013-09-12 日立マクセル株式会社 Lithium secondary battery
JP2012227068A (en) * 2011-04-22 2012-11-15 Hitachi Ltd Lithium-ion secondary battery and battery pack system
US9570777B2 (en) 2011-09-29 2017-02-14 Hitachi Maxell, Ltd. Lithium secondary battery
JP5845096B2 (en) * 2012-01-17 2016-01-20 日立マクセル株式会社 Lithium secondary battery
JP2013149451A (en) * 2012-01-19 2013-08-01 Hitachi Maxell Ltd Lithium secondary battery
EP2827432B1 (en) 2012-03-15 2020-09-02 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and battery pack
EP2827431A4 (en) 2012-03-15 2015-11-18 Toshiba Kk Non-aqueous electrolyte secondary battery and battery pack
CN104756300A (en) * 2012-10-30 2015-07-01 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US9871272B2 (en) 2012-12-03 2018-01-16 Nec Corporation Secondary battery
JP2014232704A (en) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2015037323A1 (en) * 2013-09-13 2015-03-19 日本電気株式会社 Electrolyte solution and secondary battery
JP6187293B2 (en) * 2014-02-12 2017-08-30 株式会社豊田自動織機 Method for producing non-aqueous secondary battery
WO2015141546A1 (en) * 2014-03-17 2015-09-24 日立マクセル株式会社 Non-aqueous secondary battery
CN103972487B (en) * 2014-05-16 2016-08-24 厦门钨业股份有限公司 A kind of multicomponent composite oxide material and industrial production process thereof
JP6396136B2 (en) 2014-09-18 2018-09-26 マクセルホールディングス株式会社 Lithium secondary battery
JP6755182B2 (en) 2014-10-29 2020-09-16 マクセルホールディングス株式会社 Lithium ion secondary battery
EP3297083B1 (en) * 2015-05-11 2019-11-27 Nec Corporation Lithium-ion secondary battery
JP6484503B2 (en) * 2015-06-09 2019-03-13 信越化学工業株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6441778B2 (en) * 2015-10-30 2018-12-19 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
KR20180023732A (en) * 2016-08-26 2018-03-07 삼성에스디아이 주식회사 Composite positive electrode active material for lithium ion battery, preparing method thereof, and lithium ion battery including positive electrode comprising the same
CN112751088B (en) * 2020-12-31 2022-08-19 惠州市惠德瑞锂电科技股份有限公司 Preparation method of high-performance long-life soft package lithium manganese battery
CN115020814B (en) * 2022-08-09 2022-12-06 深圳新宙邦科技股份有限公司 Lithium ion battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762411B2 (en) * 2000-06-26 2011-08-31 パナソニック株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP4626020B2 (en) * 2000-07-07 2011-02-02 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP4151060B2 (en) * 2001-11-14 2008-09-17 株式会社ジーエス・ユアサコーポレーション Non-aqueous secondary battery
JP3973389B2 (en) * 2001-09-21 2007-09-12 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP4212301B2 (en) * 2002-05-16 2009-01-21 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2004055253A (en) * 2002-07-18 2004-02-19 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic device using the same
US7608364B2 (en) * 2003-01-10 2009-10-27 Nec Corporation Lithium ion secondary battery
JP2004281218A (en) * 2003-03-14 2004-10-07 Yuasa Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP4578790B2 (en) * 2003-09-16 2010-11-10 Agcセイミケミカル株式会社 Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide
JP2005123180A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP4697382B2 (en) * 2003-11-11 2011-06-08 日本電気株式会社 Nonaqueous electrolyte secondary battery
JP4986426B2 (en) * 2004-09-03 2012-07-25 パナソニック株式会社 Non-aqueous electrolyte for non-aqueous electrolyte secondary battery and secondary battery including the same

Also Published As

Publication number Publication date
JP2007053083A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN110431695B (en) Positive electrode active material for lithium secondary battery and method for preparing same
JP6672278B2 (en) Positive active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
KR20080031151A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
US20090081550A1 (en) Non-aqueous electrolyte secondary battery and method for producing the same
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20190041715A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
EP3715333A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
JP2019522882A (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
JP7451728B2 (en) Positive electrode active material precursor for secondary batteries, positive electrode active material, and lithium secondary batteries containing the same
CN111295360A (en) Positive active material precursor, method for preparing same, and positive active material, positive electrode and secondary battery prepared using same
CN110088970B (en) Nonaqueous electrolyte secondary battery
JP2022159384A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2020532846A (en) Manufacturing method of positive electrode active material for secondary battery, and secondary battery using this
JP2023554627A (en) Positive electrode active material for lithium secondary batteries, method for producing the same, positive electrode including the same, and lithium secondary batteries
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
CN114631207A (en) Irreversible additive, positive electrode material containing irreversible additive, and lithium secondary battery containing positive electrode material
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
CN110140242B (en) Positive electrode active material for secondary battery, method for producing same, positive electrode for secondary battery comprising same, and secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5063948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3